JP5512934B2 - Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid - Google Patents

Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid Download PDF

Info

Publication number
JP5512934B2
JP5512934B2 JP2008123114A JP2008123114A JP5512934B2 JP 5512934 B2 JP5512934 B2 JP 5512934B2 JP 2008123114 A JP2008123114 A JP 2008123114A JP 2008123114 A JP2008123114 A JP 2008123114A JP 5512934 B2 JP5512934 B2 JP 5512934B2
Authority
JP
Japan
Prior art keywords
sol
acid
amorphous
based particles
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008123114A
Other languages
Japanese (ja)
Other versions
JP2009270040A (en
Inventor
健太郎 岩崎
能彰 酒谷
史進 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd, Sumitomo Chemical Co Ltd filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP2008123114A priority Critical patent/JP5512934B2/en
Publication of JP2009270040A publication Critical patent/JP2009270040A/en
Application granted granted Critical
Publication of JP5512934B2 publication Critical patent/JP5512934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非晶質のZr−O系粒子を分散質とするゾル、その製造方法、このゾルをバインダーとする光触媒体コーティング液、およびその光触媒体コーティング液を塗布した光触媒機能製品の製造方法に関する。 The present invention relates to a sol having amorphous Zr-O-based particles as a dispersoid, a method for producing the sol, a photocatalyst coating liquid using the sol as a binder, and a method for producing a photocatalytic functional product coated with the photocatalyst coating liquid About.

光触媒体は、光を照射されることで活性を示す触媒であって、例えば特許文献1〔WO98/15600パンフレット〕、特許文献2〔特開2003−105262号公報〕、特許文献3〔特開平9−328336号公報〕、特許文献4〔特開2004−59686号公報〕、特許文献5〔WO01/023483パンフレット〕、特許文献6〔特開平11−209691号公報〕、特許文献7〔WO99/028393パンフレット〕などに開示されるように、バインダー成分と共に基材に塗布して、塗膜として使用されている。 The photocatalyst is a catalyst that exhibits activity when irradiated with light. For example, Patent Document 1 [WO 98/15600 pamphlet], Patent Document 2 [JP 2003-105262 A], Patent Document 3 [JP 9 No. -328336], Patent Document 4 [Japanese Patent Laid-Open No. 2004-59686], Patent Document 5 [Patent WO 01/023483], Patent Document 6 [Japanese Patent Laid-Open No. 11-209691], Patent Document 7 [WO 99/028393 Pamphlet]. As disclosed in the above, it is applied to a substrate together with a binder component and used as a coating film.

しかし、従来の光触媒体コーティング液から形成される塗膜は、基材への密着強度が必ずしも十分ではなく、このため、コーティング液中の光触媒体に対するバインダー成分の使用量を多くする必要があった。バインダー成分の使用量が多いと、光触媒体が十分にその活性を発現しにくくなる。 However, the coating film formed from the conventional photocatalyst coating liquid does not necessarily have sufficient adhesion strength to the base material, and therefore it is necessary to increase the amount of binder component used for the photocatalyst in the coating liquid. . If the amount of the binder component used is large, the photocatalyst will not sufficiently exhibit its activity.

光触媒体に対するバインダー成分として、金属無機塩が使用されることがあるが、光触媒体コーティング液の処方によっては、この金属無機塩には不純物が含まれやすく、しかも、この不純物が光触媒能や光触媒体塗膜の特性を阻害することもある。また、金属無機酸塩の水溶液は含有イオン濃度が高いために光触媒体との均一な混合が困難になる場合がある。 A metal inorganic salt may be used as a binder component for the photocatalyst, but depending on the formulation of the photocatalyst coating liquid, the metal inorganic salt is likely to contain impurities, and this impurity is a photocatalyst or photocatalyst. It may impair the properties of the coating film. Further, since the aqueous solution of the metal inorganic acid salt has a high ion concentration, it may be difficult to uniformly mix with the photocatalyst.

一方、金属酸化物や金属水酸化物のゾルをバインダー成分として使用する場合、金属酸化物や金属水酸化物は金属無機塩類よりも不純物濃度が低い点で有利である。 On the other hand, when a metal oxide or metal hydroxide sol is used as a binder component, the metal oxide or metal hydroxide is advantageous in that it has a lower impurity concentration than the metal inorganic salts.

WO98/15600号公報WO98 / 15600 特開2003−105262号公報JP 2003-105262 A 特開平9−328336号公報JP 9-328336 A 特開2004−59686号公報JP 2004-59686 A WO01/023483パンフレットWO01 / 023483 pamphlet 特開平11−209691号公報JP 11-209691 A WO99/028393パンフレットWO99 / 028393 brochure

そこで本発明者は、バインダー成分として光触媒体コーティング液に添加することにより、少ない添加量で、十分な密着力を示す塗膜を形成し得るバインダー成分を開発するべく鋭意検討した結果、光触媒体コーティング液にとって悪影響を及ぼす可能性のある不純物が混入しにくい非晶質のZr−O系粒子を分散質とするゾルが優れたバインダー特性を有することを見出し、本発明に至った。 Therefore, the present inventors have intensively studied to develop a binder component that can form a coating film exhibiting sufficient adhesion with a small addition amount by adding it as a binder component to the photocatalyst coating liquid. The present inventors have found that a sol having an amorphous Zr—O-based particle that is difficult to be mixed with impurities that may adversely affect the liquid has excellent binder properties, and has led to the present invention.

すなわち本発明は、下記の非晶質のZr−O系粒子を分散質とするゾル、その製造方法、このゾルをバインダーとする光触媒体コーティング液、およびその光触媒体コーティング液を塗布した光触媒機能製品の製造方法に関する。 That is, the present invention relates to a sol having the following amorphous Zr-O-based particles as a dispersoid, a method for producing the sol, a photocatalyst coating liquid using the sol as a binder, and a photocatalytic functional product to which the photocatalyst coating liquid is applied. It relates to the manufacturing method.

(1)粒子径D50が1〜20nmであり非晶質であるZr−O系粒子が分散媒中に分散されてなり、無機酸とカルボン酸またはその塩を含み、ゼータ電位が20mV以上であることを特徴とする非晶質のZr−O系粒子を分散質とするゾル。
(2)1モルのZrに対して0.05〜1モルのカルボン酸またはその塩を含むことを特徴とする上記(1)に記載の非晶質のZr−O系粒子を分散質とするゾル。
(3)カルボン酸がギ酸または酢酸から選ばれる1種または2種であることを特徴とする上記(1)または上記(2)に記載の非晶質のZr−O系粒子を分散質とするゾル。
(4)無機酸/カルボン酸またはその塩のモル比が0.1〜5であることを特徴とする上記(1)〜上記(3)に記載の非晶質のZr−O系粒子を分散質とするゾル。
(5)無機酸が硝酸であることを特徴とする上記(1)〜上記(4)に記載の非晶質のZr−O系粒子を分散質とするゾル。
(1) A Zr—O-based particle having a particle diameter D50 of 1 to 20 nm and amorphous is dispersed in a dispersion medium, contains an inorganic acid and a carboxylic acid or a salt thereof, and has a zeta potential of 20 mV or more. A sol having amorphous Zr—O-based particles as a dispersoid.
(2) Amorphous Zr—O-based particles as described in (1) above, containing 0.05 to 1 mol of carboxylic acid or a salt thereof with respect to 1 mol of Zr are used as dispersoids. Sol.
(3) The amorphous Zr-O-based particles according to (1) or (2) above, wherein the carboxylic acid is one or two selected from formic acid or acetic acid is used as a dispersoid. Sol.
(4) Disperse the amorphous Zr—O-based particles according to (1) to (3) above, wherein the molar ratio of inorganic acid / carboxylic acid or salt thereof is 0.1 to 5 The quality sol.
(5) A sol having amorphous Zr—O-based particles as described in (1) to (4) above as a dispersoid, wherein the inorganic acid is nitric acid.

(6)粒子径D50が1〜20nmであり非晶質であるZr−O系粒子が分散媒中に分散されてなり、カルボン酸またはその塩を含み、ゼータ電位が−20mV以下であることを特徴とする非晶質のZr−O系粒子を分散質とするゾル。
(7)1モルのZrに対して0.05〜1モルのカルボン酸またはその塩を含むことを特徴とする上記(6)に記載の非晶質のZr−O系粒子を分散質とするゾル。
(8)カルボン酸がクエン酸、酒石酸、グリコール酸および乳酸から選ばれる1種または2種以上であることを特徴とする上記(6)または上記(7)に記載の非晶質のZr−O系粒子を分散質とするゾル。
(9)カルボン酸が、(1)クエン酸、酒石酸、グリコール酸および乳酸から選ばれる1種または2種以上と(2)ギ酸、酢酸および蓚酸から選ばれる1種または2種以上の組み合わせであることを特徴とする上記(7)〜上記(8)に記載の非晶質のZr−O系粒子を分散質とするゾル。
(10)((1)クエン酸、酒石酸、グリコール酸および乳酸から選ばれる1種または2種以上)/((2)ギ酸、酢酸および蓚酸から選ばれる1種または2種以上)のモル比が0.1〜3であることを特徴とする上記(9)に記載の非晶質のZr−O系粒子を分散質とするゾル。
(11)分散媒中に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルの無機酸または無機酸の中和により生成した無機酸塩を、カルボン酸またはその塩と置換することを特徴とする、非晶質のZr−O系粒子を分散質とするゾルの製造方法。
(6) The Zr—O-based particles having a particle diameter D50 of 1 to 20 nm and being amorphous are dispersed in a dispersion medium, containing a carboxylic acid or a salt thereof, and having a zeta potential of −20 mV or less. A sol having amorphous Zr-O-based particles as a dispersoid.
(7) Amorphous Zr—O-based particles as described in (6) above, containing 0.05 to 1 mol of carboxylic acid or a salt thereof with respect to 1 mol of Zr are used as dispersoids. Sol.
(8) The amorphous Zr-O as described in (6) or (7) above, wherein the carboxylic acid is one or more selected from citric acid, tartaric acid, glycolic acid and lactic acid Sol with dispersoids of system particles.
(9) The carboxylic acid is a combination of one or more selected from (1) citric acid, tartaric acid, glycolic acid and lactic acid and (2) one or more selected from formic acid, acetic acid and succinic acid A sol comprising the amorphous Zr—O-based particles as described in (7) to (8) above as a dispersoid.
(10) (1) One or more selected from (1) citric acid, tartaric acid, glycolic acid and lactic acid) / ((2) One or more selected from formic acid, acetic acid and succinic acid) A sol having an amorphous Zr—O-based particle as described in (9) above as a dispersoid.
(11) An inorganic acid of a sol containing an inorganic acid in a dispersion medium and having amorphous Zr-O-based particles as a dispersoid, or an inorganic acid salt generated by neutralization of an inorganic acid, a carboxylic acid or a salt thereof A method for producing a sol using amorphous Zr—O-based particles as a dispersoid, which comprises substitution.

(12)分散媒中に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルが、水酸化ジルコニウム、無機酸および溶媒からなり、ZrO2換算のジルコニウム濃度をX重量%、1モルのZrに対する無機酸のグラム当量数Yとした場合、XおよびYが以下の式(A)
3≦X≦20 (A)
および式(B)
(2.0−0.07X)≦Y≦(3.0−0.08X) (B)
を満足する反応分散液を調製し、ついで該反応液を80℃以上で加熱して得られたゾルであることを特徴とする上記(11)に記載の非晶質のZr−O系粒子を分散質とするゾルの製造方法。
(13)1モルのZrに対して0.05〜1モルのカルボン酸またはその塩を含むように置換することを特徴とする上記(11)または上記(12)に記載の非晶質のZr−O系粒子を分散質とするゾルの製造方法。
(14)無機酸が硝酸であることを特徴とする上記(11)〜上記(13)に記載の非晶質のZr−O系粒子を分散質とするゾルの製造方法。
(15)光触媒体、粒子径D50が1〜20nmであり非晶質であるZr−O系粒子カルボン酸とその塩、または、無機酸とカルボン酸またはその塩を含み、光触媒体100重量部に対する前記Zr−O系粒子のZrO2換算の含有量が15〜120重量部であることを特徴とする光触媒体コーティング液。
(12) A sol containing an inorganic acid in a dispersion medium and containing amorphous Zr—O-based particles as a dispersoid is composed of zirconium hydroxide, an inorganic acid and a solvent, and the zirconium concentration in terms of ZrO 2 is X wt%. When the gram equivalent number Y of inorganic acid with respect to 1 mol of Zr, X and Y are the following formulas (A)
3 ≦ X ≦ 20 (A)
And formula (B)
(2.0−0.07X) ≦ Y ≦ (3.0−0.08X) (B)
The amorphous Zr-O-based particles as described in (11) above, which is a sol obtained by preparing a reaction dispersion satisfying the following conditions, and then heating the reaction liquid at 80 ° C. or higher: A method for producing a sol as a dispersoid.
(13) Amorphous Zr as described in (11) or (12) above, wherein 1 to 3 moles of Zr is substituted so as to contain 0.05 to 1 mole of carboxylic acid or a salt thereof. A method for producing a sol using -O-based particles as a dispersoid.
(14) The method for producing a sol using the amorphous Zr—O-based particles as described in (11) to (13) above, wherein the inorganic acid is nitric acid.
(15) A photocatalyst comprising a Zr—O-based particle carboxylic acid and a salt thereof, or an inorganic acid and a carboxylic acid or a salt thereof, having a particle diameter D50 of 1 to 20 nm and amorphous, with respect to 100 parts by weight of the photocatalyst The photocatalyst coating liquid, wherein the Zr—O-based particles have a ZrO 2 equivalent content of 15 to 120 parts by weight.

(16)上記(15)に記載の光触媒体コーティング液を基材上に塗布し、溶媒を揮発させることを特徴とする光触媒機能製品の製造方法。 (16) A method for producing a photocatalytic functional product, wherein the photocatalyst coating liquid according to (15) is applied onto a substrate and the solvent is volatilized.

本発明の非晶質のZr−O系粒子を分散質とするゾルによれば、バインダー成分として光触媒体コーティング液に添加することにより、光触媒体の機能を阻害することなく、少ない添加量で、十分な密着力を示す塗膜を形成することができる。 According to the sol having the amorphous Zr-O-based particles of the present invention as a dispersoid, by adding to the photocatalyst coating liquid as a binder component, the function of the photocatalyst is not impaired, with a small addition amount, A coating film exhibiting sufficient adhesion can be formed.

以下に本発明の非晶質のZr−O系粒子を分散質とするゾル、その製造方法、そのゾルをバインダーとする光触媒体コーティング液、およびその光触媒体コーティング液を塗布した光触媒機能製品の製造方法について詳細を説明する。 Hereinafter, a sol having the amorphous Zr-O-based particles of the present invention as a dispersoid, a production method thereof, a photocatalyst coating liquid using the sol as a binder, and production of a photocatalytic functional product coated with the photocatalyst coating liquid Details of the method will be described.

(1)ゼータ電位が20mV以上のゾル
本発明の非晶質のZr−O系粒子を分散質とするゾルは、粒子径D50が1〜20nmである非晶質のZr−O系粒子を分散質とし、無機酸とカルボン酸またはその塩を含み、ゼータ電位が20mV以上であることを特徴とする。
(1) Sol with zeta potential of 20 mV or more The sol using the amorphous Zr—O-based particles of the present invention as a dispersoid disperses amorphous Zr—O-based particles having a particle diameter D50 of 1 to 20 nm. And includes an inorganic acid and a carboxylic acid or a salt thereof, and has a zeta potential of 20 mV or more.

本発明において、粒子径D50とはレーザードップラー法によってゾルの粒子径測定を行ったときの体積換算累積頻度が50%となる粒子径を意味する。 In the present invention, the particle diameter D50 means a particle diameter at which the volume conversion cumulative frequency becomes 50% when the particle diameter of the sol is measured by the laser Doppler method.

本発明のゾルは、非晶質のZr−O系粒子を分散質とする。
分散質であるZr−O系粒子の粒子径D50は、1〜20nm、好ましくは1〜15nmである。粒子径D50が1nm未満では、ジルコニウム塩類の水溶液としての性質が強くなりそれとの区別が明確にならず好ましくない。又、20nmを超えると本発明のゾルの特徴である、光触媒体のバインダーとしての反応活性や溶液としての性質が低下するので好ましくない。
なお、該Zr−O系粒子は非晶質であるため、200℃以下の温度で恒量となるまで乾燥し、X線回折測定を行ったとき2θ=10〜50°で特定の結晶系に帰属されるパターンを示さない。なお、Zr−O系粒子には、少なくともZrとOが含まれればよく、例えばジルコニウムの水酸化物、酸化物、水和物のいずれでもよく、これらの混合物でも良い。
The sol of the present invention uses amorphous Zr—O-based particles as a dispersoid.
The particle diameter D50 of the Zr—O-based particles as the dispersoid is 1 to 20 nm, preferably 1 to 15 nm. If the particle diameter D50 is less than 1 nm, the properties of the zirconium salt as an aqueous solution become strong and the distinction from that becomes unclear, which is not preferable. On the other hand, if it exceeds 20 nm, the reaction activity as a binder of the photocatalyst and the properties as a solution, which are characteristics of the sol of the present invention, are not preferable.
Since the Zr—O-based particles are amorphous, they are dried to a constant weight at a temperature of 200 ° C. or lower and assigned to a specific crystal system at 2θ = 10 to 50 ° when X-ray diffraction measurement is performed. Does not show the pattern to be played. The Zr—O-based particles only need to contain at least Zr and O. For example, any of zirconium hydroxide, oxide, and hydrate, or a mixture thereof may be used.

一方、本発明のゾルにおいて、ジルコニウム濃度はZrO2換算で3〜20重量%、好ましくは、5〜18重量%の範囲内であるとよい。3重量%未満の場合非効率であり、20重量%を超える場合は増粘、ゲル化のおそれがあり好ましくない。 On the other hand, in the sol of the present invention, the zirconium concentration is 3 to 20% by weight in terms of ZrO 2 , preferably 5 to 18% by weight. If it is less than 3% by weight, it is inefficient, and if it exceeds 20% by weight, there is a risk of thickening and gelation, which is not preferable.

本発明のゾルは、カルボン酸またはその塩を必須成分として含有しており、通常pH7以下、好ましくはpH5以下である。pHが7を超えると分散質の凝集、沈殿やゲル化等を起こしゾルとして安定でなくなるため好ましくない。また、ゾルの安定性はゼータ電位とも相関があり、ゼータ電位が20mV以上、好ましくは30mV以上、特に好ましくは40mV以上、であればゾルの安定性が確保される。本発明のゾルの分散媒は特に限定されるものでなく、例えば水、メタノール、エタノール、アセトン、エーテル等であってもよい。好ましくは、通常、水が用いられる。 The sol of the present invention contains carboxylic acid or a salt thereof as an essential component, and is usually pH 7 or lower, preferably pH 5 or lower. A pH exceeding 7 is not preferable because it causes dispersoid aggregation, precipitation, gelation, and the like, and becomes unstable as a sol. The stability of the sol also correlates with the zeta potential. If the zeta potential is 20 mV or more, preferably 30 mV or more, particularly preferably 40 mV or more, the stability of the sol is ensured. The dispersion medium of the sol of the present invention is not particularly limited, and may be water, methanol, ethanol, acetone, ether or the like, for example. Preferably, water is usually used.

カルボン酸またはその塩の含有量は、1モルのZrに対して0.05〜1モル、好ましくは0.1〜0.5モルである。 Content of carboxylic acid or its salt is 0.05-1 mol with respect to 1 mol of Zr, Preferably it is 0.1-0.5 mol.

0.05モル未満では、ゾルに含有される無機酸をカルボン酸またはその塩で置換し、光触媒体コーティング液の特性を向上させるという本発明のゾルの特徴が十分に発揮されず、1モルを超える場合は、ゾルの主用途である光触媒体コーティング液における特性発現の妨げになる可能性があり好ましくない。 If the amount is less than 0.05 mol, the inorganic acid contained in the sol is replaced with a carboxylic acid or a salt thereof, and the characteristics of the sol of the present invention for improving the characteristics of the photocatalyst coating liquid are not fully exhibited, and 1 mol When exceeding, it may become the hindrance of the characteristic expression in the photocatalyst body coating liquid which is the main use of sol, and is unpreferable.

本発明のゾルは硝酸、塩酸等の無機酸を含有するが、製品への不純物の混入の少ない硝酸が好ましい。 The sol of the present invention contains an inorganic acid such as nitric acid and hydrochloric acid, but nitric acid is preferable because it contains less impurities in the product.

さらに、本発明のゾル中の無機酸/カルボン酸またはその塩のモル比は、0.1〜5、好ましくは0.3〜3である。 Furthermore, the molar ratio of the inorganic acid / carboxylic acid or salt thereof in the sol of the present invention is 0.1 to 5, preferably 0.3 to 3.

このモル比が0.1未満の場合、光触媒コーティング液として用いた際、得られる塗膜が充分な密着性を示さない。またこのモル比が5を超える場合、ゾル中の非晶質Zr−O系粒子の分散安定性が損なわれ、凝集粒子が生成して、光触媒コーティング液として用いた際、得られる塗膜の意匠性に不具合が生じることがある。 When this molar ratio is less than 0.1, the resulting coating film does not exhibit sufficient adhesion when used as a photocatalyst coating solution. When the molar ratio exceeds 5, the dispersion stability of the amorphous Zr-O-based particles in the sol is impaired, and aggregated particles are generated and used as a photocatalyst coating liquid. May cause problems.

ゾルが無機酸とカルボン酸またはその塩の両方を上記モル比で含有するとき、ゼータ電位の絶対値が極大をとるため、正のゼータ電位を持つ光触媒体との均一な混合がより容易となる。 When the sol contains both an inorganic acid and a carboxylic acid or a salt thereof in the above molar ratio, the absolute value of the zeta potential is maximized, so that uniform mixing with a photocatalyst having a positive zeta potential becomes easier. .

上記のゼータ電位の絶対値の極大については次のように解釈できる。ゾルに含有される非晶質のZr−O系粒子に表面電位を与えるのはプロトンであり、硝酸や塩酸などの無機酸はプロトンの供給能に優れる。表面電位から電気二重層に分布するカウンターイオンの電位を幾分差し引いたものがゼータ電位として観測されるから、表面電位を低下させにくいカウンターイオンの導入や、電気二重層内のカウンターイオンの濃度を低下させることによって高いゼータ電位が得られると推測される。そして、おそらく、カルボン酸またはその塩には、表面電位を低下させにくいカウンターイオンを供給したり、電離していないカルボン酸またはその塩がZr−O系粒子表面に吸着するなどしてカウンターイオンの濃度を低下させる効果があり、プロトンを放出して表面電位を与える無機酸と表面電位を低下させにくいカルボン酸またはその塩のゾル中の濃度バランスがゼータ電位の重要な要因であると考えられる。 The maximum value of the absolute value of the zeta potential can be interpreted as follows. Protons impart a surface potential to the amorphous Zr—O-based particles contained in the sol, and inorganic acids such as nitric acid and hydrochloric acid are excellent in proton supply ability. Since the zeta potential is obtained by subtracting the potential of the counter ions distributed in the electric double layer from the surface potential, introduction of counter ions that are difficult to reduce the surface potential and the concentration of counter ions in the electric double layer It is presumed that a high zeta potential can be obtained by lowering. Probably, the carboxylic acid or its salt is supplied with a counter ion that does not easily lower the surface potential, or the non-ionized carboxylic acid or its salt is adsorbed on the surface of the Zr—O-based particle. It is thought that the concentration balance in the sol of an inorganic acid that releases protons and gives surface potential by releasing protons and carboxylic acid or its salt that hardly lowers surface potential is an important factor of zeta potential.

Zr−O系粒子が分散した状態を安定して保つためには1モルのZrに対する無機酸とカルボン酸またはその塩の合計が0.05モル、好ましくは0.1モル以上は必要であるが、それ以上の無機酸とカルボン酸またはその塩の合計の量はゾルに必要な特性、用途に応じて自由に選択できる。なお、1モルのZrに対する無機酸とカルボン酸またはその塩の合計が1モルを超えることは、添加量に見合うZr−O系粒子の分散性の向上などが見られない為、経済的な点から好ましくない。 In order to stably maintain the dispersed state of the Zr—O-based particles, the total amount of inorganic acid and carboxylic acid or salt thereof per 1 mol of Zr is 0.05 mol, preferably 0.1 mol or more. Further, the total amount of the inorganic acid and carboxylic acid or salt thereof can be freely selected according to the characteristics and application required for the sol. In addition, since the improvement of the dispersibility of Zr-O type | system | group particle | grains suitable for the addition amount is not seen that the sum total of the inorganic acid and carboxylic acid with respect to 1 mol of Zr or its salt exceeds 1 mol, it is economical. Is not preferable.

本発明で用いるカルボン酸またはその塩としては、ギ酸、ギ酸塩、酢酸、酢酸塩、プロピオン酸及びプロピオン酸塩等があげられ、これらの1種または2種以上を用いることが出来る(すなわち、本発明において、「カルボン酸またはその塩」とは、「カルボン酸および/またはその塩」、すなわち、(1)カルボン酸単独、(2)カルボン酸塩単独および(3)カルボン酸とカルボン酸塩との混合物、の3通りを含むことを意味する)。 Examples of the carboxylic acid or a salt thereof used in the present invention include formic acid, formate, acetic acid, acetate, propionic acid and propionate, and one or more of these can be used (that is, the present invention) In the present invention, “carboxylic acid or salt thereof” means “carboxylic acid and / or salt thereof”, that is, (1) carboxylic acid alone, (2) carboxylate salt alone, and (3) carboxylic acid and carboxylate salt. A mixture of the following:

これらのなかでもギ酸、ギ酸塩、酢酸および酢酸塩を用いるのが好ましい。ギ酸塩としては、ギ酸アンモニウム、ギ酸ナトリウム、およびギ酸カリウムが、また酢酸塩としては、酢酸アンモニウム、酢酸ナトリウム、および酢酸カリウムがあげられる。 Of these, formic acid, formate, acetic acid and acetate are preferably used. Examples of the formate include ammonium formate, sodium formate, and potassium formate, and examples of the acetate include ammonium acetate, sodium acetate, and potassium acetate.

(2)ゼータ電位が−20mV以下のゾル
本発明の第二のゾルは、粒子径D50が1〜20nmである非晶質のZr−O系粒子を分散質とし、カルボン酸またはその塩を含み、ゼータ電位が−20mV以下であることを特徴とする。
(2) Sol with zeta potential of −20 mV or less The second sol of the present invention comprises amorphous Zr—O-based particles having a particle diameter D50 of 1 to 20 nm as a dispersoid, and contains a carboxylic acid or a salt thereof. The zeta potential is -20 mV or less.

非晶質のZr−O系粒子および分散媒としては、上記(1)ゼータ電位が20mV以上のゾルの場合と同じものを用いることが出来る。 As the amorphous Zr—O-based particles and the dispersion medium, the same (1) sol having a zeta potential of 20 mV or more can be used.

なお、本発明の第二のゾルにおいて、ジルコニウム濃度はZrO2換算で3〜20重量%、好ましくは、5〜18重量%の範囲内であるとよい。3重量%未満の場合非効率であり、20重量%を超える場合は増粘、ゲル化のおそれがあり好ましくない。 In the second sol of the present invention, the zirconium concentration is 3 to 20% by weight, preferably 5 to 18% by weight in terms of ZrO 2 . If it is less than 3% by weight, it is inefficient, and if it exceeds 20% by weight, there is a risk of thickening and gelation, which is not preferable.

本発明の第二のゾルは、カルボン酸またはその塩を必須成分として含有しており、pH3〜12、好ましくは6〜10である。pH3未満または、pH12を超える場合、含有する酸または塩基などの不純物が過剰となり、光触媒体コーティング液にとって好ましくない場合がある。 The 2nd sol of this invention contains carboxylic acid or its salt as an essential component, and is pH 3-12, Preferably it is 6-10. If the pH is less than 3 or exceeds pH 12, impurities such as acid or base contained may be excessive, which may be undesirable for the photocatalyst coating liquid.

カルボン酸またはその塩/Zrのモル比は、0.05〜1、好ましくは0.1〜0.5である。カルボン酸またはその塩はZr−O系粒子表面に吸着し、負の表面電位を与え、ゾルを安定化するものと考えられる。 The molar ratio of carboxylic acid or its salt / Zr is 0.05 to 1, preferably 0.1 to 0.5. It is considered that carboxylic acid or a salt thereof is adsorbed on the surface of Zr—O-based particles, gives a negative surface potential, and stabilizes the sol.

0.05未満では、Zr−O系粒子に十分な表面電位を与えられずゾルの安定が確保できない。1を超える場合は、ゾルの主用途である光触媒体コーティング液における特性発現の妨げになる可能性があり好ましくない。 If it is less than 0.05, a sufficient surface potential cannot be applied to the Zr—O-based particles, and sol stability cannot be ensured. When it exceeds 1, it may be an obstacle to the expression of characteristics in the photocatalyst coating liquid which is the main application of the sol, which is not preferable.

上記の負の表面電位の指標としてゼータ電位を基準とすることができ、ゾルの安定性を確保するには該ゾルのゼータ電位が−20mV以下、好ましくは−30mV以下、特に好ましくは−40mV以下である。これは上記のカルボン酸またはその塩/Zrのモル比に依存したものとなる。該ゾルのゼータ電位が−20mV以下の場合、ゼータ電位が負の光触媒体との均一な混合が容易となる特徴がある。 The zeta potential can be used as a reference for the negative surface potential, and the zeta potential of the sol is −20 mV or less, preferably −30 mV or less, particularly preferably −40 mV or less to ensure the stability of the sol. It is. This depends on the carboxylic acid or its salt / Zr molar ratio. When the zeta potential of the sol is −20 mV or less, there is a feature that uniform mixing with a photocatalyst having a negative zeta potential is facilitated.

カルボン酸としてはクエン酸、酒石酸、グリコール酸および乳酸が挙げられ、これらはゾルの表面電位への寄与が特に大きいため必須成分である。 Examples of the carboxylic acid include citric acid, tartaric acid, glycolic acid, and lactic acid, which are essential components because they contribute particularly greatly to the surface potential of the sol.

本発明のゾルは硝酸、塩酸等の無機酸を含有しても良いが、この場合、製品への不純物の混入の少ない硝酸が好ましい。これらの無機酸は、本発明のゾルの製造段階で、1モルのZrに対して0.1〜3モルの塩基が加えられ、その後、精製されるため、通常の場合、これらの無機酸は確認されない場合が多い。 The sol of the present invention may contain an inorganic acid such as nitric acid and hydrochloric acid. In this case, nitric acid with less impurities mixed into the product is preferable. Since these inorganic acids are refined after 0.1 to 3 mol of base is added to 1 mol of Zr in the production stage of the sol of the present invention, in general, these inorganic acids are It is often not confirmed.

カルボン酸は(1)クエン酸、酒石酸、グリコール酸および乳酸から選ばれる1種または2種以上またはそれらと(2)ギ酸、酢酸および蓚酸から選ばれる1種または2種以上との組み合わせとしてもよい。 The carboxylic acid may be (1) one or more selected from citric acid, tartaric acid, glycolic acid, and lactic acid, or (2) one or more selected from formic acid, acetic acid, and succinic acid. .

クエン酸、酒石酸、グリコール酸、乳酸またはそれらの塩は該ゾルの用途である光触媒体コーティング液の特性発現の妨げになる可能性が高いため、該ゾルにはクエン酸、酒石酸、グリコール酸、乳酸またはそれらの塩が必要最低限含有されていることが好ましい。一方、ギ酸、酢酸、蓚酸またはそれらの塩はゼータ電位への寄与は小さいが、光触媒体塗膜の特性を向上させる効果が期待でき、ゾルに含有させた場合、該ゾルの応用製品の特性発現の妨げになる傾向が強いクエン酸、酒石酸、グリコール酸、乳酸またはそれらの塩の含有量を減らしても、上記ゼータ電位を−20mV以下に維持することを可能とする。 Since citric acid, tartaric acid, glycolic acid, lactic acid or salts thereof are likely to hinder the development of the characteristics of the photocatalyst coating liquid used for the sol, the sol contains citric acid, tartaric acid, glycolic acid, lactic acid. Or it is preferable that those salts are contained at the minimum. On the other hand, formic acid, acetic acid, succinic acid or their salts have little contribution to the zeta potential, but can be expected to improve the properties of the photocatalyst coating film. Even if the content of citric acid, tartaric acid, glycolic acid, lactic acid or their salts, which tend to be a hindrance, is reduced, the zeta potential can be maintained at -20 mV or less.

上記カルボン酸の種類や組み合わせは、該ゾルの用途である光触媒体コーティング液の必要特性に応じて選択すればよく、特に限定されるものではない。また、(1)クエン酸、酒石酸、グリコール酸および乳酸またはそれらの塩から選ばれる1種または2種以上と(2)ギ酸、酢酸、蓚酸またはそれらの塩から選ばれる1種または2種以上のモル比((1)/(2))は0.1〜3が好ましい。0.1未満では、ゾルが不安定となるため、また、3を超えると光触媒コーティング液の特性に悪影響を及ぼす可能性があるため好ましくない。 The kind and combination of the carboxylic acid may be selected according to the required characteristics of the photocatalyst coating liquid used for the sol, and is not particularly limited. In addition, (1) one or more selected from citric acid, tartaric acid, glycolic acid and lactic acid or salts thereof and (2) one or more selected from formic acid, acetic acid, succinic acid or salts thereof The molar ratio ((1) / (2)) is preferably 0.1 to 3. If it is less than 0.1, the sol becomes unstable, and if it exceeds 3, the characteristics of the photocatalyst coating solution may be adversely affected.

以下に、非晶質のZr−O系粒子を分散質とするゾルの製造方法、このゾルをバインダーとする光触媒体コーティング液、およびその光触媒体コーティング液を塗布した光触媒機能製品の製造方法、について、詳細に説明する。 Hereinafter, a method for producing a sol using amorphous Zr-O-based particles as a dispersoid, a photocatalyst coating liquid using the sol as a binder, and a method for producing a photocatalytic functional product coated with the photocatalyst coating liquid will be described. This will be described in detail.

まず、非晶質のZr−O系粒子を分散質とするゾルの製造方法について説明する。
本発明のゾルの原料として用いる、分散媒中に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルの製造方法は特に限定されないが、以下の方法で製造することができる。
First, a method for producing a sol using amorphous Zr—O-based particles as a dispersoid will be described.
A method for producing a sol used as a raw material for the sol of the present invention, which contains an inorganic acid in a dispersion medium and amorphous Zr-O-based particles as a dispersoid is not particularly limited, but can be produced by the following method. it can.

分散媒中に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルの原料として用いる水酸化ジルコニウムは特に限定されない。一例を示せば、ジルコニウム塩類の水溶液を水酸化アルカリやアンモニア水で中和することで得られる沈殿を水洗し不純物を取り除いて得た水酸化ジルコニウムを用いることができる。 Zirconium hydroxide used as a sol raw material containing an inorganic acid in a dispersion medium and using amorphous Zr—O-based particles as a dispersoid is not particularly limited. For example, zirconium hydroxide obtained by washing a precipitate obtained by neutralizing an aqueous solution of a zirconium salt with an alkali hydroxide or aqueous ammonia to remove impurities can be used.

ジルコニウム塩類としては、特に限定されず、塩基性硫酸塩、オキシ塩化塩、硝酸塩、酢酸塩、その他有機酸塩等が例示され、オキシ塩化塩が安価で純度が高いという点で好ましい。 Zirconium salts are not particularly limited, and examples thereof include basic sulfates, oxychlorides, nitrates, acetates, and other organic acid salts. Oxychlorides are preferable because they are inexpensive and have high purity.

水酸化ジルコニウム、無機酸及び溶媒、好ましくは、水からなる反応分散液の調製に際して、まず、反応容器に必要量の水を入れそれを適度に攪拌しながら、ついで所定量の水酸化ジルコニウム、水酸化ジルコニウム、無機酸及び水の投入順序は特に限定されないが、作業性を考慮すると上記が好ましい。 In preparing a reaction dispersion composed of zirconium hydroxide, an inorganic acid and a solvent, preferably water, first, a required amount of water is put into a reaction vessel, and then a predetermined amount of zirconium hydroxide, The order of adding zirconium oxide, inorganic acid and water is not particularly limited, but the above is preferable in view of workability.

該分散液を調製する際の該分散液のジルコニウム濃度はZrO2換算で3〜20重量%、好ましくは、5〜18重量%の範囲内であるとよい。3重量%未満の場合非効率であり、20重量%を超える場合は増粘、ゲル化のおそれがあり好ましくない。 The zirconium concentration of the dispersion when preparing the dispersion is 3 to 20% by weight in terms of ZrO 2 , preferably 5 to 18% by weight. If it is less than 3% by weight, it is inefficient, and if it exceeds 20% by weight, there is a risk of thickening and gelation, which is not preferable.

このジルコニウム濃度が高いほど該分散液に添加される無機酸の量が少なくなるため経済的に有利であり、生成するゾルが含む無機酸が少なくなることから環境負荷、不純物の低減が期待できる。 A higher zirconium concentration is economically advantageous because the amount of inorganic acid added to the dispersion is reduced, and since the inorganic acid contained in the generated sol is reduced, reduction of environmental burden and impurities can be expected.

ここで、ゾルの生成と無機酸の関係について簡単に述べる。水酸化ジルコニウムが解膠され非晶質のZr−O系のゾル粒子が生成すると同時に酸由来のプロトンがゾル粒子の界面に吸着することでゾル粒子は帯電しその界面には電気二重層が形成される。この電気二重層の反発力によってゾル粒子同士は凝集せずに分散状態を保つことができる。酸濃度が低すぎる場合、十分な電気二重層を得られないためゾルは生成しない。 Here, the relationship between the generation of sol and the inorganic acid will be briefly described. Zirconium hydroxide is peptized to form amorphous Zr-O sol particles, and at the same time, protons derived from acid are adsorbed on the interface of the sol particles, charging the sol particles and forming an electric double layer at the interface. Is done. Due to the repulsive force of the electric double layer, the sol particles can be kept in a dispersed state without being aggregated. When the acid concentration is too low, a sufficient electric double layer cannot be obtained, so that no sol is generated.

無機酸には上記のゾル粒子に電気二重層を与える役割以外に水酸化ジルコニウムからの結晶性ジルコニアの生成を促す作用がある。この結晶性ジルコニアの生成機構は定かでないが、水酸化ジルコニウムを水に分散したものを加熱保持するよりも、いくらかの無機酸の存在下に加熱保持するとき結晶性ジルコニアの生成速度は速くなる。そして、結晶性ジルコニアが生成する場合には同時にジルコニアゾルの粒子径D50は大きくなる傾向にある。おそらく無機酸が水酸化ジルコニウムに作用する事で結晶性ジルコニアの前駆体が生成されると考えられる。 In addition to the role of providing an electric double layer to the sol particles, the inorganic acid has an action of promoting the generation of crystalline zirconia from zirconium hydroxide. The formation mechanism of this crystalline zirconia is not clear, but the formation rate of crystalline zirconia is faster when heated and held in the presence of some inorganic acid than when a dispersion of zirconium hydroxide in water is heated and held. And when crystalline zirconia produces | generates, the particle diameter D50 of a zirconia sol tends to become large simultaneously. Presumably, an inorganic acid acts on zirconium hydroxide to produce a crystalline zirconia precursor.

結晶性ジルコニアの生成速度は反応分散液中の無機酸濃度に依存し、その生成速度が最大となる無機酸濃度は、上記の電気二重層形成のためには十分な濃度であるが本発明の非晶質のZr−O系粒子を分散質とするゾルを得るために適当な無機酸濃度よりは低濃度である。厳密には適当な無機酸濃度は反応分散液のジルコニウム濃度によって変化し、ジルコニウム濃度が高いほどより高い無機酸濃度を必要とするが、1モルのZrに対し必要な無機酸のグラム当量数で換算した場合に反応分散液のジルコニウム濃度が高いほどそのグラム当量数は低下する。 The production rate of crystalline zirconia depends on the inorganic acid concentration in the reaction dispersion, and the inorganic acid concentration at which the production rate is maximized is sufficient for the above-mentioned electric double layer formation. In order to obtain a sol having amorphous Zr—O-based particles as a dispersoid, the concentration is lower than a suitable inorganic acid concentration. Strictly speaking, the appropriate inorganic acid concentration varies depending on the zirconium concentration of the reaction dispersion. The higher the zirconium concentration, the higher the inorganic acid concentration required, but the number of gram equivalents of inorganic acid required per mole of Zr. When converted, the gram equivalent number decreases as the zirconium concentration of the reaction dispersion increases.

本発明の反応活性があり、溶液に近い性質を持ち、粒子径D50が小さく、かつ、非晶質のZr−O系粒子を分散質とするゾルを製造するには、反応分散液を調製する際に、1モルのZrに対する無機酸のグラム当量数Yが、上記ジルコニウム濃度をX重量%としたとき、下記の式(1)かつ式(2)を満足する範囲内にすることが望ましい。
3≦X≦20 (1)
(2.0−0.07X)≦Y≦(3.0−0.08X) (2)
In order to produce a sol having the reaction activity of the present invention, having properties close to a solution, a small particle diameter D50, and amorphous Zr-O-based particles as a dispersoid, a reaction dispersion is prepared. At this time, it is desirable that the gram equivalent number Y of the inorganic acid with respect to 1 mol of Zr is within a range satisfying the following formulas (1) and (2) when the zirconium concentration is X wt%.
3 ≦ X ≦ 20 (1)
(2.0−0.07X) ≦ Y ≦ (3.0−0.08X) (2)

この無機酸のグラム当量数Yがとる範囲は上記で述べたゾル粒子に電気二重層を与えるには十分で、かつ、結晶性ジルコニアが生成しない無機酸濃度となるような範囲である。このグラム当量数Yが上記範囲の下限未満の場合、生成するゾルの粒子径が大きくなり過ぎたり、結晶性ジルコニアが生成し目的とする本発明の非晶質のZr−O系粒子を分散質とするゾルが得られない。 The range that the gram equivalent number Y of the inorganic acid takes is a range that is sufficient to give the sol particles the electric double layer and has an inorganic acid concentration that does not produce crystalline zirconia. When the gram equivalent number Y is less than the lower limit of the above range, the particle size of the sol to be formed becomes too large, or crystalline zirconia is generated, and the desired amorphous Zr-O-based particles of the present invention are dispersed. A sol is not obtained.

図1にX、Yの値を変化させ、合成したゾルの結晶性についてX線回折測定によって調べた結果を示す。 FIG. 1 shows the result of examining the crystallinity of the synthesized sol by changing the values of X and Y by X-ray diffraction measurement.

ゾルの結晶性は、ゾルを200℃以下の温度で恒量となるまで乾燥しX線回折測定によって得られる回折パターンにおいて2θ=10〜50°で特定の結晶系に帰属されるパターンを示さないものを非晶質とし、それ以外を結晶質と分類した。 The crystallinity of the sol does not show a pattern attributed to a specific crystal system at 2θ = 10 to 50 ° in a diffraction pattern obtained by drying the sol to a constant weight at a temperature of 200 ° C. or lower and obtaining an X-ray diffraction measurement. Was classified as amorphous, and the others were classified as crystalline.

上記の式(1)を満足するX、Yの範囲において非晶質のゾルが得られ、それ以外では結晶性のゾルが得られた。そのうち非晶質のゾルは1〜20nmの粒子径D50であった。
すなわち、上記の式(1)を満足するようにX、Yを制御することで本発明のゾルが得られることが判る。
なお、上限を超える場合は、ゾルの生成には過剰量となり不経済であるばかりでなく、環境負荷や生成するゾルの不純物を増加させるため好ましくない。
An amorphous sol was obtained in the range of X and Y satisfying the above formula (1), and a crystalline sol was obtained otherwise. Among them, the amorphous sol had a particle diameter D50 of 1 to 20 nm.
That is, it can be seen that the sol of the present invention can be obtained by controlling X and Y so as to satisfy the above formula (1).
If the upper limit is exceeded, the amount of sol produced is excessive, which is uneconomical and undesirably increases the environmental load and impurities of the produced sol.

上記無機酸は特に限定されるものではないが、不純物が少なく、ゾルの生成速度が速いという点で硝酸が好ましい。 Although the said inorganic acid is not specifically limited, Nitric acid is preferable at the point that there are few impurities and the production | generation speed | rate of sol is quick.

次に、調製された反応分散液を適度に攪拌しながら80℃以上、好ましくは90℃以上に加熱し、保持する。保持する温度はゾルの生成速度に影響し、80℃未満では十分な生成速度を得られず非効率である。100℃以上で保持する場合は溶媒の蒸発を避けるためオートクレーブ等の密閉容器を使用することが望ましい。保持時間は特に限定されず、反応分散液が完全に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルとなったことを反応分散液の粒子径分布測定及び恒量まで100℃で乾燥後のX線回折測定などで確認すればそこで加熱を終了してよいが、通常12〜96時間である。 Next, the prepared reaction dispersion is heated to 80 ° C. or higher, preferably 90 ° C. or higher, with appropriate stirring, and held. The temperature to be maintained affects the sol production rate, and if it is less than 80 ° C., a sufficient production rate cannot be obtained, which is inefficient. When the temperature is kept at 100 ° C. or higher, it is desirable to use a closed container such as an autoclave in order to avoid evaporation of the solvent. The holding time is not particularly limited, and it is confirmed that the reaction dispersion is a sol containing an inorganic acid and containing amorphous Zr-O-based particles as a dispersoid until the particle size distribution measurement and constant weight of the reaction dispersion are reached. If confirmed by X-ray diffraction measurement after drying at 100 ° C., the heating may be terminated there, but it is usually 12 to 96 hours.

上記の様にして作製された、分散媒中に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルは、以下の「ゼータ電位が20mV以上のゾルの製造方法」および「ゼータ電位が−20mV以下のゾルの製造方法」において、その原料として用いられる。   The sol produced as described above and containing an inorganic acid in the dispersion medium and containing amorphous Zr—O-based particles as a dispersoid is represented by the following “method for producing a sol having a zeta potential of 20 mV or more” and It is used as a raw material in “a method for producing a sol having a zeta potential of −20 mV or less”.

(1)ゼータ電位が20mV以上のゾルの製造方法
本発明の第一の非晶質のZr−O系粒子を分散質とするゾルの製造方法は、分散媒中に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルの無機酸を、カルボン酸またはその塩と置換することを特徴とする。
(1) Method for producing sol having zeta potential of 20 mV or more The method for producing sol using the first amorphous Zr-O-based particles of the present invention as a dispersoid comprises an inorganic acid in a dispersion medium and an amorphous material. It is characterized in that the inorganic acid of the sol having the quality Zr—O-based particles as a dispersoid is substituted with a carboxylic acid or a salt thereof.

無機酸をカルボン酸またはその塩に置換する方法については、特に限定されるものでないが、その一例として以下に記載する。 Although it does not specifically limit about the method of replacing an inorganic acid with carboxylic acid or its salt, It describes below as an example.

上記で得られたゾル中の無機酸を限外ろ過、透析、逆浸透等の方法で除去し、カルボン酸またはその塩を添加する。カルボン酸またはその塩の添加は、無機酸を所定の濃度まで除去した後に行ってもよいし、無機酸を除去しながら行ってもよい。この処理によって、無機酸の濃度を低減させ、カルボン酸またはその塩の濃度を高め、しかもゾルのジルコニウム濃度を濃縮することが可能であるため、ゾルの用途によって処理の回数、時間を任意に選択できる。用いるカルボン酸またはその塩としては、ギ酸、ギ酸塩、酢酸、酢酸塩、プロピオン酸及びプロピオン酸塩があげられ、これらのなかでもギ酸、ギ酸塩、酢酸および酢酸塩を用いるのが好ましい。ギ酸塩としては、ギ酸アンモニウム、ギ酸ナトリウム、およびギ酸カリウムが、また酢酸塩としては、酢酸アンモニウム、酢酸ナトリウム、および酢酸カリウムがあげられる。 The inorganic acid in the sol obtained above is removed by methods such as ultrafiltration, dialysis, and reverse osmosis, and carboxylic acid or a salt thereof is added. The addition of carboxylic acid or a salt thereof may be performed after removing the inorganic acid to a predetermined concentration, or may be performed while removing the inorganic acid. By this treatment, the concentration of inorganic acid can be reduced, the concentration of carboxylic acid or its salt can be increased, and the concentration of zirconium in the sol can be increased. it can. Examples of the carboxylic acid or salt thereof used include formic acid, formate, acetic acid, acetate, propionic acid and propionate. Among these, formic acid, formate, acetic acid and acetate are preferably used. Examples of the formate include ammonium formate, sodium formate, and potassium formate, and examples of the acetate include ammonium acetate, sodium acetate, and potassium acetate.

なお、カルボン酸またはその塩/Zrのモル比が0.05〜1、好ましくは0.1〜0.5となるように置換(添加)することが好ましい。0.05未満では、Zr−O系粒子に十分な表面電位を与えられずゾルの安定が確保できない。1を超える場合は、ゾルの主用途である光触媒体コーティング液における特性発現の妨げになる可能性があり好ましくない。 In addition, it is preferable to perform substitution (addition) so that the molar ratio of carboxylic acid or a salt thereof / Zr is 0.05 to 1, preferably 0.1 to 0.5. If it is less than 0.05, a sufficient surface potential cannot be given to the Zr—O-based particles, and sol stability cannot be secured. When it exceeds 1, it may be an obstacle to the expression of characteristics in the photocatalyst coating liquid which is the main application of the sol, which is not preferable.

上記塩類を使用する場合は、ギ酸や酢酸を用いた場合よりもゾルのpHを上昇させることになるが、ゾルの分散を安定に保ったままpH7超にすることはできない。即ち、上記の方法ではゼータ電位が正のゾルのみが製造できる。 When the above salts are used, the pH of the sol is raised more than when formic acid or acetic acid is used. However, the pH cannot exceed 7 while keeping the dispersion of the sol stable. That is, in the above method, only a sol having a positive zeta potential can be produced.

なお、本発明のゾルは、pH7以下、好ましくはpH5以下である。pHが7を超えると分散質の凝集、沈殿やゲル化等を起こしゾルとして安定でなくなるため好ましくない。 The sol of the present invention has a pH of 7 or less, preferably a pH of 5 or less. A pH exceeding 7 is not preferable because it causes dispersoid aggregation, precipitation, gelation, and the like, and becomes unstable as a sol.

なお、上記の様にカルボン酸またはその塩を添加しない場合は、限外ろ過、透析、逆浸透等を繰り返しても、カルボン酸またはその塩を添加した場合と同等以下に無機酸をゾル中から排除することは非常に困難である。つまり、カルボン酸またはその塩の添加によってゾルからの無機酸の除去効率を高めているのが本発明の特徴である。 In the case where carboxylic acid or a salt thereof is not added as described above, even if ultrafiltration, dialysis, reverse osmosis or the like is repeated, the inorganic acid is reduced from the sol to the same level or less as when carboxylic acid or a salt thereof is added. It is very difficult to eliminate. That is, it is a feature of the present invention that the removal efficiency of the inorganic acid from the sol is enhanced by the addition of carboxylic acid or a salt thereof.

得られるゾル中の無機酸/カルボン酸またはその塩のモル比は0.1〜5、好ましくは0.3〜3の範囲である。このモル比が0.1未満の場合、光触媒コーティング液として用いた際、得られる塗膜が充分な密着性を示さない。またこのモル比が5を超える場合、ゾル中の非晶質Zr−O系粒子の分散安定性が損なわれ、凝集粒子が生成して、光触媒コーティング液として用いた際、得られる塗膜の意匠性に不具合が生じることがある。 The molar ratio of inorganic acid / carboxylic acid or salt thereof in the obtained sol is 0.1 to 5, preferably 0.3 to 3. When this molar ratio is less than 0.1, the resulting coating film does not exhibit sufficient adhesion when used as a photocatalyst coating solution. When the molar ratio exceeds 5, the dispersion stability of the amorphous Zr-O-based particles in the sol is impaired, and aggregated particles are generated and used as a photocatalyst coating liquid. May cause problems.

なお、本発明のゾルは硝酸、塩酸等の無機酸を含有するが、製品への不純物の混入の少ない硝酸が好ましい。一方、本発明のゾルの粒子径およびZrO2換算のジルコニウム濃度は、原料として用いたゾルと同等のものが得られる。 The sol of the present invention contains an inorganic acid such as nitric acid and hydrochloric acid, but nitric acid is preferable because it contains less impurities in the product. On the other hand, the particle diameter of the sol of the present invention and the zirconium concentration in terms of ZrO 2 are equivalent to those of the sol used as a raw material.

以上に記載した製造方法により、本発明のゾルのゼータ電位は20mV以上、好ましくは30mV以上、特に好ましくは40mV以上となる。   By the production method described above, the zeta potential of the sol of the present invention is 20 mV or more, preferably 30 mV or more, particularly preferably 40 mV or more.

(2)ゼータ電位が−20mV以下のゾルの製造方法
本発明の第二の非晶質のZr−O系粒子を分散質とするゾルの製造方法は、分散媒中に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルの無機酸を塩基で中和した後、中和により生成した無機酸塩をカルボン酸またはその塩と置換することを特徴とする。
(2) Method for Producing a Sol with a Zeta Potential of −20 mV or Less The second method for producing a sol using the amorphous Zr—O-based particles as a dispersoid according to the present invention contains an inorganic acid in a dispersion medium and is non- The inorganic acid of the sol having crystalline Zr—O-based particles as a dispersoid is neutralized with a base, and then the inorganic acid salt generated by the neutralization is replaced with a carboxylic acid or a salt thereof.

中和により生成した無機酸塩をカルボン酸またはその塩に置換する方法については、特に限定されるものでないが、その一例として以下に記載する。   The method for substituting the carboxylic acid or salt thereof with the inorganic acid salt produced by neutralization is not particularly limited, but an example thereof is described below.

まず、上記で得られた無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルへカルボン酸またはその塩を添加する。ここで添加するカルボン酸またはその塩としては、Zr−O系粒子の表面電位を負にする効果の高い、クエン酸、酒石酸、グリコール酸および乳酸またはそれらの塩が挙げられる。カルボン酸またはその塩/Zrのモル比が0.05〜1、好ましくは0.1〜0.5となるように置換(添加)することが好ましい。0.05未満では、Zr−O系粒子に十分な表面電位を与えられずゾルの安定が確保できない。1を超える場合は、ゾルの主用途である光触媒体コーティング液における特性発現の妨げになる可能性があり好ましくない。 First, carboxylic acid or a salt thereof is added to a sol containing the inorganic acid obtained above and containing amorphous Zr—O-based particles as a dispersoid. Examples of the carboxylic acid or salt thereof added here include citric acid, tartaric acid, glycolic acid and lactic acid, or a salt thereof, which has a high effect of making the surface potential of Zr—O-based particles negative. It is preferable to perform substitution (addition) so that the molar ratio of carboxylic acid or a salt thereof / Zr is 0.05 to 1, preferably 0.1 to 0.5. If it is less than 0.05, a sufficient surface potential cannot be applied to the Zr—O-based particles, and sol stability cannot be ensured. When it exceeds 1, it may be an obstacle to the expression of characteristics in the photocatalyst coating liquid which is the main application of the sol, which is not preferable.

なお、本発明のゾルは硝酸、塩酸等の無機酸を含有する場合もあるが、製品への不純物の混入の少ない硝酸が好ましい。 The sol of the present invention may contain an inorganic acid such as nitric acid or hydrochloric acid, but nitric acid with little impurities mixed into the product is preferred.

次に、上記ゾルへ塩基を添加する。塩基としては、水酸化アルカリ、アンモニア、アミン類が例示される。塩基はゾルの用途に応じて、適当なものを選択すればよいが、光触媒体コーティング液用途においては、アルカリ金属が光触媒活性を低下させる可能性があるため、アンモニアやアミン類の使用が好ましい。塩基は、Zr−O系粒子表面からプロトンを遊離させる、また、カルボン酸を電離させて、より多くのアニオンをZr−O粒子表面に吸着させることによってZr−O系粒子の表面電位を低下させる目的で添加される。塩基を添加する前にはZr−O系粒子の表面電位は必ずしも負ではなく、Zr−O系粒子の表面電位が負になるような量の塩基を添加する必要がある。塩基の添加量については、使用されるカルボン酸またはその塩および無機酸の価数および量に依存するため一義的に決めることはできないが、概ね、1モルのZrに対して、モル比0.1〜3の塩基の添加が好ましい。 Next, a base is added to the sol. Examples of the base include alkali hydroxide, ammonia and amines. An appropriate base may be selected according to the use of the sol. However, in the photocatalyst coating liquid application, it is preferable to use ammonia or amines because alkali metal may reduce the photocatalytic activity. The base liberates protons from the surface of the Zr-O-based particles, and ionizes carboxylic acid to lower the surface potential of the Zr-O-based particles by adsorbing more anions on the Zr-O particle surface. Add for purpose. Before adding the base, the surface potential of the Zr—O-based particles is not necessarily negative, and it is necessary to add an amount of the base that makes the surface potential of the Zr—O-based particles negative. The amount of the base to be added cannot be uniquely determined because it depends on the valence and amount of the carboxylic acid or salt thereof and the inorganic acid to be used. Addition of 1-3 bases is preferred.

0.1未満では、Zr−O系粒子に十分な表面電位を与えることができず、結果としてゾルが不安定化するため、また、3を超えると逆に表面電位を与えるには過剰で、不純物が増加するため好ましくない。 If it is less than 0.1, a sufficient surface potential cannot be applied to the Zr—O-based particles, resulting in destabilization of the sol, and if it exceeds 3, it is excessive to provide a surface potential. Impurities increase, which is not preferable.

塩基を添加した後、ゾルのZr−O系粒子のゼータ電位は負となり、無機酸から供給されたアニオンは溶媒バルクに遊離した状態となる。該ゾルを限外ろ過や透析等によって、精製することで該アニオンを効率的に除去できる。 After the base is added, the zeta potential of the Zr—O-based particles in the sol becomes negative, and the anion supplied from the inorganic acid is released into the solvent bulk. The anion can be efficiently removed by purifying the sol by ultrafiltration or dialysis.

本発明のゾルのpHは、3〜12、好ましくは6〜10である。pH3未満または、pH12を超える場合、含有する酸または塩基などの不純物が過剰となり、光触媒体コーティング液にとって好ましくない場合がある。 The pH of the sol of the present invention is 3-12, preferably 6-10. If the pH is less than 3 or exceeds pH 12, impurities such as acid or base contained may be excessive, which may be undesirable for the photocatalyst coating liquid.

クエン酸、酒石酸、グリコール酸および乳酸またはそれらの塩および塩基を添加した後にギ酸、酢酸および蓚酸またはそれらの塩を添加(2回目の添加)しさらに精製することで、前段で添加した、クエン酸、酒石酸、グリコール酸および乳酸またはそれらの塩を効率的に除去できる。この2回目のカルボン酸またはその塩の添加は、添加時にゾルが塩基性であるため、該ゾルのpH変動を抑制するためアンモニウム塩やアルカリ塩などの塩の形態で行うことが好ましい。 Citric acid, tartaric acid, glycolic acid and lactic acid or their salts and bases were added, then formic acid, acetic acid and succinic acid or their salts were added (second addition), and further purified, citric acid added in the previous stage , Tartaric acid, glycolic acid and lactic acid or their salts can be removed efficiently. This second addition of carboxylic acid or salt thereof is preferably carried out in the form of a salt such as an ammonium salt or an alkali salt in order to suppress pH fluctuation of the sol because the sol is basic at the time of addition.

2回目のカルボン酸またはその塩の添加後の精製によって、ゾルの用途の都合に応じて((1)クエン酸、酒石酸、グリコール酸および乳酸から選ばれる1種または2種以上)/((2)ギ酸、酢酸および蓚酸から選ばれる1種または2種以上)のカルボン酸(塩)の種類やモル比を任意に選択、調整できるが、そのモル比((1)/(2))は0.1〜3であることが望ましい。0.1未満では、ゾルが不安定となるため、また、3を超えると光触媒コーティング液の特性に悪影響を及ぼす可能性があるため好ましくない。 Depending on the convenience of use of the sol, (2) one or more selected from citric acid, tartaric acid, glycolic acid and lactic acid) / ((2 ) The type and molar ratio of the carboxylic acid (salt) selected from formic acid, acetic acid and oxalic acid can be selected and adjusted as desired, but the molar ratio ((1) / (2)) is 0. .1 to 3 is desirable. If it is less than 0.1, the sol becomes unstable, and if it exceeds 3, the characteristics of the photocatalyst coating solution may be adversely affected.

また、上記のカルボン酸(塩)の種類やモル比の調整によってゾルの多岐にわたる光触媒体コーティング液処方への順応性を高めることができる。 Also, adaptability to various photocatalyst coating liquid formulations of sol can be enhanced by adjusting the kind and molar ratio of the carboxylic acid (salt).

なお、本発明のゾルの粒子径およびZrO2換算のジルコニウム濃度は、原料として用いたゾルと同等のものが得られる。 The particle diameter of the sol of the present invention and the zirconium concentration in terms of ZrO 2 are equivalent to those of the sol used as a raw material.

以上に記載した製造方法により、本発明のゾルのゼータ電位は−20mV以下、好ましくは−30mV以下、特に好ましくは−40mV以下となる。 By the production method described above, the zeta potential of the sol of the present invention is −20 mV or less, preferably −30 mV or less, particularly preferably −40 mV or less.

2回目のカルボン酸添加や精製の具体的な例としては、クエン酸、酒石酸、グリコール酸および乳酸またはそれらの塩と塩基を添加したゾル100重量部に対して、1〜2重量%のカルボン酸塩水溶液100重量部を添加し、分散質のZr−O系粒子が透過しない膜によって限外ろ過し、100重量部のゾルの分散媒を除去し、次に、上記のゾルへの1〜2重量%のカルボン酸塩水溶液100重量部の添加、およびそれ以降の操作を4〜8回繰り返す方法等が挙げられる。 Specific examples of the second carboxylic acid addition and purification include 1-2% by weight of carboxylic acid with respect to 100 parts by weight of sol to which citric acid, tartaric acid, glycolic acid and lactic acid or salts and bases thereof are added. 100 parts by weight of an aqueous salt solution is added, ultrafiltered through a membrane that does not allow the dispersoid Zr—O-based particles to permeate, and 100 parts by weight of the sol dispersion medium is removed. Examples thereof include a method of adding 100 parts by weight of an aqueous solution of a weight percent carboxylate and repeating the subsequent operations 4 to 8 times.

以下、本発明の光触媒体コーティング液について詳細に説明する。
本発明の光触媒体コーティング液は、光触媒体、粒子径D50が1〜20nmである非晶質のZr−O系粒子とカルボン酸とその塩、または、無機酸とカルボン酸またはその塩を含み、光触媒体100重量部に対する前記Zr−O系粒子のZrO2換算の含有量が15〜120重量部であることを特徴とする。
本発明の光触媒体コーティング液に含まれる光触媒体とは、例えば紫外線や可視光線の照射により光触媒活性を発現する物質であり、具体的には、X線回折で求められる結晶構造を示し、金属元素と酸素、窒素、イオウ及び弗素との化合物の粉末が挙げられる。例えばTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Ga、In、Tl、Ge、Sn、Pb、Bi、La、Ceのような金属元素の1種または2種以上の酸化物、窒化物、硫化物、酸窒化物、酸硫化物、窒弗化物、酸弗化物、酸窒弗化物などが挙げられる。中でも、Ti、WまたはNbの酸化物が好ましく、とりわけアナターゼ型酸化チタン、ブルッカイト型酸化チタン、ルチル型酸化チタン〔TiO2〕などが好ましい。
Hereinafter, the photocatalyst coating liquid of the present invention will be described in detail.
The photocatalyst coating liquid of the present invention contains a photocatalyst, amorphous Zr-O-based particles having a particle diameter D50 of 1 to 20 nm and a carboxylic acid and a salt thereof, or an inorganic acid and a carboxylic acid or a salt thereof, The content of the Zr—O-based particles in terms of ZrO 2 with respect to 100 parts by weight of the photocatalyst is 15 to 120 parts by weight.
The photocatalyst contained in the photocatalyst coating liquid of the present invention is a substance that exhibits photocatalytic activity, for example, by irradiation with ultraviolet rays or visible light, and specifically shows a crystal structure obtained by X-ray diffraction, and is a metal element. And a powder of a compound of oxygen, nitrogen, sulfur and fluorine. For example, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Zn One or more of metal elements such as Cd, Ga, In, Tl, Ge, Sn, Pb, Bi, La, Ce, nitride, sulfide, oxynitride, oxysulfide, Nitrogen fluoride, oxyfluoride, oxynitride fluoride and the like can be mentioned. Among these, oxides of Ti, W or Nb are preferable, and anatase type titanium oxide, brookite type titanium oxide, rutile type titanium oxide [TiO 2 ] and the like are particularly preferable.

本発明で用いる酸化チタンは、例えば非特許文献1〔「酸化チタン」(清野学著、技報堂出版)に記載されている硫酸法や塩素法により製造することができる。 Titanium oxide used in the present invention can be produced, for example, by the sulfuric acid method or the chlorine method described in Non-Patent Document 1 [“Titanium oxide” (Kyoto Seino, Gihodo Publishing).

また、本発明で用いる酸化チタンとしては、特開2001−72419号公報、特開2001−190953号公報、特開2001−316116号公報、特開2001−322816号公報、特開2002−29749号公報、特開2002−97019号公報、WO01/10552パンフレット、特開2001−212457公報、特開2002−239395号公報)、WO03/080244パンフレット、WO02/053501パンフレット、特開2007−69093号公報、Chemistry Letters, Vol.32, No.2, P.196-197(2003)、Chemistry Letters, Vol.32, No.4, P.364-365(2003)、Chemistry Letters, Vol.32, No.8, P.772-773(2003)、Chem. Mater., 17, P.1548-1552(2005)等に記載の酸化チタンを用いてもよい。更に、特開2001−278625号公報、特開2001−278626号公報、特開2001−278627号公報、特開2001−302241号公報、特開2001−335321号公報、特開2001−354422号公報、特開2002−29750号公報、特開2002−47012号公報、特開2002−60221号公報、特開2002−193618号公報、特開2002−249319号公報などに記載の方法により得られる酸化チタンなども用いることができる。 Further, as titanium oxide used in the present invention, JP 2001-72419 A, JP 2001-190953 A, JP 2001-316116 A, JP 2001-322816 A, and JP 2002-29749 A. , JP 2002-97019, WO 01/10552, JP 2001-212457, 2002-239395), WO 03/080244, WO 02/053501, PA 2007-69093, Chemistry Letters , Vol.32, No.2, P.196-197 (2003), Chemistry Letters, Vol.32, No.4, P.364-365 (2003), Chemistry Letters, Vol.32, No.8, P .772-773 (2003), Chem. Mater., 17, P.1548-1552 (2005), etc. may be used. Furthermore, JP-A-2001-278625, JP-A-2001-278626, JP-A-2001-278627, JP-A-2001-302241, JP-A-2001-335321, JP-A-2001-354422, Titanium oxide obtained by the method described in JP 2002-29750 A, JP 2002-47012 A, JP 2002-60221 A, JP 2002-193618 A, JP 2002-249319 A, etc. Can also be used.

これらの酸化チタンは、それぞれ単独でまたは2種以上を組み合わせて用いられる。 These titanium oxides are used alone or in combination of two or more.

また、酸化チタンの分散液を用いると、酸化チタン粉末の分散処理工程を省け、バインダーと溶媒を添加・混合するだけで光触媒体コーティング液を得ることができる為、好適に用いられる。このような酸化チタン分散液としては、PC−201(酸化チタンゾル、チタン工業製)や、TS−S4110、4420、及び4440(酸化チタンゾル、住友化学製)が市販されている。 In addition, when a titanium oxide dispersion is used, a photocatalyst coating liquid can be obtained simply by adding and mixing a binder and a solvent without the step of dispersing the titanium oxide powder. As such a titanium oxide dispersion, PC-201 (titanium oxide sol, manufactured by Titanium Industry) and TS-S4110, 4420, and 4440 (titanium oxide sol, manufactured by Sumitomo Chemical) are commercially available.

光触媒体として使用しうる酸化タングステン〔WO3〕は、例えばメタタングステン酸アンモニウム、パラタングステン酸アンモニウム、およびタングステン酸(H2WO4)のようなタングステン化合物を焼成する方法で製造することができる。焼成は、タングステン化合物を酸化タングステンにすることができる条件で行えばよく、例えば、350℃〜700℃の空気中で行うことができる。 Tungsten oxide [WO 3 ] that can be used as a photocatalyst can be produced by a method of firing a tungsten compound such as ammonium metatungstate, ammonium paratungstate, and tungstic acid (H 2 WO 4 ). Firing may be performed under conditions that allow the tungsten compound to be tungsten oxide, and can be performed in air at 350 ° C. to 700 ° C., for example.

光触媒体として用い得る酸化ニオブ〔Nb25〕は、例えばシュウ酸水素ニオブのようなニオブ化合物を焼成する方法で製造することができる。またニオブペンタエトキシド、ニオブペンタイソプロポキシドのようなニオブアルコキシドをアルコールに溶解し、この溶液に無機酸とアルコールとからなる酸性溶液を混合し、濃縮して粘稠溶液を得、これを焼成する方法で得ることもできる。 Niobium oxide [Nb 2 O 5 ] that can be used as a photocatalyst can be produced by a method of firing a niobium compound such as niobium hydrogen oxalate, for example. Niobium alkoxides such as niobium pentaethoxide and niobium pentaisopropoxide are dissolved in alcohol, and an acidic solution composed of an inorganic acid and alcohol is mixed with this solution and concentrated to obtain a viscous solution, which is fired. It can also be obtained by

これら酸化チタン、酸化タングステンおよび酸化ニオブ以外の酸化物を光触媒体として用いる場合、この酸化物は、例えばセラミックスを構成する金属の塩化物、硫酸塩、オキシ硫酸塩もしくはオキシ塩化物とアンモニアを反応させ、この生成物を空気中で焼成する方法、または光触媒体を構成する金属のアンモニウム塩を空気中で焼成する方法などで調製することができる。 When these oxides other than titanium oxide, tungsten oxide, and niobium oxide are used as the photocatalyst, the oxide reacts with, for example, a metal chloride, sulfate, oxysulfate, or oxychloride that constitutes ceramics and ammonia. In addition, the product can be prepared by a method of calcining in air or a method of calcining an ammonium salt of a metal constituting the photocatalyst in the air.

光触媒体は、光触媒コーティング液を基準にして通常0.1重量%以上、好ましくは1重量%以上であり、通常30重量%以下、好ましくは15重量部以下である。光触媒体の濃度が0.1重量%未満の場合、得られる塗膜中の光触媒体の量が少なくなり、十分な光触媒活性が得られない。また30重量%を越える場合、得られる塗膜の透明性が低下する等の不具合が生じる。 The photocatalyst body is usually 0.1% by weight or more, preferably 1% by weight or more, and usually 30% by weight or less, preferably 15 parts by weight or less, based on the photocatalyst coating solution. When the concentration of the photocatalyst is less than 0.1% by weight, the amount of the photocatalyst in the obtained coating film is small, and sufficient photocatalytic activity cannot be obtained. On the other hand, if it exceeds 30% by weight, problems such as a decrease in transparency of the resulting coating film occur.

コーティング液において光触媒体 光触媒体は通常、分散粒子径200nm以下の2次粒子を形成して安定に分散している。この2次粒子径が小さいほど、分散液の安定性が向上して光触媒粒子の沈降を抑制することができるので好ましく、例えば150nm以下、さらには100nm以下が好ましい。 Photocatalyst in the coating liquid The photocatalyst usually forms secondary particles having a dispersed particle diameter of 200 nm or less and is stably dispersed. The smaller the secondary particle diameter, the better the stability of the dispersion and the suppression of the settling of the photocatalyst particles, which is preferable, for example, 150 nm or less, more preferably 100 nm or less.

本発明の光触媒体コーティング液における、光触媒体100重量部に対する非晶質Zr−O粒子の重量比は、酸化物(ZrO2)換算で15重量部〜120重量部、好ましくは20重量部〜70重量部である。15重量部未満では、密着性のよい強固な塗膜が得られなくなる場合があり、また120重量部を超えて含有させると、光触媒体がバインダー成分中に埋没してしまい、十分な光触媒活性の塗膜が得にくくなる。 In the photocatalyst coating liquid of the present invention, the weight ratio of the amorphous Zr-O particles to 100 parts by weight of the photocatalyst is 15 to 120 parts by weight, preferably 20 to 70 parts by weight in terms of oxide (ZrO 2 ). Parts by weight. If the amount is less than 15 parts by weight, a strong coating film having good adhesion may not be obtained. If the amount exceeds 120 parts by weight, the photocatalyst is buried in the binder component, and sufficient photocatalytic activity is obtained. It becomes difficult to obtain a coating film.

本発明の光触媒体コーティング液は溶媒を含み、溶媒としてはカルボン酸(塩)を溶解し、光触媒体及び非晶質Zr−O系粒子を安定に分散させるものであれば特に制限は無いが、水、メタノール、エタノール、イソポロパノール、ブタノール、アセトン、メチルエチルケトン、ジエチルエーテル、トルエン、キシレン等が用いられ、これらの中でも特に水、メタノール、エタノール、及びイソプロパノ-ルを用いるのが好ましい。 The photocatalyst coating liquid of the present invention contains a solvent, and the solvent is not particularly limited as long as it dissolves a carboxylic acid (salt) and stably disperses the photocatalyst and amorphous Zr-O-based particles. Water, methanol, ethanol, isopropanol, butanol, acetone, methyl ethyl ketone, diethyl ether, toluene, xylene and the like are used, and among these, water, methanol, ethanol, and isopropanol are particularly preferable.

本発明のコーティング液は、コーティング液から揮発成分を揮発させて得られる固形分の含有量が通常0.5重量%〜30重量%、好ましくは1重量%〜20重量%、より好ましくは2重量%〜10重量%程度となるように水や溶媒で希釈されて用いられる。固形分含有量が0.5重量%未満のでは、十分な厚さの塗膜を形成しにくくなり、また固形分含有量が30重量%を超えると、得られる塗膜の透明性が損なわれ易くなる。 In the coating liquid of the present invention, the solid content obtained by volatilizing volatile components from the coating liquid is usually 0.5 wt% to 30 wt%, preferably 1 wt% to 20 wt%, more preferably 2 wt%. It is diluted with water or a solvent so as to be about 10% to 10% by weight. If the solid content is less than 0.5% by weight, it will be difficult to form a sufficiently thick coating, and if the solid content exceeds 30% by weight, the transparency of the resulting coating will be impaired. It becomes easy.

本発明の光触媒体コーティング剤は、例えば光触媒体を単独で溶媒に分散させた光触媒体分散液と、カルボン酸(塩)を含む非晶質Zr−O系粒子のゾルを混合する方法で製造することができる。 The photocatalyst coating agent of the present invention is produced by, for example, a method of mixing a photocatalyst dispersion liquid obtained by dispersing a photocatalyst alone in a solvent and a sol of amorphous Zr-O-based particles containing a carboxylic acid (salt). be able to.

本発明のコーティング液は、必要に応じて、金属や金属(水)酸化物として光触媒体表面に担持されることにより、電子吸引性を発現する金属化合物を含むことができる。この金属化合物が酸化チタン表面に担持されることにより、光励起により光触媒体中に生じた電子と正孔の電荷分離が促進されて、高い光触媒活性を発現することができる。このような金属化合物として、Cu、Pt、Ag、Fe、Nb、W、Pd、Ru、Rh、Co等のコロイド粒子、硝酸塩、塩化物、硫酸塩、蓚酸塩等があげられる。 The coating liquid of this invention can contain the metal compound which expresses electron withdrawing property by being carry | supported on the photocatalyst body surface as a metal or a metal (water) oxide as needed. By carrying this metal compound on the surface of titanium oxide, charge separation of electrons and holes generated in the photocatalyst by photoexcitation is promoted, and high photocatalytic activity can be expressed. Examples of such metal compounds include colloidal particles such as Cu, Pt, Ag, Fe, Nb, W, Pd, Ru, Rh, and Co, nitrates, chlorides, sulfates, and oxalates.

本発明のコーティング液には、光触媒以外の無機化合物を添加することができる。無機化合物としては、例えば、シリカゾル、コロイダルシリカなどのようなケイ素(水)酸化物、非晶質アルミナ、アルミナゾルのようなアルミニウム(水)酸化物、ゼオライト、カオリナイトのようなアルミノ珪酸塩、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウムおよび水酸化バリウムのようなアルカリ土類金属(水)酸化物、リン酸カルシウム、モレキュラーシーブまたは活性炭等があげられ、これらは1種または2種以上組み合わせて用いることができる。 An inorganic compound other than the photocatalyst can be added to the coating liquid of the present invention. Examples of inorganic compounds include silicon (water) oxides such as silica sol and colloidal silica, amorphous alumina, aluminum (water) oxides such as alumina sol, zeolites, aluminosilicates such as kaolinite, and oxidation. Magnesium, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide, alkaline earth metal (water) oxide, calcium phosphate, molecular sieve or activated carbon, etc. These can be used alone or in combination of two or more.

以下、本発明の光触媒機能製品の製造方法について説明する。
本発明の光触媒機能製品の製造方法は、上記のようにして作製された光触媒体コーティング液を基材上に塗布し、溶媒を揮発させることを特徴とする。
Hereafter, the manufacturing method of the photocatalyst functional product of this invention is demonstrated.
The method for producing a photocatalytic functional product of the present invention is characterized in that the photocatalyst coating liquid prepared as described above is applied onto a substrate and the solvent is volatilized.

具体的には、本発明のコーティング液の被膜形成方法としては、床、壁、天井、タイル、硝子、プラスチック、金属、陶磁器およびコンクリートのような基材に、例えばスピンコート、ディップコート、ドクターブレード、スプレーまたはハケ塗りなどにより行い、その後、室温〜200℃の温度範囲で溶媒を乾燥蒸発させる。その後可視光線を多く含む蛍光灯、ハロゲンランプ、キセノンランプ、発光ダイオード、太陽光線等を照射すればよい。 Specifically, as a method for forming a coating film of the coating liquid of the present invention, a substrate such as a floor, a wall, a ceiling, a tile, glass, plastic, metal, ceramics and concrete, for example, spin coating, dip coating, doctor blade , Spraying or brushing, and then the solvent is dried and evaporated in the temperature range of room temperature to 200 ° C. Thereafter, a fluorescent lamp, a halogen lamp, a xenon lamp, a light emitting diode, sunlight, or the like containing a lot of visible light may be irradiated.

以下、本発明を実施例により詳細に説明するが、本発明は本実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a present Example.

1.粒子径D50(非晶質Zr−O系粒子のゾル)
粒度分布測定装置(商品名「UPA150」、日機装製)を用いて、ゾルの体積換算粒度分布において累積頻度が50%となる粒子径を測定した。
1. Particle size D50 (Amorphous Zr-O particle sol)
Using a particle size distribution measuring apparatus (trade name “UPA150”, manufactured by Nikkiso Co., Ltd.), the particle diameter at which the cumulative frequency is 50% in the volume conversion particle size distribution of the sol was measured.

2.ゼータ電位(非晶質Zr−O系粒子のゾル)
ゼータ電位測定装置(商品名「ELS−Z2」、大塚電子製)を用いてゾルのゼータ電位を測定した。
2. Zeta potential (amorphous Zr-O particle sol)
The zeta potential of the sol was measured using a zeta potential measuring device (trade name “ELS-Z2”, manufactured by Otsuka Electronics Co., Ltd.).

3.分散粒子径(光触媒分散液)
サブミクロン粒度分布測定装置(商品名「N4Plus」、コールター製)を用いて、試料の粒度分布を測定し、この装置に付属のソフトで、自動的に単分散モード解析して得られた結果を平均分散粒子径とした。
3. Dispersed particle size (photocatalyst dispersion)
Using a sub-micron particle size distribution analyzer (trade name “N4Plus”, manufactured by Coulter), measure the particle size distribution of the sample, and use the software included with this device to automatically analyze the monodisperse mode. The average dispersed particle size was used.

4.結晶構造
X線回折装置(商品名「RINT2000/PC」、リガク製)を用いて、酸化チタン分散液を真空乾燥して得られた酸化チタン粉末のX線回折スペクトルを測定し、そのスペクトルから主成分の結晶構造を求めた。
4). Using a crystal structure X-ray diffractometer (trade name “RINT2000 / PC”, manufactured by Rigaku), the X-ray diffraction spectrum of the titanium oxide powder obtained by vacuum drying the titanium oxide dispersion was measured. The crystal structure of the component was determined.

5.硬度試験
塗膜の硬度は、鉛筆硬度試験法(JIS5600-5-4)により測定した。
5. Hardness test The hardness of the coating film was measured by a pencil hardness test method (JIS 5600-5-4).

6.耐擦れ性試験
基板との耐擦れ性は、12枚に重ねたチーズクロス(サマーズ社製)を消しゴム摩擦試験機(三光製作所製)に固定し、試料が塗布されたガラス基板を10往復して擦った後、塗膜の状態を目視により下記3段階で評価した。
A:塗膜に傷がない
B:塗膜に傷がついている部分が見られる。
C:塗膜に剥離が見られる。
6). The rubbing resistance with the rubbing resistance test substrate was fixed to an eraser rubbing tester (manufactured by Sanko Seisakusho) with 12 pieces of cheesecloth (manufactured by Summers), and the glass substrate on which the sample was applied was reciprocated 10 times. After rubbing, the state of the coating film was visually evaluated in the following three stages.
A: There is no scratch on the coating film B: A portion where the coating film is scratched is seen.
C: Peeling is observed in the coating film.

7.透明性評価
塗膜の透明性は、ヘイズ・透過・反射率計(商品名「HR−100」、村上色彩技術研究所製)を用いて測定し、下記3段階で評価した。
A:ヘイズ率1.0%未満
B:ヘイズ率1.0%以上5.0%未満
C:ヘイズ率5.0%以上
7). Transparency Evaluation The transparency of the coating film was measured using a haze / transmittance / reflectometer (trade name “HR-100”, manufactured by Murakami Color Research Laboratory) and evaluated in the following three stages.
A: Haze ratio less than 1.0% B: Haze ratio 1.0% or more and less than 5.0% C: Haze ratio 5.0% or more

8.付着性評価
付着性試験はJIS K5600に準拠した碁盤目テープ法で行った.切り傷間隔 1mm、升目数25で行った。
8). Adhesion evaluation The adhesion test was performed by a cross-cut tape method in accordance with JIS K5600. The cut interval was 1 mm and the number of cells was 25.

9.光触媒活性評価用塗布膜の作製
外径70mm、内径66mm、高さ14mm、容量約48mLのガラス製シャーレ容器内に、固形分で1g/m2となるように光触媒コーティング液を滴下し、シャーレ全体に均一となるように展開した。これを110℃の乾燥機で1時間乾燥させ、光触媒塗布膜を作製した。その後ブラックライト(紫外線強度2mW/cm2,トプコン製紫外線強度計UVR−2及び受光部UD−36で測定)を16時間照射して、光触媒塗膜を初期化した。
9. Preparation of Coating Film for Photocatalytic Activity Evaluation A photocatalyst coating solution is dropped into a glass petri dish having an outer diameter of 70 mm, an inner diameter of 66 mm, a height of 14 mm, and a capacity of about 48 mL so that the solid content is 1 g / m 2. Deployed to be uniform. This was dried with a dryer at 110 ° C. for 1 hour to produce a photocatalyst coating film. Thereafter, black light (UV intensity 2 mW / cm2, measured with a UV intensity meter UVR-2 manufactured by Topcon and a light receiving part UD-36) was irradiated for 16 hours to initialize the photocatalyst coating film.

10.光触媒活性:アセトアルデヒド分解能
1Lガスバッグに測定サンプルを入れて密閉し、ガスバッグ内を真空にした後、酸素と窒素との体積比が1:4である混合ガスを600ml封入した。さらに1%アセトアルデヒドを含む窒素ガス3 ml封入し暗所で1時間安定化させた後、試料表面の照度が1000ルクス(ミノルタ製照度計T−10で測定)になるようにシャーレを設置し、アセトアルデヒドの分解反応を行った。試料表面付近の紫外光の強度は6.5μW/cm2(トプコン製紫外線強度計UVR−2及び受光部UD−36で測定)であった。光源には、市販の白色蛍光灯を用いた。蛍光灯照射後よりガスバッグ内のガスを1.5時間毎にサンプリングして、アセトアルデヒドの残存濃度をガスクロマトグラフ(商品名「GC−14A」、島津製作所製)にて測定した。
照射時間に対するアセトアルデヒドの濃度減少を対数軸にプロットし、得られた直線の傾きから一次反応速度定数を算出し、これをアセトアルデヒド分解能とした。一次反応速度定数が大きいほど、アセトアルデヒドの分解能は大きい。
10. Photocatalytic activity: Acetaldehyde-decomposable 1 L gas sample was sealed with a measurement sample, the gas bag was evacuated, and 600 ml of a mixed gas having a volume ratio of oxygen to nitrogen of 1: 4 was sealed. Furthermore, after 3 ml of nitrogen gas containing 1% acetaldehyde was sealed and stabilized in the dark for 1 hour, a petri dish was installed so that the illuminance of the sample surface was 1000 lux (measured with Minolta illuminometer T-10). Acetaldehyde was decomposed. The intensity of the ultraviolet light in the vicinity of the sample surface was 6.5 μW / cm 2 (measured with a UV intensity meter UVR-2 and a light receiving part UD-36 manufactured by Topcon). A commercially available white fluorescent lamp was used as the light source. The gas in the gas bag was sampled every 1.5 hours after the fluorescent lamp irradiation, and the residual concentration of acetaldehyde was measured with a gas chromatograph (trade name “GC-14A”, manufactured by Shimadzu Corporation).
The concentration reduction of acetaldehyde with respect to the irradiation time was plotted on the logarithmic axis, and the first-order rate constant was calculated from the slope of the obtained straight line, which was defined as acetaldehyde resolution. The higher the first order rate constant, the greater the resolution of acetaldehyde.

実施例1
〔光触媒分散液〕
光触媒体分散液には、酸化チタン光触媒ゾル(PC−201、チタン工業製)を用いた。分散粒径は55nmで、TiO2濃度は20重量%、結晶型はアナターゼであった。
Example 1
[Photocatalyst dispersion]
Titanium oxide photocatalyst sol (PC-201, manufactured by Titanium Industry) was used for the photocatalyst dispersion. The dispersed particle size was 55 nm, the TiO 2 concentration was 20% by weight, and the crystal type was anatase.

〔ギ酸を含む非晶質Zr−O系粒子を分散質とするゾル〕
水酸化ジルコニウム(ZrO2換算で30重量%含有)300gを純水1070gに分散し、適度に攪拌しながらそこへ67.5重量%硝酸126gを添加し反応分散液を調製した。このとき反応分散液のジルコニウム濃度はZrO2換算で6重量%であり、1モルのZrに対する硝酸(HNO3)のグラム当量数は1.85であった。
[Sol with amorphous Zr-O-based particles containing formic acid as dispersoid]
300 g of zirconium hydroxide (containing 30% by weight in terms of ZrO 2 ) was dispersed in 1070 g of pure water, and 126 g of 67.5% by weight nitric acid was added thereto with proper stirring to prepare a reaction dispersion. At this time, the zirconium concentration of the reaction dispersion was 6% by weight in terms of ZrO 2 , and the number of gram equivalents of nitric acid (HNO 3 ) with respect to 1 mol of Zr was 1.85.

次に、該分散液を95℃まで加熱し、24時間保持した後静置し自然冷却し非晶質のゾルを得た。該ゾルはジルコニウム濃度がZrO2換算で6重量%であり、pHは0.7であった。 Next, the dispersion was heated to 95 ° C., held for 24 hours, allowed to stand, and then naturally cooled to obtain an amorphous sol. The sol had a zirconium concentration of 6% by weight in terms of ZrO 2 and a pH of 0.7.

さらに、該ゾルの限外ろ過処理によって該ゾル中の硝酸を除去し、ジルコニウム濃度を濃縮することで、ジルコニウム濃度がZrO2換算で10重量%であり、pHが3.2、ケルダール法によって測定された1モルのZrに対する硝酸(HNO3)のグラム当量数が0.4である以外は上記と同様のゾルを得た。 Furthermore, by removing nitric acid in the sol by ultrafiltration treatment of the sol and concentrating the zirconium concentration, the zirconium concentration is 10% by weight in terms of ZrO 2 , pH is 3.2, measured by Kjeldahl method A sol similar to the above was obtained except that the number of gram equivalents of nitric acid (HNO 3 ) with respect to 1 mol of Zr was 0.4.

得られた非晶質のゾル1000gに対して、1000gの1重量%ギ酸水溶液を添加し、限外ろ過処理によって1000gの溶媒を取り除く操作を5回繰り返した後、純水1000gを添加し、限外ろ過処理によって溶媒を取り除く操作を行い、ジルコニウム濃度がZrO2換算で10重量%であり、pHが3.2のゾル、すなわちギ酸を含む非晶質Zr−O系粒のゾルを得た。 After 1000 g of 1 wt% formic acid aqueous solution was added to 1000 g of the obtained amorphous sol and 1000 g of solvent was removed by ultrafiltration treatment, 1000 g of pure water was added. The solvent was removed by an external filtration treatment to obtain a sol having a zirconium concentration of 10% by weight in terms of ZrO2 and a pH of 3.2, that is, an amorphous Zr-O-based particle sol containing formic acid.

酸塩基滴定で求めた、該ゾル中のZrに対する酸のモル比は、0.4であった。また、ケルダール法によって測定された硝酸/Zrのモル比は0.2であった。上記Zrに対する酸のモル比および硝酸/Zrのモル比から計算されたギ酸/Zrのモル比は0.2であり、硝酸/ギ酸のモル比は1であった。 The molar ratio of acid to Zr in the sol determined by acid-base titration was 0.4. The molar ratio of nitric acid / Zr measured by the Kjeldahl method was 0.2. The molar ratio of formic acid / Zr calculated from the molar ratio of acid to Zr and the molar ratio of nitric acid / Zr was 0.2, and the molar ratio of nitric acid / formic acid was 1.

上記のゾルの粒度分布測定より、ゾルの粒子径D50は15nmであった。また、このゾルを100℃で恒量まで乾燥したもののX線回折パターンは特定の結晶系に帰属されなかった。また、このゾルのゼータ電位は42mVであった。 From the measurement of the particle size distribution of the sol, the particle size D50 of the sol was 15 nm. Moreover, the X-ray diffraction pattern of this sol dried at 100 ° C. to a constant weight was not assigned to a specific crystal system. The sol had a zeta potential of 42 mV.

〔光触媒体コーティング液〕
上記の酸化チタン分散液5.0gに純水17.6g、およびギ酸を含む非晶質Zr−O系粒子のゾル(ZrO2換算濃度10.4重量%)2.4gを添加して光触媒体コーティング液を調製した。酸化チタン分散液の酸化チタン量は1.0gで、非晶質Zr−O系粒子のZrO2換算の重量は0.25gであった。ここからバインダー中の上の成分は酸化物換算で、酸化チタン100重量部に対して25重量部で混合したことになる。
[Photocatalyst coating liquid]
A photocatalyst is prepared by adding 17.6 g of pure water and 2.4 g of a sol of amorphous Zr—O-based particles containing formic acid (concentration of ZrO 2 of 10.4% by weight) to 5.0 g of the above titanium oxide dispersion. A coating solution was prepared. The amount of titanium oxide in the titanium oxide dispersion was 1.0 g, and the weight of amorphous Zr—O-based particles in terms of ZrO 2 was 0.25 g. From this, the upper component in the binder was mixed in an amount of 25 parts by weight with respect to 100 parts by weight of titanium oxide in terms of oxide.

〔バインダー含有光触媒体塗膜の形成〕
上記で得た光触媒体コーティング液を、縦80mm、横80mm、厚さ3mmの十分に脱脂した硝子板に塗布した後、スピンコーター(商品名「1H−D7」、ミカサ製)を用いて、450rpmで180秒間回転させて、過剰のコーティング液を取り除き、室温で乾燥させた後、この硝子板を 110℃で1時間乾燥して、硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。
[Formation of binder-containing photocatalyst coating film]
The photocatalyst coating liquid obtained above was applied to a fully degreased glass plate having a length of 80 mm, a width of 80 mm, and a thickness of 3 mm, and then 450 rpm using a spin coater (trade name “1H-D7”, manufactured by Mikasa). The glass plate was dried at room temperature and then dried at 110 ° C. for 1 hour to form a binder-containing photocatalyst film on the entire surface of the glass plate. The physical properties of the coating film are shown in Table 1.

実施例2
実施例1と同様の酸化チタン分散液5.0gに純水15.9 g、およびギ酸を含む非晶質Zr−O系粒子のゾル(ZrO2換算濃度10.4重量%)4.1gを添加して光触媒体コーティング液を調製した。酸化チタン分散液の酸化チタン量は1.0gで、非晶質Zr−O系粒子のZrO2換算の重量は0.43gであった。ここからバインダー中の上の成分は酸化物換算で、酸化チタン100重量部に対して43重量部で混合したことになる。
Example 2
In addition to 5.0 g of the same titanium oxide dispersion as in Example 1, 15.9 g of pure water and 4.1 g of a sol of amorphous Zr—O-based particles containing formic acid (ZrO 2 equivalent concentration 10.4 wt%) were added. This was added to prepare a photocatalyst coating liquid. The amount of titanium oxide in the titanium oxide dispersion was 1.0 g, and the weight of amorphous Zr—O-based particles in terms of ZrO 2 was 0.43 g. From this, the upper component in the binder was mixed in 43 parts by weight with respect to 100 parts by weight of titanium oxide in terms of oxide.

この光触媒体コーティグを用いて、実施例1と同様にして硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。 Using this photocatalyst coating, a binder-containing photocatalyst coating film was formed on the entire surface of the glass plate in the same manner as in Example 1. The physical properties of the coating film are shown in Table 1.

実施例3
実施例1と同様の酸化チタン分散液5.0gに純水10.4 g、およびギ酸を含む非晶質Zr−O系粒子のゾル(ZrO2換算濃度10.4重量%)9.6 gを添加して光触媒体コーティング液を調製した。酸化チタン分散液の酸化チタン量は1.0gで、非晶質Zr−O系粒子のZrO2換算の重量は1.0gであった。ここからバインダー中の上の成分は酸化物換算で、酸化チタン100重量部に対して100重量部で混合したことになる。
Example 3
A sol of amorphous Zr—O-based particles containing 10.4 g of pure water and 5.0 g of pure water in the same titanium oxide dispersion as in Example 1 (ZrO 2 equivalent concentration 10.4 wt%) 9.6 g Was added to prepare a photocatalyst coating liquid. The amount of titanium oxide in the titanium oxide dispersion was 1.0 g, and the weight of amorphous Zr—O-based particles in terms of ZrO 2 was 1.0 g. From this, the upper component in the binder is 100 parts by weight with respect to 100 parts by weight of titanium oxide in terms of oxide.

この光触媒体コーティグを用いて、実施例1と同様にして硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。 Using this photocatalyst coating, a binder-containing photocatalyst coating film was formed on the entire surface of the glass plate in the same manner as in Example 1. The physical properties of the coating film are shown in Table 1.

実施例4
実施例1で得られた非晶質のゾル1000gに対して、1.5重量%酢酸水溶液1000gを添加した以外は上記実施例1と同様にしてジルコニウム濃度がZrO2換算で9重量%、pH3.6のゾルを得た。
Example 4
The zirconium concentration was 9 wt% in terms of ZrO 2 , pH 3 except that 1000 g of a 1.5 wt% aqueous acetic acid solution was added to 1000 g of the amorphous sol obtained in Example 1. .6 sol was obtained.

酸塩基滴定で求めた、該ゾル中のZrに対する酸のモル比は、0.5であった。また、ケルダール法によって測定された硝酸/Zrのモル比は0.3であった。上記Zrに対する酸のモル比および硝酸/Zrのモル比から計算された酢酸/Zrのモル比は0.2であり、硝酸/酢酸のモル比は1.5であった。 The molar ratio of acid to Zr in the sol determined by acid-base titration was 0.5. The molar ratio of nitric acid / Zr measured by the Kjeldahl method was 0.3. The molar ratio of acetic acid / Zr calculated from the molar ratio of acid to Zr and the molar ratio of nitric acid / Zr was 0.2, and the molar ratio of nitric acid / acetic acid was 1.5.

該ゾルの粒子径分布は、実施例1とほぼ同じで、粒子径D50は12nmであり、また、該ゾルを100℃で恒量まで乾燥したもののX線回折パターンは、実施例1とほぼ同様であり、特定の結晶系に帰属されなかった。また、該ゾルのゼータ電位は45mVであった。 The particle size distribution of the sol is almost the same as in Example 1, the particle size D50 is 12 nm, and the X-ray diffraction pattern of the sol dried to a constant weight at 100 ° C. is almost the same as in Example 1. Yes, it was not assigned to a specific crystal system. The sol had a zeta potential of 45 mV.

実施例5
実施例1で得られた非晶質のゾル1000gに対して、64gの無水クエン酸を添加し、次に、120gの25重量%アンモニア水を添加し、ジルコニウム濃度がZrO2換算で6重量%、pH9.5のゾルを得た。
Example 5
To 1000 g of the amorphous sol obtained in Example 1, 64 g of anhydrous citric acid was added, and then 120 g of 25 wt% aqueous ammonia was added. The zirconium concentration was 6 wt% in terms of ZrO 2. A sol having a pH of 9.5 was obtained.

該ゾル中のクエン酸/Zrのモル比は0.4、硝酸/Zrのモル比は0.4、および硝酸/クエン酸のモル比は1であった。 The molar ratio of citric acid / Zr in the sol was 0.4, the molar ratio of nitric acid / Zr was 0.4, and the molar ratio of nitric acid / citric acid was 1.

該ゾルの粒子系分布は、実施例1とほぼ同じで、粒子径D50は12nmであり、また、該ゾルを100℃で恒量まで乾燥したもののX線回折パターンは、実施例1とほぼ同様であり、特定の結晶系に帰属されなかった。また、該ゾルのゼータ電位は−45mVであった。 The particle system distribution of the sol is almost the same as in Example 1, the particle diameter D50 is 12 nm, and the X-ray diffraction pattern of the sol dried to a constant weight at 100 ° C. is almost the same as in Example 1. Yes, it was not assigned to a specific crystal system. Further, the zeta potential of the sol was −45 mV.

実施例6
実施例5で得られたゾルに1000gの純水を添加し、限外ろ過処理によって1000gの溶媒を取り除く操作を5回繰り返した後、1000gの1.5重量%ギ酸アンモニウム水溶液を添加し、限外ろ過処理によって1000gの溶媒を取り除く操作を5回繰り返し、次に、1000gの純水を添加し、限外ろ過処理によって1000gの溶媒を取り除く操作を2回繰り返してジルコニウム濃度がZrO2換算で7重量%、pH7.7のゾルを得た。
Example 6
The operation of adding 1000 g of pure water to the sol obtained in Example 5 and removing 1000 g of the solvent by ultrafiltration was repeated 5 times, and then 1000 g of a 1.5 wt% ammonium formate aqueous solution was added. The operation of removing 1000 g of the solvent by the external filtration treatment was repeated 5 times, and then the operation of adding 1000 g of pure water and removing the 1000 g of the solvent by the ultrafiltration treatment was repeated twice to obtain a zirconium concentration of 7 in terms of ZrO 2. A sol having a weight% of pH 7.7 was obtained.

該ゾル中のギ酸/Zrモル比は0.2、クエン酸/Zrモル比は0.15およびクエン酸/酢酸のモル比は0.75であった。 The formic acid / Zr molar ratio in the sol was 0.2, the citric acid / Zr molar ratio was 0.15, and the citric acid / acetic acid molar ratio was 0.75.

該ゾルの粒子系分布は、実施例1とほぼ同じで、粒子径D50は12nmであり、また、該ゾルを100℃で恒量まで乾燥したもののX線回折パターンは、実施例1とほぼ同様であり、特定の結晶系に帰属されなかった。また、該ゾルのゼータ電位は−43mVであった。 The particle system distribution of the sol is almost the same as in Example 1, the particle diameter D50 is 12 nm, and the X-ray diffraction pattern of the sol dried to a constant weight at 100 ° C. is almost the same as in Example 1. Yes, it was not assigned to a specific crystal system. Further, the zeta potential of the sol was −43 mV.

実施例7
実施例5で得られたゾルに1000gの純水を添加し、限外ろ過処理によって1000gの溶媒を取り除く操作を5回繰り返した後、1000gの2重量%酢酸アンモニウム水溶液を添加し、限外ろ過処理によって1000gの溶媒を取り除く操作を5回繰り返し、次に、1000gの純水を添加し、限外ろ過処理によって1000gの溶媒を取り除きジルコニウム濃度がZrO2換算で6.5重量%、pH6.5のゾルを得た。
Example 7
The operation of adding 1000 g of pure water to the sol obtained in Example 5 and removing 1000 g of solvent by ultrafiltration was repeated 5 times, and then 1000 g of 2 wt% aqueous ammonium acetate solution was added, followed by ultrafiltration. The operation of removing 1000 g of the solvent by the treatment was repeated 5 times, then 1000 g of pure water was added, 1000 g of the solvent was removed by the ultrafiltration treatment, and the zirconium concentration was 6.5 wt% in terms of ZrO 2 , pH 6.5. The sol was obtained.

該ゾル中の酢酸/Zrのモル比は0.3、クエン酸/Zrのモル比は0.1およびクエン酸/酢酸のモル比は0.25であった。 The acetic acid / Zr molar ratio in the sol was 0.3, the citric acid / Zr molar ratio was 0.1, and the citric acid / acetic acid molar ratio was 0.25.

該ゾルの粒子系分布は、実施例1とほぼ同じで、粒子径D50は12nmであり、また、該ゾルを100℃で恒量まで乾燥したもののX線回折パターンは、実施例1とほぼ同様であり、特定の結晶系に帰属されなかった。また、該ゾルのゼータ電位は−48mVであった。 The particle system distribution of the sol is almost the same as in Example 1, the particle diameter D50 is 12 nm, and the X-ray diffraction pattern of the sol dried to a constant weight at 100 ° C. is almost the same as in Example 1. Yes, it was not assigned to a specific crystal system. The sol had a zeta potential of −48 mV.

実施例8
実施例5で得られたゾルに1000gの純水を添加し、限外ろ過処理によって1000gの溶媒を取り除く操作を5回繰り返した後、1000gの1重量%蓚酸アンモニウム水溶液を添加し、限外ろ過処理によって1000gの溶媒を取り除く操作を5回繰り返し、次に、1000gの純水を添加し、限外ろ過処理によって1000gの溶媒を取り除く操作を2回繰り返してジルコニウム濃度がZrO2換算で6重量%、pH7.9のゾルを得た。
Example 8
The operation of adding 1000 g of pure water to the sol obtained in Example 5 and removing 1000 g of the solvent by ultrafiltration was repeated 5 times, and then 1000 g of 1 wt% ammonium oxalate aqueous solution was added, followed by ultrafiltration. The operation of removing 1000 g of the solvent by the treatment was repeated 5 times, and then the operation of adding 1000 g of pure water and removing the 1000 g of the solvent by the ultrafiltration treatment was repeated twice to obtain a zirconium concentration of 6% by weight in terms of ZrO 2. A sol having a pH of 7.9 was obtained.

該ゾル中の蓚酸/Zrモル比が0.2、クエン酸/Zrモル比が0.2およびクエン酸/蓚酸のモル比は1であった。 The oxalic acid / Zr molar ratio in the sol was 0.2, the citric acid / Zr molar ratio was 0.2, and the citric acid / succinic acid molar ratio was 1.

該ゾルの粒子系分布は、実施例1とほぼ同じで、粒子径D50は12nmであり、また、該ゾルを100℃で恒量まで乾燥したもののX線回折パターンは、実施例1とほぼ同様であり、特定の結晶系に帰属されなかった。また、該ゾルのゼータ電位は−45mVであった。 The particle system distribution of the sol is almost the same as in Example 1, the particle diameter D50 is 12 nm, and the X-ray diffraction pattern of the sol dried to a constant weight at 100 ° C. is almost the same as in Example 1. Yes, it was not assigned to a specific crystal system. Further, the zeta potential of the sol was −45 mV.

比較例1
実施例1で用いた酸化チタン分散液5gに純水18.8g、および炭酸ジルコニウムアンモニウム水溶液(ZrO2換算濃度20重量%)1.3gを添加して光触媒体コーティング液を調製した。酸化チタン分散液の酸化チタン量は1.0gで、ジルコニウム化合物のZrO2換算の重量は0.25gであった。ここからバインダー中の上の成分は酸化物換算で、酸化チタン100重量部に対して25重量部で混合したことになる。
Comparative Example 1
A photocatalyst coating liquid was prepared by adding 18.8 g of pure water and 1.3 g of zirconium ammonium carbonate aqueous solution (concentration 20% by weight of ZrO 2 ) to 5 g of the titanium oxide dispersion used in Example 1. The amount of titanium oxide in the titanium oxide dispersion was 1.0 g, and the weight of the zirconium compound in terms of ZrO 2 was 0.25 g. From this, the upper component in the binder was mixed in an amount of 25 parts by weight with respect to 100 parts by weight of titanium oxide in terms of oxide.

この光触媒体コーティグを用いて、実施例1と同様にして硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。 Using this photocatalyst coating, a binder-containing photocatalyst coating film was formed on the entire surface of the glass plate in the same manner as in Example 1. The physical properties of the coating film are shown in Table 1.

比較例2
実施例1で用いた酸化チタン分散液5gに純水18.3g、および酢酸ジルコニウム水溶液(ZrO2換算濃度15重量%)1.7gを添加して光触媒体コーティング液を調製した。酸化チタン分散液の酸化チタン量は1.0gで、ジルコニウム化合物のZrO2換算の重量は0.25gであった。ここからバインダー中の上の成分は酸化物換算で、酸化チタン100重量部に対して25重量部で混合したことになる。
Comparative Example 2
A photocatalyst coating liquid was prepared by adding 18.3 g of pure water and 1.7 g of a zirconium acetate aqueous solution (ZrO 2 equivalent concentration: 15 wt%) to 5 g of the titanium oxide dispersion used in Example 1. The amount of titanium oxide in the titanium oxide dispersion was 1.0 g, and the weight of the zirconium compound in terms of ZrO 2 was 0.25 g. From this, the upper component in the binder was mixed in an amount of 25 parts by weight with respect to 100 parts by weight of titanium oxide in terms of oxide.

この光触媒体コーティグを用いて、実施例1と同様にして硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。 Using this photocatalyst coating, a binder-containing photocatalyst coating film was formed on the entire surface of the glass plate in the same manner as in Example 1. The physical properties of the coating film are shown in Table 1.

比較例3
実施例1で用いた酸化チタン分散液5gに純水14g、およびプロピオン酸ジルコニウム・エタノール溶液(ZrO2換算濃度20重量%)1.3gを添加して光触媒体コーティング液を調製した。酸化チタン分散液の酸化チタン量は1.0gで、ジルコニウム化合物のZrO2換算の重量は0.25gであった。ここからバインダー中の上の成分は酸化物換算で、酸化チタン100重量部に対して25重量部で混合したことになる。
Comparative Example 3
A photocatalyst coating liquid was prepared by adding 14 g of pure water and 1.3 g of zirconium propionate / ethanol solution (ZrO 2 equivalent concentration 20% by weight) to 5 g of the titanium oxide dispersion used in Example 1. The amount of titanium oxide in the titanium oxide dispersion was 1.0 g, and the weight of the zirconium compound in terms of ZrO 2 was 0.25 g. From this, the upper component in the binder was mixed in an amount of 25 parts by weight with respect to 100 parts by weight of titanium oxide in terms of oxide.

この光触媒体コーティグを用いて、実施例1と同様にして硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。 Using this photocatalyst coating, a binder-containing photocatalyst coating film was formed on the entire surface of the glass plate in the same manner as in Example 1. The physical properties of the coating film are shown in Table 1.

比較例4
実施例1と同様の酸化チタン分散液5.0gに純水15.6g、およびカルボン酸またはその塩を含まず、硝酸を含む非晶質Zr−O系粒子の分散液(ZrO2換算濃度10重量%,商品名ZSL−10T,第一稀元素化学工業(株)製)4.3gを添加して光触媒体コーティング液を調製した。酸化チタン分散液の酸化チタン量は1.0gで、非晶質Zr−O系粒子のZrO2換算の重量は0.43gであった。ここからバインダー中の上の成分は酸化物換算で、酸化チタン100重量部に対して43重量部で混合したことになる。
Comparative Example 4
A dispersion of amorphous Zr—O-based particles containing 15.6 g of pure water and carboxylic acid or a salt thereof and containing nitric acid (ZrO 2 equivalent concentration 10) A photocatalyst coating liquid was prepared by adding 4.3 g by weight%, trade name ZSL-10T, manufactured by Daiichi Rare Element Chemical Co., Ltd. The amount of titanium oxide in the titanium oxide dispersion was 1.0 g, and the weight of amorphous Zr—O-based particles in terms of ZrO 2 was 0.43 g. From this, the upper component in the binder was mixed in 43 parts by weight with respect to 100 parts by weight of titanium oxide in terms of oxide.

この光触媒体コーティグを用いて、実施例1と同様にして硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。 Using this photocatalyst coating, a binder-containing photocatalyst coating film was formed on the entire surface of the glass plate in the same manner as in Example 1. The physical properties of the coating film are shown in Table 1.

比較例5
実施例1と同様の酸化チタン分散液5.0gに純水10.0 g、およびカルボン酸またはその塩を含まず、硝酸を含む非晶質Zr−O系粒子の分散液(ZrO2換算濃度10重量%,商品名ZSL−10T,第一稀元素化学工業(株)製)10.0gを添加して光触媒体コーティング液を調製した。酸化チタン分散液の酸化チタン量は1.0gで、非晶質Zr−O系粒子のZrO2換算の重量は1.0gであった。ここからバインダー中の上の成分は酸化物換算で、酸化チタン100重量部に対して100重量部で混合したことになる。
Comparative Example 5
A dispersion of amorphous Zr—O-based particles containing no nitric acid and 10.0 g of pure water and 5.0 g of pure water in the same titanium oxide dispersion as in Example 1 (concentrated in terms of ZrO 2) A photocatalyst coating liquid was prepared by adding 10.0 g of 10 wt%, trade name ZSL-10T, manufactured by Daiichi Rare Element Chemical Co., Ltd.). The amount of titanium oxide in the titanium oxide dispersion was 1.0 g, and the weight of amorphous Zr—O-based particles in terms of ZrO 2 was 1.0 g. From this, the upper component in the binder is 100 parts by weight with respect to 100 parts by weight of titanium oxide in terms of oxide.

この光触媒体コーティグを用いて、実施例1と同様にして硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。 Using this photocatalyst coating, a binder-containing photocatalyst coating film was formed on the entire surface of the glass plate in the same manner as in Example 1. The physical properties of the coating film are shown in Table 1.

比較例6
実施例1の酸化チタン分散液5.0gに純水20.0 gを添加し、バインダーを含まない酸化チタン分散液を調製した。この液を用いて、実施例1と同様にして硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。
Comparative Example 6
20.0 g of pure water was added to 5.0 g of the titanium oxide dispersion of Example 1 to prepare a titanium oxide dispersion containing no binder. Using this solution, a binder-containing photocatalyst coating film was formed on the entire surface of the glass plate in the same manner as in Example 1. The physical properties of the coating film are shown in Table 1.

この光触媒体コーティグを用いて、実施例1と同様にして硝子板の片面全体にバインダー含有光触媒体塗膜を形成した。塗膜の物性を表1に示した。 Using this photocatalyst coating, a binder-containing photocatalyst coating film was formed on the entire surface of the glass plate in the same manner as in Example 1. The physical properties of the coating film are shown in Table 1.

Figure 0005512934
Figure 0005512934

次に、表1の塗膜物性総合判定で○若しくは△であった、実施例1〜3、比較例2、比較例5の光触媒コーティング液の光触媒性能を評価した。また比較例6の酸化チタン分散液の光触媒性能も評価した。結果を表2に示した。 Next, the photocatalytic performance of the photocatalyst coating liquids of Examples 1 to 3, Comparative Example 2, and Comparative Example 5, which were evaluated as “◯” or “Δ” in the comprehensive physical property determination of Table 1, was evaluated. The photocatalytic performance of the titanium oxide dispersion of Comparative Example 6 was also evaluated. The results are shown in Table 2.

Figure 0005512934
Figure 0005512934

表1と2を比較すると、本発明のギ酸で安定化した非晶質Zr−O系粒子分散液をバインダーとする光触媒コーティング液(実施例1〜3)は、良好な塗膜物性を示し、しかもバインダーを含んでいるにも関わらず、バインダーを含まない酸化チタン分散液(比較例6)よりも高い光触媒活性を示した。 Comparing Tables 1 and 2, the photocatalyst coating liquids (Examples 1 to 3) using the amorphous Zr-O-based particle dispersion stabilized with formic acid according to the present invention as binders exhibit good coating properties, And although it contained the binder, the photocatalytic activity higher than the titanium oxide dispersion (Comparative Example 6) which does not contain a binder was shown.

本発明の光触媒コーティング液によれば、硝子、プラスチック、金属、陶磁器、コンクリートのような基材に、透明性と密着性に優れ、高い光触媒活性を示す膜を形成することができる。 According to the photocatalyst coating liquid of the present invention, a film having excellent transparency and adhesion and high photocatalytic activity can be formed on a substrate such as glass, plastic, metal, ceramics, and concrete.

ジルコニウム濃度をX重量%、1モルのZrに対するそのグラム当量数Yとし、X、Yの値を変化させ、合成したゾルの結晶性について、X線回折測定によって調べた結果を示す。The graph shows the results of examining the crystallinity of the synthesized sol by X-ray diffraction measurement, with the zirconium concentration being X wt% and its gram equivalent number Y with respect to 1 mol of Zr, changing the values of X and Y.

Claims (10)

粒子径D50が1〜20nmであり非晶質であるZr−O系粒子が分散媒中に分散されてなり、無機酸とカルボン酸またはその塩を含み、ゼータ電位が20mV以上であり、1モルのZrに対して0.05〜1モルのカルボン酸またはその塩を含むことを特徴とする非晶質のZr−O系粒子を分散質とするゾル。 An amorphous Zr—O-based particle having a particle diameter D50 of 1 to 20 nm is dispersed in a dispersion medium, contains an inorganic acid and a carboxylic acid or a salt thereof, has a zeta potential of 20 mV or more, 1 mol A sol having amorphous Zr-O-based particles as a dispersoid, which contains 0.05 to 1 mol of carboxylic acid or a salt thereof relative to Zr. カルボン酸がギ酸または酢酸から選ばれる1種または2種であることを特徴とする請求項1に記載の非晶質のZr−O系粒子を分散質とするゾル。 The sol having an amorphous Zr-O-based particle as a dispersoid according to claim 1, wherein the carboxylic acid is one or two selected from formic acid or acetic acid. 無機酸/カルボン酸またはその塩のモル比が0.1〜5であることを特徴とする請求項1または請求項2に記載の非晶質のZr−O系粒子を分散質とするゾル。 The sol having an amorphous Zr-O-based particle as a dispersoid according to claim 1 or 2, wherein the inorganic acid / carboxylic acid or a salt thereof has a molar ratio of 0.1 to 5. 無機酸が硝酸であることを特徴とする請求項1〜請求項3のいずれかに記載の非晶質のZr−O系粒子を分散質とするゾル。 4. A sol having amorphous Zr-O-based particles as a dispersoid according to any one of claims 1 to 3, wherein the inorganic acid is nitric acid. 分散媒中に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルの無機酸または無機酸の中和により生成した無機酸塩を、カルボン酸またはその塩と置換することを特徴とする、非晶質のZr−O系粒子を分散質とするゾルの製造方法。 Replacing the carboxylic acid or its salt with the inorganic acid of the sol containing the inorganic acid in the dispersion medium and the amorphous Zr-O-based particles as the dispersoid or neutralizing the inorganic acid A method for producing a sol using amorphous Zr—O-based particles as a dispersoid. 分散媒中に無機酸を含有し非晶質のZr−O系粒子を分散質とするゾルが、水酸化ジルコニウム、無機酸および溶媒からなり、ZrO2換算のジルコニウム濃度をX重量%、1モルのZrに対する無機酸のグラム当量数Yとした場合、XおよびYが以下の式(A)
3≦X≦20 (A)
および式(B)
(2.0−0.07X)≦Y≦(3.0−0.08X) (B)
を満足する反応分散液を調製し、ついで該反応液を80℃以上で加熱して得られたゾルであることを特徴とする請求項に記載の非晶質のZr−O系粒子を分散質とするゾルの製造方法
A sol containing an inorganic acid in a dispersion medium and containing amorphous Zr—O-based particles as a dispersoid is composed of zirconium hydroxide, an inorganic acid and a solvent, and the zirconium concentration in terms of ZrO 2 is X wt%, 1 mol. When Y is the gram equivalent number Y of the inorganic acid relative to Zr, X and Y are represented by the following formula (A):
3 ≦ X ≦ 20 (A)
And formula (B)
(2.0−0.07X) ≦ Y ≦ (3.0−0.08X) (B)
The dispersion of amorphous Zr-O particles according to claim 5 is a sol obtained by preparing a reaction dispersion satisfying the following conditions, and then heating the reaction liquid at 80 ° C or higher. Sol production method
1モルのZrに対して0.05〜1モルのカルボン酸またはその塩を含むように置換することを特徴とする請求項または請求項に記載の非晶質のZr−O系粒子を分散質とするゾルの製造方法。 The amorphous Zr-O-based particles according to claim 5 or 6 , wherein the amorphous Zr-O-based particles according to claim 5 or 6 are substituted so as to contain 0.05 to 1 mol of carboxylic acid or a salt thereof with respect to 1 mol of Zr. A method for producing a sol as a dispersoid. 無機酸が硝酸であることを特徴とする請求項〜請求項のいずれかに記載の非晶質のZr−O系粒子を分散質とするゾルの製造方法。 The method for producing a sol using amorphous Zr-O-based particles as a dispersoid according to any one of claims 5 to 7 , wherein the inorganic acid is nitric acid. 光触媒体、粒子径D50が1〜20nmであり非晶質であるZr−O系粒子とカルボン酸とその塩、または、無機酸とカルボン酸またはその塩を含み、光触媒体100重量部に対する前記Zr−O系粒子のZrO2換算の含有量が15〜120重量部であることを特徴とする光触媒体コーティング液。 A photocatalyst, comprising a Zr—O-based particle having a particle diameter D50 of 1 to 20 nm and amorphous and a carboxylic acid and a salt thereof, or an inorganic acid and a carboxylic acid or a salt thereof, and the Zr with respect to 100 parts by weight of the photocatalyst photocatalyst coating liquid content of ZrO 2 in terms of -O based particles, characterized in that a 15 to 120 parts by weight. 請求項に記載の光触媒体コーティング液を基材上に塗布し、溶媒を揮発させることを特徴とする光触媒機能製品の製造方法。 A method for producing a photocatalytic functional product, wherein the photocatalyst coating liquid according to claim 9 is applied on a substrate and the solvent is volatilized.
JP2008123114A 2008-05-09 2008-05-09 Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid Active JP5512934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123114A JP5512934B2 (en) 2008-05-09 2008-05-09 Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123114A JP5512934B2 (en) 2008-05-09 2008-05-09 Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid

Publications (2)

Publication Number Publication Date
JP2009270040A JP2009270040A (en) 2009-11-19
JP5512934B2 true JP5512934B2 (en) 2014-06-04

Family

ID=41436892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123114A Active JP5512934B2 (en) 2008-05-09 2008-05-09 Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid

Country Status (1)

Country Link
JP (1) JP5512934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266838A4 (en) * 2015-02-26 2018-01-10 LG Hausys, Ltd. Composition for coating visible light active photocatalyst and filter for air purification

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313051B2 (en) * 2008-06-09 2013-10-09 住友化学株式会社 Zirconium oxalate sol
WO2011155635A1 (en) * 2010-06-08 2011-12-15 住友金属鉱山株式会社 Method for producing metal oxide film, metal oxide film, element using the metal oxide film, substrate with metal oxide film, and device using the substrate with metal oxide film
SG187646A1 (en) 2010-07-29 2013-03-28 Toto Ltd Photocatalyst coated body and photocatalyst coating liquid
MX2013001100A (en) * 2010-07-29 2013-10-03 Toto Ltd Inorganic material comprising photocatalyst layer, method for producing same, and photocatalyst coating liquid for inorganic material.
JP5849698B2 (en) * 2011-12-29 2016-02-03 Toto株式会社 Composite and coating composition
WO2013100021A1 (en) * 2011-12-29 2013-07-04 Toto株式会社 Composite material and coating composition
JP5876148B2 (en) * 2012-06-01 2016-03-02 株式会社東芝 Aqueous dispersion and paint, photocatalyst film and product using the same
US9201305B2 (en) * 2013-06-28 2015-12-01 Az Electronic Materials (Luxembourg) S.A.R.L. Spin-on compositions of soluble metal oxide carboxylates and methods of their use
JP6284226B2 (en) * 2014-03-25 2018-02-28 多木化学株式会社 Method for producing zirconia sol
JP5758037B1 (en) 2014-09-29 2015-08-05 第一稀元素化学工業株式会社 Sol comprising amorphous Zr-O-based particles as dispersoid and method for producing the same
GB201518996D0 (en) * 2015-10-27 2015-12-09 Magnesium Elektron Ltd Zirconia-based compositions for use as three-way catalysts
US11325183B2 (en) * 2017-03-21 2022-05-10 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Surface-modified metal compound particles, and method for producing surface-modified metal compound particles
WO2022190901A1 (en) * 2021-03-10 2022-09-15 日東電工株式会社 Photocatalyst material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632809A (en) * 1986-06-19 1988-01-07 Nippon Shokubai Kagaku Kogyo Co Ltd Production of high-purity zirconia sol
JPH0665610B2 (en) * 1989-12-01 1994-08-24 株式会社日本触媒 Method for producing zirconia sol
JP2742449B2 (en) * 1989-07-21 1998-04-22 株式会社日本触媒 High performance zirconia sol and method for producing the same
JP2560490B2 (en) * 1988-09-30 1996-12-04 日産化学工業株式会社 Method for producing zirconia sol
JPH06166519A (en) * 1992-11-27 1994-06-14 Mitsubishi Materials Corp Production of zirconia sol
US6407033B1 (en) * 1996-10-08 2002-06-18 Nippon Soda Co., Ltd. Photocatalytic coating composition and photocatalyst-bearing structure
JP4619601B2 (en) * 1999-09-30 2011-01-26 昭和電工株式会社 PHOTOCATALYTIC COATING COMPOSITION AND PRODUCT HAVING PHOTOCATALYTIC THIN FILM
JP2003093890A (en) * 2001-09-25 2003-04-02 Mitsubishi Heavy Ind Ltd Method for preparing photocatalyst
JP2003212546A (en) * 2002-01-28 2003-07-30 Hosokawa Micron Corp Zirconia fine powder and manufacturing method therefor
JP2005306635A (en) * 2004-04-19 2005-11-04 National Institute Of Advanced Industrial & Technology Coated alumina particle, alumina formed body, alumina sintered compact and method of manufacturing them
EP1794087A1 (en) * 2004-09-01 2007-06-13 Advanced Nanotechnology Limited A zirconia ceramic
JP4963820B2 (en) * 2005-09-02 2012-06-27 第一稀元素化学工業株式会社 Method for producing sol using Zr-O-based particles as dispersoid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266838A4 (en) * 2015-02-26 2018-01-10 LG Hausys, Ltd. Composition for coating visible light active photocatalyst and filter for air purification
US10449519B2 (en) 2015-02-26 2019-10-22 Lg Hausys, Ltd. Visible light-activated photocatalytic coating composition and air purification filter
US10898879B2 (en) 2015-02-26 2021-01-26 Lg Hausys, Ltd. Visible light-activated photocatalytic coating composition and air purification filter

Also Published As

Publication number Publication date
JP2009270040A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5512934B2 (en) Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid
JP4393963B2 (en) Photocatalyst coating liquid
JP4374869B2 (en) Manufacturing method of ceramic dispersion
WO2009116181A1 (en) Visible light-responsive photocatalyst and method for producing the same
KR100916930B1 (en) Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
US11059036B2 (en) Mixture of visible light-responsive photocatalytic titanium oxide fine particles, dispersion liquid thereof, method for producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on surface
EP2133311B1 (en) Zirconium oxalate sol
JP2004026553A (en) Titanium oxide dispersion and preservation container for the same
US20090305879A1 (en) Photocatalyst dispersion liquid and process for producing the same
JP5212353B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP5282735B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP2009056348A (en) Photocatalyst dispersion
JP5313051B2 (en) Zirconium oxalate sol
WO2020179517A1 (en) Titanium oxide fine particles, dispersion thereof, and method for producing dispersion
JP7088082B2 (en) A method for producing a titanium oxide fine particle mixture, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a titanium oxide fine particle dispersion.
JP2005318999A (en) Antibacterial deodorant and its manufacturing method
JP2007046005A (en) Photocatalyst coating liquid
JP2009120767A (en) Aqueous paint containing photocatalyst
JP7186362B2 (en) Titanium oxide particles and method for producing the same
JP2010120805A (en) Photocatalytic body dispersion
JP2023147700A (en) Titania nanoparticle and production method thereof
JP2022156818A (en) Composite nanoparticle
JP2021175697A (en) Titanium oxide particle, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on its surface, and method for producing titanium oxide particle dispersion
CA2668256A1 (en) Photocatalyst dispersion liquid and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140327

R150 Certificate of patent or registration of utility model

Ref document number: 5512934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250