JP2009056348A - Photocatalyst dispersion - Google Patents

Photocatalyst dispersion Download PDF

Info

Publication number
JP2009056348A
JP2009056348A JP2007223700A JP2007223700A JP2009056348A JP 2009056348 A JP2009056348 A JP 2009056348A JP 2007223700 A JP2007223700 A JP 2007223700A JP 2007223700 A JP2007223700 A JP 2007223700A JP 2009056348 A JP2009056348 A JP 2009056348A
Authority
JP
Japan
Prior art keywords
titanium oxide
photocatalyst
copper
dispersion
photocatalyst dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007223700A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sakatani
能彰 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007223700A priority Critical patent/JP2009056348A/en
Publication of JP2009056348A publication Critical patent/JP2009056348A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst dispersion which acquires a photocatalyst film to exhibit higher catalytic activities. <P>SOLUTION: The photocatalyst dispersion is characterized by containing photocatalyst titanium oxide, a copper component, a dispersant and a dispersing medium, wherein the content of the copper component calculated in terms of copper is 0.01-0.6 mol%. Preferably, the dispersant is one or more of an acid or its salt selected from the group consisting of oxalic acid, phosphoric acid, condensed phosphoric acid or its salt, the average particle size of dispersion of the photocatalyst titanium oxide is 10-500 nm and the crystal structure of the photocatalyst titanium oxide is an anatase or rutile type. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光触媒分散液に関する。 The present invention relates to a photocatalyst dispersion.

半導体にバンドギャップ以上のエネルギーをもつ光を照射すると、価電子帯の電子が伝導帯に励起し、価電子帯に正孔、伝導帯に電子が生成する。これらはそれぞれ強い酸化力と還元力を有し、半導体に接触した分子種に酸化還元作用を及ぼす。このような作用は、光触媒作用と呼ばれており、光触媒作用を示す半導体は光触媒体と呼ばれている。光触媒体を利用することにより、その光触媒作用によって、大気中の有機物などを分解することができる。 When a semiconductor is irradiated with light having energy higher than the band gap, electrons in the valence band are excited to the conduction band, and holes are generated in the valence band and electrons are generated in the conduction band. These have strong oxidizing power and reducing power, respectively, and exert a redox action on the molecular species in contact with the semiconductor. Such an action is called a photocatalytic action, and a semiconductor exhibiting a photocatalytic action is called a photocatalyst. By utilizing the photocatalyst, organic matter in the atmosphere can be decomposed by the photocatalytic action.

このような光触媒体として酸化チタンが注目されおり、光触媒作用を示す光触媒酸化チタンを分散媒中に分散させた光触媒分散液も市販されている。かかる光触媒分散液を基材上に塗布することにより、高い光触媒活性を示す光触媒塗膜を得ることができる。 Titanium oxide attracts attention as such a photocatalyst, and a photocatalyst dispersion liquid in which photocatalytic titanium oxide exhibiting a photocatalytic action is dispersed in a dispersion medium is also commercially available. By applying such a photocatalyst dispersion on a substrate, a photocatalytic coating film exhibiting high photocatalytic activity can be obtained.

特開2001−72419号公報JP 2001-72419 A 特開2001−190953号公報JP 2001-190953 A 特開2001−316116号公報JP 2001-316116 A 特開2001−322816号公報JP 2001-322816 A 特開2002−29749号公報JP 2002-29749 A 特開2002−97019号公報JP 2002-97019 A WO01/10552パンフレットWO01 / 10552 pamphlet 特開2001−212457号公報JP 2001-212457 A 特開2002−239395号公報JP 2002-239395 A WO03/080244パンフレットWO03 / 080244 Pamphlet WO02/053501パンフレットWO02 / 053501 pamphlet 特開2007−69093号公報JP 2007-69093 A 特開2001−278625号公報JP 2001-278625 A 特開2001−278626号公報JP 2001-278626 A 特開2001−278627号公報JP 2001-278627 A 特開2001−302241号公報JP 2001-302241 A 特開2001−335321号公報JP 2001-335321 A 特開2001−354422号公報JP 2001-354422 A 特開2002−29750号公報JP 2002-29750 A 特開2002−47012号公報JP 2002-47012 A 特開2002−60221号公報JP 2002-60221 A 特開2002−193618号公報JP 2002-193618 A 特開2002−249319号公報JP 2002-249319 A 特開2007−69093号広報JP 2007-69093 PR Chemistry Letters, Vol.32, No.2, P.196-197(2003)Chemistry Letters, Vol.32, No.2, P.196-197 (2003) Chemistry Letters, Vol.32, No.4, P.364-365(2003)Chemistry Letters, Vol.32, No.4, P.364-365 (2003) Chemistry Letters, Vol.32, No.8, P.772-773(2003)Chemistry Letters, Vol.32, No.8, P.772-773 (2003) Angewandte Chemie, Internationaol Edition, 42, P.4908-4911(2003)Angewandte Chemie, Internationaol Edition, 42, P.4908-4911 (2003) Chemistry of materials, 17, P.1548-1552(2005)Chemistry of materials, 17, P.1548-1552 (2005)

光触媒分散液としては、より高い光触媒活性を示す光触媒塗膜が得られるものが求められている。 As a photocatalyst dispersion liquid, what can obtain the photocatalyst coating film which shows higher photocatalytic activity is calculated | required.

そこで本発明者等は、より高い光触媒活性を示す光触媒塗膜を与え得る光触媒分散液について検討した結果、本発明を完成するに至った。 Therefore, the present inventors have studied a photocatalyst dispersion that can provide a photocatalyst coating film exhibiting higher photocatalytic activity, and as a result, the present invention has been completed.

すなわち本発明は、光触媒酸化チタン、銅成分、分散剤および分散媒を含み、銅換算の銅成分の含有量が光触媒酸化チタンに対して0.01モル%〜0.6モル%であることを特徴とする光触媒分散液を提供するものである。 That is, the present invention includes a photocatalytic titanium oxide, a copper component, a dispersant, and a dispersion medium, and the content of the copper component in terms of copper is 0.01 mol% to 0.6 mol% with respect to the photocatalytic titanium oxide. The photocatalyst dispersion liquid is provided.

本発明の光触媒分散液によれば、硝子、プラスチック、金属、陶磁器、コンクリートのような基材に、高い光触媒活性を示す膜を形成することができる。 According to the photocatalyst dispersion liquid of the present invention, a film exhibiting high photocatalytic activity can be formed on a substrate such as glass, plastic, metal, ceramics, and concrete.

以下、本発明を詳細に説明する。
本発明に用いる光触媒酸化チタンとしては、光触媒活性を示す粉末状の酸化チタンが挙げられ、蛍光灯照射下で高い光触媒活性を発現する点から、可視光線の照射でも高い光触媒活性を示す酸化チタンが好ましい。
Hereinafter, the present invention will be described in detail.
Examples of the photocatalytic titanium oxide used in the present invention include powdered titanium oxide exhibiting photocatalytic activity. From the viewpoint of developing high photocatalytic activity under fluorescent lamp irradiation, titanium oxide exhibiting high photocatalytic activity even under irradiation with visible light is used. preferable.

このような光触媒酸化チタンとしては、例えばチタン化合物と塩基を反応させ、生成物にアンモニアを添加し、熟成した後、固液分離し、ついで固形分を焼成する方法により製造することができる。 Such photocatalytic titanium oxide can be produced, for example, by a method in which a titanium compound is reacted with a base, ammonia is added to the product, aging is performed, solid-liquid separation is performed, and then a solid content is baked.

この方法では、チタン化合物として、例えば三塩化チタン〔TiCl〕、四塩化チタン〔TiCl〕、硫酸チタン〔Ti(SO・mHO、0≦m≦20〕、オキシ硫酸チタン〔TiOSO・nHO、0≦n≦20〕、オキシ塩化チタン〔TiOCl〕を用いることができる。 In this method, examples of titanium compounds include titanium trichloride [TiCl 3 ], titanium tetrachloride [TiCl 4 ], titanium sulfate [Ti (SO 4 ) 2 .mH 2 O, 0 ≦ m ≦ 20], titanium oxysulfate [ TiOSO 4 · nH 2 O, 0 ≦ n ≦ 20], titanium oxychloride [TiOCl 2 ] can be used.

チタン化合物と反応させる塩基としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、アンモニア、ヒドラジン、ヒドロキシルアミン、モノエタノールアミン、非環式アミン化合物、環式脂肪族アミン化合物を用いることができる。 As the base to be reacted with the titanium compound, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, hydrazine, hydroxylamine, monoethanolamine, acyclic amine compound, or cyclic aliphatic amine compound should be used. Can do.

チタン化合物と塩基の反応は、pH2以上、好ましくは3以上、また7以下、好ましくはpH5以下で行われ、そのときの温度は、通常90℃以下、好ましくは70℃以下、さらに好ましくは55℃以下である。製造された酸化チタンの粉砕性を向上させるために、チタン化合物と塩基の反応を過酸化水素存在下で行ってもよい。 The reaction between the titanium compound and the base is carried out at a pH of 2 or more, preferably 3 or more, and 7 or less, preferably pH 5 or less. The temperature at that time is usually 90 ° C. or less, preferably 70 ° C. or less, more preferably 55 ° C. It is as follows. In order to improve the grindability of the produced titanium oxide, the reaction between the titanium compound and the base may be performed in the presence of hydrogen peroxide.

熟成は、例えばアンモニアが添加された生成物を、攪拌しながら、0℃以上、好ましくは10℃以上、また110℃以下、好ましくは80℃以下、より好ましくは55℃以下の温度範囲に、1分以上、好ましくは10分以上、また10時間以内、好ましくは2時間以内の条件で保持する方法で行うことができる。 For aging, for example, a product added with ammonia is stirred at a temperature range of 0 ° C. or higher, preferably 10 ° C. or higher, 110 ° C. or lower, preferably 80 ° C. or lower, more preferably 55 ° C. or lower. It can be carried out by a method of holding for at least 10 minutes, preferably at least 10 minutes, and within 10 hours, preferably within 2 hours.

反応と熟成に用いられるアンモニアの総量は、水の存在下でチタン化合物を水酸化チタンに変えるのに必要な塩基の化学量論量を超える量であることが好ましく、例えば1.1モル倍以上であることが好ましい。塩基の量が多いほど、可視光照射によって高い光触媒活性を示す膜を形成できるコーティング液が得られやすいので好ましく、例えば1.5モル倍以上がさらに好ましい。一方、塩基の量があまり多くなっても、量に見合った効果が得られないので、20モル倍以下、さらには10モル倍以下が適当である。 The total amount of ammonia used for the reaction and ripening is preferably an amount exceeding the stoichiometric amount of the base required to convert the titanium compound to titanium hydroxide in the presence of water, for example, 1.1 mol times or more It is preferable that The larger the amount of the base, the easier it is to obtain a coating liquid capable of forming a film exhibiting high photocatalytic activity by irradiation with visible light. For example, 1.5 mole times or more is more preferable. On the other hand, even if the amount of the base is too large, an effect commensurate with the amount cannot be obtained, so 20 mol times or less, further 10 mol times or less is appropriate.

熟成された生成物の固液分離は、加圧濾過、減圧濾過、遠心分離、デカンテーションなどで行うことができる。また固液分離では、得られる固形分を洗浄する操作をあわせて行うことが好ましい。 Solid-liquid separation of the aged product can be performed by pressure filtration, vacuum filtration, centrifugation, decantation, or the like. In the solid-liquid separation, it is preferable to perform an operation for washing the obtained solid content.

固液分離された固形分または任意の洗浄を行った固形分の焼成は、気流焼成炉、トンネル炉、回転炉などを用いて、通常250℃以上、好ましくは270℃以上、また600℃以下、好ましくは500℃以下、より好ましくは400℃以下の温度条件で行うことができる。このときの時間は、焼成温度や焼成装置の種類により異なり一義的ではないが、通常10分以上、好ましくは30分以上、また30時間以内、好ましくは5時間以内である。
焼成して得られる酸化チタンには、必要に応じて、タングステン、ニオブ、鉄、ニッケルの酸化物や水酸化物などのような固体酸性を示す化合物またはランタン、セリウム、カルシウムの酸化物や水酸化物などのような固体塩基性を示す化合物、またインジウム酸化物やビスマス酸化物のような可視光線を吸収する金属化合物を担持してもよい。
The solid content separated by solid-liquid separation or the solid content subjected to arbitrary washing is usually 250 ° C or higher, preferably 270 ° C or higher, and 600 ° C or lower, using an airflow firing furnace, a tunnel furnace, a rotary furnace, or the like. Preferably it can be carried out under a temperature condition of 500 ° C. or lower, more preferably 400 ° C. or lower. The time at this time varies depending on the firing temperature and the type of firing apparatus and is not unambiguous, but is usually 10 minutes or longer, preferably 30 minutes or longer, and 30 hours or shorter, preferably 5 hours or shorter.
If necessary, the titanium oxide obtained by firing includes a compound showing solid acidity such as tungsten, niobium, iron, nickel oxide or hydroxide, or lanthanum, cerium, calcium oxide or hydroxide. You may carry | support the compound which shows solid basicity, such as a thing, and the metal compound which absorbs visible rays like an indium oxide and a bismuth oxide.

本発明で用いる光触媒体酸化チタンとしては、上記の製造方法により製造されるものの他に、以下の酸化チタンが挙げられる。
(a)X線光電子分光法で酸化チタンの結合エネルギー458eV〜460eVの間にあるチタンのピークの半価幅を4回測定した時の1回目と2回目のチタンのピークの半価幅の平均値をAとし、3回目と4回目のチタンのピークの半価幅の平均値をBとし、前記半価幅AおよびBから下式(I)
X=B/A (I)
で示される指数Xが0.97以下であり、かつ紫外可視拡散反射スペクトルを測定したときの、波長220nm〜800nmでのスペクトルの吸光度の積分値をCとし、波長400nm〜800nmでのスペクトルの吸光度の積分値をDとし、前記積分値CおよびDから下式(II)
Y=D/C (II)
で示される指数Yが0.14以上である酸化チタン(特許文献1:特開2001−72419号公報)、
The photocatalyst titanium oxide used in the present invention includes the following titanium oxides in addition to those produced by the above production method.
(A) The average half-width of the first and second titanium peaks when the half-width of the titanium peak between 458 eV and 460 eV of titanium oxide is measured four times by X-ray photoelectron spectroscopy. The value is A, the average value of the half-value widths of the third and fourth titanium peaks is B, and from the half-value widths A and B, the following formula (I)
X = B / A (I)
And the integrated value of the absorbance of the spectrum at a wavelength of 220 nm to 800 nm when the index X is 0.97 or less and the ultraviolet-visible diffuse reflection spectrum is measured, and the absorbance of the spectrum at a wavelength of 400 nm to 800 nm The integral value of D is defined as D, and from the integral values C and D, the following formula (II)
Y = D / C (II)
Titanium oxide having an index Y indicated by ≧ 0.14 (Patent Document 1: Japanese Patent Application Laid-Open No. 2001-72419),

(b)電子スピン共鳴スペクトルにおいてg値1.930〜2.030の間に3つ以上のピークを有し、かつそれらピークの内の極大となるピークがg値1.990〜2.020の間に存在する酸化チタン(特許文献2:特開2001−190953号公報)、 (B) The electron spin resonance spectrum has three or more peaks between g values of 1.930 to 2.030, and the peak among these peaks has a g value of 1.990 to 2.020. Titanium oxide (Patent Document 2: Japanese Patent Application Laid-Open No. 2001-190953) existing between

(c)可視光線照射後に測定した電子スピン共鳴スペクトルから求められるスピン濃度Xが1.50×1016spin/g以上であり、可視光線照射後に測定した電子スピン共鳴スペクトルから求められるスピン濃度Xと、可視光線照射前に測定した電子スピン共鳴スペクトルから求められるスピン濃度Yとの比(X/Y)が1.00を超える酸化チタン(特許文献3:特開2001−316116号公報)、 (C) The spin concentration X determined from the electron spin resonance spectrum measured after irradiation with visible light is 1.50 × 10 16 spin / g or more, and the spin concentration X determined from the electron spin resonance spectrum measured after irradiation with visible light , Titanium oxide having a ratio (X / Y) with spin concentration Y determined from an electron spin resonance spectrum measured before irradiation with visible light exceeding 1.00 (Patent Document 3: JP 2001-316116 A)

(d)X線光電子分光法により8回分析し、チタンの電子状態について、1回目と2回目の分析の積算スペクトル及び7回目と8回目の分析の積算スペクトルを求め、それぞれの積算スペクトルのうち結合エネルギー458eV〜460eVにあるピークを求め、1回目と2回目の分析の積算スペクトルにあるピークの半価幅をA1とし、7回目と8回目の分析の積算スペクトルにあるピークの半価幅をB1としたとき、下式(III)
X1=B1/A1 (III)
により算出される指数X1が0.9以下であり、かつ、紫外可視拡散反射スペクトルを測
定して、波長250nm〜550nmの吸光度の積分値をC1とし、波長400nm〜5
50nmの吸光度の積分値をD1としたとき、下式(IV)
Y1=D1/C1 (IV)
により算出される指数Y1が0.075以上である酸化チタン(特許文献4:特開20
01−322816号公報)、
(D) Analyzed 8 times by X-ray photoelectron spectroscopy, and for the electronic state of titanium, the integrated spectrum of the first and second analysis and the integrated spectrum of the seventh and eighth analysis were obtained, A peak at a binding energy of 458 eV to 460 eV is obtained, and the half width of the peak in the integrated spectrum of the first and second analysis is A1, and the half width of the peak in the integrated spectrum of the seventh and eighth analysis is When B1, the following formula (III)
X1 = B1 / A1 (III)
The index X1 calculated by the above equation is 0.9 or less, and the ultraviolet-visible diffuse reflection spectrum is measured. The integrated value of the absorbance at wavelengths of 250 nm to 550 nm is defined as C1, and the wavelength of 400 nm to 5
When the integrated value of absorbance at 50 nm is D1, the following formula (IV)
Y1 = D1 / C1 (IV)
Titanium oxide whose index Y1 calculated by the above is 0.075 or more (Patent Document 4: JP-A-20
01-322816)

(e)X線光電子分光法により8回分析し、チタンの電子状態について、1回目と2回目の分析の積算スペクトルおよび7回目と8回目の分析の積算スペクトルを求めたときに、1回目と2回目の分析の積算スペクトルにおける少なくとも1つのピークの位置が結合エネルギー459〜460eVにあり、7回目と8回目の分析の積算スペクトルにおける少なくとも1つのピークの位置が結合エネルギー458〜459eVにあり、遷移金属の含有量が元素換算で酸化チタン中のチタンに対し0.005〜3.0mol%である酸化チタン(特許文献5:特開2001−29749号公報)、 (E) When the X-ray photoelectron spectroscopy is used for analysis eight times, and the integrated spectrum of the first and second analyzes and the integrated spectrum of the seventh and eighth analyzes are obtained for the electronic state of titanium, The position of at least one peak in the integrated spectrum of the second analysis is in the binding energy 459 to 460 eV, and the position of at least one peak in the integrated spectrum of the seventh and eighth analysis is in the binding energy 458 to 459 eV. Titanium oxide whose metal content is 0.005 to 3.0 mol% with respect to titanium in titanium oxide in terms of element (Patent Document 5: JP 2001-29749 A),

(f)熱天秤質量分析同時測定法により求められるマスクロマトグラムについて、質量数mとイオンの電荷数eの比m/eが28である成分の脱離ピークが600℃以上にある酸化チタン、もしくは熱天秤質量分析同時測定法により求められるマスクロマトグラムについて、質量数mとイオンの電荷数eの比m/eが28である成分の脱離ピークが600℃以上、950℃以下にあり、m/eが14である成分の脱離ピークが600℃以上、950℃以下にある酸化チタン(特許文献6:特開2002−97019号公報)、 (F) For a mass chromatogram obtained by a thermobalance mass spectrometry simultaneous measurement method, titanium oxide having a desorption peak of a component having a ratio m / e of mass number m to ion charge number e of 28 at 600 ° C. or higher, Alternatively, in the mass chromatogram obtained by the thermobalance mass spectrometry simultaneous measurement method, the desorption peak of the component having a ratio m / e of the mass number m and the ion charge number e is 28 is 600 ° C. or more and 950 ° C. or less, Titanium oxide having a desorption peak of a component having an m / e of 14 at 600 ° C. or more and 950 ° C. or less (Patent Document 6: JP 2002-97019 A),

(g)酸化チタン結晶の酸素サイトの一部を窒素原子で置換した酸化チタン、酸化チタン結晶の格子間に窒素を原子をドーピングした酸化チタン、酸化チタンの結晶粒界に窒素原子をドーピングしたもの(特許文献7:WO01/10552パンフレット)、 (G) Titanium oxide in which part of the oxygen sites of the titanium oxide crystal is replaced with nitrogen atoms, titanium oxide doped with nitrogen atoms between the lattices of the titanium oxide crystal, and titanium oxide crystal grain boundaries doped with nitrogen atoms (Patent Document 7: WO01 / 10552 pamphlet),

(h)安定した酸素欠陥を有する酸化チタンであって、真空中、77K、暗黒下で測定された電子スピン共鳴スペクトルにおいて、g値が2.003〜2.004であるシグナルが観測され、かつこのg値が2.003〜2.004であるシグナルは、真空中、77Kにおいて少なくとも420〜600nmの光を照射下で測定したとき、暗黒下で測定された場合よりシグナル強度が大きい酸化チタン(特許文献8:特開2001−212457公報)、 (H) a titanium oxide having stable oxygen defects, a signal having a g value of 2.003 to 2.004 is observed in an electron spin resonance spectrum measured in vacuum at 77K and in the dark, and The signal having a g value of 2.003 to 2.004 is a titanium oxide having a higher signal intensity when measured under irradiation with light of at least 420 to 600 nm at 77K in vacuum than in the case of measurement under darkness. Patent Document 8: JP-A-2001-212457),

(i)表面にPtCl、PtCl、PtCl・2HO、H[Pt(OH)Cl]・nHO、PtBr、PtBr、PtI、PtI、PtF、塩化白金酸、塩化白金酸塩、ブロモ白金錯塩、ヨウ化白金酸塩などのハロゲン化白金化合物を有している紡錘形状酸化チタン(特許文献9:特開2002−239395号公報)、 (I) PtCl 2 , PtCl 4 , PtCl 2 · 2H 2 O, H 2 [Pt (OH) 2 Cl 4 ] · nH 2 O, PtBr 2 , PtBr 2 , PtI 2 , PtI 4 , PtF 4 , chloride on the surface Spindle-shaped titanium oxide having a halogenated platinum compound such as platinic acid, chloroplatinate, bromoplatinum complex, or iodoplatinate (Patent Document 9: JP-A-2002-239395),

(j)表面に金属ハロゲン化物(TiCl4等)、金属錯体(ヘテロポリ酸及びイソポリ酸等)、を含有している酸化チタン(特許文献10:WO03/080244パンフレット)、 (J) titanium oxide (Patent Document 10: WO03 / 080244 pamphlet) containing a metal halide (such as TiCl4) and a metal complex (such as a heteropolyacid and an isopolyacid) on the surface;

(k)表面にアルカリ土類金属、遷移金属及びAlを含有している酸化チタン(特許文献11:WO02/053501パンフレット)、 (K) titanium oxide containing alkaline earth metal, transition metal and Al on the surface (Patent Document 11: WO02 / 053501 pamphlet),

(l)Sn化合物等の粒生長抑制剤を添加して合成したルチル型酸化チタン(特許文献12:特開2007−69093号公報)、 (L) Rutile-type titanium oxide synthesized by adding a grain growth inhibitor such as Sn compound (Patent Document 12: JP 2007-69093 A),

(m)窒素とフッ素を酸素の位置に置換した酸化チタン(非特許文献1:Chemistry Letters, Vol.32, No.2, P.196-197(2003))、 (M) Titanium oxide in which nitrogen and fluorine are substituted at the oxygen position (Non-patent Document 1: Chemistry Letters, Vol. 32, No. 2, P.196-197 (2003)),

(n)硫黄をTiの位置に置換した酸化チタン(非特許文献2:Chemistry Letters, Vol.32, No.4, P.364-365(2003))、 (N) Titanium oxide in which sulfur is substituted at the Ti position (Non-Patent Document 2: Chemistry Letters, Vol. 32, No. 4, P. 364-365 (2003)),

(o)炭素をドープした酸化チタン(非特許文献3:Chemistry Letters, Vol.32, No.8, P.772-773(2003)、非特許文献4:Angewandte Chemie, Internationaol Edition, 42, P.4908-4911(2003))、 (O) Titanium oxide doped with carbon (Non-patent document 3: Chemistry Letters, Vol. 32, No. 8, P. 772-773 (2003), Non-patent document 4: Angewandte Chemie, Internationaol Edition, 42, P. 4908-4911 (2003)),

(p)沃素をドープした酸化チタン(非特許文献5:Chemistry of Materials, 17, P.1548-1552(2005))。 (P) Iodine-doped titanium oxide (Non-patent Document 5: Chemistry of Materials, 17, P.1548-1552 (2005)).

(q)また特許文献13(特開2001−278625号公報)、特許文献14(特開2001−278626号公報)、特許文献15(特開2001−278627号公報)、特許文献16(特開2001−302241号公報)、特許文献17(特開2001−335321号公報)、特許文献18(特開2001−354422号公報)、特許文献19(特開2002−29750号公報)、特許文献20(特開2002−47012号公報)、特許文献21(特開2002−60221号公報)、特許文献22(特開2002−193618号公報)、特許文献23(特開2002−249319号公報)などに記載の方法により得られる酸化チタンなども挙げられる。 (Q) In addition, Patent Document 13 (Japanese Patent Laid-Open No. 2001-278625), Patent Document 14 (Japanese Patent Laid-Open No. 2001-278626), Patent Document 15 (Japanese Patent Laid-Open No. 2001-278627), Patent Document 16 (Japanese Patent Laid-Open No. 2001). -302241), Patent Literature 17 (Japanese Patent Laid-Open No. 2001-335321), Patent Literature 18 (Japanese Patent Laid-Open No. 2001-354422), Patent Literature 19 (Japanese Patent Laid-Open No. 2002-29750), and Patent Literature 20 (Japanese Patent Publication). No. 2002-47012), Patent Document 21 (Japanese Patent Laid-Open No. 2002-60221), Patent Document 22 (Japanese Patent Laid-Open No. 2002-193618), Patent Document 23 (Japanese Patent Laid-Open No. 2002-249319), and the like. Examples thereof include titanium oxide obtained by the method.

本発明の光触媒分散液における光触媒酸化チタンの含有量は、分散液を基準として通常0.1重量%以上、好ましくは1重量%以上、通常30重量%以下、好ましくは15重量%以下である。 The content of the photocatalytic titanium oxide in the photocatalyst dispersion of the present invention is usually 0.1% by weight or more, preferably 1% by weight or more, usually 30% by weight or less, preferably 15% by weight or less, based on the dispersion.

本発明の光触媒分散液に使用しうる銅成分としては、例えば硝酸銅(Cu(NO)、硫酸銅(Cu(SO)、塩化銅(CuCl,CuCl)、臭化銅(CuBr,CuBr)、沃化銅(CuI),沃素酸銅(CuI)、塩化アンモニウム銅(Cu(NHCl)、オキシ塩化銅(CuCl(OH))、酢酸銅(CCuO,(CHCOO)Cu)、蟻酸銅((HCOO)Cu)、炭酸銅(CuCO)、金属銅、酸化銅(CuO,CuO)、水酸化銅(CuOH,Cu(OH))、蓚酸銅(CuC)、クエン酸銅(Cu)、リン酸銅(CuPO)などが挙げられる。銅成分としては、分散媒に溶解しうるもの溶解性のものが好ましく用いられる。また、銅成分として金属銅、酸化銅などのように分散媒に溶解しない非溶解性のものを用いる場合には、コロイド粒子のような微細な粒子となっているものを用いることが、好ましい。 Examples of the copper component that can be used in the photocatalyst dispersion liquid of the present invention include copper nitrate (Cu (NO 3 ) 2 ), copper sulfate (Cu (SO 4 ) 2 ), copper chloride (CuCl 2 , CuCl), and copper bromide. (CuBr 2 , CuBr), copper iodide (CuI), copper iodate (CuI 2 O 6 ), copper ammonium chloride (Cu (NH 4 ) 2 Cl 4 ), copper oxychloride (Cu 2 Cl (OH) 3 ) , Copper acetate (C 2 H 3 CuO 2 , (CH 3 COO) 2 Cu), copper formate ((HCOO) 2 Cu), copper carbonate (CuCO 3 ), metallic copper, copper oxide (Cu 2 O, CuO), Examples thereof include copper hydroxide (CuOH, Cu (OH) 2 ), copper oxalate (CuC 2 O 4 ), copper citrate (Cu 2 C 6 H 4 O 7 ), and copper phosphate (CuPO 4 ). As the copper component, those soluble in a dispersion medium and preferably soluble are preferably used. Moreover, when using a non-soluble thing which does not melt | dissolve in a dispersion medium like metal copper, copper oxide, etc. as a copper component, it is preferable to use what is used as the fine particle like a colloid particle.

光触媒分散液における銅成分の含有量は、光触媒酸化チタンに対して0.01モル%以上である。銅成分の含有量が多いほど、塗膜にしたときの光触媒活性は向上し、好ましくは0.1モル%以上である。一方銅成分の量があまりに多くなると、量に見合う光触媒活性の向上効果が見られない。更に光触媒分散液の安定性も損なわれ、分散液の保管中に酸化チタンが沈降し、固液分離することがある為、0.6モル%以下、好ましくは0.5モル%以下である。 Content of the copper component in a photocatalyst dispersion liquid is 0.01 mol% or more with respect to a photocatalyst titanium oxide. The greater the content of the copper component, the better the photocatalytic activity when formed into a coating film, preferably 0.1 mol% or more. On the other hand, when the amount of the copper component is too large, the effect of improving the photocatalytic activity commensurate with the amount is not observed. Furthermore, the stability of the photocatalyst dispersion liquid is also impaired, and titanium oxide may settle during storage of the dispersion liquid, resulting in solid-liquid separation. Therefore, it is 0.6 mol% or less, preferably 0.5 mol% or less.

なお、本発明の光触媒分散液を塗布して得られる塗膜において、銅成分は、光触媒酸化チタンとの相互作用によるものか、その価数が+1価または0価となって塗膜中に存在している。+1価または0価の銅となって存在することにより、光触媒酸化チタンの光励起によって生成する電子が、この+1価または0価の銅を介して酸素分子を還元し、効率的に活性酸素種を生成することができ、このため高い光触媒活性を示すもの考えられる。 In the coating film obtained by applying the photocatalyst dispersion liquid of the present invention, the copper component is due to the interaction with the photocatalytic titanium oxide, or the valence is +1 or 0. is doing. By being present as +1 valence or 0 valence copper, electrons generated by photoexcitation of photocatalytic titanium oxide reduce oxygen molecules through this +1 valence or 0 valence copper, and efficiently generate active oxygen species. Therefore, it is considered that the photocatalytic activity is high.

本発明の光触媒分散液は、酸化チタンを溶媒中で安定に分散させる為に分散剤を用いる。分散剤としては、蓚酸、リン酸、縮合リン酸およびその塩が用いられる。蓚酸塩としては、例えば蓚酸アンモニウム、蓚酸水素アンモニウム、蓚酸ナトリウム、蓚酸水素ナトリウム、蓚酸カリウム、蓚酸水素カリウムなどが、リン酸塩としては、例えばリン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム、リン酸ナトリウム、リン酸水素ナトリウム、リン酸二水素ナトリウム、リン酸カリウム、リン酸水素カリウム、リン酸二水素カリウムなどが、縮合リン酸塩としては、例えばピロリン酸、ピロリン酸アンモニウム、ピロリン酸ナトリウム、ピロリン酸カリウム、トリポリリン酸アンモニウム、トリポリリン酸ナトリウム、トリポリリン酸カリウム、テトラポリリン酸、テトラポリリン酸アンモニウム、テトラポリリン酸ナトリウム、テトラポリリン酸カリウム、ヘキサメタリン酸、ヘキサメタリン酸アンモニウム、ヘキサメタリン酸ナトリウム、ヘキサメタリン酸カリウム等がそれぞれ挙げられる。 The photocatalyst dispersion liquid of the present invention uses a dispersant in order to stably disperse titanium oxide in a solvent. As the dispersant, succinic acid, phosphoric acid, condensed phosphoric acid and salts thereof are used. Examples of oxalates include ammonium oxalate, ammonium hydrogen oxalate, sodium oxalate, sodium hydrogen oxalate, potassium oxalate, and potassium hydrogen oxalate. Examples of phosphate salts include ammonium phosphate, ammonium hydrogen phosphate, and ammonium dihydrogen phosphate. Sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, and the like. Examples of the condensed phosphate include pyrophosphate, ammonium pyrophosphate, pyrophosphate Sodium, potassium pyrophosphate, ammonium tripolyphosphate, sodium tripolyphosphate, potassium tripolyphosphate, tetrapolyphosphate, ammonium tetrapolyphosphate, sodium tetrapolyphosphate, potassium tetrapolyphosphate, hexametaphosphate, hex Ammonium metaphosphate, sodium hexametaphosphate, potassium hexametaphosphate, and the like, respectively.

光触媒分散液における分散剤の含有量は、光触媒酸化チタンに対して通常0.05モル%以上である。分散剤の含有量が多いほど、分散液中の酸化チタンの分散安定性が向上するので好ましく、例えば0.5モル%以上、さらには1モル%以上であることが好ましい。一方、分散剤の量があまり多くなると、量に見合う酸化チタンの分散効果が得られない為、20モル%以下、さらには10モル%以下であることが適当である。 The content of the dispersant in the photocatalyst dispersion is usually 0.05 mol% or more with respect to the photocatalytic titanium oxide. The higher the content of the dispersant, the better the dispersion stability of titanium oxide in the dispersion, which is preferable, for example 0.5 mol% or more, and more preferably 1 mol% or more. On the other hand, if the amount of the dispersant is too large, a titanium oxide dispersing effect corresponding to the amount cannot be obtained, so that it is suitably 20 mol% or less, more preferably 10 mol% or less.

本発明の光触媒分散液において、前記酸化チタンを分散させる分散媒には、上の分散剤を溶解するものであればよく、水、過酸化水素水のような水性媒体、エタノール、メタノール、2−プロパノール、ブタノールのようなアルコール性媒体、アセトン、2−ブタノンのようなケトン性媒体、パラフィン化合物媒体、芳香族化合物媒体などが挙げられ、これらの中でも、水性媒体、アルコール性媒体が好ましい。 In the photocatalyst dispersion of the present invention, the dispersion medium in which the titanium oxide is dispersed may be any medium that dissolves the above dispersant, such as water, an aqueous medium such as hydrogen peroxide, ethanol, methanol, 2- Examples include alcoholic media such as propanol and butanol, ketonic media such as acetone and 2-butanone, paraffin compound media, and aromatic compound media. Among these, aqueous media and alcoholic media are preferable.

本発明の光触媒分散液は、例えば光触媒酸化チタン、銅成分、分散剤および分散媒を混合することにより製造することができる。分散剤に用いる混合は、溶媒中に光触媒粉末を分散させることが可能な装置で行えばよく、例えば、媒体攪拌式分散機、転動ボールミル、振動ボールミルのような装置で行うことができ、なかでも媒体攪拌式分散機の適用が推奨される。このような装置では、媒体として、例えば、材質がジルコニア、アルミナまたはガラスであり、直径0.65mm以下、好ましくは0.5mm以下、さらに好ましくは0.3mm以下のビーズなどが用いられる。混合は、2段階以上に分けて行ってもよく、例えば、1段目では、直径が相対的に大きい媒体を入れた装置を用い、2段目以降では、直径が順次小さいものを入れた装置を用いて行うことができる。混合を多段階で行うことにより、効率的にセラミックス粉末を溶媒中に分散させ、かつ均一に光触媒が分散した分散液組成物が得られる。混合温度は、50℃未満、好ましくは40℃以下、また10℃以上、好ましくは20℃以上である。光触媒とリン酸アンモニウム塩と溶媒の混合物には、必要に応じて、粗大粒子の除去、光触媒含有量の調整またはpHの調整のような操作が施される。pHの調整に用いる酸としては、例えば、塩酸、硝酸、リン酸、硫酸等が挙げられ、塩基としては、例えば、アンモニア、尿素、ヒドラジン、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化ルビジウム等が挙げられる。 The photocatalyst dispersion liquid of the present invention can be produced, for example, by mixing a photocatalytic titanium oxide, a copper component, a dispersant and a dispersion medium. The mixing used for the dispersing agent may be carried out by an apparatus capable of dispersing the photocatalyst powder in a solvent, for example, by an apparatus such as a medium stirring type dispersing machine, a rolling ball mill, or a vibrating ball mill. However, it is recommended to use a medium stirring disperser. In such an apparatus, as a medium, for example, beads made of zirconia, alumina, or glass and having a diameter of 0.65 mm or less, preferably 0.5 mm or less, more preferably 0.3 mm or less are used. Mixing may be performed in two or more stages. For example, in the first stage, a device containing a medium having a relatively large diameter is used, and in the second and subsequent stages, devices having successively smaller diameters are placed. Can be used. By performing mixing in multiple stages, a dispersion composition in which ceramic powder is efficiently dispersed in a solvent and the photocatalyst is uniformly dispersed can be obtained. The mixing temperature is less than 50 ° C, preferably 40 ° C or less, 10 ° C or more, preferably 20 ° C or more. If necessary, the mixture of the photocatalyst, ammonium phosphate salt and the solvent is subjected to operations such as removal of coarse particles, adjustment of the photocatalyst content, or adjustment of pH. Examples of the acid used for adjusting the pH include hydrochloric acid, nitric acid, phosphoric acid, and sulfuric acid. Examples of the base include ammonia, urea, hydrazine, lithium hydroxide, sodium hydroxide, potassium hydroxide, and hydroxide. Examples include cesium and rubidium hydroxide.

銅成分は、酸化チタン、分散剤、および溶媒を混合する前後に添加してもよく、分散工程中に添加してもよい。また予め酸化チタンに担持することも勿論可能である。尚、酸化チタンに対する添加量を正確に把握するという点から、酸化チタンを分散し、得られた分散液の固形分濃度を測定した後に添加するのが好ましい。 The copper component may be added before or after mixing the titanium oxide, the dispersant, and the solvent, or may be added during the dispersion step. It is of course possible to carry it on titanium oxide in advance. In addition, it is preferable to add after disperse | distributing titanium oxide and measuring the solid content concentration of the obtained dispersion liquid from the point of grasping | ascertaining the addition amount with respect to a titanium oxide correctly.

光触媒分散液中の酸化チタンの含有量は、分散液を基準に通常0.1重量%以上、好ましくは1重量%以上、また30重量%以下である。 The content of titanium oxide in the photocatalyst dispersion is usually 0.1% by weight or more, preferably 1% by weight or more and 30% by weight or less based on the dispersion.

この光触媒分散液は、そのまま、又は塗膜としたときに塗膜の光触媒性能を向上させる添加剤と混合された後、膜形成に使用される。この添加剤としては、例えば、非晶質シリカ、シリカゾルのような珪素酸化物、非晶質アルミナ、アルミナゾルのようなアルミニウム(水)酸化物、ゼオライト、カオリナイトのようなアルミノ珪酸塩、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウムおよび水酸化バリウムのようなアルカリ土類金属(水)酸化物、リン酸カルシウム、モレキュラーシーブまたは活性炭、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Zn、Ga、In、Ge、Sn、Bi、LaまたはCeのような金属元素の水酸化物またはこれらの金属元素の酸化物などが挙げられる。これらは1種または2種以上組み合わせて用いることができる。 This photocatalyst dispersion liquid is used for film formation after being mixed with an additive for improving the photocatalytic performance of the coating film as it is or as a coating film. Examples of the additive include amorphous silica, silicon oxide such as silica sol, amorphous alumina, aluminum (water) oxide such as alumina sol, zeolite, aluminosilicate such as kaolinite, magnesium oxide, and the like. , Calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, alkaline earth metal (water) oxides such as strontium hydroxide and barium hydroxide, calcium phosphate, molecular sieve or activated carbon, Ti, Zr, Hf V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Zn, Ga, In, Ge, Sn, Bi, La, or Ce Or a hydroxide of a metal element such as, or an oxide of these metal elements. These can be used alone or in combination of two or more.

本発明で得られる光触媒分散液またはそれに添加剤を混合したものを用いれば、硝子、プラスチック、金属、陶磁器およびコンクリートのような基材に、光照射によって高い光触媒活性を示す膜を形成することができる。膜形成は、例えばスピンコート、ディップコート、ドクターブレード、スプレーまたはハケ塗りなどで行い、室温〜200℃の空気中で保持して、材料表面に塗布膜を形成し、この塗布膜に光を照射するか、またはこの材料の表面に80〜200℃の熱風を吹き付けて、材料表面に塗布膜を形成し、この塗布膜に光を照射する。この光触媒分散液の保管は、光が当たらない条件で行うことが好ましく、例えば暗室内に置くか、または紫外線と可視光線の透過率が各々10%以下の遮光性容器に入れることが好ましい。 By using the photocatalyst dispersion obtained in the present invention or a mixture thereof with an additive, a film showing high photocatalytic activity can be formed on a substrate such as glass, plastic, metal, ceramics and concrete by light irradiation. it can. Film formation is performed, for example, by spin coating, dip coating, doctor blade, spraying or brushing, and the coating film is formed on the surface of the material by holding in air at room temperature to 200 ° C., and this coating film is irradiated with light. Alternatively, hot air of 80 to 200 ° C. is blown onto the surface of the material to form a coating film on the surface of the material, and the coating film is irradiated with light. The photocatalyst dispersion is preferably stored under conditions where it is not exposed to light. For example, the photocatalyst dispersion is preferably placed in a dark room or placed in a light-shielding container having ultraviolet and visible light transmittances of 10% or less, respectively.

以下、本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。なお、光触媒塗膜の作製、光触媒分散液の粒子径・光触媒活性の評価は以下の方法で行った。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these. In addition, preparation of a photocatalyst coating film and evaluation of the particle diameter and photocatalytic activity of a photocatalyst dispersion liquid were performed by the following methods.

(1)光触媒塗布膜の作製
外径70mm、内径66mm、高さ14mm、容量約48mLのガラス製シャーレ容器内に、固形分で1g/mとなるように光触媒分散液を滴下し、シャーレ全体に均一となるように展開した。これを110℃の乾燥機で1時間乾燥させ、光触媒塗布膜を作製した。その後ブラックライト(紫外線強度2mW/cm)を16時間照射して、光触媒塗布膜を初期化した。
(1) Preparation of photocatalyst coating film A photocatalyst dispersion liquid was dropped into a glass petri dish with an outer diameter of 70 mm, an inner diameter of 66 mm, a height of 14 mm, and a capacity of about 48 mL so that the solid content was 1 g / m 2, and the entire petri dish It was developed to be uniform. This was dried with a dryer at 110 ° C. for 1 hour to produce a photocatalyst coating film. Thereafter, black light (ultraviolet intensity 2 mW / cm 2 ) was irradiated for 16 hours to initialize the photocatalyst coating film.

(2)平均分散粒子径(nm):
サブミクロン粒度分布測定装置(商品名「N4Plus」、コールター製)を用いて試料の粒度分布を測定し、この装置に付属のソフトで、自動的に単分散モード解析して得られた結果を平均分散粒子径とした。
(2) Average dispersed particle size (nm):
Measure the particle size distribution of the sample using a sub-micron particle size distribution measuring device (trade name “N4Plus”, manufactured by Coulter), and average the results obtained by monodisperse mode analysis automatically with the software attached to this device. The dispersed particle size was taken.

(3)結晶構造:
X線回折装置(商品名「RINT2000/PC」、リガク製)を用いて、試料のX線回折スペクトルを測定し、そのスペクトルから主成分の結晶構造を求めた。
(3) Crystal structure:
The X-ray diffraction spectrum of the sample was measured using an X-ray diffractometer (trade name “RINT2000 / PC”, manufactured by Rigaku), and the crystal structure of the main component was determined from the spectrum.

(4)光触媒活性:アセトアルデヒド分解能
1Lガスバッグに測定サンプルを入れて密閉し、ガスバッグ内を真空にした後、酸素と窒素との体積比が1:4である混合ガスを600ml封入した。さらに1%アセトアルデヒドを含む窒素ガス6ml封入し暗所で1時間安定化させた後、試料表面の照度が6000ルクスになるようにシャーレを設置し、アセトアルデヒドの分解反応を行った。光源には、市販の蛍光灯を用いた。蛍光灯照射後よりガスバッグ内のガスを1.5時間毎にサンプリングして、アセトアルデヒドの残存濃度をガスクロマトグラフ(商品名「GC−14A」島津製作所製)にて測定した。
照射時間に対するアセトアルデヒドの濃度減少を対数軸にプロットし、得られた直線の傾きから一次反応速度定数を算出し、これをアセトアルデヒド分解能とした。一次反応速度定数が大きいほど、アセトアルデヒドの分解能は大きい。
(4) Photocatalytic activity: Acetaldehyde resolution 1 L measurement sample was put in a gas bag and sealed, and the gas bag was evacuated, and then 600 ml of a mixed gas having a volume ratio of oxygen and nitrogen of 1: 4 was sealed. Furthermore, after 6 ml of nitrogen gas containing 1% acetaldehyde was sealed and stabilized in the dark for 1 hour, a petri dish was placed so that the illuminance on the sample surface was 6000 lux, and acetaldehyde was decomposed. A commercially available fluorescent lamp was used as the light source. The gas in the gas bag was sampled every 1.5 hours after fluorescent lamp irradiation, and the residual concentration of acetaldehyde was measured with a gas chromatograph (trade name “GC-14A”, manufactured by Shimadzu Corporation).
The concentration reduction of acetaldehyde with respect to the irradiation time was plotted on the logarithmic axis, and the first-order rate constant was calculated from the slope of the obtained straight line, which was defined as acetaldehyde resolution. The higher the first order rate constant, the greater the resolution of acetaldehyde.

(5)X線光電子分光測定(XPS)
光電子分光測定装置(商品名「AXIS-ULTRA」、KRATOS製)を用いて、X線源:AlKα(モノクロ)15kV 13mA、ナロースキャン、pass E=160eV、step E=0.1eV、真空度:約5×10-8torr、温度:室温、Cu2pピークの位置:C1s=284.6eVで補正、サンプルの保持:カーボンテープにワッシャーを保持し、ワッシャー内に試料を充填、の条件で行った。
(5) X-ray photoelectron spectroscopy (XPS)
Using a photoelectron spectrometer (trade name “AXIS-ULTRA”, manufactured by KRATOS), X-ray source: AlKα (monochrome) 15 kV 13 mA, narrow scan, pass E = 160 eV, step E = 0.1 eV, degree of vacuum: about 5 × 10 -8 torr, temperature: room temperature, Cu2p peak position: corrected with C1s = 284.6 eV, holding of sample: holding washer on carbon tape, filling sample in washer.

実施例1
〔酸化チタンの合成〕
オキシ硫酸チタン75kgをイオン交換水50kgに溶解させ、オキシ硫酸チタン水溶液を調製した。冷却下、このオキシ硫酸チタン水溶液に35%過酸化水素水30kgを添加した。pH電極と、このpH電極に接続され、25重量%アンモニア水を供給してpHを一定に調整する機構を有するpHコントローラーとを備えた反応容器にイオン交換水30kgを入れた。pHコントローラーのpH設定を4とした。この反応容器では、容器内の液のpHが設定値より低くなると、アンモニア水が供給されはじめ、pHが設定値になるまで前記速度にて連続供給される。この反応容器に、42rpmで攪拌しながら、上記で得られた混合溶液を530ml/分で添加し、pHコントローラーにより反応容器に供給されるアンモニア水と反応させて、生成物を得た。このときの反応温度は、20℃〜30℃の範囲であった。得られた生成物を攪拌しながら1時間保持し、ついで25重量%アンモニア水を供給して、スラリーを得た。反応容器に供給されたアンモニア水の合計量は90kgであり、オキシ硫酸チタンを水酸化チタンに変えるために必要な量の2倍であった。上のスラリーを濾過、そのまま引き続いてリンス洗浄し、固形物(ケーキ)を得た。
上記で得られたケーキ2.3kgを30cm×40cmのステンレス製バットに入れた。このバット12枚を箱型乾燥機(内容積;216リットル、商品名「スーパーテンプオーブンHP−60」、旭科学製)に入れ、40m/hの乾燥空気流通下、115℃で5時間保持した後、続けて250℃で5時間乾燥を行なった。上記で得られた乾燥粉末を350℃の空気雰囲気下で2時間焼成を行った後、室温まで冷却して、酸化チタン粉末を得た。この酸化チタン粉末の結晶型はアナタ-ゼであった。
Example 1
[Synthesis of titanium oxide]
75 kg of titanium oxysulfate was dissolved in 50 kg of ion-exchanged water to prepare a titanium oxysulfate aqueous solution. Under cooling, 30 kg of 35% hydrogen peroxide solution was added to the aqueous titanium oxysulfate solution. 30 kg of ion-exchanged water was placed in a reaction vessel equipped with a pH electrode and a pH controller connected to the pH electrode and having a mechanism for supplying a 25 wt% aqueous ammonia to adjust the pH to a constant level. The pH setting of the pH controller was 4. In this reaction vessel, when the pH of the liquid in the vessel becomes lower than the set value, ammonia water starts to be supplied and is continuously supplied at the rate until the pH reaches the set value. While stirring at 42 rpm, the mixed solution obtained above was added to the reaction vessel at 530 ml / min and reacted with ammonia water supplied to the reaction vessel by a pH controller to obtain a product. The reaction temperature at this time was in the range of 20 ° C to 30 ° C. The resulting product was held for 1 hour with stirring, and then 25 wt% aqueous ammonia was supplied to obtain a slurry. The total amount of ammonia water supplied to the reaction vessel was 90 kg, which was twice the amount necessary to change titanium oxysulfate to titanium hydroxide. The upper slurry was filtered and rinsed as it was to obtain a solid (cake).
2.3 kg of the cake obtained above was placed in a 30 cm × 40 cm stainless steel vat. Twelve of these vats are placed in a box-type dryer (internal volume: 216 liters, trade name “Super Temp Oven HP-60”, manufactured by Asahi Kagaku) and kept at 115 ° C. for 5 hours under a flow of 40 m 3 / h of dry air. Then, drying was continued at 250 ° C. for 5 hours. The dried powder obtained above was calcined in an air atmosphere at 350 ° C. for 2 hours, and then cooled to room temperature to obtain a titanium oxide powder. The crystal form of the titanium oxide powder was anatase.

〔光触媒分散液の調製〕
イオン交換水73.06kgにシュウ酸二水和物(試薬特級、和光純薬製)946gに添加し、更に上の粉末状酸化チタン20.0kgを混合し、これを媒体攪拌式分散機(商品名「ダイノーミル KDL‐PILOT A型」、シンマルエンタープライゼス製)に入れ、媒体:直径0.3mmのジルコニア製ビーズ4.2kg、攪拌速度:周速8m/秒、流速:1L/min、処理時間合計:410分の条件で分散処理した。このスラリーを媒体攪拌式分散機(商品名「ウルトラアペックスミル UAM−5 1001」、コトブキ技研製)に入れ、媒体:直径0.05mmのジルコニア製ビーズ13kg、攪拌速度:周速12.6m/秒、流速:1L/min、処理時間:合計356分の条件で分散処理した。平均分散粒子径は62nmであった。また、この酸化チタンスラリー中の蓚酸の量は、酸化チタンに対して3モル%であり、pHは2.4であった。得られた分散液を1L用遠沈管に各1L採取し、1500rpmで30分間遠心分離を行い、粗粒分を除去したところ、平均分散粒径が53nmであった。またこの光触媒分散液をエバポレーターにて40℃で乾燥し、結晶型を測定したところ、アナタ―ゼであった。
(Preparation of photocatalyst dispersion)
Add 946 g of oxalic acid dihydrate (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) to ion exchange water 73.06 kg, and further mix 20.0 kg of powdered titanium oxide above. Name: “Dynomill KDL-PILOT Type A”, manufactured by Shinmaru Enterprises), medium: 4.2 kg of zirconia beads having a diameter of 0.3 mm, stirring speed: peripheral speed 8 m / sec, flow speed: 1 L / min, processing time Total: Dispersion treatment was performed under conditions of 410 minutes. This slurry is put into a medium stirring type disperser (trade name “Ultra Apex Mill UAM-5 1001”, manufactured by Kotobuki Giken Co., Ltd.), medium: 13 kg of zirconia beads having a diameter of 0.05 mm, stirring speed: peripheral speed 12.6 m / sec. , Flow rate: 1 L / min, treatment time: dispersion treatment under the conditions of a total of 356 minutes. The average dispersed particle size was 62 nm. The amount of succinic acid in the titanium oxide slurry was 3 mol% with respect to titanium oxide, and the pH was 2.4. 1 L each of the obtained dispersion was collected in a 1 L centrifuge tube, centrifuged at 1500 rpm for 30 minutes to remove coarse particles, and the average dispersed particle size was 53 nm. The photocatalyst dispersion was dried at 40 ° C. with an evaporator and the crystal form was measured. As a result, it was an anatase.

上記で得られた光触媒分散液に濃度188mMの硝酸銅三水和物(特級、和光純薬製)を溶解した水溶液を加え、酸化チタン濃度を5重量%、チタンに対する銅の添加量を0.03モル%とした。この硝酸銅を添加した光触媒分散液を用い、〔光触媒塗布膜の形成〕と同じ操作を行ってシャーレ上に光触媒塗布膜を形成した。この塗布膜の光触媒活性を測定し、結果を第1表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。 An aqueous solution obtained by dissolving copper nitrate trihydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 188 mM was added to the photocatalyst dispersion obtained above, the titanium oxide concentration was 5 wt%, and the amount of copper added to titanium was 0.00. It was set to 03 mol%. Using the photocatalyst dispersion liquid to which copper nitrate was added, the same operation as [Formation of photocatalyst coating film] was performed to form a photocatalyst coating film on the petri dish. The photocatalytic activity of this coating film was measured, and the results are shown in Table 1. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

実施例2
チタンに対する銅の添加量を0.075モル%とした以外は実施例1と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第1表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。
Example 2
A photocatalyst dispersion was prepared in the same manner as in Example 1 except that the amount of copper added to titanium was 0.075 mol%, and the photocatalytic activity was measured. The results are shown in Table 1. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

実施例3
チタンに対する銅の添加量を0.15モル%とした以外は実施例1と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第1表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。
Example 3
A photocatalyst dispersion was prepared in the same manner as in Example 1 except that the amount of copper added to titanium was 0.15 mol%, and the photocatalytic activity was measured. The results are shown in Table 1. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

実施例4
チタンに対する銅の添加量を0.3モル%とした以外は実施例1と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第1表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。
Example 4
A photocatalyst dispersion was prepared in the same manner as in Example 1 except that the amount of copper added to titanium was 0.3 mol%, and the photocatalytic activity was measured. The results are shown in Table 1. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

実施例5
チタンに対する銅の添加量を0.45モル%とした以外は実施例1と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第1表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。また十分に脱脂したスライドガラスに、この光触媒分散液を酸化チタン換算で1g/cmとなるように塗布し、空気中で110℃で1時間乾燥してXPSにて測定したところ、932eVにCu2pの起因するピークを観測した。ここから銅の価数は+1価若しくは0価であることがわかった。
Example 5
A photocatalyst dispersion was prepared in the same manner as in Example 1 except that the amount of copper added to titanium was 0.45 mol%, the photocatalytic activity was measured, and the results are shown in Table 1. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed. Further, this photocatalyst dispersion was applied to a sufficiently degreased slide glass so as to be 1 g / cm 2 in terms of titanium oxide, dried in air at 110 ° C. for 1 hour, and measured by XPS. The peak attributed to was observed. From this, it was found that the valence of copper was +1 or 0.

比較例1
硝酸銅を添加しない以外は実施例1と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第1表に記載した。光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。
Comparative Example 1
A photocatalyst dispersion was prepared in the same manner as in Example 1 except that copper nitrate was not added, and the photocatalytic activity was measured. The results are shown in Table 1. Dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

比較例2
チタンに対する銅の添加量を0.75モル%とした以外は実施例1と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第1表に記載した。硝酸銅を添加した後、光触媒分散液中の酸化チタンの分散性は低下し、固液分離が見られた。
Comparative Example 2
A photocatalyst dispersion was prepared in the same manner as in Example 1 except that the amount of copper added to titanium was changed to 0.75 mol%. Further, the photocatalytic activity was measured, and the results are shown in Table 1. After adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion decreased, and solid-liquid separation was observed.

比較例3
チタンに対する銅の添加量を1.5モル%とした以外は実施例1と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第1表に記載した。硝酸銅を添加した後、光触媒分散液中の酸化チタンの分散性は低下し、固液分離が見られた。
Comparative Example 3
A photocatalyst dispersion was prepared in the same manner as in Example 1 except that the amount of copper added to titanium was 1.5 mol%, and the photocatalytic activity was measured. The results are shown in Table 1. After adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion decreased, and solid-liquid separation was observed.

実施例6
イオン交換水10.74kgにリン酸二水素アンモニウム172.8g(和光特級試薬)を溶解して分散液を調製した。得られた水溶液と実施例1で得られた酸化チタン粉末4.0kgを媒体攪拌式分散機(商品名「ダイノーミルKDL−PILOT A型」、シンマルエンタープライゼス製)に入れ、媒体:直径0.3mmのジルコニア製ビーズ 4.2kg、攪拌速度:周速8m/秒、処理液循環:あり、循環液量:3L、合計処理時間:60分間の条件で混合した。得られた混合物中の酸化チタンは、平均分散散子径が420nmであった。さらにこの混合物を、媒体攪拌式分散機(商品名「ウルトラアペックスミル」、コトブキ技研製)で、媒体:直径0.05mmのジルコニア製ビーズ 13kg、攪拌速度:周速12.6m/秒(2000rpm)の条件で37分間混合した。得られた分散液中の酸化チタンは、平均粒子径が193nmであった。また、この酸化チタンスラリー中のリン酸アンモニウム塩の量は、酸化チタンに対して3モル%であり、pHは6.9であった。得られた分散液を1L用遠沈管に各1L採取し、1500rpmで30分間遠心分離を行い、粗粒分を除去したところ、平均分散粒径が155nmであった。またこの光触媒分散液をエバポレーターにて40℃で乾燥し、結晶型を測定したところ、アナタ―ゼであった。
Example 6
A dispersion was prepared by dissolving 172.8 g of ammonium dihydrogen phosphate (Wako Special Grade Reagent) in 10.74 kg of ion-exchanged water. The obtained aqueous solution and 4.0 kg of the titanium oxide powder obtained in Example 1 were placed in a medium agitating disperser (trade name “Dynomill KDL-PILOT A type”, manufactured by Shinmaru Enterprises). Mixing was performed under the conditions of 4.2 kg of 3 mm zirconia beads, stirring speed: peripheral speed 8 m / sec, treatment liquid circulation: yes, circulation liquid volume: 3 L, total treatment time: 60 minutes. The titanium oxide in the obtained mixture had an average dispersed powder size of 420 nm. Further, this mixture was mixed with a medium stirring type disperser (trade name “Ultra Apex Mill”, manufactured by Kotobuki Giken), medium: 13 kg of zirconia beads having a diameter of 0.05 mm, stirring speed: peripheral speed 12.6 m / second (2000 rpm) For 37 minutes. The titanium oxide in the obtained dispersion had an average particle size of 193 nm. The amount of ammonium phosphate in the titanium oxide slurry was 3 mol% with respect to titanium oxide, and the pH was 6.9. 1 L each of the obtained dispersion was collected in a 1 L centrifuge tube, centrifuged at 1500 rpm for 30 minutes to remove coarse particles, and the average dispersed particle size was 155 nm. The photocatalyst dispersion was dried at 40 ° C. with an evaporator and the crystal form was measured. As a result, it was an anatase.

上記で得られた光触媒分散液に濃度188mMの硝酸銅三水和物(特級、和光純薬製)を溶解した水溶液を加え、酸化チタン濃度を5重量%、チタンに対する銅の添加量を0.03モル%とした。この硝酸銅を添加した光触媒分散液を用いた以外は実施例1と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第2表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。 An aqueous solution obtained by dissolving copper nitrate trihydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 188 mM was added to the photocatalyst dispersion obtained above, the titanium oxide concentration was 5 wt%, and the amount of copper added to titanium was 0.00. It was set to 03 mol%. A photocatalyst dispersion was prepared in the same manner as in Example 1 except that this photocatalyst dispersion added with copper nitrate was used. Photocatalytic activity was further measured, and the results are shown in Table 2. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

実施例7
チタンに対する銅の添加量を0.075モル%とした以外は実施例6と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第2表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。
Example 7
A photocatalyst dispersion was prepared in the same manner as in Example 6 except that the amount of copper added to titanium was 0.075 mol%, and the photocatalytic activity was measured. The results are shown in Table 2. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

実施例8
チタンに対する銅の添加量を0.15モル%とした以外は実施例6と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第2表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。
Example 8
A photocatalyst dispersion was prepared in the same manner as in Example 6 except that the amount of copper added to titanium was 0.15 mol%, and the photocatalytic activity was measured. The results are shown in Table 2. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

実施例9
チタンに対する銅の添加量を0.3モル%とした以外は実施例6と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第2表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。
Example 9
A photocatalyst dispersion was prepared in the same manner as in Example 6 except that the amount of copper added to titanium was 0.3 mol%, and the photocatalytic activity was measured. The results are shown in Table 2. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

実施例10
チタンに対する銅の添加量を0.45モル%とした以外は実施例6と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第1表に記載した。硝酸銅を添加した後も、光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。また十分に脱脂したスライドガラスに、この光触媒分散液を酸化チタン換算で1g/cmとなるように塗布し、空気中で110℃で1時間乾燥してXPSにて測定したところ、932eVにCu2pの起因するピークを観測した。ここから銅の価数は+1価若しくは0価であることがわかった。
Example 10
A photocatalyst dispersion was prepared in the same manner as in Example 6 except that the amount of copper added to titanium was 0.45 mol%, and the photocatalytic activity was measured. The results are shown in Table 1. Even after adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed. Further, this photocatalyst dispersion was applied to a sufficiently degreased slide glass so as to be 1 g / cm 2 in terms of titanium oxide, dried in air at 110 ° C. for 1 hour, and measured by XPS. The peak attributed to was observed. From this, it was found that the valence of copper was +1 or 0.

比較例4
硝酸銅を添加しない以外は実施例6と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第2表に記載した。光触媒分散液中の酸化チタンの分散性は良好で、固液分離は見られなかった。
Comparative Example 4
A photocatalyst dispersion was prepared in the same manner as in Example 6 except that copper nitrate was not added, and the photocatalytic activity was measured. The results are shown in Table 2. Dispersibility of titanium oxide in the photocatalyst dispersion was good, and solid-liquid separation was not observed.

比較例5
チタンに対する銅の添加量を0.75モル%とした以外は実施例6と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を表6に記載した。硝酸銅を添加した後、光触媒分散液中の酸化チタンの分散性は低下し、固液分離が見られた。
Comparative Example 5
A photocatalyst dispersion was prepared in the same manner as in Example 6 except that the amount of copper added to titanium was changed to 0.75 mol%, and the photocatalytic activity was measured. The results are shown in Table 6. After adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion decreased, and solid-liquid separation was observed.

比較例6
チタンに対する銅の添加量を1.5モル%とした以外は実施例6と同じ操作で光触媒分散液を調製し、更に光触媒活性を測定し、結果を第2表に記載した。硝酸銅を添加した後、光触媒分散液中の酸化チタンの分散性は低下し、固液分離が見られた。
Comparative Example 6
A photocatalyst dispersion was prepared in the same manner as in Example 6 except that the amount of copper added to titanium was 1.5 mol%, and the photocatalytic activity was measured. The results are shown in Table 2. After adding copper nitrate, the dispersibility of titanium oxide in the photocatalyst dispersion decreased, and solid-liquid separation was observed.

第 1 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
銅成分の添加量 反応速度定数 銅成分添加後の固液分離
(モル%) (1/h)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例1 0.03 0.38 無し
実施例2 0.075 0.37 無し
実施例3 0.15 0.50 無し
実施例4 0.3 0.43 無し
実施例5 0.45 0.53 無し
比較例1 0 0.22 無し
比較例2 0.75 0.48 有り
比較例3 1.5 0.18 有り
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Addition amount of copper component Reaction rate constant Solid-liquid separation after addition of copper component
(Mol%) (1 / h)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 1 0.03 0.38 None
Example 2 0.075 0.37 None
Example 3 0.15 0.50 None
Example 4 0.3 0.43 None
Example 5 0.45 0.53 None
Comparative Example 1 0 0.22 None
Comparative Example 2 0.75 0.48 Yes
Comparative Example 3 1.5 0.18 Yes
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

第 2 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
銅成分の添加量 反応速度定数 銅成分添加後の固液分離
(モル%) (1/h)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例6 0.03 0.54 無し
実施例7 0.075 0.58 無し
実施例8 0.15 0.68 無し
実施例9 0.3 0.69 無し
実施例10 0.45 0.62 無し
比較例4 0 0.33 無し
比較例5 0.75 0.53 有り
比較例6 1.5 0.46 有り
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Addition amount of copper component Reaction rate constant Solid-liquid separation after addition of copper component
(Mol%) (1 / h)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 6 0.03 0.54 None
Example 7 0.075 0.58 None
Example 8 0.15 0.68 None
Example 9 0.3 0.69 None
Example 10 0.45 0.62 None
Comparative Example 4 0 0.33 None
Comparative Example 5 0.75 0.53 Yes
Comparative Example 6 1.5 0.46 Yes
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

得られた光触媒塗布膜について、アセトアルデヒド分解能を測定した。表1に示す通り、分散剤として蓚酸を用いた実施例1〜5と比較例1〜3の光触媒塗布膜のアセトアルデヒド分解能を比較すると、最適量の銅成分を添加することにより、酸化チタンの分散性を損なうことなく光触媒塗布膜の光触媒活性が高くなることを確認した。また、分散剤にリン酸二水素アンモニウムを用いた実施例6〜10と比較例4〜6のアセトアルデヒド分解能を比較すると、表2の通り、最適量の銅成分を添加することにより、酸化チタンの分散性を損なうことなく光触媒塗布膜の光触媒活性が高くなることを確認できた。 About the obtained photocatalyst coating film, the acetaldehyde resolution was measured. As shown in Table 1, when comparing the acetaldehyde resolution of the photocatalyst coating films of Examples 1 to 5 and Comparative Examples 1 to 3 using oxalic acid as a dispersant, the dispersion of titanium oxide can be achieved by adding an optimal amount of copper component. It was confirmed that the photocatalytic activity of the photocatalyst coating film was increased without impairing the properties. Moreover, when comparing the acetaldehyde resolution of Examples 6 to 10 and Comparative Examples 4 to 6 using ammonium dihydrogen phosphate as a dispersant, as shown in Table 2, by adding an optimal amount of copper component, It was confirmed that the photocatalytic activity of the photocatalyst coating film was increased without impairing the dispersibility.

Claims (4)

光触媒酸化チタン、銅成分、分散剤および分散媒を含み、銅換算の銅成分の含有量が光触媒酸化チタンに対して0.01モル%〜0.6モル%であることを特徴とする光触媒分散液。 A photocatalyst dispersion comprising a photocatalytic titanium oxide, a copper component, a dispersant and a dispersion medium, wherein the content of the copper component in terms of copper is 0.01 mol% to 0.6 mol% with respect to the photocatalytic titanium oxide liquid. 分散剤が、蓚酸、リン酸および縮合リン酸からなる群から選ばれる1以上の酸またはその塩である請求1に記載の光触媒分散液。 The photocatalyst dispersion liquid according to claim 1, wherein the dispersant is one or more acids selected from the group consisting of oxalic acid, phosphoric acid and condensed phosphoric acid, or a salt thereof. 光触媒酸化チタンの平均分散粒子径が10nm〜500nmである請求項1または請求項2に記載の光触媒分散液。 The photocatalyst dispersion liquid according to claim 1 or 2, wherein an average dispersed particle size of the photocatalytic titanium oxide is 10 nm to 500 nm. 光触媒酸化チタンの結晶構造がアナターゼまたはルチル型である請求項1〜3のいずれかに記載の光触媒分散液。 The photocatalyst dispersion liquid according to any one of claims 1 to 3, wherein the crystal structure of the photocatalytic titanium oxide is anatase or rutile type.
JP2007223700A 2007-08-30 2007-08-30 Photocatalyst dispersion Pending JP2009056348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223700A JP2009056348A (en) 2007-08-30 2007-08-30 Photocatalyst dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223700A JP2009056348A (en) 2007-08-30 2007-08-30 Photocatalyst dispersion

Publications (1)

Publication Number Publication Date
JP2009056348A true JP2009056348A (en) 2009-03-19

Family

ID=40552592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223700A Pending JP2009056348A (en) 2007-08-30 2007-08-30 Photocatalyst dispersion

Country Status (1)

Country Link
JP (1) JP2009056348A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234312A (en) * 2009-03-31 2010-10-21 Toshiba Corp Photocatalyst dispersion element, method for producing photocatalyst dispersion element, photocatalyst body, and method for producing photocatalyst body
JP2011212682A (en) * 2011-07-11 2011-10-27 Toshiba Corp Photocatalyst dispersion
WO2013094572A1 (en) * 2011-12-22 2013-06-27 昭和電工株式会社 Copper-and-titanium-containing composition and production method therefor
CN103228358A (en) * 2011-06-27 2013-07-31 昭和电工株式会社 Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
WO2014141992A1 (en) 2013-03-15 2014-09-18 株式会社ダイセル Titanium oxide liquid dispersion, titanium oxide liquid coating, and photocatalyst coating film
JPWO2014017575A1 (en) * 2012-07-26 2016-07-11 株式会社サクラクレパス Photocatalyst coating liquid, method for producing the same, and photocatalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205977A (en) * 1992-09-01 1994-07-26 Toto Ltd Production of photocatalystic composition and photocatalystic composition
JP2000160056A (en) * 1998-09-22 2000-06-13 Toto Ltd Photocatalytic coating composition, photocatalytic composite material and preparation of photocatalytic composite material
JP2003171578A (en) * 2001-12-06 2003-06-20 Sumitomo Chem Co Ltd Coating liquid and photocatalyst functional product
JP2005171029A (en) * 2003-12-09 2005-06-30 Nippon Parkerizing Co Ltd Coating composition, method of forming film having optical catalytic function, and optical catalytic member
JP2006515388A (en) * 2003-01-03 2006-05-25 セミカ エス アー Viscosity-adjustable photosensitive dispersion for metal deposition on insulating substrates and use thereof
JP2009050753A (en) * 2007-08-23 2009-03-12 Sumitomo Chemical Co Ltd Photocatalyst body coating liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205977A (en) * 1992-09-01 1994-07-26 Toto Ltd Production of photocatalystic composition and photocatalystic composition
JP2000160056A (en) * 1998-09-22 2000-06-13 Toto Ltd Photocatalytic coating composition, photocatalytic composite material and preparation of photocatalytic composite material
JP2003171578A (en) * 2001-12-06 2003-06-20 Sumitomo Chem Co Ltd Coating liquid and photocatalyst functional product
JP2006515388A (en) * 2003-01-03 2006-05-25 セミカ エス アー Viscosity-adjustable photosensitive dispersion for metal deposition on insulating substrates and use thereof
JP2005171029A (en) * 2003-12-09 2005-06-30 Nippon Parkerizing Co Ltd Coating composition, method of forming film having optical catalytic function, and optical catalytic member
JP2009050753A (en) * 2007-08-23 2009-03-12 Sumitomo Chemical Co Ltd Photocatalyst body coating liquid

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234312A (en) * 2009-03-31 2010-10-21 Toshiba Corp Photocatalyst dispersion element, method for producing photocatalyst dispersion element, photocatalyst body, and method for producing photocatalyst body
US8158553B2 (en) 2009-03-31 2012-04-17 Kabushiki Kaisha Toshiba Photocatalyst dispersion element, method for producing photocatalyst dispersion element, photocatalyst body, and method for producing photocatalyst body
US9248432B2 (en) 2011-06-27 2016-02-02 The University Of Tokyo Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
CN103228358A (en) * 2011-06-27 2013-07-31 昭和电工株式会社 Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
EP2633907A1 (en) * 2011-06-27 2013-09-04 Showa Denko K.K. Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
TWI510288B (en) * 2011-06-27 2015-12-01 Showa Denko Kk Titanium oxide photocatalyst carrying copper compound and its manufacturing method
EP2633907A4 (en) * 2011-06-27 2014-01-08 Showa Denko Kk Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
JP2011212682A (en) * 2011-07-11 2011-10-27 Toshiba Corp Photocatalyst dispersion
CN103429346A (en) * 2011-12-22 2013-12-04 昭和电工株式会社 Copper-and-titanium-containing composition and production method therefor
CN103415341A (en) * 2011-12-22 2013-11-27 昭和电工株式会社 Copper-and-titanium-containing composition and production method therefor
KR101426745B1 (en) 2011-12-22 2014-08-13 쇼와 덴코 가부시키가이샤 Copper-and-titanium containing composition and production method therefor
TWI489946B (en) * 2011-12-22 2015-07-01 Showa Denko Kk A composition containing copper and titanium, and a method for producing the same
JP5331270B1 (en) * 2011-12-22 2013-10-30 昭和電工株式会社 Copper and titanium-containing composition and method for producing the same
WO2013094572A1 (en) * 2011-12-22 2013-06-27 昭和電工株式会社 Copper-and-titanium-containing composition and production method therefor
US9516881B2 (en) 2011-12-22 2016-12-13 Showa Denko K.K. Copper-and-titanium-containing composition and production method therefor
JPWO2014017575A1 (en) * 2012-07-26 2016-07-11 株式会社サクラクレパス Photocatalyst coating liquid, method for producing the same, and photocatalyst
WO2014141992A1 (en) 2013-03-15 2014-09-18 株式会社ダイセル Titanium oxide liquid dispersion, titanium oxide liquid coating, and photocatalyst coating film
KR20150126842A (en) 2013-03-15 2015-11-13 주식회사 다이셀 Titanium oxide liquid dispersion, titanium oxide liquid coating, and photocatalyst coating film
US9440221B2 (en) 2013-03-15 2016-09-13 Daicel Corporation Titanium oxide dispersion liquid, titanium oxide coating liquid, and photocatalyst coating film

Similar Documents

Publication Publication Date Title
JP4374869B2 (en) Manufacturing method of ceramic dispersion
JP5156009B2 (en) Titanium oxide photocatalyst and method for producing the same
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
EP2459485B1 (en) Photocatalytic materials and process for producing the same
JP4393963B2 (en) Photocatalyst coating liquid
JP5512934B2 (en) Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
US20090305879A1 (en) Photocatalyst dispersion liquid and process for producing the same
JP2009056348A (en) Photocatalyst dispersion
WO2008144963A1 (en) Photodegradation catalyst and photodegradation catalyst precursor comprising metal halide or metal oxyhalide
JP2004026553A (en) Titanium oxide dispersion and preservation container for the same
CN112717916B (en) Rare earth monoatomic supported two-dimensional flaky titanium oxide composite photocatalytic material and preparation method and application thereof
CA2668324A1 (en) Zirconium oxalate sol
JP4783315B2 (en) Photocatalyst dispersion
EP2826559B1 (en) A process for the synthesis of visible light responsive doped titania photocatalysts
JP2008093630A (en) Method of manufacturing photocatalyst dispersion
KR20070092627A (en) Photocatalyst dispersion
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
JP2003221230A (en) Ceramic dispersion and its production method
JP4483172B2 (en) Titanium oxide dispersion
JP2007069093A (en) Rutile type titanium dioxide ultrafine particle photocatalyst
JP4763492B2 (en) Photocatalyst dispersion and method for producing the same
WO2019189307A1 (en) Titanium oxide particles and manufacturing method therefor
Buchholcz et al. pH-regulated antimony oxychloride nanoparticle formation on titanium oxide nanostructures: a photocatalytically active heterojunction
JP2005203161A (en) Direct methanol type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522