JP5449993B2 - ポジ型レジスト組成物及びレジストパターン形成方法 - Google Patents

ポジ型レジスト組成物及びレジストパターン形成方法 Download PDF

Info

Publication number
JP5449993B2
JP5449993B2 JP2009259029A JP2009259029A JP5449993B2 JP 5449993 B2 JP5449993 B2 JP 5449993B2 JP 2009259029 A JP2009259029 A JP 2009259029A JP 2009259029 A JP2009259029 A JP 2009259029A JP 5449993 B2 JP5449993 B2 JP 5449993B2
Authority
JP
Japan
Prior art keywords
group
alkyl group
carbon atoms
atom
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009259029A
Other languages
English (en)
Other versions
JP2011107193A (ja
Inventor
智之 平野
大寿 塩野
大地 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2009259029A priority Critical patent/JP5449993B2/ja
Priority to KR1020100109553A priority patent/KR101762442B1/ko
Priority to US12/945,526 priority patent/US8450044B2/en
Priority to TW099139040A priority patent/TWI476530B/zh
Publication of JP2011107193A publication Critical patent/JP2011107193A/ja
Application granted granted Critical
Publication of JP5449993B2 publication Critical patent/JP5449993B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Description

本発明は、ポジ型レジスト組成物及びレジストパターン形成方法に関する。
リソグラフィー技術においては、例えば基板の上にレジスト材料からなるレジスト膜を形成し、該レジスト膜に対し、所定のパターンが形成されたマスクを介して、光、電子線等の放射線にて選択的露光を行い、現像処理を施すことにより、前記レジスト膜に所定形状のレジストパターンを形成する工程が行われる。
露光した部分が現像液に溶解する特性に変化するレジスト材料をポジ型、露光した部分が現像液に溶解しない特性に変化するレジスト材料をネガ型という。
近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩により急速にパターンの微細化が進んでいる。
微細化の手法としては、一般に、露光光源の短波長化(高エネルギー化)が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーや、ArFエキシマレーザーを用いた半導体素子の量産が開始されている。また、これらエキシマレーザーより短波長(高エネルギー)の電子線、EUV(極紫外線)やX線などについても検討が行われている。
レジスト材料には、これらの露光光源に対する感度、微細な寸法のパターンを再現できる解像性等のリソグラフィー特性が求められる。
このような要求を満たすレジスト材料として、酸の作用によりアルカリ現像液に対する溶解性が変化する基材成分と、露光により酸を発生する酸発生剤成分とを含有する化学増幅型レジスト組成物が用いられている。
例えばポジ型の化学増幅型レジスト組成物としては、酸の作用によりアルカリ現像液に対する溶解性が増大する樹脂成分(ベース樹脂)と、酸発生剤成分とを含有するものが一般的に用いられている。かかるレジスト組成物を用いて形成されるレジスト膜は、レジストパターン形成時に選択的露光を行うと、露光部において、酸発生剤成分から酸が発生し、該酸の作用により樹脂成分のアルカリ現像液に対する溶解性が増大して、露光部がアルカリ現像液に対して可溶となる。
現在、ArFエキシマレーザーリソグラフィー等において使用されるレジスト組成物のベース樹脂としては、193nm付近における透明性に優れることから、(メタ)アクリル酸エステルから誘導される構成単位を主鎖に有する樹脂(アクリル系樹脂)などが一般的に用いられている(たとえば、特許文献1〜2参照)。
解像性の更なる向上のための手法の1つとして、露光機の対物レンズと試料との間に、空気よりも高屈折率の液体(液浸媒体)を介在させて露光(浸漬露光)を行うリソグラフィー法、いわゆる液浸リソグラフィー(Liquid Immersion Lithography。以下「液浸露光」ということがある。)が知られている(たとえば、非特許文献1参照)。
液浸露光によれば、同じ露光波長の光源を用いても、より短波長の光源を用いた場合や高NAレンズを用いた場合と同様の高解像性を達成でき、しかも焦点深度幅の低下もないといわれている。また、液浸露光は既存の露光装置を用いて行うことができる。そのため、液浸露光は、低コストで、高解像性で、かつ、焦点深度幅にも優れるレジストパターンの形成を実現できると予想され、多額な設備投資を必要とする半導体素子の製造において、コスト的にも、解像度等のリソグラフィー特性的にも、半導体産業に多大な効果を与えるものとして大変注目されている。
液浸露光はあらゆるパターン形状の形成において有効であり、更に、現在検討されている位相シフト法、変形照明法などの超解像技術と組み合わせることも可能であるとされている。現在、液浸露光技術としては、主に、ArFエキシマレーザーを光源とする技術が活発に研究されている。また、現在、液浸媒体としては、主に水が検討されている。
近年、含フッ素化合物について、その撥水性、透明性等の特性が着目され、様々な分野での研究開発が活発に行われている。たとえばレジスト材料分野では、現在、ポジ型の化学増幅型レジストのベース樹脂として用いるために、含フッ素高分子化合物に、メトキシメチル基、tert−ブチル基、tert−ブチルオキシカルボニル基等の酸不安定性基を導入することが行われている。しかし、かかるフッ素系高分子化合物をポジ型レジスト組成物のベース樹脂として用いた場合、露光後にアウトガスが多く生成したり、ドライエッチングガスへの耐性(エッチング耐性)が充分でなかったり等の欠点がある。
最近、エッチング耐性に優れた含フッ素高分子化合物として、環状炭化水素基を含有する酸不安定性基を有する含フッ素高分子化合物が報告されている(たとえば、非特許文献2参照)。
特開2003−241385号公報 特開2006−016379号公報
プロシーディングスオブエスピーアイイ(Proceedings of SPIE),第5754巻,第119−128頁(2005年). プロシーディングスオブエスピーアイイ(Proceedings of SPIE),第4690巻,第76−83頁(2002年).
上記の液浸露光においては、通常のリソグラフィー特性(感度、解像性、エッチング耐性等)に加えて、液浸露光技術に対応した特性を有するレジスト材料が求められる。例えば、液浸露光においては、レジスト膜と液浸溶媒とが接触すると、レジスト膜中の物質の液浸溶媒中への溶出(物質溶出)が生じる。物質溶出は、レジスト層の変質、液浸溶媒の屈折率の変化等の現象を生じさせ、リソグラフィー特性を悪化させる。この物質溶出の量は、レジスト膜表面の特性(例えば親水性・疎水性等)の影響を受けるため、例えばレジスト膜表面の疎水性が高まることによって、物質溶出が低減され得る。また、液浸媒体が水である場合において、非特許文献1に記載されているようなスキャン式の液浸露光機を用いて浸漬露光を行う場合には、液浸媒体がレンズの移動に追随して移動する水追随性が求められる。水追随性が低いと、露光スピードが低下するため、生産性に影響を与えることが懸念される。この水追随性は、レジスト膜の疎水性を高める(疎水化する)ことによって向上すると考えられる。
このように、レジスト膜表面の疎水性を高めることにより、物質溶出の低減や水追随性の向上等の、液浸露光技術に特有の問題を解決することができると考えられる。
しかしながら、単にレジスト膜を疎水化しても、リソグラフィー特性等に対する悪影響がみられる。たとえば、レジスト膜の疎水性が高まると、アルカリ現像後のレジスト膜に欠陥(ディフェクト)が発生しやすくなるという問題がある。特にポジ型レジスト組成物の場合、未露光部でディフェクトが発生しやすい。
「ディフェクト」とは、例えばKLAテンコール社の表面欠陥観察装置(商品名「KLA」)により、現像後のレジスト膜を真上から観察した際に検知される不具合全般のことである。この不具合とは、例えば現像後のスカム、泡、ゴミ、ブリッジ(レジストパターン間の橋掛け構造)、色むら、析出物、残渣物等である。
そこで、浸漬露光時には疎水性であって、アルカリ現像時には親水性となる特性を有するレジスト材料であれば、これらの問題を解決でき、良好な形状のレジストパターンを形成できると推測される。しかし、このような特性を備えるレジスト材料は、ほとんど知られていないのが現状である。
本発明は、上記事情に鑑みてなされたものであって、リソグラフィー用途に好適で新規なポジ型レジスト組成物及びレジストパターン形成方法を提供することを課題とする。
上記の課題を解決するために、本発明は以下の構成を採用した。
すなわち、本発明の第一の態様は、酸の作用によりアルカリ現像液に対する溶解性が増大する樹脂成分(A)、および露光により酸を発生する酸発生剤成分(B)を含有するポジ型レジスト組成物であって、前記樹脂成分(A)は、酸解離性溶解抑制基を含む構成単位(a1)と、塩基解離性基を含む構成単位(a5)と、下記一般式(a6−1)で表される構成単位(a6)とを有する高分子化合物(A1)を含有することを特徴とするポジ型レジスト組成物である。
Figure 0005449993
[式中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基を表し、RおよびRはそれぞれ独立に水素原子又は任意の位置に酸素原子を含んでいてもよいアルキル基を表すか、又は両者が結合してアルキレン基を形成し、Wは任意の位置に酸素原子を含んでいてもよい環状のアルキレン基を表す。]
本発明の第二の態様は、支持体上に、前記第一の態様のポジ型レジスト組成物を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜をアルカリ現像してレジストパターンを形成する工程を含むレジストパターン形成方法である。
本明細書および本特許請求の範囲において、「アルキル基」は、特に断りがない限り、直鎖状、分岐鎖状および環状の1価の飽和炭化水素基を包含するものとする。
「アルキレン基」は、特に断りがない限り、直鎖状、分岐鎖状および環状の2価の飽和炭化水素基を包含するものとする。
「低級アルキル基」は、炭素原子数1〜5のアルキル基である。
「ハロゲン化アルキル基」は、アルキル基の水素原子の一部又は全部がハロゲン原子で置換された基であり、該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。
「構成単位」とは、高分子化合物(重合体、共重合体)を構成するモノマー単位(単量体単位)を意味する。
「露光」は、放射線の照射全般を含む概念とする。
「(メタ)アクリル酸」とは、α位に水素原子が結合したアクリル酸と、α位にメチル基が結合したメタクリル酸の一方あるいは両方を意味する。
「(メタ)アクリル酸エステル」とは、α位に水素原子が結合したアクリル酸エステルと、α位にメチル基が結合したメタクリル酸エステルの一方あるいは両方を意味する。
「(メタ)アクリレート」とは、α位に水素原子が結合したアクリレートと、α位にメチル基が結合したメタクリレートの一方あるいは両方を意味する。
本発明によれば、リソグラフィー用途に好適で新規なポジ型レジスト組成物及びレジストパターン形成方法を提供できる。
前進角(θ)、後退角(θ)及び転落角(θ)を説明する図である。 実施例4のポジ型レジスト組成物における、露光量に対するレジスト膜の膜厚の変化を示すグラフである。
≪ポジ型レジスト組成物≫
本発明の第一の態様のポジ型レジスト組成物は、酸の作用によりアルカリ現像液に対する溶解性が増大する樹脂成分(A)(以下「(A)成分」という。)、および露光により酸を発生する酸発生剤成分(B)(以下「(B)成分」という。)を含有する。
かかるポジ型レジスト組成物においては、放射線が照射(露光)されると、(B)成分から酸が発生し、該酸の作用により(A)成分のアルカリ現像液に対する溶解性が増大する。そのため、レジストパターンの形成において、当該ポジ型レジスト組成物を用いて得られるレジスト膜に対して選択的露光を行うと、当該レジスト膜の露光部のアルカリ現像液に対する溶解性が増大する一方で、未露光部のアルカリ現像液に対する溶解性は変化しないため、アルカリ現像を行うことにより、レジストパターンを形成できる。
本発明のポジ型レジスト組成物においては、さらに、含窒素有機化合物成分(D)(ただし、前記高分子化合物(A1)を除く)を含有することが好ましい。
<(A)成分>
本発明において、(A)成分は、酸解離性溶解抑制基を含む構成単位(a1)と、塩基解離性基を含む構成単位(a5)と、前記一般式(a6−1)で表される構成単位(a6)とを有する高分子化合物(A1)(以下「(A1)成分」という。)を含有する。
[(A1)成分]
(A1)成分は、膜形成能を有する高分子化合物である。そのため、(A1)成分は、レジスト膜を形成するベース樹脂として用いることができる。また、ベース樹脂として他の樹脂成分を用い、(A1)成分を、ベース樹脂以外の配合成分(添加剤)として用いることもできる。
(構成単位(a1))
構成単位(a1)は、酸解離性溶解抑制基を含む構成単位である。
構成単位(a1)における酸解離性溶解抑制基としては、これまで、化学増幅型レジスト用のベース樹脂の酸解離性溶解抑制基として提案されているものを使用することができる。一般的には、(メタ)アクリル酸等におけるカルボキシ基と環状または鎖状の第3級アルキルエステルを形成する基;アルコキシアルキル基等のアセタール型酸解離性溶解抑制基などが広く知られている。
ここで、「第3級アルキルエステル」とは、カルボキシ基の水素原子が、鎖状または環状のアルキル基で置換されることによりエステルを形成しており、そのカルボニルオキシ基(−C(=O)−O−)の末端の酸素原子に、前記鎖状または環状のアルキル基の第3級炭素原子が結合している構造を示す。この第3級アルキルエステルにおいては、酸が作用すると、酸素原子と第3級炭素原子との間で結合が切断される。
なお、前記鎖状または環状のアルキル基は置換基を有していてもよい。
以下、カルボキシ基と第3級アルキルエステルを構成することにより、酸解離性となっている基を、便宜上、「第3級アルキルエステル型酸解離性溶解抑制基」という。
第3級アルキルエステル型酸解離性溶解抑制基としては、脂肪族分岐鎖状酸解離性溶解抑制基、脂肪族環式基を含有する酸解離性溶解抑制基が挙げられる。
ここで、「脂肪族分岐鎖状」とは、芳香族性を持たない分岐鎖状の構造を有することを示す。「脂肪族分岐鎖状酸解離性溶解抑制基」の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。
また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。
脂肪族分岐鎖状酸解離性溶解抑制基としては、たとえば、−C(R71)(R72)(R73)で表される基が挙げられる。式中、R71〜R73は、それぞれ独立に、炭素数1〜5の直鎖状のアルキル基である。−C(R71)(R72)(R73)で表される基は、基の全体として炭素数が4〜8であることが好ましく、具体的にはtert−ブチル基、2−メチル−2−ブチル基、2−メチル−2−ペンチル基、3−メチル−3−ペンチル基などが挙げられる。特にtert−ブチル基が好ましい。
「脂肪族環式基」は、芳香族性を持たない単環式基または多環式基であることを示す。
構成単位(a1)における「脂肪族環式基」は、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化アルキル基、酸素原子(=O)等が挙げられる。
「脂肪族環式基」の置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。
また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。「脂肪族環式基」は、多環式基であることが好ましい。
脂肪族環式基としては、例えば、炭素数1〜5のアルキル基、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカンから1個以上の水素原子を除いた基、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。より具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンから1個以上の水素原子を除いた基や、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。また、これらのモノシクロアルカンから1個以上の水素原子を除いた基またはポリシクロアルカンから1個以上の水素原子を除いた基の環を構成する炭素原子の一部がエーテル性酸素原子(−O−)で置換されたものであってもよい。
脂肪族環式基を含有する酸解離性溶解抑制基としては、たとえば、
(i)1価の脂肪族環式基の環骨格上に第3級炭素原子を有する基;
(ii)1価の脂肪族環式基と、これに結合する第3級炭素原子を有する分岐鎖状アルキレンとを有する基が挙げられる。
(i)1価の脂肪族環式基の環骨格上に第3級炭素原子を有する基の具体例としては、たとえば、下記一般式(1−1)〜(1−9)で表される基等が挙げられる。
(ii)1価の脂肪族環式基と、これに結合する第3級炭素原子を有する分岐鎖状アルキレン基とを有する基の具体例としては、たとえば、下記一般式(2−1)〜(2−6)で表される基等が挙げられる。
Figure 0005449993
[式中、R14はアルキル基であり、gは0〜8の整数である。]
Figure 0005449993
[式中、R15およびR16は、それぞれ独立してアルキル基である。]
上記R14のアルキル基としては、直鎖状または分岐鎖状のアルキル基が好ましい。
該直鎖状のアルキル基は、炭素数が1〜5であることが好ましく、1〜4がより好ましく、1または2がさらに好ましい。具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基等が挙げられる。これらの中でも、メチル基、エチル基またはn−ブチル基が好ましく、メチル基またはエチル基がより好ましい。
該分岐鎖状のアルキル基は、炭素数が3〜10であることが好ましく、3〜5がより好ましい。具体的には、イソプロピル基、イソブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基等が挙げられ、イソプロピル基であることが最も好ましい。
gは0〜6の整数が好ましく、1〜6の整数がより好ましく、1〜4の整数がさらに好ましい。
15〜R16のアルキル基としては、R14のアルキル基と同様のものが挙げられる。
前記式(1−1)〜(1−9)、および前記式(2−1)〜(2−6)中、環を構成する炭素原子の一部がエーテル性酸素原子(−O−)で置換されていてもよい。
また、式(1−1)〜(1−9)、(2−1)〜(2−6)中、環を構成する炭素原子に結合した水素原子が置換基で置換されていてもよい。該置換基としては、炭素数1〜5のアルキル基、フッ素原子、フッ素化アルキル基が挙げられる。
「アセタール型酸解離性溶解抑制基」は、一般的に、カルボキシ基、水酸基等のアルカリ可溶性基末端の水素原子と置換して酸素原子と結合している。そして、露光により酸が発生すると、この酸が作用して、アセタール型酸解離性溶解抑制基と、当該アセタール型酸解離性溶解抑制基が結合した酸素原子との間で結合が切断される。
アセタール型酸解離性溶解抑制基としては、たとえば、下記一般式(p1)で表される基が挙げられる。
Figure 0005449993
[式中、R’,R’はそれぞれ独立して水素原子または炭素数1〜5のアルキル基を表し、nは0〜3の整数を表し、Yは炭素数1〜5のアルキル基または脂肪族環式基を表す。]
前記式(p1)中、nは、0〜2の整数であることが好ましく、0または1がより好ましく、0が最も好ましい。
’,R’の炭素数1〜5のアルキル基としては、上記Rの炭素数1〜5のアルキル基と同様のものが挙げられ、メチル基またはエチル基が好ましく、メチル基が最も好ましい。
本発明においては、R’,R’のうち少なくとも1つが水素原子であることが好ましい。すなわち、酸解離性溶解抑制基(p1)が、下記一般式(p1−1)で表される基であることが好ましい。
Figure 0005449993
[式中、R’、n、Yは上記と同じである。]
Yの炭素数1〜5のアルキル基としては、上記Rの炭素数1〜5のアルキル基と同様のものが挙げられる。
Yの脂肪族環式基としては、従来ArFレジスト等において多数提案されている単環又は多環式の脂肪族環式基の中から適宜選択して用いることができ、たとえば上記「脂肪族環式基」と同様のものが例示できる。
また、アセタール型酸解離性溶解抑制基としては、下記一般式(p2)で示される基も挙げられる。
Figure 0005449993
[式中、R17、R18はそれぞれ独立して直鎖状若しくは分岐鎖状のアルキル基または水素原子であり;R19は直鎖状、分岐鎖状若しくは環状のアルキル基である。または、R17およびR19がそれぞれ独立に直鎖状若しくは分岐鎖状のアルキレン基であって、R17の末端とR19の末端とが結合して環を形成していてもよい。]
17、R18において、アルキル基の炭素数は、好ましくは1〜15であり、直鎖状、分岐鎖状のいずれでもよく、エチル基、メチル基が好ましく、メチル基が最も好ましい。
特にR17、R18の一方が水素原子で、他方がメチル基であることが好ましい。
19は直鎖状、分岐鎖状または環状のアルキル基であり、炭素数は好ましくは1〜15であり、直鎖状、分岐鎖状又は環状のいずれでもよい。
19が直鎖状、分岐鎖状の場合は炭素数1〜5であることが好ましく、エチル基、メチル基がさらに好ましく、特にエチル基が最も好ましい。
19が環状の場合は炭素数4〜15であることが好ましく、炭素数4〜12であることがさらに好ましく、炭素数5〜10が最も好ましい。具体的には、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカン等のポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等のポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。中でもアダマンタンから1個以上の水素原子を除いた基が好ましい。
また、上記式(p2)においては、R17及びR19がそれぞれ独立に直鎖状または分岐鎖状のアルキレン基(好ましくは炭素数1〜5のアルキレン基)であって、R19の末端とR17の末端とが結合していてもよい。
この場合、R17と、R19と、R19が結合した酸素原子と、該酸素原子およびR17が結合した炭素原子とにより環式基が形成されている。該環式基としては、4〜7員環が好ましく、4〜6員環がより好ましい。該環式基の具体例としては、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
アセタール型酸解離性溶解抑制基の具体例としては、たとえば、下記式(p3−1)〜(p3−12)で表される基等が挙げられる。
Figure 0005449993
[式中、R13は水素原子またはメチル基であり、gは前記と同じである。]
構成単位(a1)の主鎖は、特に限定されず、たとえばヒドロキシスチレンから誘導される構成単位、アクリル酸エステルから誘導される構成単位、主鎖が環状型の構成単位(以下「主鎖環状型構成単位」という。)が好適なものとして挙げられる。これらの中でも、ヒドロキシスチレンから誘導される構成単位、アクリル酸エステルから誘導される構成単位がより好ましく、アクリル酸エステルから誘導される構成単位が特に好ましい。
ここで、本明細書および本特許請求の範囲において「ヒドロキシスチレンから誘導される構成単位」とは、ヒドロキシスチレンのエチレン性二重結合が開裂して構成される構成単位を意味する。
「アクリル酸エステルから誘導される構成単位」とは、アクリル酸エステルのエチレン性二重結合が開裂して構成される構成単位を意味する。
また、本明細書において「主鎖環状型構成単位」とは、単環または多環式の環構造を有し、該環構造の環上の少なくとも1つ、好ましくは2つ以上の炭素原子が主鎖を構成する構成単位をいう。
「ヒドロキシスチレン」とは、ヒドロキシスチレン、およびヒドロキシスチレンのα位の水素原子がアルキル基等の他の置換基に置換されたもの、並びにそれらの誘導体を含む概念とする。なお、ヒドロキシスチレンから誘導される構成単位のα位(α位の炭素原子)とは、特に断りがない限り、ベンゼン環が結合している炭素原子のことを意味する。
ヒドロキシスチレンにおいて、α位の置換基としてのアルキル基として、具体的には炭素数1〜5の低級アルキル基が挙げられ、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐鎖状のアルキル基が挙げられる。
「アクリル酸エステル」は、α位の炭素原子に水素原子が結合しているアクリル酸エステルのほか、α位の炭素原子に置換基(水素原子以外の原子又は基)が結合しているものも含む概念とする。置換基としては、炭素数1〜5のアルキル基、炭素数1〜5のハロゲン化アルキル基等が挙げられる。
なお、アクリル酸エステルから誘導される構成単位のα位(α位の炭素原子)とは、特に断りがない限り、カルボニル基が結合している炭素原子のことを意味する。
アクリル酸エステルにおいて、α位の置換基としての炭素数1〜5のアルキル基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状又は分岐鎖状のアルキル基が挙げられる。
また、炭素数1〜5のハロゲン化アルキル基として、具体的には、上記「α位の置換基としての炭素数1〜5のアルキル基」の水素原子の一部又は全部がハロゲン原子で置換された基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。
本発明において、アクリル酸エステルのα位に結合しているのは、水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であることが好ましく、水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のフッ素化アルキル基であることがより好ましく、工業上の入手の容易さから、水素原子又はメチル基であることが最も好ましい。
構成単位(a1)として、より具体的には、下記一般式(a1−0−1)で表される構成単位、下記一般式(a1−0−2)で表される構成単位、下記一般式(a1−0−3)で表される構成単位における−OHの水素原子を酸解離性溶解抑制基で置換したもの等が挙げられる。
Figure 0005449993
[式中、Rは水素原子、炭素数1〜5のアルキル基または炭素数1〜5のハロゲン化アルキル基であり;Xは酸解離性溶解抑制基であり;Yは2価の連結基であり;Xは酸解離性溶解抑制基であり、Xsは単結合または2価の連結基であり、Xsは単結合または2価の連結基であり、Rarylは置換基を有していてもよい芳香族基であり、n9は1〜3の整数である。]
一般式(a1−0−1)中、Rの炭素数1〜5のアルキル基は、直鎖状または分岐鎖状のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。
Rの炭素数1〜5のハロゲン化アルキル基は、前記炭素数1〜5のアルキル基の水素原子の一部または全部がハロゲン原子で置換された基である。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。
Rとしては、水素原子、炭素数1〜5のアルキル基または炭素数1〜5のフッ素化アルキル基が好ましく、なかでも工業上の入手の容易さから、水素原子またはメチル基が最も好ましい。
は、酸解離性溶解抑制基であれば特に限定されることはなく、例えば上述した第3級アルキルエステル型酸解離性溶解抑制基、アセタール型酸解離性溶解抑制基などを挙げることができ、第3級アルキルエステル型酸解離性溶解抑制基が好ましい。
一般式(a1−0−2)において、Rは上記と同様である。
は、式(a1−0−1)中のXと同様である。
の2価の連結基としては、アルキレン基、2価の脂肪族環式基またはヘテロ原子を含む2価の連結基が挙げられる。
該脂肪族環式基としては、水素原子が2個以上除かれた基が用いられること以外は前記「脂肪族環式基」の説明と同様のものを用いることができる。
がアルキレン基である場合、炭素数1〜10であることが好ましく、炭素数1〜6であることがさらに好ましく、炭素数1〜4であることが特に好ましく、炭素数1〜3であることが最も好ましい。
が2価の脂肪族環式基である場合、シクロペンタン、シクロヘキサン、ノルボルナン、イソボルナン、アダマンタン、トリシクロデカン、テトラシクロドデカンから水素原子が2個以上除かれた基であることが特に好ましい。
がヘテロ原子を含む2価の連結基である場合、ヘテロ原子を含む2価の連結基としては、−O−、−C(=O)−O−、−C(=O)−、−O−C(=O)−O−、−C(=O)−NH−、−NH−(Hはアルキル基、アシル基等の置換基で置換されていてもよい。)、−S−、−S(=O)−、−S(=O)−O−、「−A−O(酸素原子)−B−(ただし、AおよびBはそれぞれ独立して置換基を有していてもよい2価の炭化水素基である。)」、「−A−C(=O)−O−B−」等が挙げられる。
が−NH−の場合における置換基(アルキル基、アシル基等)の炭素数としては1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜5であることが特に好ましい。
が「A−O−B」である場合、AおよびBは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基である。
炭化水素基が「置換基を有する」とは、該炭化水素基における水素原子の一部または全部が、水素原子以外の基または原子で置換されていることを意味する。
Aにおける炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。脂肪族炭化水素基は、芳香族性を持たない炭化水素基を意味する。
Aにおける脂肪族炭化水素基は、飽和であってもよく、不飽和であってもよく、通常は飽和であることが好ましい。
Aにおける脂肪族炭化水素基として、より具体的には、直鎖状または分岐鎖状の脂肪族炭化水素基、構造中に環を含む脂肪族炭化水素基等が挙げられる。
直鎖状または分岐鎖状の脂肪族炭化水素基は、炭素数が1〜10であることが好ましく、1〜8がより好ましく、2〜5がさらに好ましく、2が最も好ましい。
直鎖状の脂肪族炭化水素基としては、直鎖状のアルキレン基が好ましく、具体的には、メチレン基、エチレン基[−(CH−]、トリメチレン基[−(CH−]、テトラメチレン基[−(CH−]、ペンタメチレン基[−(CH−]等が挙げられる。
分岐鎖状の脂肪族炭化水素基としては、分岐鎖状のアルキレン基が好ましく、具体的には、−CH(CH)−、−CH(CHCH)−、−C(CH−、−C(CH)(CHCH)−、−C(CH)(CHCHCH)−、−C(CHCH−等のアルキルメチレン基;−CH(CH)CH−、−CH(CH)CH(CH)−、−C(CHCH−、−CH(CHCH)CH−等のアルキルエチレン基;−CH(CH)CHCH−、−CHCH(CH)CH−等のアルキルトリメチレン基;−CH(CH)CHCHCH−、−CHCH(CH)CHCH−等のアルキルテトラメチレン基などのアルキルアルキレン基等が挙げられる。アルキルアルキレン基におけるアルキル基としては、炭素数1〜5の直鎖状のアルキル基が好ましい。
鎖状の脂肪族炭化水素基は、置換基を有していてもよく、有していなくてもよい。該置換基としては、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)等が挙げられる。
環を含む脂肪族炭化水素基としては、環状の脂肪族炭化水素基(脂肪族炭化水素環から水素原子を2個除いた基)、該環状の脂肪族炭化水素基が前述した鎖状の脂肪族炭化水素基の末端に結合するか又は鎖状の脂肪族炭化水素基の途中に介在する基などが挙げられる。
環状の脂肪族炭化水素基は、炭素数が3〜20であることが好ましく、3〜12であることがより好ましい。
環状の脂肪族炭化水素基は、多環式基であってもよく、単環式基であってもよい。単環式基としては、炭素数3〜6のモノシクロアルカンから2個の水素原子を除いた基が好ましく、該モノシクロアルカンとしてはシクロペンタン、シクロヘキサン等が例示できる。
多環式基としては、炭素数7〜12のポリシクロアルカンから2個の水素原子を除いた基が好ましく、該ポリシクロアルカンとして具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
環状の脂肪族炭化水素基は、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5の低級アルキル基、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)等が挙げられる。
Aとしては、直鎖状の脂肪族炭化水素基が好ましく、直鎖状のアルキレン基がより好ましく、炭素数2〜5の直鎖状のアルキレン基がさらに好ましく、エチレン基が最も好ましい。
Aにおける芳香族炭化水素基としては、例えば、フェニル基、ビフェニル(biphenyl)基、フルオレニル(fluorenyl)基、ナフチル基、アントリル(anthryl)基、フェナントリル基等の、1価の芳香族炭化水素基の芳香族炭化水素の核から水素原子をさらに1つ除いた2価の芳香族炭化水素基;当該2価の芳香族炭化水素基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換された芳香族炭化水素基;ベンジル基、フェネチル基、1−ナフチルメチル基、2−ナフチルメチル基、1−ナフチルエチル基、2−ナフチルエチル基等のアリールアルキル基等で、かつ、その芳香族炭化水素の核から水素原子をさらに1つ除いた芳香族炭化水素基等が挙げられる。
芳香族炭化水素基は、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5のアルキル基、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化アルキル基、酸素原子(=O)等が挙げられる。
Bにおける炭化水素基としては、前記Aで挙げたものと同様の2価の炭化水素基が挙げられる。
Bとしては、直鎖状または分岐鎖状の脂肪族炭化水素基が好ましく、メチレン基またはアルキルメチレン基が特に好ましい。
アルキルメチレン基におけるアルキル基は、炭素数1〜5の直鎖状のアルキル基が好ましく、炭素数1〜3の直鎖状のアルキル基が好ましく、メチル基が最も好ましい。
としては、前記アルキレン基、2価の脂肪族環式基またはヘテロ原子を含む2価の連結基が好ましい。これらの中でも、ヘテロ原子を含む2価の連結基が好ましく、特に、ヘテロ原子として酸素原子を有する直鎖状の基、例えばエステル結合を含む基が特に好ましい。
なかでも、前記−A−O−B−または−A−C(=O)−O−B−で表される基が好ましく、特に、−(CHa’−C(=O)−O−(CHb’−で表される基が好ましい。
a’は1〜5の整数であり、1または2が好ましく、1が最も好ましい。
b’は1〜5の整数であり、1または2が好ましく、1が最も好ましい。
一般式(a1−0−3)において、Rは上記と同様である。
n9は1〜2が好ましく、1が最も好ましい。
一般式(a1−0−3)において、Xsの2価の連結基としては、前記Yで挙げた2価の連結基と同じ基が挙げられ、これらの中でも、ヘテロ原子を含む2価の連結基が好ましく、−O−、−C(=O)−O−、−C(=O)−、−O−C(=O)−O−、−C(=O)−NH−、−NH−(Hはアルキル基、アシル基等の置換基で置換されていてもよい。)、式−A−O−B−で表される基、式−[A−C(=O)−O]m”−B”−で表される基がより好ましく、式−[A−C(=O)−O]m”−B”−で表される基がさらに好ましい。
ここで、A、Bは前記と同じであり、m”は0〜3の整数であり、AおよびB”はそれぞれ独立して、単結合または置換基を有していてもよい2価の炭化水素基である。
およびB”における置換基を有していてもよい2価の炭化水素基としては、前記A、Bにおける「置換基を有していてもよい2価の炭化水素基」として挙げたものと同様のものが挙げられる。
としては、単結合または直鎖状のアルキレン基が好ましく、単結合または炭素数1〜5の直鎖状のアルキレン基がより好ましく、単結合、メチレン基、エチレン基が特に好ましい。
B”としては、単結合または直鎖状のアルキレン基が好ましく、炭素数1〜5の直鎖状のアルキレン基がより好ましく、メチレン基またはエチレン基が特に好ましい。
また、式−[A−C(=O)−O]m”−B”−で表される基において、m”は0〜3の整数であり、0〜2の整数であることが好ましく、0または1がより好ましく、1が最も好ましい。
一般式(a1−0−3)において、Xs1は前記Xsと同じであり、なかでもカルボニル基、炭素数1〜4のアルキレン基が好ましい。
一般式(a1−0−3)において、Rarylの芳香族基とは、芳香環を有する炭化水素基である。該芳香族基の炭素数は3〜30であることが好ましく、5〜30であることがより好ましく、5〜20がさらに好ましく、6〜15が特に好ましく、6〜12が最も好ましい。ただし、該炭素数には、置換基における炭素数を含まないものとする。
該芳香族基として、具体的には、フェニル基、ビフェニル基、フルオレニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられる。
なかでも、Rarylとしては、安価に合成が可能、(A1)成分を含有するポジ型レジストを用いて形成されるレジスト膜のリソグラフィー特性(例えば、耐熱性、パターン倒れの抑制、感度、レジストパターン形状)が向上するなどの理由により、フェニル基およびナフチル基が特に好ましい。
該芳香族基は、置換基を有していてもよい。例えば、当該芳香族基が有する芳香環を構成する炭素原子の一部がヘテロ原子で置換されていてもよく、当該芳香族基が有する芳香環に結合した水素原子が置換基で置換されていてもよい。
前者の例としては、前記芳香族基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換されたヘテロアリール基が挙げられる。
後者の例における芳香族基の置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、酸素原子(=O)、−COOR”、−OC(=O)R”、ヒドロキシアルキル基、シアノ基等が挙げられる。
該後者の例における置換基としてのアルキル基は、炭素数1〜6のアルキル基が好ましい。該アルキル基は、直鎖状または分岐鎖状であることが好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基等が挙げられる。これらの中でも、メチル基またはエチル基が好ましく、メチル基が特に好ましい。
該後者の例における置換基としてのアルコキシ基は、炭素数1〜6のアルコキシ基が好ましい。該アルコキシ基は、直鎖状または分岐鎖状であることが好ましい。具体的には、前記置換基としてのアルキル基として挙げたアルキル基を酸素原子(−O−)に結合した基が挙げられる。
該後者の例における置換基としてのハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げらる。
該後者の例における置換基としてのハロゲン化アルキル基は、前記置換基としてのアルキル基の水素原子の一部または全部が前記ハロゲン原子で置換された基が挙げられる。
前記−COOR”、−OC(=O)R”におけるR”は、いずれも、水素原子または炭素数1〜15の直鎖状、分岐鎖状もしくは環状のアルキル基である。
R”が直鎖状もしくは分岐鎖状のアルキル基の場合は、炭素数1〜10であることが好ましく、炭素数1〜5であることがさらに好ましく、メチル基またはエチル基であることが特に好ましい。
R”が環状のアルキル基の場合は、炭素数3〜15であることが好ましく、炭素数4〜12であることがさらに好ましく、炭素数5〜10が最も好ましい。具体的には、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。より具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカン;アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
該後者の例における置換基としてのヒドロキシアルキル基は、炭素数1〜6であるものが好ましく、具体的には、前記置換基としてのアルキル基として挙げたアルキル基の水素原子の少なくとも1つが水酸基で置換された基が挙げられる。
上記のなかでも、Rarylの芳香族基が有していてもよい置換基としては、アルキル基、アルコキシ基、水酸基、酸素原子(=O)、−COOR”、−OC(=O)R”、ヒドロキシアルキル基が好ましく、アルコキシ基、水酸基、−OC(=O)R”、炭素数1〜5のヒドロキシアルキル基がより好ましく、水酸基、−OC(=O)R”がさらに好ましく、(A1)成分を含有するポジ型レジストを用いて形成されるレジスト膜の現像速度、耐熱性、基板との密着性など種々のリソグラフィー特性、感度が向上するなどの理由により水酸基、−OC(=O)CH、 −OC(=O)CHCHが特に好ましい。
以下に、上記一般式(a1−0−3)で表される構成単位(−OHの水素原子が酸解離性溶解抑制基で置換していないもの)の具体例を示す。
Figure 0005449993
本発明においては、上記のなかでも、193nm付近における透明性等に優れ、レジストパターン形状及びリソグラフィー特性が良好であることから、構成単位(a1)が、酸解離性溶解抑制基を含むアクリル酸エステルから誘導される構成単位であることが好ましい。
かかる構成単位(a1)のなかで好適なものとして、より具体的には、下記一般式(a1−1)〜(a1−4)で表される構成単位が挙げられる。
Figure 0005449993
[式中、X’は第3級アルキルエステル型酸解離性溶解抑制基を表し、Yは炭素数1〜5のアルキル基、または脂肪族環式基を表し;nは0〜3の整数を表し;Yは2価の連結基を表し;Rは前記と同じであり、R’、R’はそれぞれ独立して水素原子または炭素数1〜5のアルキル基を表す。]
前記式中、X’は、前記Xにおいて例示した第3級アルキルエステル型酸解離性溶解抑制基と同様のものが挙げられる。
’、R’、n、Yとしては、それぞれ、上述の「アセタール型酸解離性溶解抑制基」の説明において挙げた一般式(p1)におけるR’、R’、n、Yと同様のものが挙げられる。
としては、上述の一般式(a1−0−2)におけるYと同じものが挙げられる。
以下に、上記一般式(a1−1)〜(a1−4)で表される構成単位の具体例を示す。
以下の各式中、Rαは、水素原子、メチル基またはトリフルオロメチル基を示す。
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
上記一般式(a1−1)〜(a1−4)で表される構成単位の中でも、一般式(a1−1)又は(a1−3)で表される構成単位が好ましく、具体的には、式(a1−1−1)〜(a1−1−4)、式(a1−1−16)〜(a1−1−17)、式(a1−1−20)〜(a1−1−23)、式(a1−1−26)、式(a1−1−32)〜(a1−1−33)および式(a1−3−25)〜(a1−3−28)からなる群から選択される少なくとも1種を用いることがより好ましい。
さらに、構成単位(a1)としては、特に式(a1−1−1)〜(a1−1−3)および式(a1−1−26)の構成単位を包括する下記一般式(a1−1−01)で表されるもの;式(a1−1−16)〜(a1−1−17)、式(a1−1−20)〜(a1−1−23)および式(a1−1−32)〜(a1−1−33)の構成単位を包括する下記一般式(a1−1−02)で表されるもの;式(a1−3−25)〜(a1−3−26)の構成単位を包括する下記一般式(a1−3−01)で表されるもの、又は式(a1−3−27)〜(a1−3−28)の構成単位を包括する下記一般式(a1−3−02)で表されるものも好ましい。
Figure 0005449993
(式中、Rは水素原子、低級アルキル基またはハロゲン化低級アルキル基を示し、R21は低級アルキル基を示す。R22は低級アルキル基を示す。hは1〜6の整数を表す。)
一般式(a1−1−01)において、Rについては上記と同様である。
21の低級アルキル基は、Rにおける低級アルキル基と同様であり、直鎖状又は分岐鎖状のアルキル基が好ましく、メチル基、エチル基又はイソプロピル基が特に好ましい。
一般式(a1−1−02)において、Rについては上記と同様である。
22の低級アルキル基は、Rにおける低級アルキル基と同様であり、直鎖状又は分岐鎖状のアルキル基が好ましく、メチル基又はエチル基が特に好ましい。
hは、1〜4が好ましい。
Figure 0005449993
(式中、Rは水素原子、低級アルキル基またはハロゲン化低級アルキル基を示し;R24は低級アルキル基であり、R23は水素原子またはメチル基であり、yは1〜10の整数である。)
Figure 0005449993
(式中、Rは水素原子、低級アルキル基またはハロゲン化低級アルキル基を示し;R24は低級アルキル基であり、R23は水素原子またはメチル基であり、yは1〜10の整数であり、n’は1〜6の整数である。)
前記一般式(a1−3−01)または(a1−3−02)において、Rについては上記と同様である。
23は、水素原子が好ましい。
24の低級アルキル基は、Rにおける低級アルキル基と同様であり、メチル基またはエチル基が好ましい。
yは、1〜8の整数が好ましく、2〜5の整数が特に好ましく、2が最も好ましい。
n’は、1〜4が好ましい。
構成単位(a1)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A1)成分中、構成単位(a1)の割合は、(A1)成分を構成する全構成単位の合計に対し、1〜80モル%が好ましく、5〜70モル%がより好ましく、10〜60モル%がさらに好ましい。下限値以上とすることにより、レジスト組成物とした際に容易にパターンを得ることができ、上限値以下とすることにより、他の構成単位とのバランスをとることができる。
(構成単位(a5))
構成単位(a5)は、塩基解離性基を含む構成単位である。
構成単位(a5)における「塩基解離性基」とは、塩基の作用により解離し得る有機基である。塩基としては、一般的にリソグラフィー分野において用いられているアルカリ現像液が挙げられる。すなわち、「塩基解離性基」は、アルカリ現像液(たとえば、2.38質量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液(23℃))の作用により解離する基である。
塩基解離性基は、アルカリ現像液の作用により加水分解が生じることにより解離する。そのため、該塩基解離性基が解離すると同時に親水基が形成され、(A1)成分の親水性が高まり、アルカリ現像液に対する親和性が向上する。
(A1)成分において、構成単位(a5)中の塩基解離性基以外の部位(すなわち、構成単位(a5)以外の構成単位中、当該塩基解離性基以外の構成単位(a5)中)にフッ素原子が含まれていない場合には、フッ素原子を含む塩基解離性基であることを要する。一方、構成単位(a5)中の塩基解離性基以外の部位にフッ素原子が含まれている場合には、フッ素原子を含む塩基解離性基であってもよく、フッ素原子を含まない塩基解離性基であってもよい。
なお、フッ素原子を含む塩基解離性基は、塩基解離性基における水素原子の一部または全部がフッ素原子で置換された基をいう。
構成単位(a5)において、塩基解離性基は、上記定義に該当する有機基であれば特に限定されるものではなく、フッ素原子を含むものであってもよく、フッ素原子を含まないものであってもよく、フッ素原子を含むことが好ましい。特に、構成単位(a5)中に含まれるフッ素原子が、塩基解離性基のみに存在することが好ましい。塩基解離性基がフッ素原子を含む場合、アルカリ現像液の作用により該塩基解離性基が解離した際、フッ素原子も構成単位(a5)から解離するため、アルカリ現像液に対する親和性がより高くなる。
塩基解離性基の具体例としては、たとえば、下記一般式(II−1)〜(II−5)で表される基が挙げられる。
本発明において、塩基解離性基は、下記一般式(II−1)〜(II−5)で表される基からなる群から選択される少なくとも1種であることが好ましく、露光時には疎水性であって現像時には親水性となる特性に優れ、かつ、合成が容易である点から、下記一般式(II−1)、(II−4)、(II−5)で表される基であることが特に好ましい。
Figure 0005449993
[式中、Rはそれぞれ独立してフッ素原子を有していてもよい有機基である。]
式(II−1)〜(II−5)中、Rは、フッ素原子を有していてもよい有機基である。
「有機基」は、少なくとも1つの炭素原子を含む基である。
の構造は、直鎖状、分岐鎖状、環状のいずれであってもよく、直鎖状または分岐鎖状であることが好ましい。
において、有機基の炭素数は1〜20であることが好ましく、炭素数1〜15であることがより好ましく、炭素数1〜10が特に好ましく、1〜5が最も好ましい。
は、浸漬露光時のレジスト膜の疎水性が高まることから、フッ素化率が25%以上であることが好ましく、50%以上であることがより好ましく、60%以上であることが特に好ましい。「フッ素化率」は、当該有機基における(水素原子およびフッ素原子の合計数)に対する(フッ素原子数)の割合(%)である。
としては、たとえば、メチル基、エチル基、置換基を有していてもよいフッ素化炭化水素基が好ましく挙げられる。
における置換基を有していてもよいフッ素化炭化水素基について、炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよいが、脂肪族炭化水素基であることが好ましい。
脂肪族炭化水素基は、芳香族性を有さない炭化水素基である。脂肪族炭化水素基は、飽和、不飽和のいずれでもよいが、通常は飽和であることが好ましい。
すなわち、Rとしては、フッ素化飽和炭化水素基またはフッ素化不飽和炭化水素基であることが好ましく、フッ素化飽和炭化水素基、すなわちフッ素化アルキル基であることが特に好ましい。
フッ素化アルキル基としては、下記に挙げる無置換のアルキル基の水素原子の一部または全部がフッ素原子で置換された基が挙げられる。フッ素化アルキル基は、無置換のアルキル基の水素原子の一部がフッ素原子で置換された基であってもよく、無置換のアルキル基の水素原子の全部がフッ素原子で置換された基(パーフルオロアルキル基)であってもよい。
無置換のアルキル基としては、直鎖状、分岐鎖状または環状のいずれであってもよく、また、直鎖状または分岐鎖状のアルキル基と環状アルキル基との組み合わせであってもよい。
無置換の直鎖状のアルキル基としては、炭素数1〜10が好ましく、炭素数1〜8がより好ましい。具体的には、たとえば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等が挙げられる。
無置換の分岐鎖状のアルキル基としては、炭素数3〜10が好ましく、炭素数3〜8がより好ましい。分岐鎖状のアルキル基としては、第3級アルキル基が好ましい。
無置換の環状のアルキル基としては、例えば、モノシクロアルカン、またはビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個の水素原子を除いた基が挙げられる。具体的には、シクロペンチル基、シクロヘキシル基等のモノシクロアルキル基;アダマンチル基、ノルボルニル基、イソボルニル基、トリシクロデシル基、テトラシクロドデシル基等のポリシクロアルキル基などが挙げられる。
無置換の直鎖状または分岐鎖状のアルキル基と環状アルキル基との組み合わせとしては、直鎖状または分岐鎖状のアルキル基に置換基として環状のアルキル基が結合した基、環状のアルキル基に置換基として直鎖状または分岐鎖状のアルキル基が結合した基等が挙げられる。
フッ素化炭化水素基が有していてもよい置換基としては、炭素数1〜5の低級アルキル基等が挙げられる。
において、フッ素化アルキル基としては、直鎖状または分岐鎖状のフッ素化アルキル基が好ましい。特に、下記一般式(III−1)または(III−2)で表される基が好ましく、中でも、式(III−1)で表される基が好ましい。
Figure 0005449993
[式(III−1)中、R41’は無置換の炭素数1〜9のアルキレン基であり、R42’は炭素数1〜9のフッ素化アルキル基である。但し、R41’とR42’との炭素数の合計は10以下である。また、式(III−2)中、R74〜R76は、それぞれ独立に、炭素数1〜5の直鎖状のアルキル基であり、R74〜R76の少なくとも1つはフッ素原子を有するアルキル基である。]
式(III−1)中、R41’のアルキレン基は、直鎖状、分岐鎖状、環状のいずれであってよく、直鎖状または分岐鎖状が好ましい。また、その炭素数は1〜5が好ましい。
41’としては、特に、メチレン基、エチレン基、プロピレン基が好ましい。
42’としては、炭素数1〜5の直鎖状または分岐鎖状のフッ素化アルキル基が好ましく、特にパーフルオロアルキル基が好ましい。なかでも、トリフルオロメチル基(−CF)、テトラフルオロエチル基(−CH)、−Cが好ましい。
式(III−2)中、R74〜R76のアルキル基としては、エチル基またはメチル基が好ましく、特にメチル基が好ましい。R74〜R76のアルキル基のうち、いずれか1つがフッ素化アルキル基であればよく、全てがフッ素化アルキル基で合ってもよい。
構成単位(a5)のなかで好適なものとしては、たとえば、下記一般式(a5−0)で表される構成単位が挙げられる。
Figure 0005449993
[式(a5−0)中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり、Qは単結合又はフッ素原子を有していてもよい2価の連結基であり、Rはフッ素原子を有していてもよい有機基である。]
前記式(a5−0)中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり、上記(A)成分についての説明におけるRと同じである。
Rにおける炭素数1〜5のアルキル基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐鎖状のアルキル基が挙げられる。
Rにおける炭素数1〜5のハロゲン化アルキル基として、具体的には、上記低級アルキル基の水素原子の一部または全部が、ハロゲン原子で置換された基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。
Rは、水素原子、炭素数1〜5のアルキル基または炭素数1〜5のフッ素化アルキル基であることが好ましく、水素原子またはメチル基であることがより好ましく、メチル基であることが特に好ましい。
前記式(a5−0)中、Qは、単結合又はフッ素原子を有していてもよい2価の連結基である。
における2価の連結基について、2価の連結基がフッ素原子を有していてもよいとは、当該連結基における水素原子の一部または全部がフッ素原子で置換されていてもよいことを意味する。
における2価の連結基は、その構造中に酸解離性部位を有していてもよいし、有していなくてもよい。
「酸解離性部位」とは、Qの構造内における、露光により(B)成分から発生する酸が作用して解離する部位をいう。具体的には、たとえば、カルボキシ基と環状または鎖状の第3級アルキルエステルを形成する部位;アルコキシアルキル基等のアセタール型酸解離性基のうち、当該アセタールを形成している酸素原子に結合している基から一つ以上の水素原子を除いた部位などが挙げられる。
における2価の連結基は、たとえば、置換基を有していてもよい2価の炭化水素基、ヘテロ原子を含む2価の連結基等が好適なものとして挙げられる。
これらの置換基を有していてもよい2価の炭化水素基、ヘテロ原子を含む2価の連結基は、それぞれ、上述した一般式(a1−0−2)におけるYの「ヘテロ原子を含む2価の連結基」、当該Yが「A−O−B」である場合のAおよびBの「置換基を有していてもよい2価の炭化水素基」と同様のものが挙げられる。
における2価の連結基は、「置換基を有していてもよい2価の炭化水素基」、「ヘテロ原子を含む2価の連結基」にそれぞれフッ素原子が含まれているものでもよく、フッ素原子が含まれていないものでもよい。
本発明において、Qにおける2価の連結基としては、直鎖状または分岐鎖状のアルキレン基、2価の芳香族環式基若しくはヘテロ原子を含む2価の連結基、又はこれらのいずれかにフッ素原子が含まれているものが好ましい。これらの中でも、フッ素原子を有していてもよいヘテロ原子を含む2価の連結基が特に好ましい。
が直鎖状または分岐鎖状のアルキレン基である場合、該アルキレン基は、炭素数1〜10であることが好ましく、炭素数1〜6であることがさらに好ましく、炭素数1〜4であることが特に好ましく、炭素数1〜3であることが最も好ましい。具体的には、前記「置換基を有していてもよい2価の炭化水素基」で挙げた直鎖状のアルキレン基、分岐鎖状のアルキレン基と同様のものが挙げられる。
が2価の芳香族環式基である場合、該芳香族環式基としては、例えば、フェニル基、ビフェニル(biphenyl)基、フルオレニル(fluorenyl)基、ナフチル基、アントリル(anthryl)基、フェナントリル基等の、1価の芳香族炭化水素基の芳香族炭化水素の核から水素原子をさらに1つ除いた2価の芳香族炭化水素基;当該2価の芳香族炭化水素基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換された芳香族炭化水素基;ベンジル基、フェネチル基、1−ナフチルメチル基、2−ナフチルメチル基、1−ナフチルエチル基、2−ナフチルエチル基等のアリールアルキル基等で、かつ、その芳香族炭化水素の核から水素原子をさらに1つ除いた芳香族炭化水素基等が挙げられる。
がヘテロ原子を含む2価の連結基である場合、当該連結基の好ましいものとしては、−O−、−C(=O)−O−、−C(=O)−、−O−C(=O)−O−、−C(=O)−NH−、−NR04−(R04はアルキル基、アシル基等の置換基である。)、−S−、−S(=O)−、−S(=O)−O−、式−C(=O)−O−R08−で表される基、式−O−R08−で表される基、式−R09−O−で表される基、式−R09−O−R08−で表される基等が挙げられる。
08は、置換基を有していてもよい2価の炭化水素基であり、直鎖状または分岐鎖状の脂肪族炭化水素基が好ましく、アルキレン基、アルキルアルキレン基がより好ましい。
アルキレン基としては、メチレン基、エチレン基が特に好ましい。
アルキルアルキレン基におけるアルキル基は、炭素数1〜5の直鎖状のアルキル基が好ましく、炭素数1〜3の直鎖状のアルキル基が好ましく、エチル基が最も好ましい。
これらR08には、フッ素原子が含まれていてもよく、フッ素原子が含まれていなくてもよい。
09は、2価の芳香族環式基であり、1価の芳香族炭化水素基の芳香族炭化水素の核から水素原子をさらに1つ除いた2価の芳香族炭化水素基が好ましく、ナフチル基から水素原子をさらに1つ除いた基が最も好ましい。
前記式(a5−0)中、Rはフッ素原子を有していてもよい有機基であり、上述した一般式(II−1)〜(II−5)におけるRと同じである。
上記のなかでも、構成単位(a5)は、一般式(a5−0)におけるQが単結合である場合、Rがメチル基、エチル基であるものが好適なものとして挙げられる。
また、構成単位(a5)は、一般式(a5−0)におけるQがフッ素原子を有していてもよい2価の連結基である場合、下記一般式(a5−01)で表される構成単位、又は後述の一般式(a5−02)で表される構成単位であることが好ましい。
Figure 0005449993
[式(a5−01)中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり、Q01はフッ素原子を有さない2価の連結基であり、Rはフッ素原子を有する有機基である。]
・一般式(a5−01)で表される構成単位について
前記式(a5−01)中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり、上記式(a5−0)におけるRと同じである。
前記式(a5−01)中、Q01はフッ素原子を有さない2価の連結基であり、上記式(a5−0)におけるQのなかでフッ素原子を含まないものが挙げられる。
前記式(a5−01)中、Rはフッ素原子を有する有機基であり、上記式(a5−0)におけるRのなかでフッ素原子を含むものが挙げられる。
かかる一般式(a5−01)で表される構成単位のなかで好適なものとしては、下記一般式(a5−01−1)で表される構成単位および下記一般式(a5−01−2)で表される構成単位からなる群から選ばれる少なくとも一種の構成単位が挙げられる。
Figure 0005449993
[式中、Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり、Rはそれぞれ独立にフッ素原子を有する有機基である。式(a5−01−1)中、Xは二価の有機基である。式(a5−01−2)中、Aarylは置換基を有していてもよい二価の芳香族環式基であり、X01は単結合又は二価の連結基である。ただし、前記X、Aaryl、X01はいずれもフッ素原子を有さないものとする。]
式(a5−01−1)または(a5−01−2)において、Rにおける低級アルキル基は、直鎖状または分岐鎖状が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。
また、ハロゲン化低級アルキル基として、具体的には、上記「低級アルキル基」の水素原子の一部または全部を、ハロゲン原子で置換した基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。
本発明において、Rとしては、水素原子、低級アルキル基またはフッ素化低級アルキル基が好ましく、工業上の入手の容易さから、水素原子またはメチル基がより好ましい。
式(a5−01−1)または(a5−01−2)中、Rはフッ素原子を有する有機基であり、前記式(a5−01)におけるRと同じである。
式(a5−01−1)または(a5−01−2)において、Rとしては、フッ素化炭化水素基が好ましく、フッ素化アルキル基がより好ましく、炭素数1〜5のフッ素化アルキル基がさらに好ましく、−CH−CF、−CH−CF−CF、−CH(CF、−CH−CF−CF−CFが特に好ましく、−CH−CF、−CH−CF−CFが最も好ましい。
一般式(a5−01−1)中、Xは、二価の有機基である。
Xは酸解離性部位を有していてもよいし、有していなくてもよい。
「酸解離性部位」とは、当該有機基内における、露光により発生する酸が作用して解離する部位をいう。Xが酸解離性部位を有する場合、好ましくは第三級炭素原子を有する酸解離性部位を有することが好ましい。
Xとしては、置換基を有していてもよい炭化水素基、ヘテロ原子を含む基等が好適なものとして挙げられる。
該炭化水素基が「置換基を有する」とは、該炭化水素基における水素原子の一部または全部が、水素原子以外の基または原子で置換されていることを意味する。
炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。
脂肪族炭化水素基は、芳香族性を持たない炭化水素基を意味する。
また、該脂肪族炭化水素基は、飽和であってもよく、不飽和であってもよく、通常は飽和であることが好ましい。
脂肪族炭化水素基として、より具体的には、直鎖状または分岐鎖状の脂肪族炭化水素基、構造中に環を含む脂肪族炭化水素基等が挙げられる。
直鎖状または分岐鎖状の脂肪族炭化水素基は、炭素数が1〜10であることが好ましく、1〜8がより好ましく、1〜5がさらに好ましく、1〜2が最も好ましい。
直鎖状の脂肪族炭化水素基としては、直鎖状のアルキレン基が好ましく、具体的には、メチレン基[−CH−]、エチレン基[−(CH−]、トリメチレン基[−(CH−]、テトラメチレン基[−(CH−]、ペンタメチレン基[−(CH−]等が挙げられる。
分岐鎖状の脂肪族炭化水素基としては、分岐鎖状のアルキレン基が好ましく、具体的には、−CH(CH)−、−CH(CHCH)−、−C(CH−、−C(CH)(CHCH)−、−C(CH)(CHCHCH)−、−C(CHCH−等のアルキルメチレン基;−CH(CH)CH−、−CH(CH)CH(CH)−、−C(CHCH−、−CH(CHCH)CH−、−C(CHCH−CH−等のアルキルエチレン基;−CH(CH)CHCH−、−CHCH(CH)CH−等のアルキルトリメチレン基;−CH(CH)CHCHCH−、−CHCH(CH)CHCH−等のアルキルテトラメチレン基などのアルキルアルキレン基等が挙げられる。アルキルアルキレン基におけるアルキル基としては、炭素数1〜5の直鎖状のアルキル基が好ましい。
鎖状の脂肪族炭化水素基は、置換基を有していてもよく、有していなくてもよい。該置換基としては、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)等が挙げられる。
環を含む脂肪族炭化水素基としては、環状の脂肪族炭化水素基(脂肪族炭化水素環から水素原子を2個除いた基)、該環状の脂肪族炭化水素基が前述した鎖状の脂肪族炭化水素基の末端に結合するか又は鎖状の脂肪族炭化水素基の途中に介在する基などが挙げられる。
環状の脂肪族炭化水素基は、炭素数が3〜20であることが好ましく、3〜12であることがより好ましい。
環状の脂肪族炭化水素基は、多環式基であってもよく、単環式基であってもよい。単環式基としては、炭素数3〜6のモノシクロアルカンから2個の水素原子を除いた基が好ましく、該モノシクロアルカンとしてはシクロペンタン、シクロヘキサン等が例示できる。
多環式基としては、炭素数7〜12のポリシクロアルカンから2個の水素原子を除いた基が好ましく、該ポリシクロアルカンとして具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
環状の脂肪族炭化水素基は、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5の低級アルキル基、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)等が挙げられる。
ヘテロ原子を含む2価の基における「ヘテロ原子」とは、炭素原子および水素原子以外原子であり、たとえば酸素原子、窒素原子、硫黄原子、ハロゲン原子等が挙げられる。
ヘテロ原子を含む2価の基として、具体的には、−O−、−C(=O)−、−C(=O)−O−、カーボネート結合(−O−C(=O)−O−)、−NH−、−NR05(R05はアルキル基)−、−NH−C(=O)−、=N−、または「これらの基」と2価の炭化水素基との組み合わせ等が挙げられる。2価の炭化水素基としては、上述した置換基を有していてもよい炭化水素基と同様のものが挙げられ、直鎖状または分岐鎖状の脂肪族炭化水素基が好ましい。
一般式(a5−01−2)中、Aarylは、置換基を有していてもよい二価の芳香族環式基である。Aarylとして具体的には、置換基を有していてもよい芳香族炭化水素環から2個の水素原子を除いた基が挙げられる。
arylにおける芳香族環式基の環骨格としては、炭素数が6〜15であることが好ましく、例えば、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等が挙げられる。これらの中でも、ベンゼン環又はナフタレン環が特に好ましい。
arylにおいて、芳香族環式基が有してもよい置換基としては、たとえば、ハロゲン原子、アルキル基、アルコキシ基、ハロゲン化低級アルキル基、酸素原子(=O)等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子、臭素原子等が挙げられる。Aarylの芳香族環式基が有してもよい置換基としては、フッ素原子であることが好ましい。
arylの芳香族環式基としては、置換基を有さないものであってもよく、置換基を有するものでもよく、置換基を有さないものであることが好ましい。
arylにおいて、芳香族環式基が置換基を有するものである場合、置換基の数は、1つであってもよく、2つ以上であってもよく、1つ又は2つであることが好ましく、1つであることがより好ましい。
一般式(a5−01−2)中、X01は、単結合または二価の連結基である。二価の連結基としては、炭素数1〜10のアルキレン基、−O−、−C(=O)−、−C(=O)−O−、カーボネート結合(−O−C(=O)−O−)、−NH−C(=O)−、又はそれらの組み合わせなどが挙げられ、−O−と炭素数1〜10のアルキレン基との組み合わせが最も好ましい。
炭素数1〜10のアルキレン基としては、直鎖状、分岐鎖状もしくは環状のアルキレン基が挙げられ、炭素数1〜5の直鎖状または分岐鎖状のアルキレン基、炭素数4〜10の環状のアルキレン基が好ましい。
前記一般式(a5−01−1)で表される構成単位の中で好適なものとして、下記一般式(a5−01−11)〜(a5−01−16)で表される構成単位が挙げられる。
また、前記一般式(a5−01−2)で表される構成単位の中で好適なものとして、下記一般式(a5−01−21)〜(a5−01−26)で表される構成単位が挙げられる。
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
前記一般式(a5−01−11)〜(a5−01−16)、(a5−01−21)〜(a5−01−26)中、RおよびRはそれぞれ前記と同じであり;R56〜R57はそれぞれ独立して炭素数1〜10のアルキル基であり;R58〜R59はそれぞれ独立して水素原子または炭素数1〜10のアルキル基であり;a1、a2、a3、a5、a7、a9、およびa11〜a13はそれぞれ独立して1〜5の整数であり;a4、a6、a8、およびa10はそれぞれ独立して0〜5の整数であり;a14〜a16は0〜5の整数であり;d1〜d5はそれぞれ独立して0または1であり;Rは置換基であり、eは0〜2の整数であり;Aは炭素数4〜20の環状のアルキレン基である。
式(a5−01−11)〜(a5−01−16)、(a5−01−21)〜(a5−01−26)中、Rとしては、水素原子またはメチル基が好ましい。
式(a5−01−11)中、a1は1〜3の整数が好ましく、1または2がより好ましい。
式(a5−01−12)中、a2、a3は、それぞれ独立して、1〜3の整数が好ましく、1または2がより好ましい。
d1は0であることが好ましい。
式(a5−01−13)中、a4は、0〜3の整数が好ましく、0〜2の整数がより好ましく、0または1が最も好ましい。
a5は、1〜3の整数が好ましく、1または2がより好ましい。
の置換基としては、たとえば、ハロゲン原子、低級アルキル基、炭素数1〜5のアルコキシ基、ハロゲン化低級アルキル基、酸素原子(=O)等が挙げられる。低級アルキル基としては前記Rで挙げた低級アルキル基と同様のものが挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子、臭素原子等が挙げられる。ハロゲン化低級アルキル基としては前記Rで挙げたハロゲン化低級アルキル基と同様のものが挙げられる。
eは、0または1であることが好ましく、特に工業上、0であることが好ましい。
d2は0であることが好ましい。
式(a5−01−14)中、a6は、0〜3の整数が好ましく、0〜2の整数がより好ましく、0または1が最も好ましい。
a7は、1〜3の整数が好ましく、1または2がより好ましい。
d3は0であることが好ましい。
およびeは、それぞれ前記と同様である。
式(a5−01−15)中、a14は、0〜3が好ましく、0〜2がより好ましく、0または1が最も好ましい。
56〜R57は、それぞれ独立して直鎖状、分岐鎖状または環状の炭素数1〜10のアルキル基であることが好ましく、メチル基、エチル基、n―プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、tert−ペンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ノルボルニル基、イソボルニル基、トリシクロデシル基、アダマンチル基、テトラシクロドデシル基等が挙げられ、これらの中でも炭素数1〜6がより好ましく、炭素数1〜4が特に好ましく、メチル基またはエチル基が最も好ましい。
58〜R59は、それぞれ独立して水素原子または直鎖状、分岐鎖状または環状の炭素数1〜10のアルキル基であることが好ましい。R58〜R59における直鎖状、分岐鎖状または環状の炭素数1〜10のアルキル基としては、前記R56〜R57と同様である。
式(a5−01−16)中、Aは、炭素数4〜20の環状のアルキレン基であり、炭素数5〜15の環状のアルキレン基が好ましく、炭素数6〜12の環状のアルキレン基がより好ましい。具体例としては、上述した置換基を有していていもよい炭化水素基における「環状の脂肪族炭化水素基」に例示したものが挙げられ、かかる環状の脂肪族炭化水素基は、炭素数が3〜20であることが好ましく、3〜12であることがより好ましい。
環状の脂肪族炭化水素基は、多環式基であってもよく、単環式基であってもよい。単環式基としては、炭素数3〜6のモノシクロアルカンから2個の水素原子を除いた基が好ましく、該モノシクロアルカンとしてはシクロペンタン、シクロヘキサン等が例示できる。
多環式基としては、炭素数7〜12のポリシクロアルカンから2個の水素原子を除いた基が好ましく、該ポリシクロアルカンとして具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
環状の脂肪族炭化水素基は、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5の低級アルキル基、酸素原子(=O)等が挙げられる。
式(a5−01−21)中、a8は、0〜3の整数が好ましく、0〜2の整数がより好ましく、0または1が最も好ましい。
a9は、1〜3の整数が好ましく、1または2がより好ましい。
d4は0であることが好ましい。
およびeは、それぞれ前記と同様である。
式(a5−01−22)中、a10は、0〜3の整数が好ましく、0〜2の整数がより好ましく、0または1が最も好ましい。
a11は、1〜3の整数が好ましく、1または2がより好ましい。
d5は0であることが好ましい。
およびeは、それぞれ前記と同様である。
式(a5−01−23)中、a12は1〜3の整数が好ましく、1または2がより好ましい。
およびeは、それぞれ前記と同様である。
式(a5−01−24)中、a13は1〜3の整数が好ましく、1または2がより好ましい。
およびeは、それぞれ前記と同様である。
式(a5−01−25)〜(a5−01−26)中、a15、a16は、それぞれ、0〜3が好ましく、0〜2がより好ましく、0または1が最も好ましい。
56〜R57、R58〜R59は、それぞれ前記と同様である。
式(a5−01−25)〜(a5−01−26)中、Rおよびeは、それぞれ前記と同様である。
以下に、上記一般式(a5−01−11)〜(a5−01−16)、一般式(a5−01−21)〜(a5−01−26)で表される構成単位の具体例を示す。
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
一般式(a5−01)で表される構成単位としては、前記一般式(a5−01−11)〜(a5−01−16)および(a5−01−21)〜(a5−01−26)のいずれかで表される構成単位からなる群から選択される少なくとも1種が好ましく、前記一般式(a5−01−11)〜(a5−01−14)および(a5−01−21)〜(a5−01−24)のいずれかで表される構成単位からなる群から選択される少なくとも1種がより好ましく、前記一般式(a5−01−11)〜(a5−01−13)、(a5−01−21)および(a5−01−22)のいずれかで表される構成単位からなる群から選択される少なくとも1種がさらに好ましく、前記一般式(a5−01−11)または(a5−01−22)で表される構成単位からなる群から選択される少なくとも一種が特に好ましい。
(A1)成分中、一般式(a5−01)で表される構成単位の割合は、(A1)成分を構成する全構成単位の合計に対し、20〜90モル%が好ましく、30〜90モル%がより好ましく、40〜90モル%がさらに好ましい。
一般式(a5−01)で表される構成単位の割合が上記範囲の下限値以上であると、レジストパターンの形成において、浸漬露光時には疎水性であって、アルカリ現像処理により親水性となる特性が向上する。上限値以下であると、他の構成単位とのバランスをとることができる。
Figure 0005449993
[式(a5−02)中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり;Q02はフッ素原子を有する2価の連結基であり、Rはフッ素原子を有していてもよい有機基である。]
・一般式(a5−02)で表される構成単位について
前記式(a5−02)中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり、上記式(a5−0)におけるRと同じである。
前記式(a5−02)中、Q02はフッ素原子を有する2価の連結基であり、上記式(a5−0)におけるQのなかでフッ素原子を含むものが挙げられる。
前記式(a5−02)中、Rはフッ素原子を有していてもよい有機基であり、上記式(a5−0)におけるRと同じである。
かかる一般式(a5−02)で表される構成単位のなかで好適なものとしては、下記一般式(a5−02−1)で表される構成単位及び下記一般式(a5−02−2)で表される構成単位からなる群から選ばれる少なくとも一種の構成単位が挙げられる。
Figure 0005449993
[式中、Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり;Qはそれぞれ独立に−O−、−CH−O−又は−C(=O)−O−を含有する基であり;Rq1はそれぞれ独立にフッ素原子又はフッ素化アルキル基である。式(a5−02−1)中、R01はフッ素原子を有する有機基である。式(a5−02−2)中、R01’はアルキル基である。]
式(a5−02−1)または(a5−02−2)において、Rにおける低級アルキル基は、直鎖状または分岐鎖状が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。
また、ハロゲン化低級アルキル基として、具体的には、上記「低級アルキル基」の水素原子の一部または全部を、ハロゲン原子で置換した基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。
本発明において、Rとしては、水素原子、低級アルキル基またはフッ素化低級アルキル基が好ましく、工業上の入手の容易さから、水素原子またはメチル基がより好ましい。
式(a5−02−1)または(a5−02−2)中、Qは、それぞれ独立に、−O−、−CH−O−又は−C(=O)−O−を含有する基である。
として具体的には、たとえば−O−、−CH−O−又は−C(=O)−O−と、置換基を有していてもよい2価の炭化水素基とからなる基;−O−、−CH−O−若しくは−C(=O)−O−等が挙げられる。
この2価の炭化水素基は、上記式(a5−0)のQについての説明における「置換基を有していてもよい2価の炭化水素基」と同様のものが挙げられ、脂肪族炭化水素基が好ましく、直鎖状又は分岐鎖状のアルキレン基であることがより好ましい。
なかでも、Qは、合成上およびポジ型レジスト組成物中における安定性の点から、−C(=O)−O−と置換基を有していてもよい2価の炭化水素基とからなる基がより好ましく、−C(=O)−O−と脂肪族炭化水素基とからなる基がさらに好ましく、−C(=O)−O−と直鎖状又は分岐鎖状のアルキレン基とからなる基が特に好ましい。
の好適なものとして具体的には、特に、下記一般式(Q−1)で表される基が挙げられる。
Figure 0005449993
[式(Q−1)中、Rq2〜Rq3はそれぞれ独立に水素原子、アルキル基又はフッ素化アルキル基であり、互いに結合して環を形成していてもよい。]
前記式(Q−1)中、Rq2〜Rq3は、それぞれ独立に、水素原子、アルキル基又はフッ素化アルキル基であり、互いに結合して環を形成していてもよい。
q2〜Rq3におけるアルキル基は、直鎖状、分岐鎖状又は環状のいずれでもよく、直鎖状又は分岐鎖状であることが好ましい。
直鎖状又は分岐鎖状のアルキル基の場合、炭素数は1〜5であることが好ましく、エチル基、メチル基がより好ましく、エチル基が特に好ましい。
環状のアルキル基の場合、炭素数は4〜15であることが好ましく、炭素数4〜12であることがさらに好ましく、炭素数5〜10であることが最も好ましい。具体的には、モノシクロアルカン;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが例示できる。より具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。なかでも、アダマンタンから1個以上の水素原子を除いた基が好ましい。
q2〜Rq3におけるフッ素化アルキル基は、アルキル基中の水素原子の一部または全部がフッ素原子で置換されている基である。
当該フッ素化アルキル基において、フッ素原子で置換されていない状態のアルキル基は、直鎖状、分岐鎖状又は環状のいずれでもよく、上記「Rq2〜Rq3におけるアルキル基」と同様のものが挙げられる。
q2〜Rq3は、互いに結合して環を形成していてもよく、Rq2、Rq3およびこれらが結合している炭素原子が構成する環としては、前記環状のアルキル基におけるモノシクロアルカン又はポリシクロアルカンから2個の水素原子を除いたものが例示でき、4〜10員環であることが好ましく、5〜7員環であることがより好ましい。
上記のなかでも、Rq2〜Rq3は、水素原子またはアルキル基であることが好ましい。
式(a5−02−1)または(a5−02−2)中、Rq1は、それぞれ独立に、フッ素原子又はフッ素化アルキル基である。
q1におけるフッ素化アルキル基において、フッ素原子で置換されていない状態のアルキル基は、直鎖状、分岐鎖状又は環状のいずれでもよい。
直鎖状若しくは分岐鎖状のアルキル基の場合、炭素数は1〜5であることが好ましく、炭素数が1〜3であることがより好ましく、炭素数が1〜2であることが特に好ましい。
フッ素化アルキル基においては、当該フッ素化アルキル基に含まれるフッ素原子および水素原子の合計数に対するフッ素原子の数の割合(フッ素化率(%))が、30〜100%であることが好ましく、50〜100%であることがより好ましい。該フッ素化率が高いほど、レジスト膜の疎水性が高まる。
式(a5−02−1)中、R01はフッ素原子を有する有機基であり、上記式(a5−0)におけるRのなかでフッ素原子を含むものが挙げられる。
01としては、フッ素化炭化水素基が好ましく、フッ素化アルキル基がより好ましい。具体的には、炭素数1〜5のフッ素化アルキル基がさらに好ましく、−CH−CF、−CH−CF−CF、−CH(CF、−CH−CF−CF−CFが特に好ましく、−CH−CFが最も好ましい。
式(a5−02−2)中、R01’はアルキル基である。
01’のアルキル基において、炭素数は1〜10が好ましく、炭素数1〜8がより好ましく、炭素数は1〜5が特に好ましい。具体的には、たとえば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられ、なかでもメチル基、エチル基が好ましい。
以下に、上記一般式(a5−02−1)、一般式(a5−02−2)で表される構成単位の具体例を示す。
Figure 0005449993
(A1)成分中、一般式(a5−02)で表される構成単位の割合は、(A1)成分を構成する全構成単位の合計に対し、20〜90モル%が好ましく、30〜90モル%がより好ましく、40〜90モル%がさらに好ましい。
一般式(a5−02)で表される構成単位の割合が上記範囲の下限値以上であると、レジストパターンの形成において、浸漬露光時には疎水性であって、アルカリ現像処理により親水性となる特性が向上する。上限値以下であると、他の構成単位とのバランスをとることができる。
また、構成単位(a5)のなかで好適なものとしては、たとえば、下記一般式(a5−1)で表される構成単位も挙げられる。
Figure 0005449993
[式(a5−1)中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり、Qは単結合又はフッ素原子を有していてもよい2価の連結基であり、Rはフッ素原子を有していてもよい有機基である。]
・一般式(a5−1)で表される構成単位について
前記式(a5−1)中、R、Q、Rは、それぞれ、前記式(a5−0)におけるR、Q、Rと同じである。
前記式(a5−1)中、Qが単結合である場合、Rがメチル基、エチル基であるものが好適なものとして挙げられる。
前記式(a5−1)中、Qがフッ素原子を有していてもよい2価の連結基である場合、前記式(a5−01)で表される構成単位において「−Q01−C(=O)−O−R」を「−Q01−O−C(=O)−R」に変更したもの、又は前記式(a5−02)で表される構成単位において「−Q02−C(=O)−O−R」を「−Q02−O−C(=O)−R」に変更したものが好適なものとして挙げられる。
以下に、上記一般式(a5−1)で表される構成単位の具体例を示す。
Figure 0005449993
(A1)成分中、一般式(a5−1)で表される構成単位の割合は、(A1)成分を構成する全構成単位の合計に対し、20〜90モル%が好ましく、30〜90モル%がより好ましく、40〜90モル%がさらに好ましい。
一般式(a5−1)で表される構成単位の割合が上記範囲の下限値以上であると、レジストパターンの形成において、浸漬露光時には疎水性であって、アルカリ現像処理により親水性となる特性が向上する。上限値以下であると、他の構成単位とのバランスをとることができる。
(A1)成分において、構成単位(a5)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(構成単位(a6))
構成単位(a6)は、下記一般式(a6−1)で表される構成単位である。
Figure 0005449993
[式中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基を表し、RおよびRはそれぞれ独立に水素原子又は任意の位置に酸素原子を含んでいてもよいアルキル基を表すか、又は両者が結合してアルキレン基を形成し、Wは任意の位置に酸素原子を含んでいてもよい環状のアルキレン基を表す。]
前記式(a6−1)中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり、上記(A)成分についての説明におけるRと同じである。
Rにおける炭素数1〜5のアルキル基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐鎖状のアルキル基が挙げられる。
Rにおける炭素数1〜5のハロゲン化アルキル基として、具体的には、上記低級アルキル基の水素原子の一部または全部が、ハロゲン原子で置換された基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。フッ素化アルキル基の場合、直鎖状または分岐鎖状のフッ素化アルキル基が好ましく、例えば、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロイソプロピル基、パーフルオロブチル基、パーフルオロイソブチル基、パーフルオロ−tert-ブチル基、パーフルオロペンチル基、パーフルオロイソペンチル基、パーフルオロネオペンチル基などが挙げられる。
Rは、水素原子、炭素数1〜5のアルキル基または炭素数1〜5のフッ素化アルキル基であることが好ましく、水素原子、メチル基またはトリフルオロメチル基であることが好ましく、水素原子またはメチル基であることがより好ましく、メチル基であることが特に好ましい。
前記式(a6−1)中、RおよびRにおけるアルキル基としては、直鎖状、分岐鎖状および環状のいずれであってもよい。
直鎖状または分岐鎖状のアルキル基としては、炭素数1〜8のアルキル基が好ましく、炭素数1〜5のアルキル基がより好ましく、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、2−メチル−2−ブチル基、3−メチル−2−ブチル基、1−ペンチル基、2−ペンチル基、3−ペンチル基、後述の分岐鎖状第3級アルキル基などが挙げられる。
環状のアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、1−メチル−1−シクロペンチル基、1−エチル−1−シクロペンチル基、シクロヘキシル基、1−メチル−1−シクロペンチル基、1−エチル−1−シクロペンチル基、1−メチル−1−シクロヘキシル基、1−エチル−1−シクロヘキシル基、1−メチル−1−シクロヘプチル基、1−エチル−1−シクロヘプチル基、1−メチル−1−シクロオクチル基、1−エチル−1−シクロオクチル基、ビシクロ[2.2.1]ヘプタ−2−イル基、1−アダマンチル基、2−アダマンチル基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基などが挙げられる。
およびRにおける直鎖状または分岐鎖状のアルキル基は、置換基として、環状のアルキル基を有していてもよい。また、RおよびRにおける環状のアルキル基は、置換基として、直鎖状または分岐鎖状のアルキル基、フッ素原子、炭素数1〜5のフッ素化アルキル基、酸素原子(=O)等を有していてもよい。かかる置換基としての、環状のアルキル基、直鎖状または分岐鎖状のアルキル基は、それぞれ上記と同様のものが挙げられる。
およびRにおけるアルキル基は、任意の位置に酸素原子を含んでいてもよい。アルキル基が酸素原子を含むとは、アルキル基の炭素鎖中に酸素原子(−O−)が導入されていることを示す。酸素原子を含むアルキル基としては、たとえば後述するアルコキシアルキル基等のアセタール型酸解離性溶解抑制基が挙げられる。
構成単位(a6)においては、RまたはRの少なくとも一方が酸解離性溶解抑制基であってもよい。
ここで「酸解離性溶解抑制基」は、レジスト組成物としてレジストパターンを形成する際、解離前はこの高分子化合物(A1)全体をアルカリ現像液に対して難溶とするアルカリ溶解抑制性を有するとともに、露光により(B)成分から発生した酸の作用により解離してこの高分子化合物(A1)全体のアルカリ現像液に対する溶解性を増大させるものである。
構成単位(a6)における酸解離性溶解抑制基としては、任意の位置に酸素原子を含んでいてもよいアルキル基に相当するものであれば特に制限はなく、従来、ポジ型の化学増幅型レジスト組成物の基材成分において提案されているもののなかから適宜選択して用いることができる。かかる酸解離性溶解抑制基としては、第3級アルキルエステル型酸解離性溶解抑制基(脂肪族分岐鎖状酸解離性溶解抑制基、脂肪族環式基を含有する酸解離性溶解抑制基)、アセタール型酸解離性溶解抑制基が挙げられる。これら酸解離性溶解抑制基としては、上記構成単位(a1)における酸解離性溶解抑制基と同様のものがそれぞれ挙げられる。
たとえば構成単位(a6)におけるRおよびRの少なくとも一方が第3級アルキル基である場合、該第3級アルキル基の第3級炭素原子が、スルファモイルオキシ基(−OSON−基)の末端の窒素原子に結合している。この第3級アルキル基においては、レジスト組成物としてレジストパターンを形成する際に、露光により(B)成分から発生した酸が作用すると、スルファモイルオキシ基(−OSON−基)の末端の窒素原子と第3級炭素原子との間で結合が切断される。
構成単位(a6)におけるRおよびRの少なくとも一方が当該アセタール型酸解離性溶解抑制基である場合、当該アセタール型酸解離性溶解抑制基は、スルファモイルオキシ基(−OSON−基)の末端の窒素原子と結合している。このアセタール型酸解離性溶解抑制基においては、レジスト組成物としてレジストパターンを形成する際に、露光により(B)成分から酸が発生すると、この酸が作用して窒素原子とアセタール型酸解離性溶解抑制基との間で結合が切断される。
およびRの両者が結合して形成するアルキレン基としては、直鎖状または分岐鎖状のアルキレン基が好ましく、直鎖状のアルキレン基がより好ましい。該アルキレン基の炭素数は1〜5であることが好ましく、例えばエタンジイル基、プロパン−1,3−ジイル基、ブタン−1,4−ジイル基などが挙げられる。
本発明においては、上記のなかでも、良好な形状のレジストパターンが形成されやすいことから、RおよびRの少なくとも一方(たとえばR)が、水素原子であることが好ましく、RおよびRの両方が水素原子であることがより好ましい。
前記式(a6−1)中、Wが表す任意の位置に酸素原子を有していてもよい環状のアルキレン基は、種々のリソグラフィー特性に優れることから、単環式基、多環式基のいずれであっても好ましい。なかでも、Tgが高くなることによりリソグラフィー特性が向上する点や、エッチング耐性がより向上する点から、多環式基であることがより好ましく、2〜4環式基であることが特に好ましい。
該アルキレン基の炭素数は3〜20であることが好ましく、5〜12であることがより好ましい。
該アルキレン基としては、例えばシクロプロパンジイル基、シクロブタ−1,2−ジイル基、シクロブタ−1,3−ジイル基、シクロペンタ−1,2−ジイル基、シクロペンタ−1,3,−ジイル基、シクロヘキサ−1,2−ジイル基、シクロヘキサ−1,3−ジイル基、シクロヘキサ−1,4−ジイル基、ビシクロ[2.2.1]ヘプタ−2,3−ジイル基、ビシクロ[2.2.1]ヘプタ−2,5−ジイル基、7−オキサビシクロ[2.2.1]ヘプタ−2,5−ジイル基、ビシクロ[2.2.1]ヘプタ−2,6−ジイル基、7−オキサビシクロ[2.2.1]ヘプタ−2,6−ジイル基、アダマンタ−1,3−ジイル基、アダマンタ−1,2−ジイル基などが挙げられる。
以下に、上記一般式(a6−1)で表される構成単位の具体例を示す。
以下の各式中、「Me」はメチル基を表す。
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
(A1)成分において、構成単位(a6)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A1)成分中、構成単位(a6)の割合は、(A1)成分を構成する全構成単位の合計に対し、1〜50モル%が好ましく、1〜40モル%がより好ましく、5〜40モル%がさらに好ましい。
構成単位(a6)の割合が上記範囲の下限値以上であると、レジストパターンの形成において、解像性の高いレジストパターンが形成されやすくなる。また、アルカリ現像液に対する溶解性が高まり、欠陥が低減した良好な形状のレジストパターンが形成されやすくなる。上限値以下であると、他の構成単位とのバランスをとることができる。
(その他構成単位)
(A1)成分は、本発明の効果を損なわない範囲で、上記構成単位(a1)、(a5)、(a6)以外の他の構成単位を含んでいてもよい。
かかる他の構成単位としては、ArFエキシマレーザー用、KrFエキシマレーザー用(好ましくはArFエキシマレーザー用)等のレジスト用樹脂に用いられるものとして従来から知られている多数のものが使用可能である。
かかる他の構成単位は、上述の構成単位(a1)、(a5)、(a6)を誘導する化合物と共重合可能な化合物から誘導される構成単位が好ましく、たとえば、ラクトン含有環式基を含むアクリル酸エステルから誘導される構成単位(a2)、極性基含有脂肪族炭化水素基を含むアクリル酸エステルから誘導される構成単位(a3)、酸非解離性の脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位(a4)、サルトン構造を側鎖に有するアクリル酸エステルから誘導される構成単位(a7)等が挙げられる。
・構成単位(a2)について
構成単位(a2)は、ラクトン含有環式基を含むアクリル酸エステルから誘導される構成単位である。
ここで、ラクトン含有環式基とは、−O−C(O)−構造を含むひとつの環(ラクトン環)を含有する環式基を示す。ラクトン環をひとつの目の環として数え、ラクトン環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。
構成単位(a2)のラクトン環式基は、(A1)成分をレジスト膜の形成に用いた場合に、レジスト膜の基板への密着性を高めたり、水を含有する現像液との親和性を高めたりする上で有効なものである。
構成単位(a2)としては、特に限定されることなく任意のものが使用可能である。
具体的には、ラクトン含有単環式基としては、4〜6員環ラクトンから水素原子を1つ除いた基、たとえばβ−プロピオノラクトンから水素原子を1つ除いた基、γ−ブチロラクトンから水素原子1つを除いた基、δ−バレロラクトンから水素原子を1つ除いた基が挙げられる。また、ラクトン含有多環式基としては、ラクトン環を有するビシクロアルカン、トリシクロアルカン、テトラシクロアルカンから水素原子一つを除いた基が挙げられる。
構成単位(a2)の例として、より具体的には、下記一般式(a2−1)〜(a2−5)で表される構成単位が挙げられる。
Figure 0005449993
[式中、Rは水素原子、低級アルキル基またはハロゲン化低級アルキル基であり;R’はそれぞれ独立に水素原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基または−COOR”であり、R”は水素原子またはアルキル基であり;R29は単結合または2価の連結基であり、s”は0または1〜2の整数であり;A”は酸素原子もしくは硫黄原子を含んでいてもよい炭素数1〜5のアルキレン基、酸素原子または硫黄原子であり;mは0または1の整数である。]
一般式(a2−1)〜(a2−5)におけるRは、前記構成単位(a1)におけるRと同様である。
R’の炭素数1〜5のアルキル基としては、例えばメチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基が挙げられる。
R’の炭素数1〜5のアルコキシ基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、tert−ブトキシ基が挙げられる。
R’は、工業上入手が容易であること等を考慮すると、水素原子が好ましい。
R”は、水素原子または炭素数1〜15の直鎖状、分岐鎖状もしくは環状のアルキル基であることが好ましい。
R”が直鎖状または分岐鎖状のアルキル基の場合は、炭素数1〜10であることが好ましく、炭素数1〜5であることがさらに好ましい。
R”が環状のアルキル基の場合は、炭素数3〜15であることが好ましく、炭素数4〜12であることがさらに好ましく、炭素数5〜10が最も好ましい。具体的には、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
A”としては、炭素数1〜5のアルキレン基または−O−が好ましく、炭素数1〜5のアルキレン基がより好ましく、メチレン基が最も好ましい。
29は単結合または2価の連結基である。2価の連結基としては、前記一般式(a1−0−2)中のYで説明した2価の連結基と同様であり、それらの中でも、アルキレン基、エステル結合(−C(=O)−O−)、もしくはそれらの組み合わせであることが好ましい。R29における2価の連結基としてのアルキレン基は、直鎖状または分岐鎖状のアルキレン基がより好ましい。具体的には、前記YのうちAにおける脂肪族炭化水素基で挙げた直鎖状のアルキレン基、分岐鎖状のアルキレン基と同様のものが挙げられる。
s”は1〜2の整数が好ましい。
以下に、前記一般式(a2−1)〜(a2−5)で表される構成単位の具体例をそれぞれ例示する。
以下の各式中、Rαは、水素原子、メチル基またはトリフルオロメチル基を示す。
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
Figure 0005449993
(A1)成分において、構成単位(a2)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
構成単位(a2)としては、前記一般式(a2−1)〜(a2−5)で表される構成単位からなる群から選択される少なくとも1種が好ましく、一般式(a2−1)〜(a2−3)で表される構成単位からなる群から選択される少なくとも1種がより好ましい。なかでも、化学式(a2−1−1)、(a2−1−2)、(a2−2−1)、(a2−2−7)、(a2−3−1)および(a2−3−5)で表される構成単位からなる群から選択される少なくとも1種を用いることが好ましい。
(A1)成分中の構成単位(a2)の割合は、(A1)成分を構成する全構成単位の合計に対して、5〜60モル%が好ましく、10〜50モル%がより好ましく、20〜50モル%がさらに好ましい。下限値以上とすることにより、構成単位(a2)を含有させることによる効果が充分に得られ、上限値以下とすることにより、他の構成単位とのバランスをとることができる。
・構成単位(a3)について
構成単位(a3)は、極性基含有脂肪族炭化水素基を含むアクリル酸エステルから誘導される構成単位である。
(A1)成分が構成単位(a3)を有することにより、(A)成分の親水性が高まり、現像液との親和性が高まって、露光部でのアルカリ溶解性が向上し、解像性の向上に寄与する。
極性基としては、水酸基、シアノ基、カルボキシ基、アルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基等が挙げられ、特に水酸基が好ましい。
脂肪族炭化水素基としては、炭素数1〜10の直鎖状または分岐鎖状の炭化水素基(好ましくはアルキレン基)や、環状の脂肪族炭化水素基(環式基)が挙げられる。該環式基としては、単環式基でも多環式基でもよく、例えばArFエキシマレーザー用レジスト組成物用の樹脂において、多数提案されているものの中から適宜選択して用いることができる。該環式基としては多環式基であることが好ましく、炭素数は7〜30であることがより好ましい。
その中でも、水酸基、シアノ基、カルボキシ基、またはアルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基を含有する脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位がより好ましい。該多環式基としては、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどから2個以上の水素原子を除いた基などを例示できる。具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから2個以上の水素原子を除いた基などが挙げられる。これらの多環式基の中でも、アダマンタンから2個以上の水素原子を除いた基、ノルボルナンから2個以上の水素原子を除いた基、テトラシクロドデカンから2個以上の水素原子を除いた基が工業上好ましい。
構成単位(a3)としては、極性基含有脂肪族炭化水素基における炭化水素基が炭素数1〜10の直鎖状または分岐鎖状の炭化水素基のときは、アクリル酸のヒドロキシエチルエステルから誘導される構成単位が好ましく、該炭化水素基が多環式基のときは、下記の式(a3−1)で表される構成単位、式(a3−2)で表される構成単位、式(a3−3)で表される構成単位が好ましいものとして挙げられる。
Figure 0005449993
(式中、Rは前記と同じであり、jは1〜3の整数であり、kは1〜3の整数であり、t’は1〜3の整数であり、lは1〜5の整数であり、sは1〜3の整数である。)
式(a3−1)中、jは1又は2であることが好ましく、1であることがさらに好ましい。jが2の場合、水酸基が、アダマンチル基の3位と5位に結合しているものが好ましい。jが1の場合、水酸基が、アダマンチル基の3位に結合しているものが好ましい。
jは1であることが好ましく、特に、水酸基が、アダマンチル基の3位に結合しているものが好ましい。
式(a3−2)中、kは1であることが好ましい。シアノ基は、ノルボルニル基の5位または6位に結合していることが好ましい。
式(a3−3)中、t’は1であることが好ましい。lは1であることが好ましい。sは1であることが好ましい。これらは、アクリル酸のカルボキシ基の末端に、2−ノルボルニル基または3−ノルボルニル基が結合していることが好ましい。フッ素化アルキルアルコールは、ノルボルニル基の5又は6位に結合していることが好ましい。
構成単位(a3)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A1)成分中、構成単位(a3)の割合は、当該(A1)成分を構成する全構成単位の合計に対し、5〜50モル%であることが好ましく、5〜40モル%がより好ましく、5〜25モル%がさらに好ましい。下限値以上とすることにより、構成単位(a3)を含有させることによる効果が充分に得られ、上限値以下とすることにより、他の構成単位とのバランスをとることができる。
・構成単位(a4)について
構成単位(a4)は、酸非解離性の脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位である。
構成単位(a4)において、該多環式基は、たとえば、前記の構成単位(a1)の場合に例示したものと同様のものを例示することができ、ArFエキシマレーザー用、KrFエキシマレーザー用(好ましくはArFエキシマレーザー用)等のレジスト組成物の樹脂成分に用いられるものとして従来から知られている多数のものが使用可能である。
特に、トリシクロデシル基、アダマンチル基、テトラシクロドデシル基、イソボルニル基、ノルボルニル基から選ばれる少なくとも1種であると、工業上入手し易いなどの点で好ましい。これらの多環式基は、炭素数1〜5の直鎖状又は分岐鎖状のアルキル基を置換基として有していてもよい。
構成単位(a4)として、具体的には、下記一般式(a4−1)〜(a4−5)で表される構造のものを例示することができる。
Figure 0005449993
(式中、Rは前記と同じである。)
構成単位(a4)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
かかる構成単位(a4)を(A1)成分に含有させる際には、(A1)成分を構成する全構成単位の合計に対して、構成単位(a4)を1〜30モル%含有させることが好ましく、10〜20モル%含有させることがより好ましい。
・構成単位(a7)について
構成単位(a7)は、サルトン構造を側鎖に有するアクリル酸エステルから誘導される構成単位である。構成単位(a7)を有することにより、解像性、レジストパターン形状等のリソグラフィー特性が向上する。具体的には、下記一般式(a7−1)で表される構成単位が挙げられる。
Figure 0005449993
[式中、Rは前記と同じであり、R’は直鎖状または分岐鎖状のアルキレン基であり、A’は酸素原子もしくは硫黄原子を含んでいてもよい炭素数1〜5のアルキレン基、酸素原子または硫黄原子である。n10は0〜2である。]
’における直鎖状または分岐鎖状のアルキレン基は、炭素数が1〜10であることが好ましく、1〜8がより好ましく、1〜5がさらに好ましく、1〜3が特に好ましく、1〜2が最も好ましい。
A’はメチレン基、酸素原子(−O−)または硫黄原子(−S−)であることが好ましい。
10は0又は1が好ましい。
構成単位(a7)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
構成単位(a7)を(A1)成分に含有させる場合、構成単位(a7)の割合は、(A1)成分を構成する全構成単位の合計に対して、1〜60モル%が好ましく、5〜55モル%がより好ましく、10〜50モル%がさらに好ましい。
本発明のポジ型レジスト組成物において、(A1)成分は、構成単位(a1)と構成単位(a5)と構成単位(a6)とを有する高分子化合物である。
かかる(A1)成分としては、たとえば、構成単位(a1)、(a5)および(a6)からなる共重合体等が例示できる。
本発明のポジ型レジスト組成物において、(A1)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明において、(A1)成分としては、特に下記の様な構成単位の組み合わせを含むものが好ましい。
Figure 0005449993
[式中、R、Q01、R、R22、h、R、R、Wはそれぞれ前記と同じである。複数のRはそれぞれ同じであっても異なっていてもよい。]
前記式(A1−11)中、Q01は、−Aaryl−X01−(式中、Aaryl、X01はそれぞれ前記と同じである。)、−C(=O)−O−X−(式中、Xは前記と同じである。)で表される基であることが好ましい。
は、フッ素化炭化水素基が好ましく、フッ素化アルキル基がより好ましく、炭素数1〜5のフッ素化アルキル基がさらに好ましい。
22は、直鎖状又は分岐鎖状のアルキル基が好ましい。
hは、1〜4が好ましい。
およびRの少なくとも一方が、水素原子であることが好ましく、RおよびRの両方が水素原子であることがより好ましい。
Wは、多環式基であることが好ましく、アダマンタ−1,3−ジイル基、アダマンタ−1,2−ジイル基であることがより好ましい。
前記式(A1−11)で表される高分子化合物を添加剤として用いる場合は、支持体上に塗布して形成されるレジスト膜の疎水性とアルカリ現像時親水性とが共に良好になる点から、構成単位(a5)と構成単位(a6)との比率(モル比)が、a5:a6=95:5〜70:30であることが好ましく、90:10〜75:25がより好ましい。なおかつ、当該高分子化合物を構成する全構成単位の合計に対し、構成単位(a5)の割合(モル%)が構成単位(a6)の割合(モル%)の2倍以上であることが好ましく、2.5倍以上であることがより好ましく、3倍以上であることがさらに好ましい。
(A1)成分の質量平均分子量(Mw)(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算基準)は、特に限定されるものではなく、2000〜100000が好ましく、3000〜100000がより好ましく、4000〜50000がさらに好ましく、5000〜50000が最も好ましい。この範囲の上限値以下であると、レジストとして用いるのに充分なレジスト溶剤への溶解性があり、この範囲の下限値以上であると、耐ドライエッチング性やレジストパターン断面形状が良好である。
また、分散度(Mw/Mn)は1.0〜5.0が好ましく、1.0〜3.0がより好ましく、1.2〜2.8が最も好ましい。なお、Mnは数平均分子量を示す。
(A1)成分は、各構成単位を誘導するモノマーを、例えばアゾビスイソブチロニトリル(AIBN)のようなラジカル重合開始剤を用いた公知のラジカル重合等によって重合させることによって得ることができる。
また、(A1)成分には、上記重合の際に、たとえばHS−CH−CH−CH−C(CF−OHのような連鎖移動剤を併用して用いることにより、末端に−C(CF−OH基を導入してもよい。このように、アルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基が導入された共重合体は、現像欠陥の低減やLER(ラインエッジラフネス:ライン側壁の不均一な凹凸)の低減に有効である。
構成単位(a5)を誘導するモノマーとしては、たとえば、塩基解離性基と、重合性基とが2価の連結基を介して結合した化合物が挙げられる。
「重合性基」とは、当該重合性基を有する化合物がラジカル重合等により重合することを可能とする基であり、たとえばエチレン性二重結合を有する基が挙げられる。エチレン性不飽和二重結合を有する基としては、たとえば、CH=CR−で表される基(式中、Rは前記と同じである。)が挙げられる。
2価の連結基としては、−Aaryl−X01−(式中、Aaryl、X01はそれぞれ前記と同じである。)、−C(=O)−O−X−(式中、Xは前記と同じである。)で表される基等が挙げられる。
前記一般式(a5−01)で表される構成単位を誘導するモノマーとして、たとえば前記一般式(a5−01−1)で表される構成単位を誘導するモノマーと、前記式(a5−01−2)で表される構成単位を誘導するモノマーは、それぞれ、下記一般式(a5−01−10)で表される含フッ素化合物、下記一般式(a5−01−20)で表される含フッ素化合物が挙げられる。
Figure 0005449993
[式中、R、X、Aaryl、X01およびRはそれぞれ前記と同じである。]
式(a5−01−10)または(a5−01−20)で表される含フッ素化合物(以下「含フッ素化合物(A0)」という。)は、たとえば、下記一般式(a0−1−0)または(a0−2−0)で表される化合物(以下まとめて「化合物(V−1)」という。)のカルボキシ基にR[Rは前記と同じである。]を導入する(カルボキシ基末端の水素原子をRで置換する)ことにより製造できる。
の導入は、従来公知の方法を利用して行うことができる。たとえば、化合物(V−1)と、下記一般式(V−2)で表される化合物(V−2)とを反応させることにより、含フッ素化合物(A0)を製造することができる。
Figure 0005449993
[式中、R、X、Aaryl、X01、およびRはそれぞれ前記と同じである。]
化合物(V−1)と化合物(V−2)とを反応させる方法としては、特に限定されないが、たとえば、反応溶媒中、塩基の存在下で、化合物(V−1)および化合物(V−2)を接触させる方法が挙げられる。
化合物(V−1)、化合物(V−2)としては、市販のものを用いてもよく、合成したものを用いてもよい。
化合物(V−1)としては、たとえば、カルボキシアルキル(メタ)アクリレート、こはく酸モノ((メタ)アクリロイルオキシアルキル)等のアクリル酸エステルから誘導される低分子化合物;アクリル酸エステルから誘導される構成単位を有する高分子化合物等を用いることができる。
化合物(V−2)としては、たとえばフッ素化アルキルアルコール等を用いることができる。
反応溶媒としては、原料である化合物(V−1)および化合物(V−2)を溶解できるものであればよく、具体的には、テトラヒドロフラン(THF)、アセトン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルホキシド(DMSO)、アセトニトリル等が挙げられる。
塩基としては、たとえばトリエチルアミン、4−ジメチルアミノピリジン(DMAP)、ピリジン等の有機塩基;水素化ナトリウム、KCO、CsCO等の無機塩基等が挙げられる。
縮合剤としては、例えばエチルジイソプロピルアミノカルボジイミド(EDCI)塩酸塩、ジシクロヘキシルカルボキシイミド(DCC)、ジイソプロピルカルボジイミド、カルボジイミダゾール等のカルボジイミド試薬やテトラエチルピロホスフェイト、ベンゾトリアゾール−N−ヒドロキシトリスジメチルアミノホスホニウムヘキサフルオロリン化物塩(Bop試薬)等が挙げられる。
また、必要に応じて酸を用いてもよい。酸としては、脱水縮合等で通常用いられるものを使用することができ、具体的には塩酸、硫酸、リン酸等の無機酸類や、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸等の有機酸類が挙げられる。これらは、単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
化合物(V−2)の添加量は、化合物(V−1)に対し、およそ1〜3当量が好ましく、1〜2当量がより好ましい。
反応温度は、−20〜40℃が好ましく、0〜30℃がより好ましい。
反応時間は、化合物(V−1)および化合物(V−2)の反応性や反応温度等によっても異なるが、通常、30〜480分間が好ましく、60〜360分間がより好ましい。
構成単位(a6)を誘導するモノマーとしては、たとえば、下記一般式(I)で表される化合物(以下「化合物(I)」という。)が挙げられる。
Figure 0005449993
[式(I)中、R、R、R、Wは、それぞれ、前記式(a6−1)におけるR、R、R、Wと同じである。]
化合物(I)の製造方法は特に限定されないが、好ましい方法として、例えば、
一般式 XSONR ・・・(II)
[式(II)中、Xはフッ素原子、塩素原子、臭素原子又はヨウ素原子を表し、RおよびRはそれぞれ前記と同じである。]
で表される化合物を含有する反応系に、下記一般式(III)で表されるアルコール誘導体を添加して化合物(I)を得る方法が挙げられる。
Figure 0005449993
[式(III)中、R、Wは前記と同じである。]
式(II)中のR、Rは、それぞれ前記式(a6−1)におけるR、Rと同じである。
式(III)中のR、Wは、前記式(a6−1)におけるR、Wと同じである。
化合物(I)の製造方法として、具体例を挙げると、例えば3−ヒドロキシアダマンタン−1−イルアクリレートと、ClSONHとを反応させることにより、3−スルファモイルオキシアダマンタン−1−イルアクリレートを製造することができる。
上記のようにして得られる化合物の構造は、H−核磁気共鳴(NMR)スペクトル法、13C−NMRスペクトル法、19F−NMRスペクトル法、赤外線吸収(IR)スペクトル法、質量分析(MS)法、元素分析法、X線結晶回折法等の一般的な有機分析法により確認できる。
本発明において、(A1)成分をポジ型レジスト組成物のベース樹脂として用いる場合、(A1)成分は単独で用いてもよく、(A1)成分と、その他の酸の作用によりアルカリ現像液に対する溶解性が増大する樹脂成分(以下「(A2)成分」という。)若しくは低分子化合物成分又はこれらの混合物とを組み合わせて用いてもよい。
ベース樹脂として(A1)成分と(A2)成分とを併用する場合、(A1)成分と(A2)成分との混合割合は、質量比で(A1)/(A2)=99/1〜1/99が好ましく、95/5〜5/95がより好ましく、90/10〜10/90がさらに好ましい。(A2)成分に対する(A1)成分の割合の下限値以上であると、レジストパターン形成において、より高い解像性が得られ、微細な寸法のレジストパターンが形成でき、上限値以下であると、リソグラフィー特性がより向上する。
ベース樹脂として(A2)成分を用い、(A1)成分をベース樹脂以外の配合成分(添加剤)として用いる場合、本発明のポジ型レジスト組成物における(A1)成分の含有量は、(A2)成分100質量部に対し、0.1〜50質量部が好ましく、0.1〜40質量部がより好ましく、0.3〜30質量部が特に好ましく、0.5〜15質量部が最も好ましい。上記範囲の下限値以上とすることで、当該ポジ型レジスト組成物を用いて形成されるレジスト膜の、浸漬露光時には疎水性であって、アルカリ現像処理により親水性となる特性が向上する。上限値以下であると、リソグラフィー特性が向上する。
(A1)成分を添加剤として用いる場合、かかる(A1)成分は、液浸露光用のレジスト組成物の添加剤として好適に用いることができる。
[(A2)成分]
(A2)成分は、前記(A1)成分に該当しない、酸の作用によりアルカリ現像液に対する溶解性が増大する樹脂成分である。
(A2)成分としては、化学増幅型ポジ型レジスト組成物用の樹脂成分として従来から知られている多数のもののなかから任意に選択して用いることができる。
(A2)成分として、具体的には、上述した酸解離性溶解抑制基を含む構成単位(a1)(好ましくは、酸解離性溶解抑制基を含むアクリル酸エステルから誘導される構成単位)を有する高分子化合物が好ましい。
また、(A2)成分は、構成単位(a1)に加えて、さらに、上述したラクトン含有環式基を含むアクリル酸エステルから誘導される構成単位(a2)を有するものが好ましい。
また、(A2)成分は、構成単位(a1)に加えて、または構成単位(a1)および(a2)に加えて、さらに、上述した極性基含有脂肪族炭化水素基を含むアクリル酸エステルから誘導される構成単位(a3)を有するものが好ましい。
また、(A2)成分は、構成単位(a1)に加えて、上記構成単位(a2)、(a3)以外の他の構成単位、たとえば上述した構成単位(a4)、構成単位(a7)等を有していてもよい。
かかる(A2)成分としては、たとえば、構成単位(a1)、(a2)および(a3)からなる共重合体;構成単位(a1)、(a2)、(a3)および(a4)からなる共重合体等が例示できる。
本発明のポジ型レジスト組成物において、(A2)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明において、(A2)成分としては、特に下記の様な構成単位の組み合わせを含むものが好ましい。
Figure 0005449993
[式中、R、R21はそれぞれ前記と同じである。複数のRはそれぞれ同じであっても異なっていてもよい。]
式(A2−1)中、R21の低級アルキル基は、Rの低級アルキル基と同様であり、メチル基またはエチル基が好ましく、メチル基が最も好ましい。
Figure 0005449993
[式中、R、R22、hはそれぞれ前記と同じである。複数のRはそれぞれ同じであっても異なっていてもよい。]
式(A2−2)中、R22の低級アルキル基は、Rの低級アルキル基と同様であり、メチル基またはエチル基が好ましく、エチル基が最も好ましい。
hは、1又は2であることが好ましく、2であることが最も好ましい。
(A2)成分の質量平均分子量(Mw)(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算基準)は、特に限定されるものではないが、1000〜50000が好ましく、1500〜30000がより好ましく、2500〜20000が最も好ましい。この範囲の上限値以下であると、レジストとして用いるのに充分なレジスト溶剤への溶解性があり、この範囲の下限値以上であると、耐ドライエッチング性やレジストパターン断面形状が良好である。
また(A2)成分の分散度(Mw/Mn)は1.0〜5.0が好ましく、1.0〜3.0がより好ましく、1.2〜2.5が最も好ましい。
[低分子化合物成分]
低分子化合物成分としては、たとえば、分子量が500以上4000未満であって、上述の(A1)成分の説明で例示したような酸解離性溶解抑制基と親水性基とを有する低分子化合物が挙げられる。当該低分子化合物として具体的には、複数のフェノール骨格を有する化合物における水酸基の水素原子の一部が上記酸解離性溶解抑制基で置換されたもの等が挙げられる。
本発明のポジ型レジスト組成物において、(A)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明のポジ型レジスト組成物中、(A)成分をベース樹脂として用いる場合、(A)成分の含有量は、形成しようとするレジスト膜厚等に応じて調整すればよい。
<(B)成分>
本発明において、(B)成分は、特に限定されず、これまで化学増幅型レジスト用の酸発生剤として提案されているものを使用することができる。
このような酸発生剤としては、これまで、ヨードニウム塩やスルホニウム塩などのオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤、ビスアルキル又はビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類などのジアゾメタン系酸発生剤、ニトロベンジルスルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤など多種のものが知られている。
オニウム塩系酸発生剤としては、例えば下記一般式(b−1)又は(b−2)で表される化合物を用いることができる。
Figure 0005449993
[式中、R”〜R”,R”〜R”は、それぞれ独立に、アリール基またはアルキル基を表し;式(b−1)におけるR”〜R”のうち、いずれか2つが相互に結合して式中のイオウ原子と共に環を形成してもよく;R”は、置換基を有していてもよいアルキル基、ハロゲン化アルキル基、アリール基、またはアルケニル基を表し;R”〜R”のうち少なくとも1つはアリール基を表し、R”〜R”のうち少なくとも1つはアリール基を表す。]
式(b−1)中、R”〜R”は、それぞれ独立に、アリール基またはアルキル基を表す。なお、式(b−1)におけるR”〜R”のうち、いずれか2つが相互に結合して式中のイオウ原子と共に環を形成してもよい。
また、R”〜R”のうち、少なくとも1つはアリール基を表す。R”〜R”のうち、2以上がアリール基であることが好ましく、R”〜R”のすべてがアリール基であることが最も好ましい。
”〜R”のアリール基としては、特に制限はなく、例えば、炭素数6〜20のアリール基であって、該アリール基は、その水素原子の一部または全部がアルキル基、アルコキシ基、ハロゲン原子、水酸基等で置換されていてもよく、置換されていなくてもよい。
アリール基としては、安価に合成可能なことから、炭素数6〜10のアリール基が好ましい。具体的には、たとえばフェニル基、ナフチル基が挙げられる。
前記アリール基の水素原子が置換されていてもよいアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基であることが最も好ましい。
前記アリール基の水素原子が置換されていてもよいアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、tert−ブトキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記アリール基の水素原子が置換されていてもよいハロゲン原子としては、フッ素原子が好ましい。
”〜R”のアルキル基としては、特に制限はなく、例えば炭素数1〜10の直鎖状、分岐鎖状または環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1〜5であることが好ましい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デシル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。
式(b−1)におけるR”〜R”のうち、いずれか2つが相互に結合して式中のイオウ原子と共に環を形成する場合、イオウ原子を含めて3〜10員環を形成していることが好ましく、5〜7員環を形成していることが特に好ましい。
式(b−1)におけるR”〜R”のうち、いずれか2つが相互に結合して式中のイオウ原子と共に環を形成する場合、残りの1つは、アリール基であることが好ましい。前記アリール基は、前記R”〜R”のアリール基と同様のものが挙げられる。
式(b−1)で表される化合物のカチオン部の好ましいものとしては、トリフェニルメタン骨格を有する、下記式(I−1−1)〜(I−1−8)で表されるカチオンが挙げられる。
Figure 0005449993
また、オニウム塩系酸発生剤のカチオン部としては、下記式(I−1−9)〜(I−1−10)で表されるカチオンも好ましい。
下記式(I−1−9)〜(I−1−10)中、R27、R39は、それぞれ独立に、置換基を有していてもよいフェニル基、ナフチル基又は炭素数1〜5のアルキル基、アルコキシ基、水酸基である。
uは1〜3の整数であり、1または2が最も好ましい。
Figure 0005449993
”は、置換基を有していてもよいアルキル基、ハロゲン化アルキル基、アリール基、またはアルケニル基を表す。
”におけるアルキル基は、直鎖状、分岐鎖状、環状のいずれであってもよい。
前記直鎖状または分岐鎖状のアルキル基は、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、炭素数4〜15であることが好ましく、炭素数4〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
”におけるハロゲン化アルキル基としては、前記直鎖状、分岐鎖状若しくは環状のアルキル基の水素原子の一部または全部がハロゲン原子で置換された基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
ハロゲン化アルキル基においては、当該ハロゲン化アルキル基に含まれるハロゲン原子および水素原子の合計数に対するハロゲン原子の数の割合(ハロゲン化率(%))が、10〜100%であることが好ましく、50〜100%であることが好ましく、100%が最も好ましい。該ハロゲン化率が高いほど、酸の強度が強くなるため好ましい。
前記R”におけるアリール基は、炭素数6〜20のアリール基であることが好ましい。
前記R”におけるアルケニル基は、炭素数2〜10のアルケニル基であることが好ましい。
前記R”において、「置換基を有していてもよい」とは、前記直鎖状、分岐鎖状若しくは環状のアルキル基、ハロゲン化アルキル基、アリール基、またはアルケニル基における水素原子の一部または全部が置換基(水素原子以外の他の原子または基)で置換されていてもよいことを意味する。
”における置換基の数は、1つであってもよく、2つ以上であってもよい。
前記置換基としては、例えば、ハロゲン原子、ヘテロ原子、アルキル基、式:X−Q−[式中、Qは酸素原子を含む2価の連結基であり、Xは置換基を有していてもよい炭素数3〜30の炭化水素基である。]で表される基等が挙げられる。
前記ハロゲン原子、アルキル基としては、R”において、ハロゲン化アルキル基におけるハロゲン原子、アルキル基として挙げたものと同様のものが挙げられる。
前記ヘテロ原子としては、酸素原子、窒素原子、硫黄原子等が挙げられる。
−Q−で表される基において、Qは、酸素原子を含む2価の連結基である。
は、酸素原子以外の原子を含有してもよい。酸素原子以外の原子としては、たとえば炭素原子、水素原子、酸素原子、硫黄原子、窒素原子等が挙げられる。
酸素原子を含む2価の連結基としては、たとえば、酸素原子(エーテル結合;−O−)、エステル結合(−C(=O)−O−)、アミド結合(−C(=O)−NH−)、カルボニル基(−C(=O)−)、カーボネート結合(−O−C(=O)−O−)等の非炭化水素系の酸素原子含有連結基;該非炭化水素系の酸素原子含有連結基とアルキレン基との組み合わせ等が挙げられる。
該組み合わせとしては、たとえば、−R91−O−、−R92−O−C(=O)−、−C(=O)−O−R93−O−C(=O)−(式中、R91〜R93はそれぞれ独立にアルキレン基である。)等が挙げられる。
91〜R93におけるアルキレン基としては、直鎖状または分岐鎖状のアルキレン基が好ましく、該アルキレン基の炭素数は、1〜12が好ましく、1〜5がより好ましく、1〜3が特に好ましい。
該アルキレン基として、具体的には、たとえばメチレン基[−CH−];−CH(CH)−、−CH(CHCH)−、−C(CH−、−C(CH)(CHCH)−、−C(CH)(CHCHCH)−、−C(CHCH−等のアルキルメチレン基;エチレン基[−CHCH−];−CH(CH)CH−、−CH(CH)CH(CH)−、−C(CHCH−、−CH(CHCH)CH−等のアルキルエチレン基;トリメチレン基(n−プロピレン基)[−CHCHCH−];−CH(CH)CHCH−、−CHCH(CH)CH−等のアルキルトリメチレン基;テトラメチレン基[−CHCHCHCH−];−CH(CH)CHCHCH−、−CHCH(CH)CHCH−等のアルキルテトラメチレン基;ペンタメチレン基[−CHCHCHCHCH−]等が挙げられる。
としては、エステル結合またはエーテル結合を含む2価の連結基が好ましく、なかでも、−R91−O−、−R92−O−C(=O)−または−C(=O)−O−R93−O−C(=O)−が好ましい。
−Q−で表される基において、Xの炭化水素基は、芳香族炭化水素基であってもよく、脂肪族炭化水素基であってもよい。
芳香族炭化水素基は、芳香環を有する炭化水素基である。該芳香族炭化水素基の炭素数は3〜30であることが好ましく、5〜30であることがより好ましく、5〜20がさらに好ましく、6〜15が特に好ましく、6〜12が最も好ましい。ただし、該炭素数には、置換基における炭素数を含まないものとする。
芳香族炭化水素基として、具体的には、フェニル基、ビフェニル(biphenyl)基、フルオレニル(fluorenyl)基、ナフチル基、アントリル(anthryl)基、フェナントリル基等の、芳香族炭化水素環から水素原子を1つ除いたアリール基、ベンジル基、フェネチル基、1−ナフチルメチル基、2−ナフチルメチル基、1−ナフチルエチル基、2−ナフチルエチル基等のアリールアルキル基等が挙げられる。前記アリールアルキル基中のアルキル鎖の炭素数は、1〜4であることが好ましく、1〜2であることがより好ましく、1であることが特に好ましい。
該芳香族炭化水素基は、置換基を有していてもよい。たとえば当該芳香族炭化水素基が有する芳香環を構成する炭素原子の一部がヘテロ原子で置換されていてもよく、当該芳香族炭化水素基が有する芳香環に結合した水素原子が置換基で置換されていてもよい。
前者の例としては、前記アリール基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換されたヘテロアリール基、前記アリールアルキル基中の芳香族炭化水素環を構成する炭素原子の一部が前記ヘテロ原子で置換されたヘテロアリールアルキル基等が挙げられる。
後者の例における芳香族炭化水素基の置換基としては、たとえば、アルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、酸素原子(=O)等が挙げられる。
前記芳香族炭化水素基の置換基としてのアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基であることが最も好ましい。
前記芳香族炭化水素基の置換基としてのアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、tert−ブトキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記芳香族炭化水素基の置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
前記芳香族炭化水素基の置換基としてのハロゲン化アルキル基としては、前記アルキル基の水素原子の一部または全部が前記ハロゲン原子で置換された基が挙げられる。
における脂肪族炭化水素基は、飽和脂肪族炭化水素基であってもよく、不飽和脂肪族炭化水素基であってもよい。また、脂肪族炭化水素基は、直鎖状、分岐鎖状、環状のいずれであってもよい。
において、脂肪族炭化水素基は、当該脂肪族炭化水素基を構成する炭素原子の一部がヘテロ原子を含む置換基で置換されていてもよく、当該脂肪族炭化水素基を構成する水素原子の一部または全部がヘテロ原子を含む置換基で置換されていてもよい。
における「ヘテロ原子」としては、炭素原子および水素原子以外の原子であれば特に限定されず、たとえばハロゲン原子、酸素原子、硫黄原子、窒素原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子、臭素原子等が挙げられる。
ヘテロ原子を含む置換基は、前記ヘテロ原子のみからなるものであってもよく、前記ヘテロ原子以外の基または原子を含む基であってもよい。
炭素原子の一部を置換する置換基として、具体的には、たとえば−O−、−C(=O)−O−、−C(=O)−、−O−C(=O)−O−、−C(=O)−NH−、−NH−(Hがアルキル基、アシル基等の置換基で置換されていてもよい)、−S−、−S(=O)−、−S(=O)−O−等が挙げられる。脂肪族炭化水素基が環状である場合、これらの置換基を環構造中に含んでいてもよい。
水素原子の一部または全部を置換する置換基として、具体的には、たとえばアルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、酸素原子(=O)、シアノ基等が挙げられる。
前記アルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、tert−ブトキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
前記ハロゲン化アルキル基としては、炭素数1〜5のアルキル基、たとえばメチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基等のアルキル基の水素原子の一部または全部が前記ハロゲン原子で置換された基が挙げられる。
脂肪族炭化水素基としては、直鎖状もしくは分岐鎖状の飽和炭化水素基、直鎖状もしくは分岐鎖状の1価の不飽和炭化水素基、または環状の脂肪族炭化水素基(脂肪族環式基)が好ましい。
直鎖状の飽和炭化水素基(アルキル基)としては、炭素数が1〜20であることが好ましく、1〜15であることがより好ましく、1〜10が最も好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、イソヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基等が挙げられる。
分岐鎖状の飽和炭化水素基(アルキル基)としては、炭素数が3〜20であることが好ましく、3〜15であることがより好ましく、3〜10が最も好ましい。具体的には、例えば、1−メチルエチル基、1−メチルプロピル基、2−メチルプロピル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1−エチルブチル基、2−エチルブチル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基などが挙げられる。
不飽和炭化水素基としては、炭素数が2〜10であることが好ましく、2〜5が好ましく、2〜4が好ましく、3が特に好ましい。直鎖状の1価の不飽和炭化水素基としては、例えば、ビニル基、プロペニル基(アリル基)、ブチニル基などが挙げられる。分岐鎖状の1価の不飽和炭化水素基としては、例えば、1−メチルプロペニル基、2−メチルプロペニル基などが挙げられる。
不飽和炭化水素基としては、上記の中でも、特にプロペニル基が好ましい。
脂肪族環式基としては、単環式基であってもよく、多環式基であってもよい。その炭素数は3〜30であることが好ましく、5〜30であることがより好ましく、5〜20がさらに好ましく、6〜15が特に好ましく、6〜12が最も好ましい。
具体的には、たとえば、モノシクロアルカンから1個以上の水素原子を除いた基;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。より具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンから1個以上の水素原子を除いた基;アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
脂肪族環式基が、その環構造中にヘテロ原子を含む置換基を含まない場合は、脂肪族環式基としては、多環式基が好ましく、ポリシクロアルカンから1個以上の水素原子を除いた基が好ましく、アダマンタンから1個以上の水素原子を除いた基が最も好ましい。
脂肪族環式基が、その環構造中にヘテロ原子を含む置換基を含むものである場合、該ヘテロ原子を含む置換基としては、−O−、−C(=O)−O−、−S−、−S(=O)−、−S(=O)−O−が好ましい。かかる脂肪族環式基の具体例としては、たとえば下記式(L1)〜(L5)、(S1)〜(S4)で表される基等が挙げられる。
Figure 0005449993
[式中、Q”は炭素数1〜5のアルキレン基、−O−、−S−、−O−R94−または−S−R95−であり、R94およびR95はそれぞれ独立に炭素数1〜5のアルキレン基であり、mは0または1の整数である。]
式中、Q”、R94およびR95におけるアルキレン基としては、それぞれ、前記R91〜R93におけるアルキレン基と同様のものが挙げられる。
これらの脂肪族環式基は、その環構造を構成する炭素原子に結合した水素原子の一部が置換基で置換されていてもよい。該置換基としては、たとえばアルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、酸素原子(=O)等が挙げられる。
前記アルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基であることが特に好ましい。
前記アルコキシ基、ハロゲン原子はそれぞれ前記水素原子の一部または全部を置換する置換基として挙げたものと同様のものが挙げられる。
上記のなかでも、かかるXとしては、置換基を有していてもよい環式基であることが好ましい。該環式基は、置換基を有していてもよい芳香族炭化水素基であってもよく、置換基を有していてもよい脂肪族環式基であってもよく、置換基を有していてもよい脂肪族環式基であることが好ましい。
前記芳香族炭化水素基としては、置換基を有していてもよいナフチル基、または置換基を有していてもよいフェニル基が好ましい。
置換基を有していてもよい脂肪族環式基としては、置換基を有していてもよい多環式の脂肪族環式基が好ましい。該多環式の脂肪族環式基としては、前記ポリシクロアルカンから1個以上の水素原子を除いた基、前記(L2)〜(L5)、(S3)〜(S4)で表される基等が好ましい。
また、本発明において、Xは、リソグラフィー特性、レジストパターン形状がより向上することから、極性部位を有するものが特に好ましい。
極性部位を有するものとしては、たとえば、上述したXの脂肪族環式基を構成する炭素原子の一部がヘテロ原子を含む置換基、すなわち、−O−、−C(=O)−O−、−C(=O)−、−O−C(=O)−O−、−C(=O)−NH−、−NH−(Hがアルキル基、アシル基等の置換基で置換されていてもよい)、−S−、−S(=O)−、−S(=O)−O−等、で置換されたものが挙げられる。
本発明において、R”は、置換基としてX−Q−を有することが好ましい。この場合、R”としては、X−Q−Y−[式中、QおよびXは前記と同じであり、Yは置換基を有していてもよい炭素数1〜4のアルキレン基または置換基を有していてもよい炭素数1〜4のフッ素化アルキレン基である。]で表される基が好ましい。
−Q−Y−で表される基において、Yのアルキレン基としては、前記Qで挙げたアルキレン基のうち炭素数1〜4のものと同様のものが挙げられる。
のフッ素化アルキレン基としては、該アルキレン基の水素原子の一部または全部がフッ素原子で置換された基が挙げられる。
として、具体的には、−CF−、−CFCF−、−CFCFCF−、−CF(CF)CF−、−CF(CFCF)−、−C(CF−、−CFCFCFCF−、−CF(CF)CFCF−、−CFCF(CF)CF−、−CF(CF)CF(CF)−、−C(CFCF−、−CF(CFCF)CF−、−CF(CFCFCF)−、−C(CF)(CFCF)−;−CHF−、−CHCF−、−CHCHCF−、−CHCFCF−、−CH(CF)CH−、−CH(CFCF)−、−C(CH)(CF)−、−CHCHCHCF−、−CHCHCFCF−、−CH(CF)CHCH−、−CHCH(CF)CH−、−CH(CF)CH(CF)−、−C(CFCH−;−CH−、−CHCH−、−CHCHCH−、−CH(CH)CH−、−CH(CHCH)−、−C(CH−、−CHCHCHCH−、−CH(CH)CHCH−、−CHCH(CH)CH−、−CH(CH)CH(CH)−、−C(CHCH−、−CH(CHCH)CH−、−CH(CHCHCH)−、−C(CH)(CHCH)−等が挙げられる。
としては、フッ素化アルキレン基が好ましく、特に、隣接する硫黄原子に結合する炭素原子がフッ素化されているフッ素化アルキレン基が好ましい。このようなフッ素化アルキレン基としては、−CF−、−CFCF−、−CFCFCF−、−CF(CF)CF−、−CFCFCFCF−、−CF(CF)CFCF−、−CFCF(CF)CF−、−CF(CF)CF(CF)−、−C(CFCF−、−CF(CFCF)CF−;−CHCF−、−CHCHCF−、−CHCFCF−;−CHCHCHCF−、−CHCHCFCF−、−CHCFCFCF−等を挙げることができる。
これらの中でも、−CF−、−CFCF−、−CFCFCF−、又はCHCFCF−が好ましく、−CF−、−CFCF−又は−CFCFCF−がより好ましく、−CF−が特に好ましい。
前記アルキレン基またはフッ素化アルキレン基は、置換基を有していてもよい。アルキレン基またはフッ素化アルキレン基が「置換基を有する」とは、当該アルキレン基またはフッ素化アルキレン基における水素原子またはフッ素原子の一部または全部が、水素原子およびフッ素原子以外の原子または基で置換されていることを意味する。
アルキレン基またはフッ素化アルキレン基が有していてもよい置換基としては、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、水酸基等が挙げられる。
前記式(b−2)中、R”〜R”は、それぞれ独立にアリール基またはアルキル基を表す。R”〜R”のうち、少なくとも1つはアリール基を表す。R”〜R”のすべてが、アリール基であることが好ましい。
”〜R”のアリール基としては、R”〜R”のアリール基と同様のものが挙げられる。
”〜R”のアルキル基としては、R”〜R”のアルキル基と同様のものが挙げられる。
これらの中で、R”〜R”は、すべてフェニル基であることが最も好ましい。
式(b−2)中のR”としては、上記式(b−1)におけるR”と同様のものが挙げられる。
式(b−1)、(b−2)で表されるオニウム塩系酸発生剤の具体例としては、ジフェニルヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ(4−メチルフェニル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジメチル(4−ヒドロキシナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、モノフェニルジメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;ジフェニルモノメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4−メチルフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4−メトキシフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ(4−tert−ブチル)フェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジフェニル(1−(4−メトキシ)ナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジ(1−ナフチル)フェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−フェニルテトラヒドロチオフェニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−(4−メチルフェニル)テトラヒドロチオフェニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−(4−メトキシナフタレン−1−イル)テトラヒドロチオフェニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−(4−エトキシナフタレン−1−イル)テトラヒドロチオフェニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−フェニルテトラヒドロチオピラニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−(4−ヒドロキシフェニル)テトラヒドロチオピラニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオピラニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート;1−(4−メチルフェニル)テトラヒドロチオピラニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート等が挙げられる。
また、これらのオニウム塩のアニオン部を、メタンスルホネート、n−プロパンスルホネート、n−ブタンスルホネート、n−オクタンスルホネート、1−アダマンタンスルホネート、2−ノルボルナンスルホネート等のアルキルスルホネート;d−カンファー−10−スルホネート、ベンゼンスルホネート、パーフルオロベンゼンスルホネート、p−トルエンスルホネート等のスルホネートにそれぞれ置き換えたオニウム塩も用いることができる。
また、これらのオニウム塩のアニオン部を、下記式(b1)〜(b8)のいずれかで表されるアニオンに置き換えたオニウム塩も用いることができる。
Figure 0005449993
[式中、pは1〜3の整数であり、q1〜q2はそれぞれ独立に1〜5の整数であり、q3は1〜12の整数であり、r1〜r2はそれぞれ独立に0〜3の整数であり、iは1〜20の整数であり、R50は置換基であり、m1〜m5はそれぞれ独立に0または1であり、v0〜v5はそれぞれ独立に0〜3の整数であり、w1〜w5はそれぞれ独立に0〜3の整数であり、Q”は前記と同じである。]
50の置換基としては、前記Xにおいて、脂肪族炭化水素基が有していてもよい置換基、芳香族炭化水素基が有していてもよい置換基として挙げたものと同様のものが挙げられる。
50に付された符号(r1〜r2、w1〜w5)が2以上の整数である場合、当該化合物中の複数のR50はそれぞれ同じであってもよく、異なっていてもよい。
また、オニウム塩系酸発生剤としては、前記一般式(b−1)又は(b−2)において、アニオン部(R”SO )を下記一般式(b−3)又は(b−4)で表されるアニオンに置き換えたオニウム塩系酸発生剤も用いることができる(カチオン部は前記式(b−1)又は(b−2)におけるカチオン部と同様)。
Figure 0005449993
[式中、X”は、少なくとも1つの水素原子がフッ素原子で置換された炭素数2〜6のアルキレン基を表し;Y”、Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された炭素数1〜10のアルキル基を表す。]
X”は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐鎖状のアルキレン基であり、該アルキレン基の炭素数は2〜6であり、好ましくは炭素数3〜5、最も好ましくは炭素数3である。
Y”、Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐鎖状のアルキル基であり、該アルキル基の炭素数は1〜10であり、好ましくは炭素数1〜7、より好ましくは炭素数1〜3である。
X”のアルキレン基の炭素数またはY”、Z”のアルキル基の炭素数は、上記炭素数の範囲内において、レジスト溶媒への溶解性も良好である等の理由により、小さいほど好ましい。
また、X”のアルキレン基またはY”、Z”のアルキル基において、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また200nm以下の高エネルギー光や電子線に対する透明性が向上するので好ましい。
該アルキレン基またはアルキル基中のフッ素原子の割合、すなわちフッ素化率は、好ましくは70〜100%、さらに好ましくは90〜100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキレン基またはパーフルオロアルキル基である。
また、オニウム塩系酸発生剤としては、前記一般式(b−1)又は(b−2)において、アニオン部(R”SO )を、R−COO[式中、Rはアルキル基又はフッ素化アルキル基である。]に置き換えたオニウム塩系酸発生剤も用いることができる(カチオン部は前記式(b−1)又は(b−2)におけるカチオン部と同様)。
前記式中、Rとしては、前記R”と同様のものが挙げられる。
上記「R−COO」の具体例としては、たとえばトリフルオロ酢酸イオン、酢酸イオン、1−アダマンタンカルボン酸イオン等が挙げられる。
また、下記一般式(b−5)または(b−6)で表されるカチオン部を有するスルホニウム塩をオニウム塩系酸発生剤として用いることもできる。
Figure 0005449993
[式中、R81〜R86はそれぞれ独立してアルキル基、アセチル基、アルコキシ基、カルボキシ基、水酸基またはヒドロキシアルキル基であり;n〜nはそれぞれ独立して0〜3の整数であり、nは0〜2の整数である。]
81〜R86において、アルキル基は、炭素数1〜5のアルキル基が好ましく、なかでも直鎖または分岐鎖状のアルキル基がより好ましく、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、又はtert−ブチル基であることが特に好ましい。
アルコキシ基は、炭素数1〜5のアルコキシ基が好ましく、なかでも直鎖状または分岐鎖状のアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。
ヒドロキシアルキル基は、上記アルキル基中の一個又は複数個の水素原子がヒドロキシ基に置換した基が好ましく、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。
81〜R86に付された符号n〜nが2以上の整数である場合、複数のR81〜R86はそれぞれ同じであってもよく、異なっていてもよい。
は、好ましくは0〜2であり、より好ましくは0又は1であり、さらに好ましくは0である。
およびnは、好ましくはそれぞれ独立して0又は1であり、より好ましくは0である。
は、好ましくは0〜2であり、より好ましくは0又は1である。
は、好ましくは0又は1であり、より好ましくは0である。
は、好ましくは0又は1であり、より好ましくは1である。
式(b−5)または(b−6)で表されるカチオン部を有するスルホニウム塩のアニオン部は、特に限定されず、これまで提案されているオニウム塩系酸発生剤のアニオン部と同様のものであってよい。かかるアニオン部としては、たとえば上記一般式(b−1)または(b−2)で表されるオニウム塩系酸発生剤のアニオン部(R”SO )等のフッ素化アルキルスルホン酸イオン;上記一般式(b−3)又は(b−4)で表されるアニオン等が挙げられる。
本明細書において、オキシムスルホネート系酸発生剤とは、下記一般式(B−1)で表される基を少なくとも1つ有する化合物であって、放射線の照射(露光)によって酸を発生する特性を有するものである。この様なオキシムスルホネート系酸発生剤は、化学増幅型レジスト組成物用として多用されているので、任意に選択して用いることができる。
Figure 0005449993
(式(B−1)中、R31、R32はそれぞれ独立に有機基を表す。)
31、R32の有機基は、炭素原子を含む基であり、炭素原子以外の原子(たとえば水素原子、酸素原子、窒素原子、硫黄原子、ハロゲン原子(フッ素原子、塩素原子等)等)を有していてもよい。
31の有機基としては、直鎖状、分岐鎖状若しくは環状のアルキル基またはアリール基が好ましい。これらのアルキル基、アリール基は置換基を有していてもよい。該置換基としては、特に制限はなく、たとえばフッ素原子、炭素数1〜6の直鎖状、分岐鎖状または環状のアルキル基等が挙げられる。ここで、「置換基を有する」とは、アルキル基またはアリール基の水素原子の一部若しくは全部が置換基で置換されていることを意味する。
アルキル基としては、炭素数1〜20が好ましく、炭素数1〜10がより好ましく、炭素数1〜8がさらに好ましく、炭素数1〜6が特に好ましく、炭素数1〜4が最も好ましい。アルキル基としては、特に、部分的または完全にハロゲン化されたアルキル基(以下、ハロゲン化アルキル基ということがある)が好ましい。なお、部分的にハロゲン化されたアルキル基とは、水素原子の一部がハロゲン原子で置換されたアルキル基を意味し、完全にハロゲン化されたアルキル基とは、水素原子の全部がハロゲン原子で置換されたアルキル基を意味する。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。すなわち、ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
アリール基は、炭素数4〜20が好ましく、炭素数4〜10がより好ましく、炭素数6〜10が最も好ましい。アリール基としては、特に、部分的または完全にハロゲン化されたアリール基が好ましい。なお、部分的にハロゲン化されたアリール基とは、水素原子の一部がハロゲン原子で置換されたアリール基を意味し、完全にハロゲン化されたアリール基とは、水素原子の全部がハロゲン原子で置換されたアリール基を意味する。
31としては、特に、置換基を有さない炭素数1〜4のアルキル基、または炭素数1〜4のフッ素化アルキル基が好ましい。
32の有機基としては、直鎖状、分岐鎖状若しくは環状のアルキル基、アリール基またはシアノ基が好ましい。R32のアルキル基、アリール基としては、前記R31で挙げたアルキル基、アリール基と同様のものが挙げられる。
32としては、特に、シアノ基、置換基を有さない炭素数1〜8のアルキル基、または炭素数1〜8のフッ素化アルキル基が好ましい。
オキシムスルホネート系酸発生剤として、さらに好ましいものとしては、下記一般式(B−2)または(B−3)で表される化合物が挙げられる。
Figure 0005449993
[式(B−2)中、R33は、シアノ基、置換基を有さないアルキル基またはハロゲン化アルキル基である。R34はアリール基である。R35は置換基を有さないアルキル基またはハロゲン化アルキル基である。]
Figure 0005449993
[式(B−3)中、R36はシアノ基、置換基を有さないアルキル基またはハロゲン化アルキル基である。R37は2または3価の芳香族炭化水素基である。R38は置換基を有さないアルキル基またはハロゲン化アルキル基である。p”は2または3である。]
前記一般式(B−2)において、R33の置換基を有さないアルキル基またはハロゲン化アルキル基は、炭素数が1〜10であることが好ましく、炭素数1〜8がより好ましく、炭素数1〜6が最も好ましい。
33としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましい。
33におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、70%以上フッ素化されていることがより好ましく、90%以上フッ素化されていることが特に好ましい。
34のアリール基としては、フェニル基、ビフェニル(biphenyl)基、フルオレニル(fluorenyl)基、ナフチル基、アントリル(anthryl)基、フェナントリル基等の、芳香族炭化水素の環から水素原子を1つ除いた基、およびこれらの基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換されたヘテロアリール基等が挙げられる。これらのなかでも、フルオレニル基が好ましい。
34のアリール基は、炭素数1〜10のアルキル基、ハロゲン化アルキル基、アルコキシ基等の置換基を有していてもよい。該置換基におけるアルキル基またはハロゲン化アルキル基は、炭素数が1〜8であることが好ましく、炭素数1〜4がさらに好ましい。また、該ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
35の置換基を有さないアルキル基またはハロゲン化アルキル基は、炭素数が1〜10であることが好ましく、炭素数1〜8がより好ましく、炭素数1〜6が最も好ましい。
35としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましい。
35におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、70%以上フッ素化されていることがより好ましく、90%以上フッ素化されていることが、発生する酸の強度が高まるため特に好ましい。最も好ましくは、水素原子が100%フッ素置換された完全フッ素化アルキル基である。
前記一般式(B−3)において、R36の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R33の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
37の2または3価の芳香族炭化水素基としては、上記R34のアリール基からさらに1または2個の水素原子を除いた基が挙げられる。
38の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R35の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
p”は、好ましくは2である。
オキシムスルホネート系酸発生剤の具体例としては、α−(p−トルエンスルホニルオキシイミノ)−ベンジルシアニド、α−(p−クロロベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(4−ニトロベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(4−ニトロ−2−トリフルオロメチルベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−4−クロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−2,4−ジクロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−2,6−ジクロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−4−メトキシベンジルシアニド、α−(2−クロロベンゼンスルホニルオキシイミノ)−4−メトキシベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−チエン−2−イルアセトニトリル、α−(4−ドデシルベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−[(p−トルエンスルホニルオキシイミノ)−4−メトキシフェニル]アセトニトリル、α−[(ドデシルベンゼンスルホニルオキシイミノ)−4−メトキシフェニル]アセトニトリル、α−(トシルオキシイミノ)−4−チエニルシアニド、α−(メチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロヘプテニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロオクテニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−シクロヘキシルアセトニトリル、α−(エチルスルホニルオキシイミノ)−エチルアセトニトリル、α−(プロピルスルホニルオキシイミノ)−プロピルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−シクロペンチルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−シクロヘキシルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(イソプロピルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(n−ブチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(イソプロピルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(n−ブチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−フェニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−フェニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(プロピルスルホニルオキシイミノ)−p−メチルフェニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−p−ブロモフェニルアセトニトリルなどが挙げられる。
また、特開平9−208554号公報(段落[0012]〜[0014]の[化18]〜[化19])に開示されているオキシムスルホネート系酸発生剤、国際公開第04/074242号パンフレット(65〜85頁目のExample1〜40)に開示されているオキシムスルホネート系酸発生剤も好適に用いることができる。
また、好適なものとして以下のものを例示することができる。
Figure 0005449993
ジアゾメタン系酸発生剤のうち、ビスアルキルまたはビスアリールスルホニルジアゾメタン類の具体例としては、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(1,1−ジメチルエチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(2,4−ジメチルフェニルスルホニル)ジアゾメタン等が挙げられる。
また、特開平11−035551号公報、特開平11−035552号公報、特開平11−035573号公報に開示されているジアゾメタン系酸発生剤も好適に用いることができる。
また、ポリ(ビススルホニル)ジアゾメタン類としては、例えば、特開平11−322707号公報に開示されている、1,3−ビス(フェニルスルホニルジアゾメチルスルホニル)プロパン、1,4−ビス(フェニルスルホニルジアゾメチルスルホニル)ブタン、1,6−ビス(フェニルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(フェニルスルホニルジアゾメチルスルホニル)デカン、1,2−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)エタン、1,3−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)プロパン、1,6−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)デカンなどを挙げることができる。
(B)成分は、上述した酸発生剤を1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明においては、中でも(B)成分としてフッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩を用いることが好ましい。
本発明のポジ型レジスト組成物における(B)成分の含有量は、(A)成分100質量部に対し、0.5〜50質量部が好ましく、1〜40質量部がより好ましい。上記範囲とすることでパターン形成が充分に行われる。また、均一な溶液が得られ、保存安定性が良好となるため好ましい。
<任意成分>
[(D)成分]
本発明のポジ型レジスト組成物においては、任意の成分として、さらに、含窒素有機化合物成分(D)(以下「(D)成分」という。)(ただし、前記(A1)成分を除く)を含有することが好ましい。
この(D)成分は、酸拡散制御剤、すなわち露光により前記(B)成分から発生する酸をトラップするクエンチャーとして作用するものであれば特に限定されず、既に多種多様なものが提案されているので、公知のものから任意に用いればよい。なかでも、脂肪族アミン、特に第2級脂肪族アミンや第3級脂肪族アミン、芳香族アミンが好ましい。
脂肪族アミンとは、1つ以上の脂肪族基を有するアミンであり、該脂肪族基は炭素数が1〜12であることが好ましい。
脂肪族アミンとしては、アンモニアNHの水素原子の少なくとも1つを、炭素数12以下のアルキル基またはヒドロキシアルキル基で置換したアミン(アルキルアミンまたはアルキルアルコールアミン)又は環式アミンが挙げられる。
アルキルアミンおよびアルキルアルコールアミンの具体例としては、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ−n−プロピルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デシルアミン、トリ−n−ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ−n−オクタノールアミン、トリ−n−オクタノールアミン等のアルキルアルコールアミンが挙げられる。これらの中でも、炭素数5〜10のトリアルキルアミンがさらに好ましく、トリ−n−ペンチルアミン又はトリ−n−オクチルアミンが特に好ましい。
環式アミンとしては、たとえば、ヘテロ原子として窒素原子を含む複素環化合物が挙げられる。該複素環化合物としては、単環式のもの(脂肪族単環式アミン)であっても多環式のもの(脂肪族多環式アミン)であってもよい。
脂肪族単環式アミンとして、具体的には、ピペリジン、ピペラジン等が挙げられる。
脂肪族多環式アミンとしては、炭素数が6〜10のものが好ましく、具体的には、1,5−ジアザビシクロ[4.3.0]−5−ノネン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、ヘキサメチレンテトラミン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。
また、上述した以外の他の脂肪族アミンを用いてもよい。該他の脂肪族アミンとしては、たとえば、トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチルアミン等が挙げられる。
また、芳香族アミンとしては、アニリン、N,N−n−ブチル−アニリン、2,6−ジイソプロピルアニリン、N−イソプロピルアニリン、3−イソプロポキシアニリン、N−エチルアニリン等のアニリン系化合物;ピリジン、4−ジメチルアミノピリジン、ピロール、インドール、ピラゾール、イミダゾールまたはこれらの誘導体、ジフェニルアミン、トリフェニルアミン、トリベンジルアミン等が挙げられる。
(D)成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(D)成分は、(A)成分100質量部に対して、通常0.01〜5.0質量部の範囲で用いられる。上記範囲とすることにより、レジストパターン形状、引き置き経時安定性等が向上する。
[(E)成分]
本発明のポジ型レジスト組成物には、感度劣化の防止や、レジストパターン形状、引き置き経時安定性等の向上の目的で、任意の成分として、有機カルボン酸、並びにリンのオキソ酸及びその誘導体からなる群から選択される少なくとも1種の化合物(E)(以下「(E)成分」という。)を含有させることができる。
有機カルボン酸としては、たとえば、酢酸、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。
リンのオキソ酸としては、リン酸、ホスホン酸、ホスフィン酸等が挙げられ、これらの中でもホスホン酸が特に好ましい。
リンのオキソ酸の誘導体としては、たとえば、上記オキソ酸の水素原子を炭化水素基で置換したエステル等が挙げられ、前記炭化水素基としては、炭素数1〜5のアルキル基、炭素数6〜15のアリール基等が挙げられる。
リン酸の誘導体としては、リン酸ジ−n−ブチルエステル、リン酸ジフェニルエステル等のリン酸エステルなどが挙げられる。
ホスホン酸の誘導体としては、ホスホン酸ジメチルエステル、ホスホン酸−ジ−n−ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸エステルなどが挙げられる。
ホスフィン酸の誘導体としては、フェニルホスフィン酸等のホスフィン酸エステルなどが挙げられる。
(E)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
(E)成分としては、有機カルボン酸が好ましく、サリチル酸が特に好ましい。
(E)成分は、(A)成分100質量部当り0.01〜5.0質量部の割合で用いられる。
本発明のポジ型レジスト組成物には、さらに所望により混和性のある添加剤、たとえばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料などを適宜、添加含有させることができる。
[(S)成分]
本発明のポジ型レジスト組成物は、レジスト組成物に配合される成分を有機溶剤(以下「(S)成分」という。)に溶解させて製造することができる。
(S)成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。
(S)成分は、たとえば、γ−ブチロラクトン等のラクトン類;アセトン、メチルエチルケトン、シクロヘキサノン(CH)、メチル−n−ペンチルケトン、メチルイソペンチルケトン、2−ヘプタノンなどのケトン類;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールなどの多価アルコール類;エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、またはジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類または前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテルまたはモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体[これらの中では、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)が好ましい];ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類;アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤などを挙げることができる。
(S)成分は、単独で用いてもよく、2種以上の混合溶剤として用いてもよい。
なかでも、シクロヘキサノン(CH)、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、乳酸エチル(EL)が好ましい。
また、PGMEAと極性溶剤とを混合した混合溶媒も好ましい。その配合比(質量比)は、PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよく、1:9〜9:1の範囲内とすることが好ましく、2:8〜8:2の範囲内とすることがより好ましい。
より具体的には、極性溶剤としてELを配合する場合は、PGMEA:ELの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2である。また、極性溶剤としてPGMEを配合する場合は、PGMEA:PGMEの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2、さらに好ましくは3:7〜7:3である。また、極性溶剤としてシクロヘキサノン(CH)を配合する場合は、PGMEA:CHの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜9:1である。
また、(S)成分として、その他には、PGMEA及びELの中から選ばれる少なくとも1種とγ−ブチロラクトンとの混合溶剤も好ましい。この場合、混合割合としては、前者と後者との質量比が好ましくは70:30〜95:5とされる。
(S)成分の使用量は、特に限定されるものではなく、基板等に塗布可能な濃度で、塗布膜厚に応じて適宜設定され、一般的にはレジスト組成物の固形分濃度が0.5〜20質量%が好ましく、より好ましくは1〜15質量%の範囲内となる様に用いられる。
ポジ型レジスト組成物に配合される成分の(S)成分への溶解は、たとえば、上記各成分を通常の方法で混合、撹拌するだけでも行うことができ、また、必要に応じてディゾルバー、ホモジナイザー、3本ロールミルなどの分散機を用いて分散、混合させてもよい。また、混合した後で、さらにメッシュ、メンブレンフィルターなどを用いてろ過してもよい。
≪レジストパターン形成方法≫
本発明の第二の態様であるレジストパターン形成方法は、支持体上に、上記本発明のポジ型レジスト組成物を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜をアルカリ現像してレジストパターンを形成する工程を含む方法である。
本発明のレジストパターン形成方法は、例えば以下の様にして行うことができる。
すなわち、まず支持体上に、上記本発明のポジ型レジスト組成物をスピンナーなどで塗布し、80〜150℃の温度条件下、プレベーク(ポストアプライベーク(PAB))を40〜120秒間、好ましくは60〜90秒間施し、これに、例えばArF露光装置、電子線描画装置、EUV露光装置等の露光装置を用いて、マスクパターンを介した露光、又はマスクパターンを介さない電子線の直接照射による描画等により選択的に露光した後、80〜150℃の温度条件下、PEB(露光後加熱)を40〜120秒間、好ましくは60〜90秒間施す。次いで、これをアルカリ現像液、例えば0.1〜10質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いて現像処理し、好ましくは純水を用いて水リンスを行い、乾燥を行う。また、場合によっては、上記現像処理後にベーク処理(ポストベーク)を行ってもよい。このようにして、マスクパターンに忠実なレジストパターンを得ることができる。
支持体としては、特に限定されず、従来公知のものを用いることができ、たとえば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等を例示することができる。より具体的には、シリコンウェーハ、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、たとえば銅、アルミニウム、ニッケル、金等が使用可能である。
また、支持体としては、上述のような基板上に、無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)や多層レジスト法における下層有機膜等の有機膜が挙げられる。
ここで、多層レジスト法とは、基板上に、少なくとも一層の有機膜(下層有機膜)と、少なくとも一層のレジスト膜(上層レジスト膜)とを設け、上層レジスト膜に形成したレジストパターンをマスクとして下層有機膜のパターニングを行う方法であり、高アスペクト比のパターンを形成できるとされている。すなわち、多層レジスト法によれば、下層有機膜により所要の厚みを確保できるため、レジスト膜を薄膜化でき、高アスペクト比の微細パターン形成が可能となる。
多層レジスト法には、基本的に、上層レジスト膜と、下層有機膜との二層構造とする方法(2層レジスト法)と、上層レジスト膜と下層有機膜との間に一層以上の中間層(金属薄膜等)を設けた三層以上の多層構造とする方法(3層レジスト法)とに分けられる。
露光に用いる波長は、特に限定されず、ArFエキシマレーザー、KrFエキシマレーザー、Fエキシマレーザー、EUV(極紫外線)、VUV(真空紫外線)、EB(電子線)、X線、軟X線等の放射線を用いて行うことができる。前記レジスト組成物は、KrFエキシマレーザー、ArFエキシマレーザー、EBまたはEUVに対して有効であり、ArFエキシマレーザーに対して特に有効である。
レジスト膜の露光方法は、空気や窒素等の不活性ガス中で行う通常の露光(ドライ露光)であってもよく、液浸露光(Liquid Immersion Lithography)であってもよい。
液浸露光は、予めレジスト膜と露光装置の最下位置のレンズ間を、空気の屈折率よりも大きい屈折率を有する溶媒(液浸媒体)で満たし、その状態で露光(浸漬露光)を行う露光方法である。
液浸媒体としては、空気の屈折率よりも大きく、かつ、露光されるレジスト膜の有する屈折率よりも小さい屈折率を有する溶媒が好ましい。かかる溶媒の屈折率としては、前記範囲内であれば特に制限されない。
空気の屈折率よりも大きく、かつ、前記レジスト膜の屈折率よりも小さい屈折率を有する溶媒としては、たとえば、水、フッ素系不活性液体、シリコン系溶剤、炭化水素系溶剤等が挙げられる。
フッ素系不活性液体の具体例としては、CHCl、COCH、COC、C等のフッ素系化合物を主成分とする液体等が挙げられ、沸点が70〜180℃のものが好ましく、80〜160℃のものがより好ましい。フッ素系不活性液体が上記範囲の沸点を有するものであると、露光終了後に、液浸に用いた媒体の除去を、簡便な方法で行うことができることから好ましい。
フッ素系不活性液体としては、特に、アルキル基の水素原子が全てフッ素原子で置換されたパーフロオロアルキル化合物が好ましい。パーフロオロアルキル化合物として、具体的には、パーフルオロアルキルエーテル化合物やパーフルオロアルキルアミン化合物を挙げることができる。
さらに、具体的には、前記パーフルオロアルキルエーテル化合物として、パーフルオロ(2−ブチル−テトラヒドロフラン)(沸点102℃)を挙げることができ、前記パーフルオロアルキルアミン化合物としては、パーフルオロトリブチルアミン(沸点174℃)を挙げることができる。
液浸媒体としては、コスト、安全性、環境問題、汎用性等の観点から、水が好ましく用いられる。
本発明のレジストパターン形成方法は、二重露光法、ダブルパターニング法にも用いることが可能である。
以上のように、本発明によれば、リソグラフィー用途に好適で新規なポジ型レジスト組成物及びレジストパターン形成方法を提供できる。
本発明により、特に、高分子化合物(A1)をベース樹脂として用いた場合、解像性に優れたレジストパターンを形成できる。
この理由は定かではないが、高分子化合物(A1)が、酸の作用により解離して(A1)成分のアルカリ現像液に対する溶解性を増大させる酸解離性溶解抑制基を含む構成単位(a1)と、塩基(アルカリ現像液)の作用により分解(加水分解)が生じて解離する塩基解離性基を含む構成単位(a5)と、構成単位(a6)とを分子内に有しているため、と考えられる。
前記の構成単位(a1)と構成単位(a5)の作用に加えて、さらに、構成単位(a6)が、側鎖末端部にOSON(R)Rで表される構造を含むため、高分子化合物(A1)がレジスト組成物に要求される適度なアルカリ可溶性を有すること、構成単位(a6)中のW(環状のアルキレン基)およびスルファモイルオキシ基(OSON基)のいずれもが比較的透明性に優れる構造であるため、(A1)成分の透明性、特に193nm付近の波長の光に対する透明性が高いこと等に因り、これら3種の構成単位が相乗的に作用して解像性が格段に高まると推測される。
また、本発明により、特に、高分子化合物(A1)をベース樹脂以外の配合成分(添加剤)として用いた場合、ディフェクトの発生を抑制でき、良好な形状のレジストパターンを形成できる。この理由は定かではないが以下のように推測される。
本発明のポジ型レジスト組成物を用いて形成されるレジスト膜には、上述した酸解離性溶解抑制基を含む構成単位(a1)と、塩基解離性基を含む構成単位(a5)と、一般式(a6−1)で表される構成単位(a6)とを有する高分子化合物(A1)が含まれる。
特に、当該(A1)成分において、構成単位(a5)では、塩基(アルカリ現像液)の作用により分解(加水分解)が生じて塩基解離性基が解離し、親水基「HO−C(=O)−」を生成する。これにより、当該(A1)成分を含有するポジ型レジスト組成物を用いて形成されるレジスト膜は、アルカリ現像により、アルカリ現像前よりも親水性が高まる特性を有する。
このように、アルカリ現像時に親水性が高まるポジ型レジスト組成物を用いることにより、現像後の析出物等のアルカリ現像液に対する親和性が増大し、(液浸)露光におけるディフェクト(特に現像工程後の析出物によるディフェクト)の発生を効果的に抑制できる。
特に液浸露光プロセスにおいては、水等の浸漬媒体の影響を受けないようにするため、レジスト膜の疎水性を高めることが好ましい。しかし、レジスト膜の疎水性が高いことは、現像工程後の析出物等によるディフェクトの発生リスクが高まる点で不利である。この理由は、当該析出物は疎水性が高く、親水性の現像液によって流されずにレジスト膜上に残ったものであり、レジスト膜の疎水性が高いほど、当該析出物がレジスト膜に付着しやすくなるためである。
かかる点から、レジスト膜が、浸漬露光時には疎水性であり、アルカリ現像時には親水性となるような性質が求められる。
本発明における(A1)成分は、上述のとおり、アルカリ現像液に対して分解性を示す性質を有することから、当該(A1)成分を含有するレジスト組成物により、浸漬露光時などのアルカリ現像液と接触する前には疎水性であって、アルカリ現像時には親水性となる特性を有するレジスト膜を形成することができる。
また、当該(A1)成分において、構成単位(a6)は、上述したように、側鎖末端部に「OSON(R)R」で表される構造を含む。そのため、高分子化合物(A1)は、適度なアルカリ可溶性を有し、現像工程後の析出物等がアルカリ現像液に溶解しやすいと考えられる。また、構成単位(a6)におけるW(環状のアルキレン基)およびスルファモイルオキシ基(−OSON−基)は、いずれも比較的に透明性に優れる構造である。そのため、高分子化合物(A1)の透明性、特に193nm付近の波長の光に対する透明性が高く、レジストパターンが解像しやすいと考えられる。
以上の理由により、本発明のポジ型レジスト組成物は、ディフェクト(特に現像工程後の析出物等によるディフェクト)の発生を効果的に抑制でき、良好な形状のレジストパターンを形成できる、と推測される。
また、上記の(A1)成分は、比較的に極性の高いカルボニルオキシ基(−C(=O)−O−)を有するため、レジスト組成物中において他の成分との相溶性が良好である。したがって、本発明のポジ型レジスト組成物は、経時安定性の向上も期待される。
また、上記の(A1)成分は、フッ素原子を含むものが好ましく、構成単位(a5)中(特に好ましくは塩基解離性基中)にフッ素原子を含むものがより好ましい。フッ素原子を含む(A1)成分を用いることにより、浸漬露光時のレジスト膜の疎水性が高まる。
(A1)成分がフッ素原子を含む場合、本発明のポジ型レジスト組成物を用いて形成されるレジスト膜は、たとえば液浸露光において、従来よりも浸漬露光時における疎水性が高まることから、上記非特許文献1に記載されているようなスキャン式の液浸露光機を用いて浸漬露光を行う場合等に求められる水追随性に非常に優れており、高速スキャンスピード化を図ることができる。
本発明のポジ型レジスト組成物を用いて形成されるレジスト膜は、(A1)成分がフッ素原子を有する場合、従来のポジ型レジスト組成物を用いて形成されるレジスト膜の場合と比較して、レジスト膜の疎水性が高まり、水に対する接触角、たとえば静的接触角(水平状態のレジスト膜上の水滴表面とレジスト膜表面とのなす角度)、動的接触角(レジスト膜を傾斜させていった際に水滴が転落しはじめたときの接触角。水滴の転落方向前方の端点における接触角(前進角)と、転落方向後方の端点における接触角(後退角)とがある。)、転落角(レジスト膜を傾斜させていった際に水滴が転落しはじめたときのレジスト膜の傾斜角度)が変化する。たとえばレジスト膜の疎水性が高いほど、静的接触角および動的接触角は大きくなり、一方、転落角は小さくなる。
図1は、前進角(θ)、後退角(θ)及び転落角(θ)を説明する図である。
ここで、前進角は、図1に示すように、その上に液滴1が置かれた平面2を次第に傾けていった際に、当該液滴1が平面2上を移動(落下)し始めるときの当該液滴1の下端1aにおける液滴表面と、平面2とがなす角度θである。
また、このとき(当該液滴1が平面2上を移動(落下)し始めるとき)、当該液滴1の上端1bにおける液滴表面と、平面2とがなす角度θが後退角であり、当該平面2の傾斜角度θが転落角である。
本明細書において、静的接触角、動的接触角および転落角は、例えば、以下の様にして測定することができる。
まず、シリコン基板上に、レジスト組成物溶液をスピンコートした後、所定の条件、例えば、110〜115℃の温度条件で60秒間加熱してレジスト膜を形成する。
次に、上記レジスト膜に対して、DROP MASTER−700(製品名、協和界面科学社製)、AUTO SLIDING ANGLE:SA−30DM(製品名、協和界面科学社製)、AUTO DISPENSER:AD−31(製品名、協和界面科学社製)等の市販の測定装置を用いて測定することができる。
(A1)成分がフッ素原子を含む場合、当該ポジ型レジスト組成物を用いて形成されるレジスト膜における、露光又は現像を行う前の静的接触角の測定値は70度(°)以上であることが好ましく、70〜100°であることがより好ましい。当該静的接触角の測定値が前記範囲であると、レジスト膜表面の疎水性に優れ、液浸露光において、高速スキャンスピード化をより図ることができる。また、物質溶出抑制効果が向上する。これら効果が得られる主な要因の1つとしては、レジスト膜の疎水性との関連が考えられる。つまり、液浸媒体は水等の水性のものが用いられているため、疎水性が高いことにより、浸漬露光を行った後、液浸媒体を除去した際に速やかにレジスト膜表面から液浸媒体を除去できることが影響していると推測される。
同様の理由により、(A1)成分がフッ素原子を含む場合、当該ポジ型レジスト組成物を用いて形成されるレジスト膜における、露光および現像を行う前の後退角の測定値は65°以上であることが好ましく、70°以上であることがより好ましく、72°以上であることがさらに好ましい。後退角の上限値の好ましい値は、特に限定されず、たとえば90°以下である。
また、(A1)成分がフッ素原子を含む場合、当該ポジ型レジスト組成物を用いて形成されるレジスト膜における、露光および現像を行う前の転落角の測定値は25°以下であることが好ましく、20°以下であることがより好ましい。転落角が上限値以下であると、浸漬露光時の物質溶出抑制効果が向上する。また、転落角の下限値の好ましい値は、特に限定されず、たとえば5°以上である。
また、(A1)成分がフッ素原子を含む場合、当該ポジ型レジスト組成物を用いて形成されるレジスト膜における、露光および現像を行う前の前進角の測定値は75〜100°であることが好ましく、75〜90°であることがより好ましい。前進角が上記範囲であると、ディフェクトの発生がより抑制され、リソグラフィー特性も良好となる。
上述の各種接触角の角度(静的接触角、動的接触角および転落角)の大きさは、ポジ型レジスト組成物の組成、たとえば(A1)成分の種類、(A1)成分の配合量等を適宜選択又は調整することにより制御できる。たとえば、(A1)成分の配合量が多いほど、形成されるレジスト膜の疎水性が高まり、静的接触角、後退角が大きくなり、特に後退角が大きくなる。また、(A1)成分の配合量や、(A1)成分中のフッ素原子の含有割合を調整することにより、特に、前進角を制御することができる(フッ素原子の含有割合が小さければ、前進角も低くなる)。
また、フッ素原子を含む(A1)成分を含有するポジ型レジスト組成物を用いることにより、浸漬露光時のレジスト膜中からの物質溶出を抑制することができる。
すなわち、液浸露光は、上述したように、露光時に、従来は空気や窒素等の不活性ガスで満たされているレンズとウェーハ上のレジスト膜との間の部分を、空気の屈折率よりも大きい屈折率を有する溶媒(液浸媒体)で満たした状態で露光(浸漬露光)を行う工程を有する方法である。液浸露光においては、レジスト膜と液浸溶媒とが接触すると、レジスト膜中の物質((B)成分、(D)成分等)の液浸溶媒中への溶出(物質溶出)が生じる。物質溶出はレジスト層の変質、液浸溶媒の屈折率の変化等の現象を生じさせ、リソグラフィー特性を悪化させる。
この物質溶出の量はレジスト膜表面の特性(たとえば親水性・疎水性等)の影響を受ける。そのため、たとえばレジスト膜表面の疎水性が高まることによって、物質溶出が低減されると推測される。
本発明のポジ型レジスト組成物を用いて形成されるレジスト膜は、上記の(A1)成分を含むことから、かかる(A1)成分を含まないレジスト膜に比べて、露光および現像を行う前の疎水性が高い。したがって、かかる本発明のポジ型レジスト組成物によれば、浸漬露光時の物質溶出を抑制できる。
物質溶出を抑制できることから、かかる本発明のポジ型レジスト組成物を用いることにより、液浸露光において、レジスト膜の変質や、液浸溶媒の屈折率の変化を抑制することができる。液浸溶媒の屈折率の変動が抑制されること等により、形状等が良好なレジストパターンを形成することができる。また、露光装置のレンズの汚染を低減でき、そのため、これらに対する保護対策を行わなくてもよく、プロセスや露光装置の簡便化に貢献することができる。
また、本発明のポジ型レジスト組成物により形成されたレジスト膜は、水により膨潤しにくいため、微細なレジストパターンを精度よく形成することができる。
本発明のポジ型レジスト組成物は、感度、解像性、エッチング耐性等のリソグラフィー特性も良好であり、液浸露光においてレジスト材料として使用した際に、実用上問題なくレジストパターンを形成できる。例えば、本発明のポジ型レジスト組成物を用いることにより、寸法90nm以下の微細なレジストパターンを形成できる。
すなわち、本発明のポジ型レジスト組成物は、ディフェクトの発生を抑制する効果に加えて、通常求められるレジストパターン形状、リソグラフィー特性(感度、解像性、エッチング耐性等)も良好であり、さらにフッ素原子を含む(A1)成分を用いることにより、液浸露光においてレジスト材料に求められる特性(疎水性、物質溶出抑制能、水追随性等)にも優れる。
したがって、本発明のポジ型レジスト組成物は、液浸露光プロセスにおいても有用性が高いと云え、液浸露光用として好適なレジスト材料である。
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
本実施例では、化学式(1)で表される単位を「化合物(1)」と記載し、他の式で表される化合物についても同様に記載する。
<樹脂成分(A)の合成>
本実施例において、樹脂成分(A)として用いた高分子化合物(1)〜(3)は、以下に示すポリマー合成例によりそれぞれ合成した。
当該ポリマー合成例で使用した化合物(11)、化合物(21)は、以下に示すモノマー合成例によりそれぞれ合成した。
[モノマー合成例1(化合物(11)の合成)]。
・3−スルファモイルオキシアダマンチルメタクリレートの合成
温度計、滴下ロート及び撹拌装置を取り付けた5L容積の4つ口フラスコに、窒素を充填し、滴下ロートより、ヘプタン980gおよびクロロスルホニルイソシアナート334g(2.4mol)を投入した。内温を5℃に冷却した後、滴下ロートより、ギ酸110g(2.4mol)を、内温5〜8℃を維持できる速度で滴下した。滴下終了後、内温を20℃に昇温し10時間撹拌した。該反応混合液に、滴下ロートより、3−ヒドロキシアダマンチルメタクリレート186.7g(0.79mol)、N−メチルピロリドン525g、4−メトキシフェノール2.1gおよびフェノチアジン2.1gの溶液を、内温20℃以下を維持できる速度で滴下した。内温20〜25℃にて3時間撹拌した後、反応混合物を分液ロートに移送し、上層を廃棄した。得られた下層に、酢酸エチル890gおよび水700gを添加して撹拌し、静置した。その後、分液し、酢酸エチル層と水層とを抽出した。該水層に酢酸エチル890gを添加し、再抽出した。2回分の酢酸エチル層を混合した後、水900gで5回洗浄した。次いで、7質量%−炭酸水素ナトリウム水溶液400g、水400gで洗浄した。該洗浄後、有機層を500gになるまで減圧下濃縮した後、トルエン630gを添加した。内温55℃に加熱した後、3℃まで冷却して再結晶操作を実施した。再結晶操作により得られた懸濁液をろ過することによって、目的の化合物(11)159.5g(0.51mol)を結晶として得た(収率=64%)。
Figure 0005449993
得られた化合物(11)(3−スルファモイルオキシアダンマンチルメタクリレート)のH−NMR分析結果を以下に示す。
H−NMR(300MHz、DMSO−d、TMS、ppm)δ:7.43(2H,s)、5.96(1H,s)、5.62(1H,s)、2.48(2H,s)、2.35(3H,br)、2.23(1H,s)、2.04(6H,m)、1.84(3H,s)1.52(2H,s)。
この分析結果から、化合物(11)が上記に示す構造を有することが確認できた。
[モノマー合成例2(化合物(21)の合成)]
(i)化合物(21)−2の合成
窒素雰囲気下0℃で、メタクリル酸30g(348mmol)のTHF溶液300mlに、トリエチルアミン61g(600mmol)、ブロモ酢酸メチル64g(418 mmol)を加え、室温まで戻し、3時間撹拌した。薄層クロマトグラフィー(TLC)にて原料の消失を確認後、反応液を減圧下溶媒留去した。得られた反応物に水を加え、酢酸エチルで3回抽出した。有機層を水で2回洗浄し、減圧下で溶媒を留去して、化合物(21)−1を無色液体として47g得た(収率85%)。
次に、窒素雰囲気下、0℃で、化合物(21)−1の30g(190mmol)を溶解したTHF溶液700 mlに、2.38質量%TMAH水溶液700 mlを加え、室温で3時間撹拌した。薄層クロマトグラフィー(TLC)にて原料の消失を確認後、減圧下でTHF溶媒を留去した。得られた反応水溶液に0℃下10N塩酸50mlを加え、酸性に調整した後、酢酸エチルで3回抽出した。得られた有機層を水で2回洗浄し、減圧下で溶媒を留去して化合物(21)−2を無色液体として26g得た(収率95%)。
Figure 0005449993
化合物(21)−1、化合物(21)−2についてのH−NMRをそれぞれ測定した。その結果を以下に示す。
化合物(21)−1のスペクトルデータ:
H−NMR(CDCl) 6.23(s,1H,Hb),5.67(d,1H,Hb),4.13(s,2H,Hc),3.78(s,3H,Hd),2.00(s,3H,Ha)
化合物(21)−2のスペクトルデータ:
H−NMR(CDCl) 6.23(s,1H,Hb),5.67(d,1H,Hb),4.69(s,2H,Hc),2.00(s,3H,Ha)
Figure 0005449993
(ii)化合物(21)の合成
窒素雰囲気下0℃で、2,2,2−トリフルオロエタノール23.48g(234.5mmol)、エチルジイソプロピルアミノカルボジイミド(EDCI)塩酸塩51.9g(270.6mmol)、ジメチルアミノピリジン(DMAP)0.11g(0.9mmol)のTHF溶液200 mlに、前記化合物化合物(21)−2の26g(180.39mmol)を加え、室温まで戻し、3時間撹拌した。薄層クロマトグラフィー(TLC)にて原料の消失を確認後、反応液を0℃に冷やし、水を加えて反応を停止した。酢酸エチルで3回抽出し得られた有機層を水で2回洗浄した。減圧下溶媒留去して得られた粗製生物をシリカゲルろ過(酢酸エチル)により精製し、化合物(21)を無色液体として25g得た。
Figure 0005449993
得られた化合物(21)について、H−NMRを測定した。その結果を以下に示す。
H−NMR(CDCl)6.24(s,1H,Hb),5.70(s,1H,Hb),4.80(s,2H,Hc),4.60−4.51(m,2H,Hd),1.99(s,3H,Ha)
上記の結果から、化合物(21)が下記に示す構造を有することが確認できた。
Figure 0005449993
[ポリマー合成例1:高分子化合物(1)の合成]
温度計、還流管、窒素導入管を繋いだ三つ口フラスコに、5.00g(22.12mmol)の化合物(21)、3.63g(16.22mmol)の化合物(25)、3.41g(10.82mmol)の化合物(11)を28.09gのメチルエチルケトン(MEK)に溶解した。この溶液に、重合開始剤としてアゾビスイソ酪酸ジメチル(V−601)を2.46mmol添加し溶解した。
この溶液を80℃で6時間加熱撹拌し、その後、反応液を室温まで冷却した。
得られた反応重合液を大量のn−ヘプタンに滴下し、重合体を析出させる操作を行い、沈殿した白色粉体をろ別、n−ヘプタン、メタノールにて洗浄、乾燥して、目的物である高分子化合物(1)8.4gを得た。
この高分子化合物(1)について、GPC測定により求めた標準ポリスチレン換算の質量平均分子量(Mw)は17500であり、分子量分散度(Mw/Mn)は1.97であった。また、カーボン13核磁気共鳴スペクトル(600MHz13C−NMR)により求められた共重合組成比(構造式中の各構成単位の割合(モル比))は、a/a/a=47.5/28.0/24.5であった。
Figure 0005449993
[ポリマー合成例2:高分子化合物(2)の合成]
高分子化合物(2)は、上記の高分子化合物(1)の合成例と同じ3種のモノマーを、異なるモル比で用いた以外は、高分子化合物(1)の合成例と同様の方法により合成した。
この高分子化合物(2)について、GPC測定により求めた標準ポリスチレン換算の質量平均分子量(Mw)は18500であり、分子量分散度(Mw/Mn)は1.99であった。また、カーボン13核磁気共鳴スペクトル(600MHz13C−NMR)により求められた共重合組成比(構造式中の各構成単位の割合(モル比))は、a/a/a=60.1/20.7/19.2であった(得られた高分子化合物(2)の構造は高分子化合物(1)と同じである)。
[ポリマー合成例3:高分子化合物(3)の合成]
温度計、還流管を繋いだ3つ口フラスコに、20.00g(88.44mmol)の化合物(21)、6.60g(29.48mmol)の化合物(25)を39.90gのテトラヒドロフランを加えて溶解させた。この溶液に、重合開始剤としてアゾビスイソ酪酸ジメチル(V−601)を23.58mmol添加し溶解させた。これを窒素雰囲気下、3時間かけて、67℃に加熱したテトラヒドロフラン22.17gに滴下し、重合反応を行った。滴下終了後、反応液を4時間加熱撹拌し、その後、反応液を室温まで冷却した。得られた反応重合液を大量のn−ヘプタンに滴下し、重合体を析出させる操作を行い、沈殿した高分子化合物をろ別、洗浄、乾燥して、目的物である高分子化合物(3)13gを得た。
この高分子化合物(3)について、GPC測定により求めた標準ポリスチレン換算の質量平均分子量(Mw)は25900であり、分散度(Mw/Mn)は1.50であった。また、カーボン13核磁気共鳴スペクトル(600MHz13C−NMR)により求められた共重合組成比(構造式中の各構成単位の割合(モル比))は、a/a=78.3/21.7であった。
Figure 0005449993
<ポジ型レジスト組成物の調製>
(実施例1〜4、比較例1〜4)
表1に示す各成分を混合して溶解することによりポジ型レジスト組成物を調製した。
Figure 0005449993
表1中、各略号はそれぞれ以下のものを示し、[ ]内の数値は配合量(質量部)である。なお、化学式中、構成単位( )の右下の数値は、その構成単位の割合(モル%)を示す。
(A)−1:上記高分子化合物(3)。
(A)−2:下記化学式(4)で表される高分子化合物(4)。特開2008−134607号公報に記載の合成例1と同様にして合成した。
Figure 0005449993
(A)−3:上記高分子化合物(1)。
(A)−4:下記化学式(A2−2−1)で表される共重合体。Mw10000,Mw/Mn1.78。
(A)−5:下記化学式(A2−1−1)で表される共重合体。Mw7000,Mw/Mn1.68。
(A)−6:上記高分子化合物(2)。
(A)−7:下記化学式(A2−1−2)で表される共重合体。Mw7000,Mw/Mn1.54。
Figure 0005449993
(B)−1:下記化学式(B1)で表される化合物。特開2009−167156号公報に記載の実施例1と同様にして合成した。
(B)−2:下記化学式(B2)で表される化合物。
Figure 0005449993
(D)−1:トリ−n−ペンチルアミン。
(E)−1:サリチル酸。
(S)−1:γ−ブチロラクトン。
(S)−2:PGMEA/PGME=6/4(質量比)の混合溶剤。
<高分子化合物(1)、(3)、(4)をベース樹脂として配合した場合>
実施例1および比較例1、2のポジ型レジスト組成物を用いて、以下の手順で、レジストパターン形成の評価を行った。
[レジストパターン形成]
8インチのシリコンウェーハ上に、有機系反射防止膜組成物「ARC29A」(商品名、ブリュワーサイエンス社製)を、スピンナーを用いて塗布し、ホットプレート上で205℃、60秒間焼成して乾燥させることにより、膜厚77nmの有機系反射防止膜を形成した。
次いで、該反射防止膜上に、各例のポジ型レジスト組成物をそれぞれ、スピンナーを用いて塗布し、ホットプレート上で、110℃で60秒間のプレベーク(PAB)処理を行い、乾燥することにより、膜厚100nmのレジスト膜を形成した。
次に、前記レジスト膜に対し、ArF露光装置NSR−S302(ニコン社製;NA(開口数)=0.60,2/3輪帯照明)により、バイナリーマスクを介して、前記レジスト膜に対して、ArFエキシマレーザー(193nm)を選択的に照射した。
そして、80℃で60秒間の露光後加熱(PEB)処理を行い、さらに23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液「NMD−3」(商品名、東京応化工業社製)で30秒間のアルカリ現像処理を行い、その後30秒間、純水リンスし、振り切り乾燥を行った。
その結果、実施例1のポジ型レジスト組成物においては、ライン幅217nm(ピッチ360nm)、ライン幅161nm(ピッチ360nm)、ライン幅118nm(ピッチ360nm)、ライン幅81nm(ピッチ360nm)のラインアンドスペースのレジストパターン(以下「LSパターン」という。)をそれぞれ形成することが確認できた。
比較例1のポジ型レジスト組成物においては、ライン幅260nm(ピッチ360nm)のLSパターンを形成することが確認できたものの、さらに微細なライン幅のLSパターンは解像不可であった。
比較例2のポジ型レジスト組成物においては、製膜することもできなかった。
<高分子化合物(1)、(2)、(3)を添加剤として配合した場合>
実施例2、3および比較例3、4のポジ型レジスト組成物を用いて、以下の手順で、露光前のレジスト膜表面とアルカリ現像後のレジスト膜表面の静的接触角をそれぞれ測定することにより、レジスト膜の疎水性を評価した。また、膜減りについて評価した。
[レジスト膜の疎水性の評価]
(露光前のレジスト膜表面の静的接触角の測定)
8インチシリコンウェーハ上に、各例のポジ型レジスト組成物を、それぞれ、スピンナーを用いて塗布し、ホットプレート上で110℃、60秒間プレベークして、乾燥させることにより、膜厚120nmのレジスト膜を形成した。
当該レジスト膜(露光前のレジスト膜)の表面に、水2μLを滴下し、DROP MASTER−700(製品名、協和界面科学株式会社製)を用いて静的接触角の測定を行った。この測定値を「Coat後接触角(°)」とした。その結果を表2に示す。
(アルカリ現像後のレジスト膜表面の静的接触角の測定)
静的接触角の測定(露光前)後のウェーハを、23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で、「10秒間」、「30秒間」の現像処理をLDノズル(東京エレクトロン社製の塗布装置ACT8に付属)によりそれぞれ行い、いずれの現像処理もその後15秒間、純水を用いて水リンスした後、上記と同様にして静的接触角の測定を行った。この測定値を「現像後接触角(°)」とした。その結果を表2に示す。
Figure 0005449993
表2の結果から、実施例2、3のポジ型レジスト組成物を用いて形成されたレジスト膜は、比較例3におけるレジスト膜に比べて、Coat後接触角の値が大きいことから、高分子化合物(1)、高分子化合物(2)を含有することにより、膜表面の疎水性が高くなることが確認できた。
また、実施例2、3におけるレジスト膜は、現像後接触角がCoat後接触角より小さい値を示していることから、アルカリ現像処理により膜表面の親水性が高くなっていることが確認できた。
比較例4におけるレジスト膜(添加剤有り)は、30秒現像後においても、比較例3におけるレジスト膜(添加剤なし)に比べて、高い接触角のままであり、一方、実施例2におけるレジスト膜(添加剤有り)は30秒現像後において、実施例3におけるレジスト膜(添加剤有り)は10秒現像後において、比較例3におけるレジスト膜よりも低い接触角となり、添加剤なしのレジスト膜よりも膜表面の親水性がさらに高くなっていることが確認できた。
したがって、実施例2、3のポジ型レジスト組成物は、浸漬露光時には疎水性であって、アルカリ現像時には親水性となる特性に優れていると云えるため、現像時のディフェクトの低減が期待できる。特に実施例3におけるレジスト膜は、Coat後については比較例4と同等の高い疎水性を示していながら、現像後は(たった10秒現像でも)比較例3よりも高い親水性を有する膜に変化できることから、上記特性により優れていると云える。
[膜減りの評価]
8インチシリコンウェーハの上に、実施例4のポジ型レジスト組成物をスピンコートで均一に塗布し、110℃、60秒間の条件でプリベーク(PAB)を行うことにより、膜厚110nmのレジスト膜を形成した。
次に、このレジスト膜に対し、ArFエキシマレーザー露光機NSR−S302(Nikon社製)を用いて、露光量を0〜16mJ/cmの範囲(1mJ/cmずつ間隔で17点)と20mJ/cmで全面オープン露光をそれぞれ行った。
次いで、各露光量での全面オープン露光後に、露光後加熱(PEB)を温度80℃、100℃、120℃で各60秒間それぞれ行い、その後、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いて30秒間現像した。
露光前と現像後のレジスト膜のそれぞれの膜厚を、走査型電子顕微鏡(SEM)を用いて測定し、横軸を露光量(mJ/cm)とし、縦軸をレジスト膜の膜厚(nm)とするグラフを作成した。
図2は、実施例4のポジ型レジスト組成物における、露光量に対するレジスト膜の膜厚の変化を示すグラフである。
図2のグラフから、実施例4のポジ型レジスト組成物においては、低露光量領域で膜減りが認められることより、現像工程後の析出物等がアルカリ現像液に溶解しやすく、欠陥(ディフェクト)の発生が抑制され、レジストパターン形状の改善が期待される。

Claims (5)

  1. 酸の作用によりアルカリ現像液に対する溶解性が増大する樹脂成分(A)、および露光により酸を発生する酸発生剤成分(B)を含有するポジ型レジスト組成物であって、
    前記樹脂成分(A)は、
    酸解離性溶解抑制基を含む構成単位(a1)と、
    塩基解離性基を含む構成単位(a5)と、
    下記一般式(a6−1)で表される構成単位(a6)とを有する高分子化合物(A1)を含有することを特徴とするポジ型レジスト組成物。
    Figure 0005449993
    [式中、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基を表し、RおよびRはそれぞれ独立に水素原子又は任意の位置に酸素原子を含んでいてもよいアルキル基を表すか、又は両者が結合してアルキレン基を形成し、Wは任意の位置に酸素原子を含んでいてもよい環状のアルキレン基を表す。]
  2. 前記構成単位(a5)が、下記一般式(a5−01−1)で表される構成単位および下記一般式(a5−01−2)で表される構成単位からなる群から選ばれる少なくとも一種の構成単位である請求項1記載のポジ型レジスト組成物。
    Figure 0005449993
    [式中、Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のハロゲン化アルキル基であり、Rはそれぞれ独立にフッ素原子を有する有機基である。式(a5−01−1)中、Xは二価の連結基である。式(a5−01−2)中、Aarylは置換基を有していてもよい二価の芳香族環式基であり、X01は単結合又は二価の連結基である。ただし、前記X、Aaryl、X01はいずれもフッ素原子を有さないものとする。]
  3. 前記構成単位(a1)が、酸解離性溶解抑制基を含むアクリル酸エステルから誘導される構成単位である請求項1又は2記載のポジ型レジスト組成物。
  4. さらに、含窒素有機化合物成分(D)(ただし、前記高分子化合物(A1)を除く)を含有する請求項1〜3のいずれか一項に記載のポジ型レジスト組成物。
  5. 支持体上に、請求項1〜4のいずれか一項に記載のポジ型レジスト組成物を用いてレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜をアルカリ現像してレジストパターンを形成する工程を含むレジストパターン形成方法。
JP2009259029A 2009-11-12 2009-11-12 ポジ型レジスト組成物及びレジストパターン形成方法 Active JP5449993B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009259029A JP5449993B2 (ja) 2009-11-12 2009-11-12 ポジ型レジスト組成物及びレジストパターン形成方法
KR1020100109553A KR101762442B1 (ko) 2009-11-12 2010-11-05 포지티브형 레지스트 조성물 및 레지스트 패턴 형성 방법
US12/945,526 US8450044B2 (en) 2009-11-12 2010-11-12 Positive resist composition and method of forming resist pattern
TW099139040A TWI476530B (zh) 2009-11-12 2010-11-12 正型光阻組成物及光阻圖型之形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259029A JP5449993B2 (ja) 2009-11-12 2009-11-12 ポジ型レジスト組成物及びレジストパターン形成方法

Publications (2)

Publication Number Publication Date
JP2011107193A JP2011107193A (ja) 2011-06-02
JP5449993B2 true JP5449993B2 (ja) 2014-03-19

Family

ID=43974414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259029A Active JP5449993B2 (ja) 2009-11-12 2009-11-12 ポジ型レジスト組成物及びレジストパターン形成方法

Country Status (4)

Country Link
US (1) US8450044B2 (ja)
JP (1) JP5449993B2 (ja)
KR (1) KR101762442B1 (ja)
TW (1) TWI476530B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542412B2 (ja) * 2009-10-28 2014-07-09 東京応化工業株式会社 ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物
JP5879834B2 (ja) * 2010-11-15 2016-03-08 住友化学株式会社 塩、レジスト組成物及びレジストパターンの製造方法
JP5581194B2 (ja) * 2010-12-20 2014-08-27 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物並びに該組成物を用いたレジスト膜及びパターン形成方法
JP5624872B2 (ja) * 2010-12-20 2014-11-12 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物並びに該組成物を用いたレジスト膜及びパターン形成方法
JP5977594B2 (ja) 2011-07-19 2016-08-24 住友化学株式会社 レジスト組成物及びレジストパターンの製造方法
JP5977595B2 (ja) 2011-07-19 2016-08-24 住友化学株式会社 レジスト組成物及びレジストパターンの製造方法
JP6012289B2 (ja) * 2012-06-28 2016-10-25 富士フイルム株式会社 パターン形成方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜、及び電子デバイスの製造方法
JP6451427B2 (ja) * 2015-03-13 2019-01-16 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798458B2 (ja) 1996-02-02 2006-07-19 東京応化工業株式会社 オキシムスルホネート化合物及びレジスト用酸発生剤
JP3854689B2 (ja) 1997-07-24 2006-12-06 東京応化工業株式会社 新規な光酸発生剤
JP3865473B2 (ja) 1997-07-24 2007-01-10 東京応化工業株式会社 新規なジアゾメタン化合物
JP3980124B2 (ja) 1997-07-24 2007-09-26 東京応化工業株式会社 新規ビススルホニルジアゾメタン
US5945517A (en) * 1996-07-24 1999-08-31 Tokyo Ohka Kogyo Co., Ltd. Chemical-sensitization photoresist composition
JP3935267B2 (ja) 1998-05-18 2007-06-20 東京応化工業株式会社 新規なレジスト用酸発生剤
US6153733A (en) * 1998-05-18 2000-11-28 Tokyo Ohka Kogyo Co., Ltd. (Disulfonyl diazomethane compounds)
JP3895224B2 (ja) * 2001-12-03 2007-03-22 東京応化工業株式会社 ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
EP1595182B1 (en) 2003-02-19 2015-09-30 Basf Se Halogenated oxime derivatives and the use thereof as latent acids
US7078562B2 (en) * 2004-01-19 2006-07-18 Mitsubishi Gas Chemical Company, Inc. Adamantane derivatives and resin compositions using the same as raw material
JP4697395B2 (ja) 2004-01-19 2011-06-08 三菱瓦斯化学株式会社 アダマンタン誘導体およびそれを原料とする樹脂組成物
JP4622579B2 (ja) * 2004-04-23 2011-02-02 住友化学株式会社 化学増幅型ポジ型レジスト組成物及び(メタ)アクリル酸誘導体とその製法
JP3978216B2 (ja) * 2004-05-27 2007-09-19 松下電器産業株式会社 レジスト材料及びパターン形成方法
JP3978217B2 (ja) * 2004-05-27 2007-09-19 松下電器産業株式会社 レジスト材料及びパターン形成方法
JP4781086B2 (ja) * 2005-10-31 2011-09-28 ダイセル化学工業株式会社 脂環式骨格を有する高分子化合物
JP4719069B2 (ja) * 2006-04-21 2011-07-06 パナソニック株式会社 レジスト材料及びそれを用いたパターン形成方法
JP5033550B2 (ja) 2006-10-31 2012-09-26 東京応化工業株式会社 ポジ型レジスト組成物およびレジストパターン形成方法
WO2008053697A1 (en) * 2006-10-31 2008-05-08 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method for formation of resist pattern
JP5314882B2 (ja) * 2007-02-15 2013-10-16 東京応化工業株式会社 高分子化合物、レジスト組成物及びレジストパターン形成方法
US9034556B2 (en) * 2007-12-21 2015-05-19 Tokyo Ohka Kogyo Co., Ltd. Compound and method of producing the same, acid generator, resist composition and method of forming resist pattern
JP5186249B2 (ja) 2007-12-21 2013-04-17 東京応化工業株式会社 新規な化合物およびその製造方法、酸発生剤、レジスト組成物およびレジストパターン形成方法
JP2009175363A (ja) * 2008-01-23 2009-08-06 Tokyo Ohka Kogyo Co Ltd 液浸露光用レジスト組成物、レジストパターン形成方法、および含フッ素共重合体
JP2009237379A (ja) * 2008-03-27 2009-10-15 Fujifilm Corp ポジ型感光性組成物及びそれを用いたパターン形成方法
JP5250309B2 (ja) * 2008-05-28 2013-07-31 東京応化工業株式会社 レジスト組成物およびレジストパターン形成方法
JP5172494B2 (ja) * 2008-06-23 2013-03-27 東京応化工業株式会社 液浸露光用レジスト組成物、レジストパターン形成方法、含フッ素高分子化合物
JP5412134B2 (ja) * 2009-02-20 2014-02-12 東京応化工業株式会社 液浸露光用ポジ型レジスト組成物およびそれを用いたレジストパターン形成方法
JP5449992B2 (ja) * 2009-11-12 2014-03-19 東京応化工業株式会社 ポジ型レジスト組成物及びレジストパターン形成方法

Also Published As

Publication number Publication date
US8450044B2 (en) 2013-05-28
TW201133146A (en) 2011-10-01
JP2011107193A (ja) 2011-06-02
TWI476530B (zh) 2015-03-11
KR20110052474A (ko) 2011-05-18
US20110111343A1 (en) 2011-05-12
KR101762442B1 (ko) 2017-07-27

Similar Documents

Publication Publication Date Title
JP5386236B2 (ja) ポジ型レジスト組成物及びレジストパターン形成方法
JP5439154B2 (ja) ポジ型レジスト組成物及びレジストパターン形成方法
JP5346627B2 (ja) ポジ型レジスト組成物及びレジストパターン形成方法
JP5568258B2 (ja) ポジ型レジスト組成物およびそれを用いたレジストパターン形成方法、並びに含フッ素高分子化合物
JP5412134B2 (ja) 液浸露光用ポジ型レジスト組成物およびそれを用いたレジストパターン形成方法
JP5172494B2 (ja) 液浸露光用レジスト組成物、レジストパターン形成方法、含フッ素高分子化合物
JP5398246B2 (ja) レジスト組成物およびレジストパターン形成方法
JP5227846B2 (ja) ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物
JP5264575B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP5518671B2 (ja) レジスト組成物、レジストパターン形成方法、高分子化合物
JP5449993B2 (ja) ポジ型レジスト組成物及びレジストパターン形成方法
JP2010217855A (ja) ポジ型レジスト組成物及びレジストパターン形成方法
JP5462681B2 (ja) ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物、化合物
JP5439139B2 (ja) ポジ型レジスト組成物、レジストパターン形成方法
JP5568254B2 (ja) ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物、化合物
JP5398194B2 (ja) レジスト用重合体、レジスト組成物、レジストパターン形成方法
JP5325589B2 (ja) ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物
JP5449992B2 (ja) ポジ型レジスト組成物及びレジストパターン形成方法
JP5597677B2 (ja) 化合物、高分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法
JP5542412B2 (ja) ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物
JP5990373B2 (ja) レジスト組成物、レジストパターン形成方法及び高分子化合物
JP5600384B2 (ja) ポジ型レジスト組成物及びレジストパターン形成方法
JP5238400B2 (ja) ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物、化合物
JP5758232B2 (ja) レジスト組成物、レジストパターン形成方法
JP5638106B2 (ja) 新規な化合物および酸発生剤

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5449993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150