JP5443453B2 - Manufacturing method of composite, composite, rubber composition, and pneumatic tire - Google Patents

Manufacturing method of composite, composite, rubber composition, and pneumatic tire Download PDF

Info

Publication number
JP5443453B2
JP5443453B2 JP2011203567A JP2011203567A JP5443453B2 JP 5443453 B2 JP5443453 B2 JP 5443453B2 JP 2011203567 A JP2011203567 A JP 2011203567A JP 2011203567 A JP2011203567 A JP 2011203567A JP 5443453 B2 JP5443453 B2 JP 5443453B2
Authority
JP
Japan
Prior art keywords
silica
rubber
natural rubber
latex
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011203567A
Other languages
Japanese (ja)
Other versions
JP2013064072A (en
Inventor
俊明 榊
タラチウィン ルクサナポーン
チャルンチタレー カモルチャット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011203567A priority Critical patent/JP5443453B2/en
Priority to MYPI2012700647A priority patent/MY158198A/en
Publication of JP2013064072A publication Critical patent/JP2013064072A/en
Application granted granted Critical
Publication of JP5443453B2 publication Critical patent/JP5443453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02T10/862

Description

本発明は、複合体の製造方法、複合体、該複合体を含むゴム組成物、及び該ゴム組成物を用いた空気入りタイヤに関する。 The present invention relates to a composite manufacturing method, a composite, a rubber composition containing the composite, and a pneumatic tire using the rubber composition.

従来から、タイヤの転がり抵抗を低減して発熱を抑え、車両を低燃費化することが行われている。近年、低燃費化への要請が大きく、タイヤにおける占有比率の高いトレッドだけでなく、サイドウォールなどの他部材に対しても低燃費化の要請が大きくなっている。また、近年の低燃費化は乗用車用タイヤだけでなくトラック、バスに使用される高荷重用タイヤでも要求されているが、高荷重用タイヤにおいては、低燃費性の向上(転がり抵抗の低減)とともに、優れた耐摩耗性や耐破壊性能を確保することが重要となる。 Conventionally, the rolling resistance of a tire is reduced to suppress heat generation, thereby reducing the fuel consumption of the vehicle. In recent years, there has been a great demand for low fuel consumption, and there is a growing demand for low fuel consumption not only for tires with a high occupation ratio but also for other members such as sidewalls. In recent years, low fuel consumption has been required not only for passenger car tires but also for heavy duty tires used for trucks and buses, but for heavy duty tires, improved fuel efficiency (reduced rolling resistance) At the same time, it is important to ensure excellent wear resistance and fracture resistance.

ゴム組成物の低燃費性を改善する方法として、低補強性の補強用充填剤を用いる方法、補強用充填剤の含有量を低減させる方法等が知られている。しかし、これらの方法では、ゴム組成物の補強性が低下するため、耐摩耗性や耐破壊性能が低下するという問題があり、低燃費性と耐摩耗性や耐破壊性能とを両立させることは困難である。 Known methods for improving the fuel efficiency of the rubber composition include a method using a low reinforcing reinforcing filler, a method of reducing the content of reinforcing filler, and the like. However, in these methods, since the reinforcing property of the rubber composition is lowered, there is a problem that wear resistance and fracture resistance are lowered, and it is impossible to achieve both low fuel consumption and wear resistance and fracture resistance. Have difficulty.

また、天然ゴムは低燃費性、耐摩耗性及び耐破壊性能に優れるという特性を有しているが、他の合成ゴムに比べて加工性が悪く、通常素練りした後に使用されるため、一般的に生産性に劣る。また、素練りによって天然ゴムの分子鎖が切断されるため、上述の優れた特性が損なわれるという問題もある。 In addition, natural rubber has characteristics such as low fuel consumption, wear resistance and fracture resistance, but it has poor processability compared to other synthetic rubbers and is usually used after mastication. Inferior in productivity. Further, since the molecular chain of natural rubber is cut by mastication, there is a problem that the above-described excellent characteristics are impaired.

特許文献1には、ゴムの機械的強度を改善できるマスターバッチとして、天然ゴムラテックスに水ガラスから製造される微粒子シリカを混合して調製した複合体が開示されている。しかし、優れた加工性を有しつつ、低燃費性、耐摩耗性及び耐破壊性能をバランスよく改善するという点について改善する余地がある。 Patent Document 1 discloses a composite prepared by mixing fine rubber silica produced from water glass with natural rubber latex as a master batch capable of improving the mechanical strength of rubber. However, there is room for improvement in terms of improving fuel economy, wear resistance, and fracture resistance in a balanced manner while having excellent processability.

特開2009−51955号公報JP 2009-51955 A

本発明は、前記課題を解決し、優れた加工性を有しつつ、低燃費性、耐摩耗性及び耐破壊性能をバランスよく改善できる複合体の製造方法を提供することを目的とする。また、該製造方法により得られる複合体を含むゴム組成物、及びそれを用いた空気入りタイヤを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a composite that can improve fuel economy, wear resistance, and fracture resistance in a well-balanced manner while having excellent workability. Moreover, it aims at providing the rubber composition containing the composite_body | complex obtained by this manufacturing method, and a pneumatic tire using the same.

本発明は、ケン化天然ゴムラテックスと、シリカ分散液と、シリカに結合する官能基を有する結合剤とを混合して配合ラテックスを調製する工程(I)、該工程(I)で得られた配合ラテックスを凝固させる工程(II)、及び該工程(II)で得られた凝固物を洗浄し、ゴム中のリン含有量を200ppm以下に調整する工程(III)を含む複合体の製造方法に関する。 The present invention is a step (I) in which a saponified natural rubber latex, a silica dispersion, and a binder having a functional group that binds to silica are mixed to prepare a compounded latex, and obtained in the step (I). The present invention relates to a method for producing a composite comprising the step (II) of coagulating a compounded latex and the step (III) of washing the coagulated product obtained in the step (II) and adjusting the phosphorus content in the rubber to 200 ppm or less. .

上記結合剤が有するシリカに結合する官能基は、アルコキシシリル基であることが好ましい。 The functional group that binds to silica of the binder is preferably an alkoxysilyl group.

上記結合剤は、ゴムに結合する官能基を更に有するものであることが好ましい。 The binder preferably has a functional group that binds to rubber.

上記ケン化天然ゴムラテックスは、天然ゴムラテックスを界面活性剤の存在下でアルカリによりケン化処理して得られたものであることが好ましい。 The saponified natural rubber latex is preferably obtained by saponifying natural rubber latex with an alkali in the presence of a surfactant.

本発明はまた、上記製造方法により得られる複合体に関する。 The present invention also relates to a composite obtained by the above production method.

本発明はまた、上記複合体を含むゴム組成物に関する。 The present invention also relates to a rubber composition containing the composite.

本発明はまた、上記ゴム組成物を用いて作製した空気入りタイヤに関する。 The present invention also relates to a pneumatic tire produced using the rubber composition.

本発明によれば、ケン化天然ゴムラテックスと、シリカ分散液と、シリカに結合する官能基を有する結合剤とを混合して配合ラテックスを調製する工程(I)、該工程(I)で得られた配合ラテックスを凝固させる工程(II)、及び該工程(II)で得られた凝固物を洗浄し、ゴム中のリン含有量を200ppm以下に調整する工程(III)を含む複合体の製造方法であるので、シリカが改質天然ゴム中に均一に分散した複合体が得られる。該複合体を含むゴム組成物をトレッドなどのタイヤ部材に使用することにより、低燃費性、耐摩耗性及び耐破壊性能がバランスよく改善された空気入りタイヤを提供できる。 According to the present invention, the step (I) of preparing a compounded latex by mixing a saponified natural rubber latex, a silica dispersion, and a binder having a functional group that binds to silica is obtained in the step (I). Production of a composite comprising the step (II) of coagulating the blended latex and the step (III) of washing the coagulated product obtained in the step (II) and adjusting the phosphorus content in the rubber to 200 ppm or less Since the method is used, a composite in which silica is uniformly dispersed in the modified natural rubber can be obtained. By using the rubber composition containing the composite for a tire member such as a tread, a pneumatic tire having improved fuel economy, wear resistance, and fracture resistance in a well-balanced manner can be provided.

更に、上記複合体はムーニー粘度が低く、加工性にも優れているため、該複合体を用いたゴム組成物の製造において、予め素練り工程を行わなくても良好な加工性が得られる。これにより、素練り工程を省略して、天然ゴムが本来有する優れた特性を維持することが可能となり、より優れた低燃費性、耐摩耗性及び耐破壊性能を得ることができる。 Furthermore, since the composite has a low Mooney viscosity and excellent processability, good processability can be obtained without performing a kneading step in advance in the production of a rubber composition using the composite. Thereby, it is possible to omit the mastication step and maintain the excellent characteristics inherent in natural rubber, and to obtain more excellent fuel economy, wear resistance and fracture resistance.

本発明は、ケン化天然ゴムラテックスと、シリカ分散液と、シリカに結合する官能基を有する結合剤とを混合して配合ラテックスを調製する工程(I)、該工程(I)で得られた配合ラテックスを凝固させる工程(II)、及び該工程(II)で得られた凝固物を洗浄し、ゴム中のリン含有量を200ppm以下に調整する工程(III)を含む複合体の製造方法である。つまり、先ず、ケン化処理を施した天然ゴムラテックス(ケン化天然ゴムラテックス)と、シリカを水中に分散させた分散液(シリカ分散液)とをそれぞれ調製した上で、該ケン化天然ゴムラテックス及び該シリカ分散液とともに、シリカに結合する官能基を有する結合剤を混合して配合ラテックス(混合液)を作製し、凝固させた後に、得られた凝固物を洗浄して天然ゴム中のリン量を低減することにより、リン量が200ppm以下の改質天然ゴム(HPNR)を含む複合体が製造される。これにより、HPNR中にシリカが均一に分散した複合体を製造できる。 The present invention is a step (I) in which a saponified natural rubber latex, a silica dispersion, and a binder having a functional group that binds to silica are mixed to prepare a compounded latex, and obtained in the step (I). A method for producing a composite comprising the step (II) of coagulating a compounded latex and the step (III) of washing the coagulated product obtained in the step (II) and adjusting the phosphorus content in the rubber to 200 ppm or less. is there. That is, first, a natural rubber latex subjected to a saponification treatment (saponified natural rubber latex) and a dispersion in which silica is dispersed in water (silica dispersion) are prepared, and then the saponified natural rubber latex is prepared. And a silica gel dispersion and a binder having a functional group that binds to silica are mixed to prepare a compounded latex (mixed solution). After coagulation, the obtained coagulated product is washed to obtain phosphorus in natural rubber. By reducing the amount, a composite containing modified natural rubber (HPNR) having a phosphorus amount of 200 ppm or less is produced. Thereby, the composite_body | complex in which the silica was disperse | distributed uniformly in HPNR can be manufactured.

ケン化天然ゴムは、ケン化処理によって親水性のタンパク質やリン脂質が除去されているため、通常の天然ゴムと比較して、親水性であるシリカとの相溶性が低い。従って、通常、ケン化天然ゴムラテックス及びシリカ分散液の混合液を凝固させても、シリカ粒子同士が凝集してしまい、HPNR中にシリカが均一に分散した複合体を得ることは困難である。これに対し、本発明では、ケン化天然ゴムラテックス及びシリカ分散液とともに、シリカに結合する官能基を有する結合剤を混合することにより、該結合剤によってシリカ粒子同士の凝集を抑制することができるため、HPNR中にシリカが均一に分散した複合体を容易に得ることができる。 Since saponified natural rubber has hydrophilic proteins and phospholipids removed by saponification treatment, it is less compatible with hydrophilic silica than ordinary natural rubber. Therefore, usually, even if the mixture of saponified natural rubber latex and silica dispersion is coagulated, silica particles are aggregated and it is difficult to obtain a composite in which silica is uniformly dispersed in HPNR. On the other hand, in the present invention, by combining a saponified natural rubber latex and a silica dispersion with a binder having a functional group that binds to silica, aggregation of silica particles can be suppressed by the binder. Therefore, a composite in which silica is uniformly dispersed in HPNR can be easily obtained.

(工程(I))
工程(I)で使用されるケン化天然ゴムラテックスは、天然ゴムラテックスをアルカリでケン化処理することにより調製できる。ケン化処理は、天然ゴムラテックスに、アルカリと、必要に応じて界面活性剤を添加して所定温度で一定時間、静置することにより行うことができる。なお、必要に応じて撹拌等を行っても良い。このように、ラテックス状態でケン化処理を行うことで、天然ゴムの各粒子が均一に処理され、効率的にケン化処理を行うことができる。ケン化処理を施すと、ケン化により分離したリン化合物が後述する工程(III)で洗浄除去されるので、調製される複合体に含まれる天然ゴム中のリン含有量を抑えることができる。また、ケン化処理により、天然ゴム中の蛋白質が分解されるので、天然ゴムの窒素含有量を抑えることもできる。
(Process (I))
The saponified natural rubber latex used in step (I) can be prepared by saponifying natural rubber latex with an alkali. The saponification treatment can be performed by adding an alkali and, if necessary, a surfactant to natural rubber latex and allowing to stand at a predetermined temperature for a predetermined time. In addition, you may perform stirring etc. as needed. Thus, by performing a saponification process in a latex state, each particle of natural rubber is uniformly processed, and the saponification process can be performed efficiently. When the saponification treatment is performed, the phosphorus compound separated by the saponification is washed away in the step (III) described later, so that the phosphorus content in the natural rubber contained in the prepared composite can be suppressed. Moreover, since the protein in the natural rubber is decomposed by the saponification treatment, the nitrogen content of the natural rubber can be suppressed.

天然ゴムラテックスはヘベア樹などの天然ゴムの樹木の樹液として採取され、ゴム分のほか水、タンパク質、脂質、無機塩類などを含み、ゴム中のゲル分は種々の不純物の複合的な存在に基づくものと考えられている。本発明では、天然ゴムラテックスとして、ヘベア樹をタッピングして出てくる生ラテックス(フィールドラテックス)、遠心分離法やクリーミング法によって濃縮した濃縮ラテックス(精製ラテックス、常法によりアンモニアを添加したハイアンモニアラテックス、亜鉛華とTMTDとアンモニアによって安定化させたLATZラテックスなど)などを使用できる。 Natural rubber latex is collected as sap of natural rubber trees such as Hevea, and contains rubber, water, proteins, lipids, inorganic salts, etc., and the gel content in rubber is based on the complex presence of various impurities. It is considered a thing. In the present invention, as a natural rubber latex, raw latex (field latex) produced by tapping Hevea tree, concentrated latex concentrated by centrifugation or creaming method (purified latex, high ammonia latex added with ammonia by a conventional method) , Zinc oxide, TMTD and ammonia stabilized LATZ latex, etc.) can be used.

ケン化処理の方法としては、例えば、特開2010−138359号公報、特開2010−174169号公報に記載の方法により好適に行うことができる。具体的には、ケン化処理は、天然ゴムラテックスに、アルカリと、必要に応じて界面活性剤を添加して所定温度で一定時間、静置することで実施でき、必要に応じて撹拌などを行っても良い。 As a method for the saponification treatment, for example, the methods described in JP2010-138359A and JP2010-174169A can be suitably performed. Specifically, the saponification treatment can be carried out by adding an alkali and, if necessary, a surfactant to natural rubber latex and allowing to stand at a predetermined temperature for a certain period of time. You can go.

ケン化処理に用いるアルカリとしては、水酸化ナトリウム、水酸化カリウムなどが好ましい。界面活性剤としては特に限定されず、ポリオキシエチレンアルキルエーテル硫酸エステル塩などの公知のノニオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤が挙げられるが、ゴムを凝固させず良好にケン化できるという点から、ポリオキシエチレンアルキルエーテル硫酸エステル塩が好適である。ケン化処理において、アルカリ及び界面活性剤の添加量、ケン化処理の温度及び時間は、適宜設定すればよい。 As the alkali used for the saponification treatment, sodium hydroxide, potassium hydroxide and the like are preferable. The surfactant is not particularly limited, and examples thereof include known nonionic surfactants such as polyoxyethylene alkyl ether sulfates, anionic surfactants, and amphoteric surfactants. A polyoxyethylene alkyl ether sulfate ester salt is preferable because it can be saponified. In the saponification treatment, the addition amount of alkali and surfactant, the temperature and time of the saponification treatment may be appropriately set.

また工程(I)では、シリカ分散液が使用される。即ち、乾燥したシリカの粉末ではなく、シリカが水中に分散した分散液(スラリー)が使用される。シリカ分散液の使用により、ゴムの補強効果が得られ、優れた耐摩耗性、耐破壊性能が得られる。 In step (I), a silica dispersion is used. That is, not a dried silica powder but a dispersion (slurry) in which silica is dispersed in water is used. By using the silica dispersion, a rubber reinforcing effect can be obtained, and excellent wear resistance and fracture resistance can be obtained.

シリカ分散液の製造方法は特に限定されず、公知の方法で製造でき、例えば、高圧ホモジナイザー等のホモジナイザーや、コロイドミル等を用いて調製できる。また、水中でシリカをゆっくりと攪拌するだけで調製できる場合もある。具体的には、コロイドミルに水を入れ、攪拌しながらシリカを添加し、次いでホモジナイザーを用いて必要に応じて界面活性剤とともに循環させることにより、シリカ分散液を調製できる。なお、必ずしもコロイドミル及びホモジナイザーの両方を使用する必要はなく、いずれか一方のみを使用した場合であってもシリカ分散液の調製は可能である。シリカ分散液中のシリカの添加量は特に限定されないが、シリカ分散液(100質量%)中でのシリカの均一分散性の点から、好ましくは0.5〜30質量%、より好ましくは2〜10質量%である。 The method for producing the silica dispersion is not particularly limited, and can be produced by a known method. For example, it can be prepared using a homogenizer such as a high-pressure homogenizer, a colloid mill, or the like. In some cases, the silica can be prepared by simply stirring silica in water. Specifically, a silica dispersion can be prepared by adding water to a colloid mill, adding silica while stirring, and then circulating with a surfactant as necessary using a homogenizer. Note that it is not always necessary to use both a colloid mill and a homogenizer, and a silica dispersion can be prepared even when only one of them is used. The amount of silica added in the silica dispersion is not particularly limited, but is preferably 0.5 to 30% by mass, more preferably 2 to 2%, from the viewpoint of uniform dispersibility of silica in the silica dispersion (100% by mass). 10% by mass.

シリカ分散液に使用するシリカの種類は特に限定されないが、含水シリカを好適に使用できる。 Although the kind of silica used for a silica dispersion liquid is not specifically limited, A hydrous silica can be used conveniently.

シリカ分散液に含まれるシリカの窒素吸着比表面積(NSA)は、充分な補強性が得られる点から、30m/g以上が好ましく、50m/g以上がより好ましく、70m/g以上が更に好ましい。また、シリカのNSAは、低発熱性(低燃費性)に優れる点から、280m/g以下が好ましく、250m/g以下がより好ましく、220m/g以下が更に好ましい。
なお、シリカの窒素吸着比表面積は、ASTM D3037−93に準じてBET法で測定される値である。
Nitrogen adsorption specific surface area of the silica contained in the silica dispersion (N 2 SA) of from the viewpoint that sufficient reinforcing property can be obtained, preferably at least 30 m 2 / g, more preferably at least 50m 2 / g, 70m 2 / g The above is more preferable. Further, N 2 SA of silica is preferably 280 m 2 / g or less, more preferably 250 m 2 / g or less, and still more preferably 220 m 2 / g or less, from the viewpoint of excellent low heat build-up (low fuel consumption).
In addition, the nitrogen adsorption specific surface area of a silica is a value measured by BET method according to ASTM D3037-93.

前述のシリカ分散液の製法で説明したように、シリカ分散液には、シリカの分散性の点から、界面活性剤を添加することも可能である。界面活性剤としては、前述の天然ゴムラテックスのケン化処理と同様のものを使用できるが、シリカを良好に分散できるという点から、アニオン系界面活性剤が好ましく、β−ナフタリンスルホン酸ホルマリン縮合物のナトリウム塩がより好ましい。なお、シリカ分散液の調製において、界面活性剤の添加量は特に限定されないが、シリカ分散液(100質量%)中でのシリカの均一分散性の点から、好ましくは0.01〜2.0質量%、より好ましくは0.03〜1.0質量%である。 As described in the method for producing a silica dispersion, a surfactant may be added to the silica dispersion from the viewpoint of silica dispersibility. As the surfactant, those similar to the saponification treatment of the natural rubber latex described above can be used, but anionic surfactants are preferred from the viewpoint that silica can be dispersed well, and β-naphthalene sulfonic acid formalin condensate. The sodium salt is more preferred. In addition, in the preparation of the silica dispersion, the addition amount of the surfactant is not particularly limited, but is preferably 0.01 to 2.0 from the viewpoint of uniform dispersibility of silica in the silica dispersion (100% by mass). % By mass, more preferably 0.03 to 1.0% by mass.

また工程(I)では、シリカに結合する官能基を有する結合剤を使用する。シリカの分散性をより向上できるという点から、上記結合剤は、シリカに結合する官能基及びゴムに結合する官能基を有していることが好ましいが、少なくともシリカに結合する官能基を有していれば、シリカ同士の凝集を抑制することができるため、ゴム中にシリカを微分散させ、低燃費性、耐摩耗性及び耐破壊性能をバランスよく改善することができる。 In step (I), a binder having a functional group that binds to silica is used. From the viewpoint that the dispersibility of silica can be further improved, the binder preferably has a functional group bonded to silica and a functional group bonded to rubber, but has at least a functional group bonded to silica. If so, the aggregation of the silica can be suppressed, so that the silica can be finely dispersed in the rubber, and the fuel economy, wear resistance and fracture resistance can be improved in a well-balanced manner.

上記結合剤において、シリカに結合する官能基としては、例えば、加水分解後、シリカ表面の水酸基と縮合反応することでシリカと結合するアルコキシシリル基などが挙げられる。アルコキシシリル基は、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基のいずれであってもよいが、トリアルコキシシリル基が好ましく、トリメトキシシリル基、トリエトキシシリル基がより好ましい。
また、上記結合剤において、ゴムに結合する官能基としては、ポリスルフィド基、メルカプト基、ビニル基などが挙げられる。
In the above binder, examples of the functional group that binds to silica include an alkoxysilyl group that binds to silica by a condensation reaction with a hydroxyl group on the silica surface after hydrolysis. The alkoxysilyl group may be a monoalkoxysilyl group, a dialkoxysilyl group, or a trialkoxysilyl group, but is preferably a trialkoxysilyl group, more preferably a trimethoxysilyl group or a triethoxysilyl group.
In the binder, examples of the functional group bonded to rubber include a polysulfide group, a mercapto group, and a vinyl group.

上記結合剤としては、テトラエトキシシラン(TEOS)、ビニルトリエトキシシラン、エチルトリエトキシシランなどを好適に使用できる。これらのうち、TEOSは、従来、有機溶媒に溶解させたゴム中でシリカをin situで生成して、ゴム中にシリカが微分散した複合体を製造する際にも使用されていたが、この製造方法は、有機溶剤を使用するため環境負荷が大きいという点、有機溶剤には溶解しないゲルを多量に含有する天然ゴムには適用しにくいという点で改善の余地がある。これに対し、本発明は、従来の製造方法とは異なり、有機溶媒を使用することなく、天然ゴムにも適用可能な製造方法において、TEOSを使用している。 As the binder, tetraethoxysilane (TEOS), vinyltriethoxysilane, ethyltriethoxysilane, or the like can be suitably used. Among these, TEOS has been conventionally used to produce a composite in which silica is finely dispersed in rubber by producing silica in situ in rubber dissolved in an organic solvent. The manufacturing method has room for improvement in that it uses an organic solvent and has a large environmental load, and is difficult to apply to natural rubber containing a large amount of gel that does not dissolve in the organic solvent. On the other hand, unlike the conventional manufacturing method, the present invention uses TEOS in a manufacturing method applicable to natural rubber without using an organic solvent.

上述のTEOS、ビニルトリエトキシシラン、エチルトリエトキシシランは、界面活性剤を含む水溶液中に添加して高速攪拌し、O/W型(水中油滴)エマルションにして使用してもよい。 The above-mentioned TEOS, vinyltriethoxysilane, and ethyltriethoxysilane may be added to an aqueous solution containing a surfactant and stirred at a high speed to form an O / W type (oil-in-water droplet) emulsion.

また、上記結合剤としては、タイヤ工業において一般的に使用されるシランカップリング剤を使用することもできる。該シランカップリング剤としては、上述のビニルトリエトキシシランなどのビニル系の他、ビス(トリエトキシシリルプロピル)テトラスルフィド、ビス(トリエトキシシリルプロピル)ジスルフィドなどのスルフィド系、3−メルカプトプロピルメチルジメトキシシランなどのメルカプト系などが挙げられ、ビニル系、メルカプト系を好適に使用できる。 Moreover, as said binder, the silane coupling agent generally used in the tire industry can also be used. Examples of the silane coupling agent include vinyls such as vinyltriethoxysilane described above, sulfides such as bis (triethoxysilylpropyl) tetrasulfide and bis (triethoxysilylpropyl) disulfide, and 3-mercaptopropylmethyldimethoxy. Examples thereof include mercapto compounds such as silane, and vinyl and mercapto compounds can be suitably used.

上記結合剤の配合量は、シリカを良好に分散できるという点から、シリカ分散液中のシリカ100質量部に対して、好ましくは0.1〜10質量部、より好ましくは1〜8質量部である。 The blending amount of the binder is preferably 0.1 to 10 parts by mass, more preferably 1 to 8 parts by mass with respect to 100 parts by mass of silica in the silica dispersion from the viewpoint that silica can be dispersed well. is there.

上記結合剤は、ケン化天然ゴムラテックス及びシリカ分散液と混合すればよく、ケン化天然ゴムラテックス及びシリカ分散液を先に混合してから上記結合剤を添加して更に混合してもよいし、上記結合剤及びシリカ分散液を先に混合してからケン化天然ゴムラテックスに添加して更に混合してもよい。 The binder may be mixed with the saponified natural rubber latex and the silica dispersion, or the saponified natural rubber latex and the silica dispersion may be mixed first, and then the binder may be added and further mixed. The binder and the silica dispersion may be mixed first and then added to the saponified natural rubber latex and further mixed.

工程(I)では、ケン化天然ゴムラテックスと、シリカ分散液と、シリカに結合する官能基を有する結合剤とを公知の方法により混合した後、得られた混合液が均一な溶液になるまで十分に攪拌することで、配合ラテックスを調製できる。
なお、ケン化天然ゴムラテックスは、ゴム固形分が10〜70質量%のものを使用することが好ましい。
In step (I), a saponified natural rubber latex, a silica dispersion, and a binder having a functional group that binds to silica are mixed by a known method, and then the obtained mixed solution becomes a uniform solution. By thoroughly stirring, the compounded latex can be prepared.
The saponified natural rubber latex preferably has a rubber solid content of 10 to 70% by mass.

また、工程(I)では、最終的に得られる複合体において、改質天然ゴム100質量部(固形分)に対してシリ力の含有量が5〜150質量部となるようにシリカ分散液を混合することが好ましい。5質量部未満であると、マスターバッチとして使用する場合に、充分なシリカ量を確保できない傾向がある。一方、150質量部を超えると、配合ラテックス中でのシリカの均一分散が得られにくくなるため、ゴム組成物中でのシリカの均一分散性が低下する傾向がある。シリカの含有量は、より好ましくは10〜120質量部、更に好ましくは30〜90質量部である。 In step (I), the silica dispersion is added so that the content of the squeezing force is 5 to 150 parts by mass with respect to 100 parts by mass (solid content) of the modified natural rubber in the finally obtained composite. It is preferable to mix. When it is less than 5 parts by mass, there is a tendency that a sufficient amount of silica cannot be secured when used as a master batch. On the other hand, when it exceeds 150 parts by mass, it becomes difficult to obtain uniform dispersion of silica in the compounded latex, so that uniform dispersion of silica in the rubber composition tends to decrease. The content of silica is more preferably 10 to 120 parts by mass, still more preferably 30 to 90 parts by mass.

(工程(II))
工程(II)では、上記工程(I)で得られた配合ラテックスを凝固(凝集)させる。配合ラテックスを凝固する方法には、酸凝固、塩凝固、メタノール凝固などがあるが、ゴム中にシリカを均一分散させた状態で凝固するためには、酸凝固、塩凝固又はこれらの併用が好ましい。凝固させるための酸としては、硫酸、塩酸、蟻酸、酢酸などが挙げられる。また、塩としては、例えば、1〜3価の金属塩(塩化ナトリウム、塩化マグネシウム、硝酸カルシウム、塩化カルシウムなどのカルシウム塩など)が挙げられる。また、配合ラテックスの凝固は、酸又は塩の添加により配合ラテックスのpHを4〜9(好ましくは6〜8、より好ましくは6.5〜7.5)に調整して固形分を凝固させることで実施されることが好ましい。
(Process (II))
In step (II), the blended latex obtained in step (I) is coagulated (aggregated). Methods for coagulating the compounded latex include acid coagulation, salt coagulation, methanol coagulation, etc., but in order to coagulate in a state where silica is uniformly dispersed in rubber, acid coagulation, salt coagulation or a combination thereof is preferable. . Examples of the acid for coagulation include sulfuric acid, hydrochloric acid, formic acid, acetic acid and the like. Examples of the salt include 1 to 3 metal salts (calcium salts such as sodium chloride, magnesium chloride, calcium nitrate, and calcium chloride). Moreover, coagulation | solidification of mixing | blending latex adjusts the pH of mixing | blending latex to 4-9 (preferably 6-8, more preferably 6.5-7.5) by addition of an acid or a salt, and solidifies solid content. It is preferable to be implemented.

(工程(III))
工程(III)では、工程(II)で得られた凝固物(凝集ゴム及びシリカを含む凝集物)を洗浄し、ゴム(天然ゴム)中のリン含有量を200ppm以下に調整(低減)する。ケン化処理後に洗浄処理を施すことにより、凝固物における天然ゴム中のリン量を200ppm以下に低減できる。
(Step (III))
In step (III), the coagulated product (aggregate containing aggregated rubber and silica) obtained in step (II) is washed, and the phosphorus content in the rubber (natural rubber) is adjusted (reduced) to 200 ppm or less. By performing the washing treatment after the saponification treatment, the amount of phosphorus in the natural rubber in the coagulated product can be reduced to 200 ppm or less.

工程(III)の洗浄方法としては、例えば、ゴム分を水で希釈した後に遠心分離する方法や、ゴム分を水で希釈した後に静置してゴムを浮遊又は沈殿させ水相のみを排出する方法が挙げられる。遠心分離する際は、まず天然ゴムラテックスのゴム分が5〜40質量%、好ましくは10〜30質量%となるように水で希釈し、次いで5000〜10000rpmで1〜60分間遠心分離すればよく、所望のリン含有量になるまで洗浄を繰り返せばよい。また、静置してゴムを浮遊又は沈殿する場合も水の添加、攪拌を繰り返して、所望のリン含有量になるまで洗浄すればよい。 As the washing method in step (III), for example, a method of centrifuging after diluting the rubber component with water, or standing after diluting the rubber component with water to float or precipitate the rubber and discharge only the aqueous phase. A method is mentioned. When centrifuging, it may be first diluted with water so that the rubber content of the natural rubber latex is 5 to 40% by mass, preferably 10 to 30% by mass, and then centrifuged at 5000 to 10000 rpm for 1 to 60 minutes. The washing may be repeated until the desired phosphorus content is reached. In addition, even when the rubber is allowed to stand and float or precipitate, it may be washed until the desired phosphorus content is obtained by repeatedly adding water and stirring.

洗浄後、通常、公知の方法(オーブンなど)で乾燥される。乾燥後、2軸ロール、バンバリーミキサーなどでゴム練りを行うと、リン含有量が200ppm以下の改質天然ゴム(高純度化天然ゴム)及びシリカを含む複合体が得られる。上記複合体はシリカがゴムマトリックスに均一に分散しており、マスターバッチとして使用できる。なお、上記複合体は、本発明の効果を阻害しない範囲で他の成分を含んでもよい。 After washing, it is usually dried by a known method (such as an oven). When the rubber is kneaded with a biaxial roll, a Banbury mixer or the like after drying, a composite containing a modified natural rubber (purified natural rubber) having a phosphorus content of 200 ppm or less and silica is obtained. In the above composite, silica is uniformly dispersed in a rubber matrix and can be used as a master batch. In addition, the said composite_body | complex may contain another component in the range which does not inhibit the effect of this invention.

上記複合体に含まれる改質天然ゴムは、リン含有量が200ppm以下である。200ppmを超えると、貯蔵中にムーニー粘度が上昇して加工性が悪くなったり、優れた低燃費性が得られず、該性能と耐摩耗性や耐破壊性能をバランスよく改善できない傾向がある。
該リン含有量は、好ましくは150ppm以下、より好ましくは100ppm以下である。ここで、リン含有量は、例えば、ICP発光分析等、従来の方法で測定することができる。リンは、リン脂質(リン化合物)に由来するものである。
The modified natural rubber contained in the composite has a phosphorus content of 200 ppm or less. If it exceeds 200 ppm, the Mooney viscosity will increase during storage and the processability will deteriorate, and excellent fuel efficiency will not be obtained, and there will be a tendency that the performance, wear resistance and fracture resistance cannot be improved in a balanced manner.
The phosphorus content is preferably 150 ppm or less, more preferably 100 ppm or less. Here, the phosphorus content can be measured by a conventional method such as ICP emission analysis. Phosphorus is derived from phospholipids (phosphorus compounds).

上記複合体に含まれる改質天然ゴムの窒素含有量は、好ましくは0.3質量%以下、より好ましくは0.15質量%以下である。0.3質量%を超えると、貯蔵中にムーニー粘度が上昇して加工性が悪くなったり、優れた低燃費性が得られず、該性能と耐摩耗性や耐破壊性能をバランスよく改善できない傾向がある。窒素はタンパク質に由来する。窒素含有量は、例えばケルダール法等、従来の方法で測定することができる。 The nitrogen content of the modified natural rubber contained in the composite is preferably 0.3% by mass or less, more preferably 0.15% by mass or less. If it exceeds 0.3% by mass, the Mooney viscosity will increase during storage, resulting in poor processability and excellent fuel efficiency, and the performance, wear resistance and fracture resistance cannot be improved in a well-balanced manner. Tend. Nitrogen is derived from proteins. The nitrogen content can be measured by a conventional method such as Kjeldahl method.

上記複合体に含まれる改質天然ゴムは、(シリカ及び上記結合剤を入れない状態で)固形分中のトルエン不溶分として測定されるゲル含有率が20質量%以下であることが好ましく、10質量%以下であることがより好ましい。20質量%を超えると、ムーニー粘度が上昇して加工性が悪くなる傾向がある。ゲル含有率とは、非極性溶媒であるトルエンに対する不溶分として測定した値を意味し、以下においては単に「ゲル含有率」又は「ゲル分」と称することがある。ゲル分の含有率の測定方法は次のとおりである。まず、天然ゴム試料を脱水トルエンに浸し、暗所に遮光して1週間放置後、トルエン溶液を1.3×10rpmで30分間遠心分離して、不溶のゲル分とトルエン可溶分とを分離する。不溶のゲル分にメタノールを加えて固形化した後、乾燥し、ゲル分の質量と試料の元の質量との比からゲル含有率が求められる。 The modified natural rubber contained in the composite preferably has a gel content of 20% by mass or less measured as a toluene insoluble matter in the solid content (in a state where silica and the binder are not added). It is more preferable that the amount is not more than mass%. If it exceeds 20% by mass, the Mooney viscosity tends to increase and the processability tends to deteriorate. The gel content means a value measured as an insoluble content with respect to toluene which is a nonpolar solvent, and may be simply referred to as “gel content” or “gel content” below. The measuring method of the content rate of a gel part is as follows. First, a natural rubber sample is soaked in dehydrated toluene, light-shielded in the dark and left for 1 week, and then the toluene solution is centrifuged at 1.3 × 10 4 rpm for 30 minutes to obtain an insoluble gel content and a toluene soluble content. Isolate. Methanol is added to the insoluble gel and solidified, and then dried, and the gel content is determined from the ratio between the mass of the gel and the original mass of the sample.

<ゴム組成物>
本発明のゴム組成物は、上記製法により得られる複合体を含有する。該ゴム組成物は、改質天然ゴム中にシリカを均一分散させた複合体を使用しているため、同様にシリカが均一に分散したゴム組成物が得られる。このため、低燃費性、耐摩耗性及び耐破壊性能をバランスよく改善できる。
<Rubber composition>
The rubber composition of this invention contains the composite_body | complex obtained by the said manufacturing method. Since the rubber composition uses a composite in which silica is uniformly dispersed in a modified natural rubber, a rubber composition in which silica is uniformly dispersed is obtained. For this reason, low fuel consumption, wear resistance, and destruction resistance can be improved in a balanced manner.

本発明のゴム組成物は、上記改質天然ゴム以外の他のゴム成分を含んでもよい。他のゴム成分としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等が挙げられる。 The rubber composition of the present invention may contain a rubber component other than the modified natural rubber. Examples of other rubber components include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), ethylene propylene diene rubber (EPDM), Examples include chloroprene rubber (CR) and acrylonitrile butadiene rubber (NBR).

上記ゴム組成物に含まれるゴム成分(複合体中の改質天然ゴム及び他のゴム成分)について、該ゴム成分100質量%中、上記複合体に含まれる改質天然ゴム(固形分)の含有量は、好ましくは60質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上であり、100質量%であってもよい。60質量%未満であると、十分な低燃費性、耐摩耗性及び耐破壊性能が得られないおそれがある。 About the rubber component (modified natural rubber and other rubber components in the composite) contained in the rubber composition, the content of the modified natural rubber (solid content) contained in the composite in 100% by mass of the rubber component The amount is preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and may be 100% by mass. If it is less than 60% by mass, sufficient fuel economy, wear resistance and fracture resistance may not be obtained.

上記ゴム組成物において、シリカの含有量(複合体に配合されたシリカ及び他に使用されたシリカの合計含有量)は、上記ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは30質量部以上である。5質量部未満であると、十分な補強性が得られないおそれがある。該シリカの含有量は、好ましくは150質量部以下、より好ましくは120質量部以下、更に好ましくは90質量部以下である。150質量部を超えると、十分な低燃費性、耐摩耗性及び耐破壊性能が得られないおそれがある。 In the rubber composition, the content of silica (total content of silica compounded in the composite and other silica used) is preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component. Preferably it is 10 mass parts or more, More preferably, it is 30 mass parts or more. If it is less than 5 parts by mass, sufficient reinforcement may not be obtained. Content of this silica becomes like this. Preferably it is 150 mass parts or less, More preferably, it is 120 mass parts or less, More preferably, it is 90 mass parts or less. If it exceeds 150 parts by mass, there is a possibility that sufficient low fuel consumption, wear resistance and fracture resistance may not be obtained.

本発明のゴム組成物には、上記の材料以外にも、タイヤ工業において一般的に用いられているカーボンブラック、酸化亜鉛、ステアリン酸、老化防止剤、硫黄、加硫促進剤等の各種材料が適宜配合されていてもよい。 In addition to the above materials, the rubber composition of the present invention includes various materials such as carbon black, zinc oxide, stearic acid, antioxidants, sulfur, and vulcanization accelerators commonly used in the tire industry. You may mix | blend suitably.

本発明のゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、前記各成分をオープンロール、バンバリーミキサー、密閉式混練機などのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。天然ゴムを含むゴム組成物を製造する場合、ゴム成分、充填剤などの各成分の混練り工程前に、通常、天然ゴムの素練り工程が行われる。本発明では、上記複合体が使用されているため、該素練り工程を行わなくても良好に混練り工程を実施でき、所望のゴム組成物を作製できる(特に、ゴム組成物中にNR(未改質)を含まない場合)。 As a method for producing the rubber composition of the present invention, known methods can be used. For example, the above components are kneaded using a rubber kneader such as an open roll, a Banbury mixer, a closed kneader, and then added. It can be manufactured by a method of sulfurating. When producing a rubber composition containing natural rubber, a natural rubber mastication step is usually performed before the kneading step of each component such as a rubber component and a filler. In the present invention, since the above composite is used, the kneading step can be carried out satisfactorily without performing the kneading step, and a desired rubber composition can be produced (particularly, NR ( If it does not contain unmodified)).

上記ゴム組成物は、タイヤの各部材に適用できる。特に、トレッド、サイドウォール、ブレーカー、カーカス等に好適に用いることができる。 The rubber composition can be applied to each member of a tire. In particular, it can be suitably used for treads, sidewalls, breakers, carcass and the like.

<空気入りタイヤ>
本発明のゴム組成物は、空気入りタイヤに好適に適用される。該ゴム組成物は、改質天然ゴム中にシリカを均一分散させた複合体を含むため、低発熱性、耐摩耗性及び耐破壊性能がバランスよく改善された空気入りタイヤが得られる。
<Pneumatic tire>
The rubber composition of the present invention is suitably applied to a pneumatic tire. Since the rubber composition contains a composite in which silica is uniformly dispersed in a modified natural rubber, a pneumatic tire having low heat build-up, wear resistance, and fracture resistance improved in a balanced manner can be obtained.

本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形することにより未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造できる。 The pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of each member of the tire at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming an unvulcanized tire by heating, the tire can be manufactured by heating and pressing in a vulcanizer.

また、本発明の空気入りタイヤは、乗用車、トラック・バス、及び地球環境保全に対応した低公害車両(エコカー)に使用できる。 Moreover, the pneumatic tire of the present invention can be used for passenger cars, trucks and buses, and low-pollution vehicles (eco-cars) compatible with global environmental conservation.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下に、実施例で用いた各種薬品について説明する。
天然ゴムラテックス:Muhibbah LATEKS社から入手したフィールドラテックスを使用
界面活性剤(1):花王(株)製のエマールE−70C(ポリオキシエチレンラウリルエーテル硫酸ナトリウム)
界面活性剤(2):花王(株)製のデモールN(β−ナフタリンスルホン酸ホルマリン縮合物のナトリウム塩)
NaOH:和光純薬工業(株)製のNaOH
天然ゴム:TSR
シリカ(1):デグッサ社製のUltrasil VN3(NSA:175m/g)
シリカ(2):ローディア社製のZEOSIL 115GR(NSA:115m/g)
結合剤(1):東京化成工業(株)製のテトラエトキシシラン(試薬グレード)
結合剤(2):信越化学工業(株)製のビニルトリエトキシシラン(KBE1003)
結合剤(3):東レ・ダウコーニング(株)製のエチルトリメトキシシラン(Z−6321)
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ステアリン酸:日油(株)製の椿
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤NS(促進剤TBBS):大内新興化学工業(株)製のノクセラーNS(N−tetr−ブチル−2−ベンゾチアゾリルスルフェンアミド)
The various chemicals used in the examples are described below.
Natural rubber latex: Field latex obtained from Muhibah LATEKS Co., Ltd. Surfactant (1): EMAL E-70C (sodium polyoxyethylene lauryl ether sulfate) manufactured by Kao Corporation
Surfactant (2): Demol N (sodium salt of β-naphthalenesulfonic acid formalin condensate) manufactured by Kao Corporation
NaOH: NaOH manufactured by Wako Pure Chemical Industries, Ltd.
Natural rubber: TSR
Silica (1): Ultrasil VN3 (N 2 SA: 175 m 2 / g) manufactured by Degussa
Silica (2): ZEOSIL 115GR manufactured by Rhodia (N 2 SA: 115 m 2 / g)
Binder (1): Tetraethoxysilane (reagent grade) manufactured by Tokyo Chemical Industry Co., Ltd.
Binder (2): Vinyltriethoxysilane (KBE1003) manufactured by Shin-Etsu Chemical Co., Ltd.
Binder (3): Ethyltrimethoxysilane (Z-6321) manufactured by Toray Dow Corning Co., Ltd.
Zinc oxide: Zinc Hua No. 1 manufactured by Mitsui Mining & Smelting Co., Ltd. Stearic acid: Anti-aging agent manufactured by NOF Corporation: Nocrack 6C (N- (1,3- Dimethylbutyl) -N′-phenyl-p-phenylenediamine)
Sulfur: Powder sulfur vulcanization accelerator NS (accelerator TBBS) manufactured by Tsurumi Chemical Industry Co., Ltd .: Noxeller NS (N-tetra-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. )

(アルカリによるケン化天然ゴムラテックスの調製)
天然ゴムラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、天然ゴムラテックス1000gに対し、エマールE−70C10gとNaOH20gを加え、室温で48時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。
(Preparation of saponified natural rubber latex with alkali)
After adjusting the solid content concentration (DRC) of natural rubber latex to 30% (w / v), 10 g of Emar E-70C and 20 g of NaOH are added to 1000 g of natural rubber latex, and saponification reaction is performed at room temperature for 48 hours. Natural rubber latex was obtained.

(ケン化天然ゴム(固形ゴム)の作製)
上記で得られたケン化天然ゴムラテックスに水を添加して固形分濃度(DRC)を15質量%に調整した後、ゆっくり攪拌しながらギ酸を添加しpHを4.0〜4.5に調整し、凝集させた。凝集したゴムを粉砕し、水1000mlで洗浄を繰り返し、その後110℃で2時間乾燥して固形ゴム(ケン化天然ゴム)を得た。
(Production of saponified natural rubber (solid rubber))
Water is added to the saponified natural rubber latex obtained above to adjust the solid content concentration (DRC) to 15% by mass, and then formic acid is added while slowly stirring to adjust the pH to 4.0 to 4.5. And agglomerated. The agglomerated rubber was pulverized, washed repeatedly with 1000 ml of water, and then dried at 110 ° C. for 2 hours to obtain a solid rubber (saponified natural rubber).

(シリカ分散液(1)の調製)
ローター径30mmのコロイドミルに脱イオン水1425gと、シリカ(1)75gとを投入し、ローター・ステーター間隔1mm、回転数2000rpmで10分間撹拌した。次いで、デモールN(アニオン系界面活性剤)を0.02質量%の濃度となるように加え、圧力式ホモジナイザーを用いて3回循環させ、シリカ分散液(1)を作製した。
(Preparation of silica dispersion (1))
Into a colloid mill with a rotor diameter of 30 mm, 1425 g of deionized water and 75 g of silica (1) were added and stirred for 10 minutes at a rotor-stator interval of 1 mm and a rotational speed of 2000 rpm. Next, demole N (anionic surfactant) was added to a concentration of 0.02% by mass, and the mixture was circulated three times using a pressure homogenizer to prepare a silica dispersion (1).

(シリカ分散液(2)の調製)
ローター径30mmのコロイドミルに脱イオン水1425gと、シリカ(2)75gとを投入し、ローター・ステーター間隔1mm、回転数2000rpmで10分間撹拌した。次いで、デモールN(アニオン系界面活性剤)を0.02質量%の濃度となるように加え、圧力式ホモジナイザーを用いて3回循環させ、シリカ分散液(2)を作製した。
(Preparation of silica dispersion (2))
1425 g of deionized water and 75 g of silica (2) were added to a colloid mill having a rotor diameter of 30 mm, and the mixture was stirred for 10 minutes at a rotor-stator interval of 1 mm and a rotational speed of 2000 rpm. Next, demole N (anionic surfactant) was added to a concentration of 0.02% by mass, and the mixture was circulated three times using a pressure homogenizer to prepare a silica dispersion (2).

(配合ラテックスの調製、凝固、複合体の調製)
表1に示すような配合量で、シリカ分散液(1)〜(2)及び結合剤(1)〜(3)をケン化天然ゴムラテックス又は天然ゴムラテックスに混合して、配合ラテックスを調製した。配合ラテックスが均一になるまで十分に攪拌した後、配合ラテックスを硫酸によりpH7に調整して凝固させた。得られた凝固物(固形物)をろ過してゴム分を回収し、水1000mlで洗浄を繰り返し、その後110℃で2時間乾燥し、複合体(A)〜(M)を得た。
(Preparation of compounded latex, coagulation, preparation of composite)
Silica dispersions (1) to (2) and binders (1) to (3) were mixed with saponified natural rubber latex or natural rubber latex in the compounding amounts shown in Table 1 to prepare compounded latex. . After sufficiently stirring until the blended latex became uniform, the blended latex was adjusted to pH 7 with sulfuric acid and coagulated. The obtained coagulated product (solid matter) was filtered to recover the rubber component, and repeatedly washed with 1000 ml of water, and then dried at 110 ° C. for 2 hours to obtain composites (A) to (M).

Figure 0005443453
Figure 0005443453

複合体(A)〜(I)に含まれる改質天然ゴム、(J)〜(M)に含まれる天然ゴム、ケン化天然ゴム(固形ゴム)、及びTSRについて、以下に示す方法により、窒素含有量、リン含有量及びゲル含有率を測定した。結果を表2に示す。 The modified natural rubber included in the composites (A) to (I), the natural rubber included in (J) to (M), the saponified natural rubber (solid rubber), and the TSR are subjected to nitrogen by the following method. Content, phosphorus content and gel content were measured. The results are shown in Table 2.

(窒素含有量の測定)
窒素含有量は、熱分解後ガスクロマトグラフで定量した。
(Measurement of nitrogen content)
The nitrogen content was quantified with a gas chromatograph after pyrolysis.

(リン含有量の測定)
ICP発光分析装置(P−4010、日立製作所(株)製)を使用してリン含有量を求めた。
(Measurement of phosphorus content)
The phosphorus content was determined using an ICP emission spectrometer (P-4010, manufactured by Hitachi, Ltd.).

(ゲル含有率の測定)
1mm×1mmに切断した生ゴムのサンプル70.00mgを計り取り、これに35mLのトルエンを加え1週間冷暗所に静置した。次いで、遠心分離に付してトルエンに不溶のゲル分を沈殿させ上澄みの可溶分を除去し、ゲル分のみをメタノールで固めた後、乾燥し質量を測定した。次の式によりゲル含有率(質量%)を求めた。
ゲル含有率(質量%)=[乾燥後の質量mg/最初のサンプル質量mg]×100
(Measurement of gel content)
A raw rubber sample 70.00 mg cut to 1 mm × 1 mm was weighed, 35 mL of toluene was added thereto, and the mixture was allowed to stand in a cool dark place for 1 week. Subsequently, centrifugation was performed to precipitate a gel component insoluble in toluene, the soluble component of the supernatant was removed, and only the gel component was solidified with methanol, and then dried and the mass was measured. The gel content (mass%) was determined by the following formula.
Gel content (mass%) = [mass mg after drying / mg of initial sample] × 100

Figure 0005443453
Figure 0005443453

表2に示すように、複合体(A)〜(I)を構成する高純度化天然ゴムでは、複合体(J)〜(M)に比べて、リン含有量、窒素含有量、ゲル含有率が低減していた。 As shown in Table 2, the highly purified natural rubber constituting the composites (A) to (I) has a phosphorus content, a nitrogen content, and a gel content as compared with the composites (J) to (M). Was reduced.

(ゴム試験片の作製)
表3に示す配合に従って、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りした。次に、オープンロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して練り込み、未加硫ゴム組成物を得た。
得られた未加硫ゴム組成物を150℃で30分間プレス加硫して加硫物を得た。なお、天然ゴムラテックスを原料とする複合体(J)〜(M)を使用した比較例3〜6と、TSRを使用した比較例9〜10では、ゴム成分100質量部に対して素練促進剤を0.2質量部添加して、1.7Lバンバリーミキサーを用いて予め素練りを行った。一方、実施例及び他の比較例では素練りを行わなかった。
得られた各未加硫ゴム組成物及び加硫物を下記により評価し、結果を表3に示した。
(Production of rubber test piece)
According to the formulation shown in Table 3, chemicals other than sulfur and a vulcanization accelerator were kneaded using a 1.7 L Banbury mixer. Next, using an open roll, sulfur and a vulcanization accelerator were added to the kneaded product and kneaded to obtain an unvulcanized rubber composition.
The obtained unvulcanized rubber composition was press vulcanized at 150 ° C. for 30 minutes to obtain a vulcanized product. In Comparative Examples 3 to 6 using the composites (J) to (M) using natural rubber latex as a raw material and Comparative Examples 9 to 10 using TSR, mastication promotion was performed with respect to 100 parts by mass of the rubber component. 0.2 parts by mass of the agent was added and masticated in advance using a 1.7 L Banbury mixer. On the other hand, no mastication was performed in the examples and other comparative examples.
Each obtained unvulcanized rubber composition and vulcanized product were evaluated as follows, and the results are shown in Table 3.

(ムーニー粘度の測定)
得られた未加硫ゴム組成物について、JIS K6300に準拠したムーニー粘度の測定方法に従い、130℃で測定した。比較例9のムーニー粘度(ML1+4)を100とし、下記計算式により指数表示した(ムーニー粘度指数)。指数が大きいほどムーニー粘度が低く、加工性に優れることを示す。なお、ムーニー粘度の測定は、シリカの含有量が比較例9と同じ配合のみ実施した。
(ムーニー粘度指数)=(比較例9のML1+4)/(各配合のML1+4)×100
(Measurement of Mooney viscosity)
About the obtained unvulcanized rubber composition, it measured at 130 degreeC according to the measuring method of the Mooney viscosity based on JISK6300. The Mooney viscosity (ML 1 + 4 ) of Comparative Example 9 was set to 100, and indexed by the following formula (Mooney viscosity index). The larger the index, the lower the Mooney viscosity and the better the workability. In addition, the Mooney viscosity was measured only for the blending having the same silica content as in Comparative Example 9.
(Mooney viscosity index) = (ML 1 + 4 of Comparative Example 9) / (ML 1 + 4 of each formulation) × 100

(転がり抵抗)
粘弾性スペクトロメーター(TAインスツルメント社製のRSA)を用いて、温度50℃、初期歪み10%、動歪み1%、周波数10Hzの条件下で各配合(加硫物)の損失正接(tanδ)を測定し、比較例9の損失正接tanδを100として、下記計算式により指数表示した(転がり抵抗指数)。指数が大きいほど低燃費性に優れることを示す。
(転がり抵抗指数)=(比較例9のtanδ)/(各配合のtanδ)×100
(Rolling resistance)
Loss tangent (tan δ) of each compound (vulcanized product) using a viscoelastic spectrometer (RSA manufactured by TA Instruments) under the conditions of a temperature of 50 ° C., an initial strain of 10%, a dynamic strain of 1%, and a frequency of 10 Hz. ) Was measured, and the loss tangent tan δ of Comparative Example 9 was taken as 100 and expressed as an index according to the following formula (rolling resistance index). A larger index indicates better fuel economy.
(Rolling resistance index) = (tan δ of Comparative Example 9) / (tan δ of each formulation) × 100

(摩耗試験)
ランボーン摩耗試験機を用いて、温度20℃、スリップ率20%及び試験時間2分間の条件下で各配合(加硫物)のランボーン摩耗量を測定した。そして、測定したランボーン摩耗量から容積損失量を計算し、比較例9の容積損失量を100とし、下記計算式により指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(ランボーン摩耗指数)=(比較例9の容積損失量)/(各配合の容積損失量)×100
(Abrasion test)
Using a Lambourn abrasion tester, the Lambourn abrasion amount of each compound (vulcanized product) was measured under the conditions of a temperature of 20 ° C., a slip ratio of 20% and a test time of 2 minutes. Then, the volume loss amount was calculated from the measured amount of lambourne wear, and the volume loss amount of Comparative Example 9 was set to 100, and an index was displayed by the following calculation formula. It shows that it is excellent in abrasion resistance, so that an index | exponent is large.
(Lambourn wear index) = (volume loss amount of Comparative Example 9) / (volume loss amount of each formulation) × 100

(ゴム強度)
加硫物を用いて、3号ダンベル型ゴム試験片を作製し、JIS K6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に準じて引張試験を行い、破断強度(TB)及び破断時伸び(EB)を測定した。そして、測定したTB及びEBからゴム強度(TB×EB)を算出し、比較例9のゴム強度を100とし、下記計算式により指数表示した。指数が大きいほどゴム強度が高く、耐破壊性能に優れることを示す。なお、ゴム強度の測定は、シリカの含有量が比較例9と同じ配合のみ実施した。
(ゴム強度指数)=(各配合のゴム強度)/(比較例9のゴム強度)×100
(Rubber strength)
A vulcanized product was used to prepare a No. 3 dumbbell-shaped rubber test piece, which was subjected to a tensile test according to JIS K6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties”. The time elongation (EB) was measured. And rubber strength (TBxEB) was computed from measured TB and EB, the rubber strength of comparative example 9 was set to 100, and it indicated with an index by the following formula. The larger the index, the higher the rubber strength and the better the fracture resistance. In addition, the measurement of rubber strength was carried out only for the same composition as that of Comparative Example 9 in which the content of silica was.
(Rubber strength index) = (Rubber strength of each compound) / (Rubber strength of Comparative Example 9) × 100

Figure 0005443453
Figure 0005443453

表3の結果から、ケン化天然ゴムラテックスと、シリカ分散液と、シリカに結合する官能基を有する結合剤とを混合した配合ラテックスから得られる複合体を用いた実施例1〜7は、素練りを行っていないにも関わらず、素練りしたTSRとシリカを用いて通常の混練工程で混練りして作製された比較例9〜10のゴム組成物よりも加工性が優れており、更に、低燃費性も優れていた。 From the results of Table 3, Examples 1 to 7 using composites obtained from blended latex obtained by mixing a saponified natural rubber latex, a silica dispersion, and a binder having a functional group that binds to silica are as follows. Despite not being kneaded, the processability is superior to the rubber compositions of Comparative Examples 9 to 10 prepared by kneading in a normal kneading process using kneaded TSR and silica, The fuel efficiency was also excellent.

また、実施例1〜7は、シリカの分散性が大幅に向上しているため、耐摩耗性及び耐破壊性能が顕著に改善され、ケン化天然ゴムとシリカを用いて通常の混練工程で作製された比較例7〜8と比較して、低燃費性、耐摩耗性及び耐破壊性能が大幅に向上していた。 In addition, since Examples 1 to 7 have significantly improved dispersibility of silica, wear resistance and fracture resistance are remarkably improved, and are produced in a normal kneading process using saponified natural rubber and silica. Compared with Comparative Examples 7 to 8, the fuel efficiency, wear resistance and fracture resistance were significantly improved.

また、実施例1〜7は、通常の天然ゴムラテックスと、シリカ分散液と、シリカに結合する官能基を有する結合剤とを混合した配合ラテックスから得られる複合体を用いた比較例3〜6と比較して、全ての性能が優れていた。ケン化天然ゴムラテックスとシリカ分散液とを混合して得られたマスターバッチに混練工程で上記結合剤を投入して作製された比較例1〜2に対しても同様の傾向であった。 In addition, Examples 1 to 7 are Comparative Examples 3 to 6 using composites obtained from blended latex obtained by mixing a normal natural rubber latex, a silica dispersion, and a binder having a functional group that binds to silica. Compared with, all performance was excellent. The same tendency was observed for Comparative Examples 1 and 2, which were prepared by adding the above binder to the master batch obtained by mixing the saponified natural rubber latex and the silica dispersion.

Claims (7)

ケン化天然ゴムラテックスと、シリカ分散液と、シリカに結合する官能基を有する結合剤とを混合して配合ラテックスを調製する工程(I)、
該工程(I)で得られた配合ラテックスを凝固させる工程(II)
該工程(II)で得られた凝固物を洗浄し、ゴム中のリン含有量を200ppm以下に調整し、複合体を得る工程(III)、及び
該工程(III)で得られた複合体を混練する工程(IV)を含むゴム組成物の製造方法。
A step of preparing a compounded latex by mixing a saponified natural rubber latex, a silica dispersion, and a binder having a functional group that binds to silica (I),
Coagulating the compounded latex obtained by the step (I) (II),
Washing the coagulum obtained in said step (II), the phosphorus content in the rubber was adjusted to 200ppm or less, to obtain Ru step the complex (III), and
A method for producing a rubber composition , comprising a step (IV) of kneading the composite obtained in the step (III) .
前記結合剤が有するシリカに結合する官能基は、アルコキシシリル基である請求項1記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 1, wherein the functional group bonded to silica of the binder is an alkoxysilyl group. 前記結合剤は、ゴムに結合する官能基を更に有するものである請求項1又は2記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 1, wherein the binder further has a functional group that binds to rubber . 前記ケン化天然ゴムラテックスは、天然ゴムラテックスを界面活性剤の存在下でアルカリによりケン化処理して得られたものである請求項1〜3のいずれかに記載のゴム組成物の製造方法。 The method for producing a rubber composition according to any one of claims 1 to 3, wherein the saponified natural rubber latex is obtained by saponifying natural rubber latex with an alkali in the presence of a surfactant. 前記結合剤がテトラエトキシシラン、ビニルトリエトキシシラン及びエチルトリエトキシシランからなる群より選択される少なくとも1種である請求項1〜4のいずれかに記載のゴム組成物の製造方法。The method for producing a rubber composition according to any one of claims 1 to 4, wherein the binder is at least one selected from the group consisting of tetraethoxysilane, vinyltriethoxysilane, and ethyltriethoxysilane. 請求項1〜のいずれかに記載の製造方法により得られるゴム組成物The rubber composition obtained by the manufacturing method in any one of Claims 1-5 . 請求項6記載のゴム組成物を用いて作製した空気入りタイヤ。 A pneumatic tire produced using the rubber composition according to claim 6.
JP2011203567A 2011-09-16 2011-09-16 Manufacturing method of composite, composite, rubber composition, and pneumatic tire Active JP5443453B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011203567A JP5443453B2 (en) 2011-09-16 2011-09-16 Manufacturing method of composite, composite, rubber composition, and pneumatic tire
MYPI2012700647A MY158198A (en) 2011-09-16 2012-09-14 Method for producing composite, composite, rubber compound and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203567A JP5443453B2 (en) 2011-09-16 2011-09-16 Manufacturing method of composite, composite, rubber composition, and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2013064072A JP2013064072A (en) 2013-04-11
JP5443453B2 true JP5443453B2 (en) 2014-03-19

Family

ID=48187873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203567A Active JP5443453B2 (en) 2011-09-16 2011-09-16 Manufacturing method of composite, composite, rubber composition, and pneumatic tire

Country Status (2)

Country Link
JP (1) JP5443453B2 (en)
MY (1) MY158198A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2992259C (en) 2015-07-15 2020-06-02 Cabot Corporation Methods of making an elastomer composite reinforced with silica and products containing same
AU2016294421B2 (en) 2015-07-15 2018-10-18 Cabot Corporation Methods of making an elastomer composite reinforced with silica and products containing same
CN114437436A (en) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 Preparation method of wet white carbon black emulsion polymerized butylbenzene composite rubber for tire tread rubber
CN114437431A (en) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 Preparation method of emulsion polymerized styrene-butadiene rubber wet-filling white carbon black composite master batch for rubber shoes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2224609A1 (en) * 1996-12-18 1998-06-18 David J. Kneiling Process for producing improved silica-reinforced masterbatch of polymers in latex form
WO2010071106A1 (en) * 2008-12-15 2010-06-24 住友ゴム工業株式会社 Natural rubber and manufacturing method thereof, rubber composition and pneumatic tire utilizing the same, modified natural rubber and manufacturing method thereof, and rubber composite for covering threads or carcass cords and pneumatic tire utilizing the same
JP2011094084A (en) * 2009-11-02 2011-05-12 Toyo Tire & Rubber Co Ltd Method for producing rubber composition

Also Published As

Publication number Publication date
JP2013064072A (en) 2013-04-11
MY158198A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP5639121B2 (en) Rubber composition for tire and pneumatic tire
JP5216029B2 (en) Rubber composition for sidewall, insulation or breaker cushion, production method thereof and pneumatic tire
JP5216028B2 (en) Rubber composition for inner liner and pneumatic tire
JP4603615B2 (en) Rubber composition and tire for covering tread or carcass cord
JP5503396B2 (en) Rubber composition for clinch apex or bead apex, production method thereof and pneumatic tire
JP5469151B2 (en) Rubber composition for pneumatic tire and pneumatic tire
JP5411214B2 (en) Rubber composition for tread, method for producing the same, and tire for heavy load
JP5394993B2 (en) COMPOSITE MANUFACTURING METHOD, RUBBER COMPOSITION, AND PNEUMATIC TIRE
JP5086457B2 (en) Rubber composition for breaker and pneumatic tire
JP5551972B2 (en) Rubber composition for sidewall, production method and pneumatic tire
JP5567401B2 (en) Tire rubber composition and heavy duty tire
JP5466685B2 (en) Rubber composition for tire and pneumatic tire
EP2995638A1 (en) Pneumatic tire and rubber masterbatch
JP2011190409A (en) Rubber composition for breaker topping and pneumatic tire using the same
JP5670768B2 (en) Composite, production method thereof, rubber composition and pneumatic tire
JP5216045B2 (en) Tire rubber composition and heavy duty tire
JP2014105296A (en) Rubber composition for base tread, its manufacturing method and pneumatic tire
JP5524810B2 (en) Composite, production method thereof, rubber composition and pneumatic tire
JP5443453B2 (en) Manufacturing method of composite, composite, rubber composition, and pneumatic tire
JP6017779B2 (en) WING RUBBER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND PNEUMATIC TIRE
JP5503354B2 (en) Tire rubber composition and heavy duty tire
JP6073574B2 (en) Chafer rubber composition and pneumatic tire
JP5646971B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
JP2013043956A (en) Rubber composition for bead apex and pneumatic tire
JP5503395B2 (en) Heavy duty vehicle tread rubber composition and heavy duty vehicle tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R150 Certificate of patent or registration of utility model

Ref document number: 5443453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250