JP5391540B2 - Multi-layered diamond-based sintered body with both conductive layer region and non-conductive layer region - Google Patents

Multi-layered diamond-based sintered body with both conductive layer region and non-conductive layer region Download PDF

Info

Publication number
JP5391540B2
JP5391540B2 JP2007261684A JP2007261684A JP5391540B2 JP 5391540 B2 JP5391540 B2 JP 5391540B2 JP 2007261684 A JP2007261684 A JP 2007261684A JP 2007261684 A JP2007261684 A JP 2007261684A JP 5391540 B2 JP5391540 B2 JP 5391540B2
Authority
JP
Japan
Prior art keywords
conductive layer
layer region
powder
diamond
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007261684A
Other languages
Japanese (ja)
Other versions
JP2009091179A (en
Inventor
アフマディ・エコ・ワルドヨ
逸郎 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007261684A priority Critical patent/JP5391540B2/en
Publication of JP2009091179A publication Critical patent/JP2009091179A/en
Application granted granted Critical
Publication of JP5391540B2 publication Critical patent/JP5391540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、少なくとも一つの導電層領域と、少なくとも一つの非導電層領域とが、焼結により一体化された構造体として形成されている、導電層領域と非導電層領域とを相併せ持つ放電加工可能な複層一体構造のダイヤモンド基焼結体およびその製造方法に関するものである。   The present invention relates to a discharge having a combination of a conductive layer region and a non-conductive layer region, in which at least one conductive layer region and at least one non-conductive layer region are formed as a structure integrated by sintering. The present invention relates to a diamond-based sintered body having a multi-layer integrated structure that can be processed and a method for manufacturing the same.

従来から、ダイヤモンドは、非導電性であり、かつ、硬度、熱伝導性、耐熱性が高く、化学安定性にすぐれていること等の特性を利用して、電子デバイス・センサ材料、バイオ関連材料、光学関連材料、耐摩耗材料等、幅広い分野に利用されており、例えば、ダイヤモンド自体の有する硬度、耐摩耗性等のすぐれた特性を利用して、ダイヤモンド基焼結体は、線引きダイス、切削工具等の工具材料としても用いられている。   Conventionally, diamond has been made non-conductive and has characteristics such as high hardness, thermal conductivity, heat resistance, and excellent chemical stability. It is used in a wide range of fields such as optical materials and wear-resistant materials. For example, the diamond-based sintered body can be used for drawing dies, cutting, etc. by utilizing excellent characteristics such as hardness and wear resistance of diamond itself. It is also used as a tool material for tools.

従来、ダイヤモンド基焼結体を用いた線引きダイスとしては、線引きダイス中心部に設けられた貫通孔を加工面とするダイヤモンド基焼結体からなる線引きチップと、該チップに嵌着された超硬合金からなる補強リングとを備え、そして、上記線引きチップ用材料としては、例えば、ダイヤモンド粉末と炭酸マグネシウムまたは炭酸バリウムを原料粉末として、超高圧高温装置内で、例えば、7GPaの圧力下、2150〜2400℃の条件で焼結したダイヤモンド基焼結体を用い、また、上記補強リング用材料としては、例えば、WC粉末とCo粉末を原料粉末とした超硬合金を用いた線引きダイス(以下、従来線引きダイスという)が知られている。
特開2002−153910号公報
Conventionally, as a drawing die using a diamond-based sintered body, a drawing tip made of a diamond-based sintered body having a through-hole provided in the center of the drawing die as a processing surface and a cemented carbide attached to the tip are used. And a drawing tip material, for example, diamond powder and magnesium carbonate or barium carbonate as raw material powder in an ultrahigh pressure and high temperature apparatus, for example, under a pressure of 7 GPa, 2150- A diamond-based sintered body sintered at 2400 ° C. is used, and as the material for the reinforcing ring, for example, a drawing die using a cemented carbide made of WC powder and Co powder as raw material powder (hereinafter referred to as a conventional die) It is known as a drawing die).
JP 2002-153910 A

上記従来線引きダイスにおいては、線引きチップ用材料は非導電性のダイヤモンド基焼結体で構成されているため、線引きダイス中心部に貫通孔を形成するためには、レーザー照射により所要部位に所要径の加工面を形成する必要があり、より簡易な加工方法である放電加工で貫通孔を形成することができないという加工手段の制約があった。また、線引きチップを構成するダイヤモンド基焼結体を、天然ダイヤモンドあるいは人造単結晶ダイヤモンドで構成しようとした場合には、ダイヤモンドの結晶方位を考慮して貫通孔を形成しなければならないため、特定方位に合致するようにレーザー照射を行う必要があり、貫通孔の加工作業が非常に煩雑、困難なものであった。
一方、貫通孔の加工作業を簡易な放電加工で行うようにするために、従来から知られている導電性Co結合相多結晶ダイヤモンド基焼結体で線引きチップを構成した場合には、貫通孔を放電加工で形成し得るという利点はあるものの、Co結合相多結晶ダイヤモンド基焼結体の耐熱性が700℃程度と低いばかりか、熱膨張によるクラック発生とダイヤモンドのグラファイトへの逆変換も生じ易いため、被加工材の表面が荒れる、線引きチップが破損する等の問題を生じ、実用的なものとはいえなかった。
そこで、この発明では、ダイヤモンド本来のすぐれた硬度、熱伝導性、耐熱性、化学安定性を備えるとともに、レーザー加工ばかりでなく、放電加工によっても所要箇所を容易に加工することができるダイヤモンド基焼結体、即ち、導電性領域と非導電性領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体、およびその製造方法を提供することを目的とする。
In the above conventional drawing die, the drawing tip material is composed of a non-conductive diamond-based sintered body. Therefore, in order to form a through hole at the center of the drawing die, the required diameter is formed at the required portion by laser irradiation. Therefore, there is a limitation on the processing means that the through hole cannot be formed by electric discharge machining which is a simpler processing method. In addition, when the diamond-based sintered body constituting the wire-drawing tip is to be composed of natural diamond or artificial single crystal diamond, a through-hole must be formed in consideration of the crystal orientation of the diamond. Therefore, it was necessary to perform laser irradiation so as to match the above, and the processing of the through hole was very complicated and difficult.
On the other hand, when the drawing tip is formed of a conductive Co-bonded phase polycrystalline diamond-based sintered body known in the past in order to perform the machining operation of the through-hole by simple electric discharge machining, Although the heat resistance of the Co bonded phase polycrystalline diamond-based sintered body is as low as about 700 ° C., cracks due to thermal expansion and reverse conversion of diamond to graphite also occur. Since it was easy, problems such as the surface of the workpiece being roughened and the drawing tip being damaged were generated, which was not practical.
Therefore, in the present invention, diamond-based firing that has the excellent hardness, thermal conductivity, heat resistance, and chemical stability inherent in diamond, and can easily machine the required portion not only by laser processing but also by electric discharge machining. It is an object of the present invention to provide a diamond-based sintered body having a multilayered structure having a combined body, that is, a conductive region and a non-conductive region, and a method for producing the same.

本発明者らは、かかる課題を解決すべく、ダイヤモンド基焼結体を製造する際の原料粉末および焼結法について鋭意研究を行なったところ、以下の知見を得た。   In order to solve this problem, the present inventors have earnestly studied the raw material powder and the sintering method in producing a diamond-based sintered body, and obtained the following knowledge.

(a)原料粉末として、ダイヤモンド粉末と、ボロン粉末と、焼結体の結合相を形成する成分として、Mg、Ca、Sr、Baの炭酸塩並びにこれらの2種以上の複合炭酸塩のうちの1種または2種以上の炭酸塩(以下、これらを総称して、単に「アルカリ土類炭酸塩」という)粉末を用意し、各粉末を所定量配合・混合し、この混合粉末を超高圧高温条件下で焼結するにあたり、まず、第1段階として、所定圧力所定温度で加熱して、混合粉末中のボロンをダイヤモンド粉末粒子表面へ拡散させる拡散処理を行い、次いで、第2段階として、より高圧高温条件下で、結合相成分であるアルカリ土類炭酸塩粉末を溶融させ、ボロンが表面に拡散したダイヤモンド粉末(以下、ボロン拡散ダイヤモンド粉末という)の粒子間隙に溶融した結合相成分を溶浸・充填させると、これによって得られたダイヤモンド基焼結体は、すぐれた硬度、熱伝導性、耐熱性、化学安定性とともに良導電性を示すこと。 (A) As a raw material powder, diamond powder, boron powder, and a component forming a binder phase of a sintered body, Mg, Ca, Sr, Ba carbonate, and two or more of these composite carbonates Prepare one or two or more carbonate (hereinafter collectively referred to simply as “alkaline earth carbonate”) powders, and mix and mix a predetermined amount of each powder. In sintering under conditions, first, as a first stage, a diffusion treatment is performed to diffuse boron in the mixed powder to the surface of the diamond powder particles by heating at a predetermined pressure and a predetermined temperature, and then as a second stage, Under high pressure and high temperature conditions, the alkaline earth carbonate powder, which is a binder phase component, is melted, and the binder phase is melted in the interstices of diamond powder in which boron is diffused to the surface (hereinafter referred to as boron diffused diamond powder). When infiltrated - to fill the minute, whereby the diamond-based sintered body obtained, excellent hardness, thermal conductivity, heat resistance, to exhibit good conductivity with chemical stability.

(b)そこで、例えば、中心部に貫通孔を形成する必要のある線引きチップのように、所定部位に放電加工等による加工を施すことが必要となるダイヤモンド基焼結体を製造するにあたり、
(イ)原料粉末として、ダイヤモンド粉末と、ボロン粉末と、アルカリ土類炭酸塩粉末とを混合した導電層領域形成用混合粉末、および、ダイヤモンド粉末とアルカリ土類炭酸塩粉末とを混合した非導電層領域形成用混合粉末をそれぞれ用意し、
(ロ)焼結体の所望形状、構造(例えば、複層中実円筒状、積層板状等)、所望加工箇所等に応じ、成形型の所定位置にそれぞれの混合粉末を充填して(即ち、焼結体の放電加工等の加工を要する箇所(以下、要加工部位という)には、上記導電層領域形成用混合粉末を、一方、放電加工等の上記加工を必要としない箇所(以下、加工不要部位という)には、上記非導電層領域形成用混合粉末をそれぞれ充填して)成形体を形成し、
(ハ)この成形体を、まず第1段階として、超高圧高温条件下の所定圧力所定温度で拡散処理を行って、要加工部位に充填された導電層領域形成用混合粉末中のボロンを該領域に存在するダイヤモンド粉末粒子表面へ拡散させ、
(ニ)次いで、第2段階として、より高圧高温条件下で、結合相成分であるアルカリ土類炭酸塩粉末を溶融させ、導電層領域のボロン拡散ダイヤモンド粉末の粒子間隙、および、非導電層領域のダイヤモンド粉末の粒子間隙に、溶融した結合相成分を溶浸・充填させてダイヤモンド基焼結体を製造すると、
(ホ)要加工部位には、すぐれた硬度、熱伝導性、耐熱性、化学安定性とともに良導電性を有するダイヤモンド基焼結体からなる導電層領域が形成されるため、放電加工により簡易に貫通孔形成等の加工を行うことができ、一方、
(ヘ)加工不要部位には、非導電性、かつ、すぐれた硬度、熱伝導性、耐熱性、化学安定性を備えたダイヤモンド基焼結体からなる非導電層領域が形成され、しかも、
(ト)上記導電層領域と非導電層領域とを相併せ持つダイヤモンド基焼結体は、焼結により一体化された構造体として形成されているために、全体として優れた強度を備えていること。
(B) Therefore, for example, in producing a diamond-based sintered body that needs to be processed by electric discharge machining or the like in a predetermined portion, such as a drawing tip that needs to form a through hole in the center portion,
(B) As a raw material powder, a mixed powder for forming a conductive layer region in which diamond powder, boron powder and alkaline earth carbonate powder are mixed, and non-conductive in which diamond powder and alkaline earth carbonate powder are mixed. Prepare mixed powder for layer region formation,
(B) Depending on the desired shape and structure of the sintered body (for example, a multi-layer solid cylindrical shape, a laminated plate shape, etc.), a desired processing location, etc., each mixed powder is filled in a predetermined position of the mold (that is, In a portion requiring processing such as electric discharge machining of the sintered body (hereinafter referred to as a processing required portion), the above-mentioned mixed powder for forming a conductive layer region, on the other hand, a portion not requiring the above processing such as electric discharge machining (hereinafter, Filled with the above non-conductive layer region forming mixed powder)) to form a molded body
(C) The molded body is first subjected to diffusion treatment at a predetermined pressure and a predetermined temperature under an ultra-high pressure and high temperature condition as a first stage, and the boron in the mixed powder for forming the conductive layer region filled in the required processing site is Diffuse to the surface of diamond powder particles present in the region,
(D) Next, as a second stage, the alkaline earth carbonate powder as the binder phase component is melted under higher pressure and high temperature conditions, and the particle gap of the boron diffusion diamond powder in the conductive layer region, and the non-conductive layer region When a diamond-based sintered body is manufactured by infiltrating and filling the melted binder phase component into the diamond powder particles of
(E) A conductive layer region made of a diamond-based sintered body with good conductivity as well as excellent hardness, thermal conductivity, heat resistance, and chemical stability is formed in the required machining area, so it can be easily done by electric discharge machining. Processing such as through-hole formation can be performed,
(F) A non-conductive layer region made of a diamond-based sintered body having non-conductivity and excellent hardness, thermal conductivity, heat resistance, and chemical stability is formed in the processing unnecessary portion;
(G) Since the diamond-based sintered body having both the conductive layer region and the non-conductive layer region is formed as a structure integrated by sintering, it has excellent strength as a whole. .

(c)即ち、上記複層一体構造のダイヤモンド基焼結体において、加工不要部位(非導電層領域)のダイヤモンド基焼結体の電気伝導度は、約10−5S/cm程度と小さい値であり、一方、要加工部位(導電層領域)のダイヤモンド基焼結体は、約1.0〜10−2S/cmの高電気伝導度を有しており、要加工部位に対して、放電加工によって加工するに必要とされる十分な導電性を備えていること。 (C) That is, in the diamond-based sintered body having a multilayered monolithic structure, the electrical conductivity of the diamond-based sintered body at a site not requiring processing (non-conductive layer region) is as small as about 10 −5 S / cm. On the other hand, the diamond-based sintered body at the required processing site (conductive layer region) has a high electrical conductivity of about 1.0 to 10 −2 S / cm, Sufficient electrical conductivity required for machining by electrical discharge machining.

(d)したがって、例えば、従来線引きダイスにおいて、線引きチップを上記複層一体構造のダイヤモンド基焼結体で構成し、かつ、貫通孔を形成する線引きチップの要加工部位を、上記導電層領域で構成すれば、ダイヤモンドの備えるすぐれた硬度、熱伝導性、耐熱性、化学安定性を損なうことなく、放電加工によって所要箇所を容易に加工することができる。つまり、導電層領域のダイヤモンド基焼結体は多結晶であり、ダイヤモンドの結晶方位と加工面との関係に考慮する必要がないため、放電加工時にその加工方向について何ら制約を受けることはなく、また、天然ダイヤモンド、人造単結晶ダイヤモンドを用いる場合に比べて、線引きチップをはるかに安価に製造することができ、さらに、Co結合相多結晶ダイヤモンド基焼結体に比べて、耐熱性に優れ、工具寿命の長いダイヤモンド基焼結体を得ることができる。
なお、以下、この発明では、天然ダイヤモンドの電気伝導度と同等な電気伝導度(10−5S/cm以下)を有する領域を非導電層領域といい、また、従来の導電性Co結合相多結晶ダイヤモンド基焼結体の有する電気伝導度と同等あるいはそれ以上の電気伝導度(1.0〜10−2S/cm以上)を有する領域を電層領域という。
(D) Therefore, for example, in a conventional drawing die, the drawing tip is constituted by the diamond-based sintered body having the above-mentioned multilayer integrated structure, and the required processing portion of the drawing tip for forming the through hole is formed in the conductive layer region. If constituted, a required portion can be easily machined by electric discharge machining without impairing the excellent hardness, thermal conductivity, heat resistance and chemical stability of the diamond. In other words, the diamond-based sintered body in the conductive layer region is polycrystalline, and there is no need to consider the relationship between the crystal orientation of diamond and the processed surface, so there is no restriction on the processing direction during electric discharge machining. Compared to the case of using natural diamond and artificial single crystal diamond, the drawing tip can be manufactured at a much lower cost. Furthermore, compared to the Co bonded phase polycrystalline diamond-based sintered body, the heat resistance is excellent. A diamond-based sintered body having a long tool life can be obtained.
Hereinafter, in the present invention, a region having an electrical conductivity equivalent to that of natural diamond (10 −5 S / cm or less) is referred to as a non-conductive layer region, and a conventional conductive Co-bonded phase A region having an electric conductivity (1.0 to 10 −2 S / cm or higher) equal to or higher than that of the crystalline diamond-based sintered body is referred to as a conductive layer region.

この発明は、上記知見に基づいてなされたものであって、
「(1) ダイヤモンド粉末粒子表面にボロンが拡散したボロン拡散ダイヤモンド粉末粒子間隙に、Mg、Ca、Sr、Baの炭酸塩並びにこれらの2種以上の複合炭酸塩のうちの1種または2種以上からなる結合相成分が溶浸充填された少なくとも一つの導電層領域と、ダイヤモンド粉末粒子間隙に上記結合相成分が溶浸充填された少なくとも一つの非導電層領域とが、焼結により一体化された構造体として形成されていることを特徴とする、1.0〜10 −2 S/cm以上の電気伝導度の導電層領域と10 −5 S/cm以下の電気伝導度の非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体。
(2) ダイヤモンド粉末80〜99.4wt%と、ボロン粉末0.5〜15wt%と、結合相成分として、Mg、Ca、Sr、Baの炭酸塩並びにこれらの2種以上の複合炭酸塩のうちの1種または2種以上からなる炭酸塩粉末0.1〜10wt%とを混合した導電層領域形成用混合粉末と、ダイヤモンド粉末80〜99.9wt%と上記炭酸塩粉末0.1〜20wt%とを混合した非導電層領域形成用混合粉末を用意し、それぞれの混合粉末を、形成される導電層領域と非導電層領域の形状、構造となるように成形型充填して成形体を形成し、その後、該成形体を超高圧高温発生装置に装入し、該超高圧高温発生装置内で、第1段階として、5.0〜8.0GPaの加圧条件下で1300〜1800℃の温度に加熱して、導電層領域形成用混合粉末中のダイヤモンド粉末へのボロンの拡散を行い、その後、第2段階として、6.0〜9.0GPaの加圧条件下で2000〜2500℃の温度に加熱して上記結合相成分を溶融させ、導電層領域形成用混合粉末中のボロンが表面に拡散したダイヤモンド粉末の粒子間隙および非導電層領域形成用混合粉末中のダイヤモンド粉末の粒子間隙に、溶融した上記結合相成分を溶浸充填させることを特徴とする、1.0〜10 −2 S/cm以上の電気伝導度の導電層領域と10 −5 S/cm以下の電気伝導度の非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体の製造方法。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) One or two or more of carbonates of Mg, Ca, Sr, and Ba, and two or more of these complex carbonates, in the gap between boron-diffused diamond powder particles in which boron is diffused on the surface of the diamond powder particles At least one conductive layer region infiltrated and filled with a binder phase component consisting of and at least one non-conductive layer region infiltrated and filled with the binder phase component in the diamond powder particle gap is integrated by sintering. A conductive layer region having an electric conductivity of 1.0 to 10 −2 S / cm or more and a non-conductive layer region having an electric conductivity of 10 −5 S / cm or less, A diamond-based sintered body with a multilayer structure and
(2) Diamond powder 80 to 99.4 wt%, boron powder 0.5 to 15 wt%, and Mg, Ca, Sr, Ba carbonate as a binder phase component and among these two or more complex carbonates A mixed powder for forming a conductive layer obtained by mixing 0.1 to 10 wt% of carbonate powder composed of one or more of the above, diamond powder 80 to 99.9 wt%, and the carbonate powder 0.1 to 20 wt% providing a non-conductive layer region forming mixed powder of bets, each of the mixed powder, the shape of the conductive layer region and the non-conductive layer region formed, the molded body was filled into a mold so that the structure After that, the compact is charged into an ultra-high pressure and high-temperature generator, and in the ultra-high pressure and high-temperature generator, as a first step, 1300 to 1800 ° C. under a pressure of 5.0 to 8.0 GPa. Conductive layer region formation by heating to a temperature of Then, boron is diffused into the diamond powder in the mixed powder, and then, as a second stage, the binder phase component is heated by heating at a temperature of 2000 to 2500 ° C. under a pressure of 6.0 to 9.0 GPa. The molten binder phase component is infiltrated into the interstices of the diamond powder in which the boron in the mixed powder for forming the conductive layer region has diffused to the surface and the interstices of the diamond powder in the mixed powder for forming the nonconductive layer region. A multilayer having both a conductive layer region having an electric conductivity of 1.0 to 10 −2 S / cm or more and a non-conductive layer region having an electric conductivity of 10 −5 S / cm or less, characterized by being filled A method for producing a monolithic diamond-based sintered body. "
It has the characteristics.

次に、この発明を、より具体的かつ詳細に説明する。   Next, the present invention will be described more specifically and in detail.

(1)ダイヤモンド粉末、ボロン粉末
ダイヤモンド粉末としては、気相合成法に限らず、現在既によく知られている方法で製造されたダイヤモンド粉末を使用することができる。
導電層領域を形成するために、ダイヤモンド粉末、ボロン粉末およびアルカリ土類炭酸塩粉末の混合粉末を用いるが、ボロン粉末としては、結晶性ボロン粉末あるいは非晶質ボロン粉末が望ましいが、場合によっては、ボロン含有量の高いボロンカーバイド粉末を使用することもできる。
そして、ボロン粉末におけるボロン成分は、超高圧高温条件下の焼結における第1段階、即ち、5.0〜8.0GPaの加圧条件下で1300〜1800℃の温度範囲において、導電層領域に位置するダイヤモンド粉末の表面へ拡散し、ボロン拡散ダイヤモンド粉末を形成するが、このようにして形成されたボロン拡散ダイヤモンド粉末が、最終的に得られるダイヤモンド基焼結体に導電性を付与する作用を有する。
また、非導電層領域を形成するためには、ダイヤモンド粉末とアルカリ土類炭酸塩粉末の混合粉末を用い、ボロン粉末は使用しない。
(1) Diamond powder and boron powder Diamond powder is not limited to gas phase synthesis, and diamond powder produced by a method already well known at present can be used.
In order to form the conductive layer region, a mixed powder of diamond powder, boron powder and alkaline earth carbonate powder is used. As the boron powder, crystalline boron powder or amorphous boron powder is desirable. Boron carbide powder having a high boron content can also be used.
The boron component in the boron powder is added to the conductive layer region in the first stage of sintering under ultra high pressure and high temperature conditions, that is, in a temperature range of 1300 to 1800 ° C. under a pressure condition of 5.0 to 8.0 GPa. It diffuses to the surface of the located diamond powder to form boron-diffused diamond powder. The boron-diffused diamond powder thus formed has the effect of imparting conductivity to the finally obtained diamond-based sintered body. Have.
In order to form the non-conductive layer region, a mixed powder of diamond powder and alkaline earth carbonate powder is used, and boron powder is not used.

(2)アルカリ土類炭酸塩粉末
焼結の第2段階、即ち、6.0〜9.0GPaの加圧条件下2000〜2500℃の温度範囲での焼結によって、Mg、Ca、Sr、Baの炭酸塩並びにこれらの2種以上の複合炭酸塩のうちの1種または2種以上の炭酸塩(アルカリ土類炭酸塩)からなる結合相成分が溶融し、溶融した結合相成分は、導電層領域を形成する部位に位置するボロン拡散ダイヤモンド粉末の粒子間隙に溶浸充填され、また、非導電層領域を形成する部位に位置するダイヤモンド粉末の粒子間隙に溶浸充填され、隣接する粒子の接合を促進すると共に粒子間隙を充填することにより、複層一体構造からなるダイヤモンド基焼結体の密度、強度を高め、また、耐熱性をも向上させる作用を有する。
(2) Alkaline earth carbonate powder The second stage of sintering, that is, sintering in a temperature range of 2000 to 2500 ° C. under a pressure condition of 6.0 to 9.0 GPa, Mg, Ca, Sr, Ba And a binder phase component composed of one or two or more carbonates (alkaline earth carbonates) of these two or more complex carbonates are melted, and the melted binder phase component is a conductive layer. Bonding of adjacent particles is infiltrated and filled in the interstices of the boron-diffused diamond powder located in the region forming region, and infiltrated and filled in the interstices of the diamond powder located in the region forming the non-conductive layer region In addition to increasing the density and strength of the diamond-based sintered body having a multilayered monolithic structure by filling the particle gap, the heat resistance is also improved.

(3)原料粉末の配合割合
この発明では、ダイヤモンド基焼結体が、ダイヤモンドが本来有する硬度、熱伝導性、化学安定性というすぐれた特性を失わないで、かつ、導電層領域では良導電性を付与するという観点から、導電層領域における導電層領域形成用混合粉末中のダイヤモンド粉末の配合割合を80〜99.4wt%と定め、また、ボロン粉末の配合割合を0.5〜15wt%と定め、さらに、導電層領域において良導電性を確保するばかりでなく、耐熱性を高め、同時に、所定の焼結体密度を保持するという観点から、導電層領域におけるアルカリ土類炭酸塩粉末の配合割合を0.1〜10wt%と定めた。
つまり、ダイヤモンド粉末の配合割合が80wt%未満、ボロン粉末の配合割合が0.5wt%未満、あるいは、アルカリ土類炭酸塩粉末の配合割合が10wt%を超えた場合には、導電層領域に所定の良導電性を付与できないばかりか、焼結体としての硬度、熱伝導性、化学安定性、緻密度が低下し、一方、アルカリ土類炭酸塩粉末の配合割合が0.1wt%未満、あるいは、ダイヤモンド粉末の配合割合が99.4wt%を超えた場合またボロン粉末の配合割合が15wt%を超えた場合には、結合相成分の減少による焼結性の低下、焼結体強度の低下とともに耐熱性が低下するようになるからである。
また、ダイヤモンド基焼結体の非導電層領域では、導電性は必要とせず、優れた硬度、熱伝導性、化学安定性という特性を保持すれば良いとの観点から、非導電層領域における非導電層領域形成用混合粉末中のダイヤモンド粉末の配合割合
を80〜99.9wt%、アルカリ土類炭酸塩粉末の配合割合を0.1〜20wt%と定めた。
つまり、ダイヤモンド粉末の配合割合が80wt%未満、アルカリ土類炭酸塩粉末の配合割合が20wt%を超えた場合には、非導電層領域の硬度、熱伝導性、化学安定性、緻密度が低下し、一方、アルカリ土類炭酸塩粉末の配合割合が0.1wt%未満、ダイヤモンド粉末の配合割合が99.9wt%を超えた場合には、結合相成分の減少による焼結性の低下、焼結体強度の低下とともに耐熱性が低下するようになるからである。
(3) Mixing ratio of raw material powder In this invention, the diamond-based sintered body does not lose the excellent properties such as hardness, thermal conductivity and chemical stability inherent in diamond, and has good conductivity in the conductive layer region. From the viewpoint of imparting, the blending ratio of the diamond powder in the mixed powder for forming the conductive layer region in the conductive layer region is set to 80 to 99.4 wt%, and the blending ratio of the boron powder is set to 0.5 to 15 wt%. In addition, not only ensuring good conductivity in the conductive layer region, but also improving heat resistance and at the same time maintaining a predetermined sintered body density, blending of alkaline earth carbonate powder in the conductive layer region The ratio was determined to be 0.1 to 10 wt%.
That is, when the blending ratio of the diamond powder is less than 80 wt%, the blending ratio of the boron powder is less than 0.5 wt%, or the blending ratio of the alkaline earth carbonate powder exceeds 10 wt%, the conductive layer region is predetermined. Not only can be imparted with good conductivity, but the hardness, thermal conductivity, chemical stability, and density as a sintered body are reduced, while the blending ratio of alkaline earth carbonate powder is less than 0.1 wt%, or When the blending ratio of the diamond powder exceeds 99.4 wt% and when the blending ratio of the boron powder exceeds 15 wt%, the sinterability decreases due to the decrease in the binder phase component and the strength of the sintered body decreases. This is because the heat resistance is lowered.
In addition, in the non-conductive layer region of the diamond-based sintered body, conductivity is not required, and the non-conductive layer region in the non-conductive layer region may be maintained from the viewpoint of maintaining excellent hardness, thermal conductivity, and chemical stability. The blending ratio of the diamond powder in the mixed powder for forming the conductive layer region was determined to be 80 to 99.9 wt%, and the blending ratio of the alkaline earth carbonate powder was set to 0.1 to 20 wt%.
In other words, when the blending ratio of diamond powder is less than 80 wt% and the blending ratio of alkaline earth carbonate powder exceeds 20 wt%, the hardness, thermal conductivity, chemical stability, and density of the non-conductive layer region decrease. On the other hand, when the blending ratio of the alkaline earth carbonate powder is less than 0.1 wt% and the blending ratio of the diamond powder exceeds 99.9 wt%, the sinterability decreases due to the decrease in the binder phase component, This is because the heat resistance is lowered with a decrease in the strength of the body.

(4)超高圧高温装置における焼結条件
超高圧高温装置による焼結において、その第1段階である5.0〜8.0GPaの加圧条件下かつ1300〜1800℃の温度範囲で、導電層領域におけるダイヤモンド粉末表面へのボロンの拡散が生じ、ボロン拡散ダイヤモンド粉末が形成され、これによって、導電性領域の焼結体に導電性を付与することができるが、加圧条件、加熱温度条件が上記範囲未満であると、ボロンの拡散が不十分になり、導電性領域の焼結体に満足できる導電性を付与することができず、また、加圧条件、加熱温度条件が上記範囲を超えると、アルカリ土類炭酸塩が溶融しはじめてボロン拡散相が十分に形成されないままダイヤモンドが焼結されることから、焼結第1段階における加圧条件、加熱温度を、それぞれ、5.0〜8.0GPa、1300〜1800℃と定めた。
また、第2段階の焼結において、加圧圧力が6.0GPa未満では十分な緻密化が図れず、また、その効果は9.0GPa以下で十分であり、それを超えると装置コストが高くなるので、加圧圧力は6.0〜9.0GPaと定めた。さらに、加熱温度が2000℃未満では、アルカリ土類炭酸塩の溶融、溶浸、充填が不十分になるとともに焼結反応も不十分であるため焼結体の緻密化を図れず、一方、加熱温度が2500℃を超えると過焼結状態となり、ダイヤモンド粒子がグラファイト化する現象が生じることから、加熱温度を2000〜2500℃と定めた。
(4) Sintering conditions in an ultra-high pressure and high-temperature apparatus In the sintering in an ultra-high pressure and high-temperature apparatus, the conductive layer is subjected to the first stage of pressure conditions of 5.0 to 8.0 GPa and in the temperature range of 1300 to 1800 ° C. Boron diffuses to the surface of the diamond powder in the region, and boron-diffused diamond powder is formed, which can impart conductivity to the sintered body in the conductive region. If it is less than the above range, the diffusion of boron becomes insufficient, and satisfactory conductivity cannot be imparted to the sintered body in the conductive region, and the pressurization condition and heating temperature condition exceed the above range. Then, since the alkaline earth carbonate starts to melt and the diamond is sintered without sufficiently forming the boron diffusion phase, the pressurizing condition and the heating temperature in the first stage of sintering are set to 5 respectively. It was set as 0.0-8.0GPa and 1300-1800 degreeC.
In addition, in the second stage sintering, if the pressure is less than 6.0 GPa, sufficient densification cannot be achieved, and the effect is sufficient if the pressure is 9.0 GPa or less. Therefore, the pressurizing pressure was determined to be 6.0 to 9.0 GPa. Further, when the heating temperature is less than 2000 ° C., the alkaline earth carbonate is insufficiently melted, infiltrated and filled, and the sintering reaction is insufficient, so that the sintered body cannot be densified. temperature becomes excessive sintering condition exceeds 2500 ° C., the diamond particles from the phenomenon occurs to graphitization, defining the heating temperature 2000 to 2500 ° C..

この発明の導電層領域と非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体およびその製造方法によれば、ダイヤモンド粉末、ボロン粉末、焼結体の結合相を形成するアルカリ土類炭酸塩粉末とを、超高圧高温条件下、その第1段階として、導電層領域においてダイヤモンド粉末表面へボロンを拡散させ、ボロン拡散ダイヤモンド粉末を形成し、そして、その第2段階として、ダイヤモンド基焼結体全体にわたって結合相成分を溶融させ、粒子間隙に溶浸充填させることにより、導電層領域におけるダイヤモンド基焼結体には導電性を付与し、一方、非導電層領域のダイヤモンド基焼結体は非導電性を維持させたまま、ダイヤモンド基焼結体全体としては、すぐれた硬度、熱伝導性、耐熱性、化学安定性を具備する導電層領域と非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体を提供することができる。
それ故、この発明の導電層領域と非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体は、導電層領域が良導電性を有することから、レーザー加工で加工可能であることは勿論であるが、放電加工によっても容易に加工し得るという優れた加工特性を備える。
したがって、例えば、この発明のダイヤモンド基焼結体を、アルミニウム合金、銅合金等の線引きダイスの線引きチップ用材料として用いる場合には、貫通孔を形成する箇所を上記導電層領域で形成し、また、その周囲を上記非導電層領域で形成しておけば、貫通孔の形成は、上記導電層領域の放電加工によって、容易かつ簡易に行うことができ、しかも、線引きチップ全体としては、すぐれた硬度、熱伝導性、耐熱性、化学安定性を備えているので、線引き後の被加工材の表面に肌荒れが生じることもなく、また、線引きチップの寿命も格段に向上し、実用上の効果が非常に大きい。
なお、上記では、この発明の導電層領域と非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体を、線引きダイス(チップ)へ適用した場合について説明したが、その適用分野は上記線引きダイス(チップ)のみに限定されるものではなく、全体として硬質であるために、特に放電加工等による部分加工の容易化が望まれるあらゆるダイヤモンド基焼結体製品、例えば、放電加工装置用のワイヤガイド、金属管引抜き装置用の心金・プラグ・マンドレル等に対しても適用可能であることは勿論である。
ただ、製品のどの箇所を導電層領域、非導電層領域で形成するかは、目的とする製品の形状、構造、用法等によって選択しなければならないことは当然である。
According to the diamond-based sintered body having a multilayered monolithic structure having a conductive layer region and a non-conductive layer region according to the present invention and a method for producing the same, an alkaline earth that forms a binder phase of diamond powder, boron powder, and sintered body. As a first step under ultra-high pressure and high temperature conditions, boron carbonate powder is diffused to the surface of the diamond powder in the conductive layer region to form a boron-diffused diamond powder, and as the second step, a diamond group By melting the binder phase components throughout the sintered body and infiltrating and filling the interstices between the particles, the diamond-based sintered body in the conductive layer region is imparted with conductivity, while the diamond-based sintering in the non-conductive layer region. Conductive layer region with excellent hardness, thermal conductivity, heat resistance, and chemical stability as a whole of the diamond-based sintered body while maintaining the non-conductive body It is possible to provide a diamond-based sintered body of multilayer integrated structure having both phase and non-conductive layer region.
Therefore, the diamond-based sintered body having a multi-layer structure having both the conductive layer region and the non-conductive layer region of the present invention can be processed by laser processing because the conductive layer region has good conductivity. Needless to say, it has excellent machining characteristics that it can be easily machined by electric discharge machining.
Therefore, for example, when the diamond-based sintered body of the present invention is used as a drawing tip material for a drawing die such as an aluminum alloy or a copper alloy, a portion for forming a through hole is formed in the conductive layer region, and If the periphery is formed of the non-conductive layer region, the formation of the through hole can be easily and easily performed by electric discharge machining of the conductive layer region, and the wire drawing chip as a whole is excellent. Since it has hardness, thermal conductivity, heat resistance, and chemical stability, there is no rough surface on the surface of the workpiece after drawing, and the service life of the drawing tip is greatly improved. Is very big.
In the above, the case where the diamond-based sintered body having a multi-layer integrated structure having both the conductive layer region and the non-conductive layer region of the present invention is applied to a drawing die (chip) has been described. It is not limited to the above drawing dies (chips), but since it is hard as a whole, it is particularly suitable for any diamond-based sintered body product that facilitates partial machining by electric discharge machining, for example, electric discharge machining equipment. Of course, the present invention can also be applied to a wire guide, a mandrel, a plug, a mandrel and the like for a metal tube drawing device.
However, as a matter of course, which part of the product is formed by the conductive layer region and the non-conductive layer region must be selected depending on the shape, structure, usage, etc. of the target product.

表1に、この発明の実施例で使用したダイヤモンド粉末、ボロン粉末、アルカリ土類炭酸塩粉末の具体例を示す。
Table 1 shows specific examples of diamond powder, boron powder, and alkaline earth carbonate powder used in the examples of the present invention.

表1に示される各種のダイヤモンド粉末、ボロン粉末およびアルカリ土類炭酸塩粉末を、表2に示される配合割合で混合し、導電層領域形成用混合粉末1〜10(以下、単に、混合粉末1〜10という)および非導電層領域形成用混合粉末11〜20(以下、単に、混合粉末11〜20という)を用意した。これらの混合粉末1〜10および混合粉末11〜20を、表3に示される組合せで、かつ、図1に示される構造となるように成形型に充填し、この成形体を、通常のベルト型超高圧高温装置に装入し、表4に示される条件(イ)〜(ホ)で第一段階、第二段階の焼結を行い、内部に導電層領域(直径:6(mm),長さ:4(mm))が形成され、また、その外周には非導電層領域(外径:12(mm),長さ:4(mm))が形成された、導電層領域と非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体(以下、本発明焼結体1〜10という)を製造した。
そして、本発明焼結体1〜10の導電層領域の電気抵抗値、および、本発明焼結体1〜10全体としての耐熱性、硬度、熱伝導度、化学安定性を測定し、その測定値を表5に示す。
さらに、本発明焼結体1〜10の導電層領域に対して、放電加工を行い、導電性領域中心部に、目標直径:2(mm),目標長さ:4(mm)の貫通孔を形成し、上記目標寸法の貫通孔を形成するに要した時間を、同じく表5に所要加工時間(分)として示す。
Various diamond powders, boron powders and alkaline earth carbonate powders shown in Table 1 are mixed at the blending ratios shown in Table 2, and mixed powders 1 to 10 for forming conductive layer regions (hereinafter simply referred to as mixed powder 1). -10) and non-conductive layer region forming mixed powders 11 to 20 (hereinafter simply referred to as mixed powders 11 to 20). These mixed powders 1 to 10 and mixed powders 11 to 20 are filled in a mold so as to have the combination shown in Table 3 and the structure shown in FIG. Inserted into an ultra-high pressure and high temperature apparatus, sintered in the first stage and second stage under the conditions (a) to (e) shown in Table 4, inside the conductive layer region (diameter: 6 (mm), long The conductive layer region and the non-conductive layer have a non-conductive layer region (outer diameter: 12 (mm), length: 4 (mm)) formed on the outer periphery thereof. A diamond-based sintered body (hereinafter, referred to as “sintered bodies 1 to 10 of the present invention”) having a multi-layer integrated structure having both regions was manufactured.
And the electrical resistance value of the electrically conductive layer area | region of this invention sintered compact 1-10, and the heat resistance, hardness, thermal conductivity, and chemical stability as this invention sintered compact 1-10 whole are measured, The measurement Values are shown in Table 5.
Furthermore, electric discharge machining is performed on the conductive layer regions of the sintered bodies 1 to 10 of the present invention, and a through hole having a target diameter of 2 (mm) and a target length of 4 (mm) is formed in the central portion of the conductive region. The time required for forming and forming the through hole of the target dimension is also shown in Table 5 as the required processing time (minutes).

比較例Comparative example

比較の目的で、混合粉末1〜5,16〜20を使用して、表4に示される条件で焼結を行い、比較焼結体1〜5、6〜10を製造した。その諸特性を表6に示す。   For the purpose of comparison, the mixed powders 1 to 5 and 16 to 20 were used for sintering under the conditions shown in Table 4 to produce comparative sintered bodies 1 to 5 and 6 to 10. Table 6 shows the characteristics.

なお、上記実施例、比較例において、導電性(電気抵抗値)、耐熱性、硬度、熱伝導度及び化学安定性の測定・評価は次のようにして行った。
導電性評価(電気抵抗測定);4端子法により電気抵抗を測定した。
耐熱性評価;真空炉にて、温度800℃と1200℃でそれぞれ保持時間30分間の条件で熱処理する耐熱試験を行い、その後、XRD(X線)分析により、熱処理後のグラファイト化(ダイヤモンドの逆変換)の有無を確認した。
硬度測定;ビッカース硬さ試験機を用いて測定した。
熱伝導度測定;レーザーフラッシュ法を用いて測定した。
化学安定性評価;焼結体を150℃の熱フッ酸に2時間浸漬し、焼結体の形状変化の有無を調べた。
In the above Examples and Comparative Examples, the measurement and evaluation of conductivity (electric resistance value), heat resistance, hardness, thermal conductivity and chemical stability were performed as follows.
Conductivity evaluation (electrical resistance measurement); electric resistance was measured by a four-terminal method.
Evaluation of heat resistance: A heat resistance test was performed in a vacuum furnace at a temperature of 800 ° C. and 1200 ° C. under a holding time of 30 minutes, respectively, and then graphitized after heat treatment (reverse of diamond) by XRD (X-ray) analysis. The presence or absence of conversion was confirmed.
Hardness measurement: Measured using a Vickers hardness tester.
Thermal conductivity measurement: Measured using a laser flash method.
Evaluation of chemical stability: The sintered body was immersed in hot hydrofluoric acid at 150 ° C. for 2 hours, and the presence or absence of the shape change of the sintered body was examined.

Figure 0005391540
Figure 0005391540

Figure 0005391540
Figure 0005391540

Figure 0005391540
Figure 0005391540

Figure 0005391540
Figure 0005391540

Figure 0005391540
Figure 0005391540

Figure 0005391540
Figure 0005391540

表5、表6に示される諸特性の比較からも明らかなように、本発明焼結体1〜10は、導電層領域ですぐれた良導電性を有し、放電加工によって、容易に短時間で加工を行うことができ、さらに、ダイヤモンド基焼結体全体として、すぐれた耐熱性、硬度、熱伝導性、化学安定性を備えている。
これに対して、ダイヤモンド粉末、ボロン粉末およびアルカリ土類炭酸塩粉末を焼結用の混合粉末として用い、焼結体全体を導電性成分で構成した比較焼結体1〜5については、放電加工によって、容易に加工し得る導電性を備えるものの、その一方で、焼結体全体が良導電性であるため、外周部分を絶縁体で構成しなければならない構造体、例えば、放電加工装置用のワイヤガイド等のような分野への適用は困難である。
また、ダイヤモンド粉末とアルカリ土類炭酸塩粉末を焼結用の混合粉末として用い、焼結体全体を非導電性成分で構成した比較焼結体6〜10については、耐熱性、硬度、熱伝導性、化学安定性は確かに優れるものの、放電加工による加工は不可能であり、従来どおりレーザーを用いた加工が必要であった。
As is clear from the comparison of various characteristics shown in Tables 5 and 6, the sintered bodies 1 to 10 of the present invention have excellent conductivity in the conductive layer region, and can be easily and quickly made by electric discharge machining. Furthermore, the entire diamond-based sintered body has excellent heat resistance, hardness, thermal conductivity, and chemical stability.
On the other hand, for comparative sintered bodies 1 to 5 in which diamond powder, boron powder and alkaline earth carbonate powder are used as a mixed powder for sintering, and the entire sintered body is composed of conductive components, electric discharge machining is performed. However, on the other hand, since the entire sintered body has good conductivity, the outer peripheral portion must be composed of an insulator, for example, for an electric discharge machining apparatus. Application to fields such as wire guides is difficult.
Further, for comparative sintered bodies 6 to 10 in which diamond powder and alkaline earth carbonate powder are used as a mixed powder for sintering and the entire sintered body is composed of non-conductive components, heat resistance, hardness, and heat conduction However, machining by electric discharge machining is impossible, and machining using a laser is necessary as before.

以上の通り、本発明によれば、少なくとも一つの導電層領域と、少なくとも一つの非導電層領域とが、焼結により一体化された構造体として形成されている、導電層領域と非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体は、全体として、すぐれた硬度、熱伝導性、耐熱性、化学安定性を備えると共に、導電層領域が良導電性を有することから、放電加工により容易に加工し得るという優れた加工特性を備える。
また、既に述べたように、この発明は、線引きダイス(チップ)への適用に限られるものではなく、放電加工装置用のワイヤガイド、金属管引抜き装置用の心金・プラグ・マンドレル等の、全体として硬質であるが故に、特に放電加工等による部分加工の容易化が望まれるあらゆるダイヤモンド基焼結体製品、に対して本発明は適用可能であり、またこれによる実用上の効果は非常に大である。
As described above, according to the present invention, at least one conductive layer region and at least one nonconductive layer region are formed as a structure integrated by sintering, and the conductive layer region and the nonconductive layer are formed. The diamond-based sintered body having a multilayered structure having both the region and the region as a whole has excellent hardness, thermal conductivity, heat resistance, chemical stability, and the conductive layer region has good conductivity. It has excellent machining characteristics that it can be easily machined by electrical discharge machining.
Further, as already described, the present invention is not limited to application to a drawing die (chip), such as a wire guide for an electric discharge machining apparatus, a mandrel, a plug, a mandrel for a metal tube drawing apparatus, The present invention can be applied to any diamond-based sintered body product that is desired to facilitate partial machining by electric discharge machining or the like because it is hard as a whole, and its practical effect is very high. It ’s big.

本発明の導電層領域と非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体の概略説明図である。It is a schematic explanatory drawing of the diamond-based sintered body of the multilayer integrated structure which has the conductive layer area | region and non-conductive layer area | region of this invention in combination.

Claims (2)

ダイヤモンド粉末粒子表面にボロンが拡散したボロン拡散ダイヤモンド粉末粒子間隙に、Mg、Ca、Sr、Baの炭酸塩並びにこれらの2種以上の複合炭酸塩のうちの1種または2種以上からなる結合相成分が溶浸充填された少なくとも一つの導電層領域と、ダイヤモンド粉末粒子間隙に上記結合相成分が溶浸充填された少なくとも一つの非導電層領域とが、焼結により一体化された構造体として形成されていることを特徴とする、1.0〜10 −2 S/cm以上の電気伝導度の導電層領域と10 −5 S/cm以下の電気伝導度の非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体。 A bonded phase comprising one or more of carbonates of Mg, Ca, Sr, and Ba, and two or more of these composite carbonates, in the gap between the boron-diffused diamond powder particles in which boron is diffused on the surface of the diamond powder particles. A structure in which at least one conductive layer region in which the components are infiltrated and at least one nonconductive layer region in which the binder phase component is infiltrated and filled in the diamond powder particle gap is integrated by sintering. A conductive layer region having an electric conductivity of 1.0 to 10 −2 S / cm or more and a non-conductive layer region having an electric conductivity of 10 −5 S / cm or less, characterized by being formed A diamond-based sintered body with a multi-layer structure. ダイヤモンド粉末80〜99.4wt%と、ボロン粉末0.5〜15wt%と、結合相成分として、Mg、Ca、Sr、Baの炭酸塩並びにこれらの2種以上の複合炭酸塩のうちの1種または2種以上からなる炭酸塩粉末0.1〜10wt%とを混合した導電層領域形成用混合粉末と、ダイヤモンド粉末80〜99.9wt%と上記炭酸塩粉末0.1〜20wt%とを混合した非導電層領域形成用混合粉末を用意し、それぞれの混合粉末を、形成される導電層領域と非導電層領域の形状、構造となるように成形型充填して成形体を形成し、その後、該成形体を超高圧高温発生装置に装入し、該超高圧高温発生装置内で、第1段階として、5.0〜8.0GPaの加圧条件下で1300〜1800℃の温度に加熱して、導電層領域形成用混合粉末中のダイヤモンド粉末へのボロンの拡散を行い、その後、第2段階として、6.0〜9.0GPaの加圧条件下で2000〜2500℃の温度に加熱して上記結合相成分を溶融させ、導電層領域形成用混合粉末中のボロンが表面に拡散したダイヤモンド粉末の粒子間隙および非導電層領域形成用混合粉末中のダイヤモンド粉末の粒子間隙に、溶融した上記結合相成分を溶浸充填させることを特徴とする、1.0〜10 −2 S/cm以上の電気伝導度の導電層領域と10 −5 S/cm以下の電気伝導度の非導電層領域とを相併せ持つ複層一体構造のダイヤモンド基焼結体の製造方法。
Diamond powder 80 to 99.4 wt%, boron powder 0.5 to 15 wt%, and Mg, Ca, Sr, Ba carbonate as a binder phase component and one of these two or more complex carbonates Alternatively, a mixed powder for forming a conductive layer region in which 0.1 to 10 wt% of carbonate powder composed of two or more kinds is mixed, and 80 to 99.9 wt% of diamond powder and 0.1 to 20 wt% of the carbonate powder are mixed. Prepared non-conductive layer region forming mixed powder , filling each of the mixed powder into the mold so as to be the shape and structure of the conductive layer region and non-conductive layer region to be formed, to form a molded body, Thereafter, the compact is charged into an ultra-high pressure and high-temperature generator, and in the ultra-high pressure and high-temperature generator, as a first stage, the pressure is set to 1300 to 1800 ° C. under a pressure of 5.0 to 8.0 GPa. Heat and mix for forming the conductive layer region Boron is diffused into the diamond powder in the powder, and as a second step, the binder phase component is melted by heating to a temperature of 2000 to 2500 ° C. under a pressure of 6.0 to 9.0 GPa. The molten binder phase component is infiltrated and filled into the interstices of the diamond powder in which boron in the mixed powder for forming the conductive layer region diffuses to the surface and the interstices of the diamond powder in the mixed powder for forming the nonconductive layer region. A multilayer integrated structure having a conductive layer region having an electric conductivity of 1.0 to 10 −2 S / cm or more and a non-conductive layer region having an electric conductivity of 10 −5 S / cm or less in combination. Of producing a diamond-based sintered body.
JP2007261684A 2007-10-05 2007-10-05 Multi-layered diamond-based sintered body with both conductive layer region and non-conductive layer region Active JP5391540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261684A JP5391540B2 (en) 2007-10-05 2007-10-05 Multi-layered diamond-based sintered body with both conductive layer region and non-conductive layer region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261684A JP5391540B2 (en) 2007-10-05 2007-10-05 Multi-layered diamond-based sintered body with both conductive layer region and non-conductive layer region

Publications (2)

Publication Number Publication Date
JP2009091179A JP2009091179A (en) 2009-04-30
JP5391540B2 true JP5391540B2 (en) 2014-01-15

Family

ID=40663533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261684A Active JP5391540B2 (en) 2007-10-05 2007-10-05 Multi-layered diamond-based sintered body with both conductive layer region and non-conductive layer region

Country Status (1)

Country Link
JP (1) JP5391540B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101528634B (en) * 2006-10-31 2013-06-12 三菱综合材料株式会社 Diamond sinter with satisfactory electrical conductivity and process for producing the same
KR101443762B1 (en) * 2012-12-28 2014-09-30 일진다이아몬드(주) Poly crystalline diamond sintered with Ti coated diamond particles and the manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838112A (en) * 1981-09-01 1983-03-05 ぺんてる株式会社 Manufacture of special form body made of ceramic
JPS58199776A (en) * 1982-05-12 1983-11-21 住友電気工業株式会社 Diamond sintered body for tool and manufacture
JP2795738B2 (en) * 1990-07-13 1998-09-10 科学技術庁無機材質研究所長 Diamond based sintered material
JP2002326872A (en) * 2001-04-27 2002-11-12 Mitsubishi Materials Corp Method of manufacturing diamond sintered compact
JP2006347846A (en) * 2005-06-20 2006-12-28 Sumitomo Electric Ind Ltd Diamond substrate for wire electric discharge processing and method for processing diamond
JP5376273B2 (en) * 2006-10-31 2013-12-25 三菱マテリアル株式会社 Boron-doped diamond sintered body and method for producing the same
JP5376274B2 (en) * 2006-10-31 2013-12-25 三菱マテリアル株式会社 Method for producing highly conductive diamond sintered body

Also Published As

Publication number Publication date
JP2009091179A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
EP2213756B1 (en) Metal-graphite composite material having high thermal conductivity and method for producing the same
KR102510985B1 (en) Manufacturing method of boroncarbide sintered body and shaping die
KR101356374B1 (en) Diamond sinter with satisfactory electrical conductivity and process for producing the same
JP6458559B2 (en) Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
JP5054854B2 (en) Electrode for electrical discharge machining
JPWO2018012369A1 (en) Polycrystalline magnesium silicide and use thereof
JP5376274B2 (en) Method for producing highly conductive diamond sintered body
JP4410066B2 (en) Manufacturing method of electrical contact material
JP5391540B2 (en) Multi-layered diamond-based sintered body with both conductive layer region and non-conductive layer region
US8894962B2 (en) Carbon material and method of manufacturing the same
JP2015164184A (en) Silicon nitride substrate, circuit board including the same, and electronic apparatus
JPWO2008142804A1 (en) Magnetron ceramic parts, magnetron using the same, and method for producing magnetron ceramic parts
JP5376273B2 (en) Boron-doped diamond sintered body and method for producing the same
JPH06206772A (en) Aluminum nitride sintered compact and ceramic circuit substrate
JP2005255462A (en) Silicon nitride sintered compact, method for manufacturing the same and circuit board using the same
JP2007045918A (en) Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
JP2009143777A (en) Boron carbide-titanium diboride sintered compact, and production method therefor
JP5263500B2 (en) Multi-layered diamond-based sintered body, diamond tool, and method for producing the same
JPH05167244A (en) Method of manufacturing ceramic substrate having through hole
JPH05186804A (en) Tungsten multiple powder, tungsten composite sheet and their production
JP2016160523A (en) Copper-molybdenum composite material and method for producing the same
EP2708522A1 (en) Metal-carbon composite material and method for producing same
JP2020012196A (en) Electrode material for discharge processing or heat sink for semiconductor, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150