JP5376274B2 - Method for producing highly conductive diamond sintered body - Google Patents

Method for producing highly conductive diamond sintered body Download PDF

Info

Publication number
JP5376274B2
JP5376274B2 JP2007261683A JP2007261683A JP5376274B2 JP 5376274 B2 JP5376274 B2 JP 5376274B2 JP 2007261683 A JP2007261683 A JP 2007261683A JP 2007261683 A JP2007261683 A JP 2007261683A JP 5376274 B2 JP5376274 B2 JP 5376274B2
Authority
JP
Japan
Prior art keywords
diamond
powder
sintered body
boron
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007261683A
Other languages
Japanese (ja)
Other versions
JP2008133173A (en
Inventor
逸郎 田嶋
アフマディ・エコ・ワルドヨ
脩 福長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007261683A priority Critical patent/JP5376274B2/en
Priority to KR1020097010921A priority patent/KR101356374B1/en
Priority to CN2007800385746A priority patent/CN101528634B/en
Priority to US12/446,353 priority patent/US8043533B2/en
Priority to EP07830622.2A priority patent/EP2100863B1/en
Priority to PCT/JP2007/070888 priority patent/WO2008053796A1/en
Publication of JP2008133173A publication Critical patent/JP2008133173A/en
Application granted granted Critical
Publication of JP5376274B2 publication Critical patent/JP5376274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、良導電性を有するダイヤモンド焼結体を、簡易な工程で効率的に製造する製造方法に関する。   The present invention relates to a production method for efficiently producing a diamond sintered body having good conductivity by a simple process.

従来から、ダイヤモンドは、硬度、熱伝導性、耐熱性が高く、化学安定性にすぐれていること等から、耐摩耗材料、電子デバイス・センサ材料、バイオ関連材料、光学関連材料等、幅広い分野に利用されており、そして、ダイヤモンドの製造法としては、各種CVD法による気相合成法、超高圧高温装置を用いた合成法が多く利用されている。   Conventionally, diamond has high hardness, thermal conductivity, heat resistance, and excellent chemical stability, so it can be used in a wide range of fields such as wear-resistant materials, electronic device / sensor materials, bio-related materials, and optical-related materials. As a method for producing diamond, a gas phase synthesis method using various CVD methods and a synthesis method using an ultrahigh pressure and high temperature apparatus are often used.

ダイヤモンド自体が非導電性であることは一般に良く知られているが、近年、ダイヤモンドにボロンをドープしたボロンドープダイヤモンドが、その半導体的特性の点から注目を浴びており、そして、その製造方法としては、例えば、ダイヤモンドを合成する際に、反応ガス中に微量のボロン成分を添加する気相合成法、グラファイト粉末とボロン粉末を原料粉末として、これを5〜10GPaかつ1300〜2000℃の条件下で合成する超高圧高温合成法が知られている。 It is generally well known that diamond itself is non-conductive, but in recent years, boron-doped diamond obtained by doping boron into diamond has attracted attention in terms of its semiconducting properties, and as a method for producing the same. Is, for example, a gas phase synthesis method in which a small amount of boron component is added to a reaction gas when synthesizing diamond. An ultra-high pressure and high-temperature synthesis method is known which is synthesized by the above method.

また、ダイヤモンド自体の有する硬度、耐摩耗性等の特性に着目して、ダイヤモンド焼結体が切削工具材料等として用いられているが、通常、ダイヤモンド焼結体は、超高圧高温条件下の焼結で製造され、例えば、ダイヤモンド粉末とCo粉末を原料粉末として、超高圧高温装置内で5.5GPaの圧力下1500℃の条件で焼結することによりダイヤモンド−Co系焼結体を得る方法、ダイヤモンド粉末とTi、Zr、Cr等の粉末からなる原料粉末を、超高圧高温装置内で6.5GPa以上に加圧し1700〜1900℃の条件で焼結し、その後さらに2000℃以上の温度で加熱することにより、ダイヤモンド−セラミックス系焼結体を得る方法、ダイヤモンド粉末と炭酸塩粉末を原料粉末として、超高圧高温装置内で6〜12GPaの圧力下、1700〜2500℃の条件で焼結することにより、ダイヤモンド−炭酸塩系焼結体を得る方法等が知られている。
特開2004−193522号公報 特開平4−312982号公報 特表2006−502955号公報 特開平5−194031号公報 特許第2795738号明細書
Also, focusing on the characteristics of diamond itself, such as hardness and wear resistance, diamond sintered bodies are used as cutting tool materials and the like. Usually, diamond sintered bodies are sintered under ultra-high pressure and high temperature conditions. A method of obtaining a diamond-Co-based sintered body by sintering, for example, using diamond powder and Co powder as raw material powders at a temperature of 1500 ° C. under a pressure of 5.5 GPa, Raw material powder consisting of diamond powder and Ti, Zr, Cr, etc. is pressurized to 6.5 GPa or higher in an ultra-high pressure and high temperature apparatus and sintered under conditions of 1700-1900 ° C. and then heated at a temperature of 2000 ° C. or higher. To obtain a diamond-ceramics-based sintered body, using diamond powder and carbonate powder as raw material powders in an ultrahigh pressure and high temperature apparatus at 6 to 12 GPa Under pressure, by sintering under the conditions of 1,700-2,500 ° C., diamond - method and the like are known to obtain a carbonate-based sintered body.
JP 2004-193522 A Japanese Patent Laid-Open No. 4-312982 JP 2006-502955 A Japanese Patent Laid-Open No. 5-194031 Japanese Patent No. 2795738

ダイヤモンド焼結体は、その特性を生かし幅広い分野に利用されているが、例えば、上記従来技術と示したダイヤモンド−Co系焼結体においては、結合相が金属Coで構成されているために導電性を備え、そのため放電加工等による焼結体の加工が可能であるという利点はあるものの、結合相が金属Coであるが故に耐熱性が低いという弱点があった。一方、上記従来技術と示したダイヤモンド−炭酸塩系焼結体においては、その耐熱性は非常に優れているものの、導電性を有さないために、放電加工を行うことができず、レーザ加工によって加工せざるを得ないという加工上の難点があった。
このように、従来技術においては、良導電性を備えるとともに、ダイヤモンドに匹敵するその他の特性(硬度、熱伝導性、耐熱性、化学安定性等)をも備えたダイヤモンド焼結体を得ることは非常に困難であったため、これがダイヤモンド焼結体の幅広い分野への応用を妨げる一つの要因とされていた。
そこで、この発明では、良導電性を有するとともに、硬度、熱伝導性、耐熱性、化学安定性等についても天然ダイヤモンドに匹敵する特性を備えたダイヤモンド焼結体を、簡易な工程で効率的に製造することを目的とする。
The diamond sintered body is used in a wide range of fields by taking advantage of its characteristics. For example, in the diamond-Co based sintered body shown as the above prior art, since the binder phase is composed of metal Co, it is conductive. Although there is an advantage that the sintered body can be processed by electric discharge machining or the like, there is a weak point that heat resistance is low because the binder phase is metallic Co. On the other hand, in the diamond-carbonate sintered body shown as the above prior art, although its heat resistance is very excellent, since it has no electrical conductivity, electric discharge machining cannot be performed, and laser machining is performed. There was a processing difficulty that had to be processed.
Thus, in the prior art, it is possible to obtain a diamond sintered body having good conductivity and other characteristics (hardness, thermal conductivity, heat resistance, chemical stability, etc.) comparable to diamond. Since it was very difficult, this was regarded as one factor that hinders the application of sintered diamonds to a wide range of fields.
Therefore, in the present invention, a diamond sintered body having good conductivity and hardness, thermal conductivity, heat resistance, chemical stability, etc. comparable to natural diamond can be efficiently produced by a simple process. The purpose is to manufacture.

本発明者らは、かかる課題を解決すべく、ダイヤモンド焼結体を製造する際の原料粉末および焼結工程について鋭意研究を行なったところ、
(a)焼結体を得るための原料粉末として、ダイヤモンド粉末と、ボロン粉末と、焼結体の結合相を形成する成分として、Mg、Ca、Sr、Baの炭酸塩並びにこれらの2種以上の複合炭酸塩のうちの1種または2種以上の炭酸塩(以下、これらを総称して、単に「アルカリ土類炭酸塩」という)粉末を使用し、各粉末を所定量配合し、それを混合して原料粉末を用意し、原料粉末を超高圧高温条件下で焼結するにあたり、まず第1段階として、所定圧所定温度で混合粉末中のボロンをダイヤモンドへ拡散させる拡散処理を行い、次ぎに、第2段階として、より高圧高温条件下で、結合相成分であるアルカリ土類炭酸塩粉末を溶融させ、ボロンが拡散したダイヤモンド粉末の粒子間隙に溶融した結合相成分を溶浸・充填させると、これによって良導電性を備えたダイヤモンド焼結体が得られること。
(b)即ち、天然ダイヤモンドそれ自体の電気伝導度は、10−5S/cm以下と非常に低いものである。一方、ボロンドープダイヤモンド粉末の電気伝導度は非常に高く、約1.5S/cmである。また、上記従来技術におけるダイヤモンド−炭酸塩系焼結体の電気伝導度も、約10−5S/cm程度と小さい値であるのに対して、上記(a)の製造法によって得られたダイヤモンド焼結体では、約1.0〜10−2S/cmの電気伝導度を有しており、ダイヤモンド−Co系焼結体の電気伝導度約2×10−2S/cmとほぼ同等の良導電性を備えることから、放電加工で焼結体を加工しようとする場合に必要とされる十分な良導電性を備えたものであること。
(c)また、ダイヤモンド−Co系焼結体のように、焼結体中に金属成分の結合相を含有するものでは、700℃程度の耐熱性しか備えていないのに対して、上記(a)の製造法によって得られたダイヤモンド焼結体では、約1200℃であって、非常に優れた耐熱性を有し、さらに、硬度、熱伝導性、化学安定性についても非常に優れた特性値を示すこと。
という上記(a)〜(c)の知見を得たのである。
In order to solve such problems, the present inventors conducted earnest research on the raw material powder and the sintering process when producing a diamond sintered body.
(A) As raw material powder for obtaining a sintered body, diamond powder, boron powder, and carbonate, Mg, Ca, Sr, and Ba, as a component that forms a binder phase of the sintered body, and two or more of these 1 or 2 or more types of carbonates (hereinafter collectively referred to simply as “alkaline earth carbonates”) powders, and each powder is mixed in a predetermined amount. When mixing raw material powder and sintering the raw material powder under ultra-high pressure and high temperature conditions, first, as a first step, a diffusion treatment is performed to diffuse boron in the mixed powder into diamond at a predetermined pressure and a predetermined temperature. As a second stage, the alkaline earth carbonate powder as the binder phase component is melted under higher pressure and high temperature conditions, and the molten binder phase component is infiltrated and filled in the interstices of the diamond powder in which boron has diffused. And this The diamond sintered body is obtained having a good conductivity Te.
(B) That is, the electrical conductivity of natural diamond itself is as low as 10 −5 S / cm or less. On the other hand, the conductivity of boron-doped diamond powder is very high, about 1.5 S / cm. Further, the electrical conductivity of the diamond-carbonate-based sintered body in the prior art is as small as about 10 −5 S / cm, whereas the diamond obtained by the production method (a) above is used. the sintered body of approximately equal to about 1.0 to 10 -2 S / cm of have an electrical conductivity of about 2 × 10 -2 S / cm electrical conductivity of the diamond -Co-based sintered body Since it has good conductivity, it must have sufficient good conductivity required when processing a sintered body by electric discharge machining.
(C) Also, a sintered body containing a binder phase of a metal component, such as a diamond-Co based sintered body, has only a heat resistance of about 700 ° C., whereas the above (a The diamond sintered body obtained by the manufacturing method of) has a very excellent heat resistance at about 1200 ° C., and also has excellent characteristics such as hardness, thermal conductivity, and chemical stability. Showing.
The above findings (a) to (c) were obtained.

この発明は、上記知見に基づいてなされたものであって、
「ダイヤモンド粉末80〜99.4wt%と、ボロン粉末0.5〜15wt%と、結合相成分として、Mg、Ca、Sr、Baの炭酸塩並びにこれらの2種以上の複合炭酸塩のうちの1種または2種以上からなる炭酸塩粉末0.1〜10wt%とを混合した原料粉末を超高圧高温発生装置に装入し、該超高圧高温発生装置内で、第1段階として、5.0〜8.0GPaの加圧条件下で1300〜1800℃の温度に加熱してダイヤモンド粉末へのボロンの拡散を行い、その後、第2段階として、6.0〜9.0GPaの加圧条件下で1600〜2500℃の温度に加熱して上記結合相成分を溶融させ、ボロンが拡散したダイヤモンド粉末粒子間隙に溶融した結合相成分を溶浸充填させることを特徴とする良導電性ダイヤモンド焼結体の製造方法。」
に特徴を有するものである。
This invention has been made based on the above findings,
“Diamond powder 80 to 99.4 wt%, boron powder 0.5 to 15 wt%, and Mg, Ca, Sr, Ba carbonate as a binder phase component and one of these two or more complex carbonates Raw material powder mixed with 0.1 to 10 wt% of carbonate powder composed of seeds or two or more species is charged into an ultrahigh pressure and high temperature generator, and within the ultrahigh pressure and high temperature generator, as a first step, 5.0 is added. The boron is diffused into the diamond powder by heating to a temperature of 1300-1800 ° C. under a pressure condition of ˜8.0 GPa, and then under a pressure condition of 6.0-9.0 GPa as a second stage. A highly conductive diamond sintered body characterized in that the binder phase component is melted by heating to a temperature of 1600 to 2500 ° C., and the melted binder phase component is infiltrated and filled in the gaps of the diamond powder particles in which boron has diffused. Manufacturing method . "
It has the characteristics.

以下に、この発明を、より具体的かつ詳細に説明する。   Hereinafter, the present invention will be described more specifically and in detail.

(1)ダイヤモンド粉末、ボロン粉末
ダイヤモンド粉末としては、気相合成法に限らず、現在既によく知られている方法で製造されたダイヤモンド粉末を使用することができる。
また、ボロン粉末としては、結晶性ボロン粉末あるいは非晶質ボロン粉末が望ましいが、場合によっては、ボロン含有量の高いボロンカーバイド粉末を使用することもできる。
そして、ボロン粉末におけるボロン成分は、超高圧高温条件下の焼結における第1段階、即ち、5.0〜8.0GPaの加圧条件下で1300〜1800℃の温度範囲において、ボロンがダイヤモンド粉末の表面へ拡散する。こうして得られたダイヤモンド粉末は、最終的に得られるダイヤモンド焼結体に導電性を付与する作用を有する。
(1) Diamond powder and boron powder Diamond powder is not limited to gas phase synthesis, and diamond powder produced by a method already well known at present can be used.
As the boron powder, crystalline boron powder or amorphous boron powder is desirable, but in some cases, boron carbide powder having a high boron content can also be used.
The boron component in the boron powder is a first step in sintering under ultra-high pressure and high temperature, that is, boron is a diamond powder in a temperature range of 1300 to 1800 ° C. under a pressure of 5.0 to 8.0 GPa. Diffuses to the surface of The diamond powder obtained in this way has the effect | action which provides electroconductivity to the diamond sintered compact finally obtained.

(2)アルカリ土類炭酸塩粉末
ダイヤモンド粉末とボロン粉末とアルカリ土類炭酸塩粉末とを混合し、これを原料粉末として、超高圧高温条件下で焼結を行う際、第1段階として、5.0〜8.0GPaの加圧条件下で1300〜1800℃の温度範囲での焼結により、ボロン成分のダイヤモンドへの拡散が生じ、次の第2段階、即ち、6.0〜9.0GPaの加圧条件下1600〜2500℃の温度範囲での焼結によって、上記結合相成分が溶融し、溶融した結合相成分が、ボロンがドープしたダイヤモンド粉末粒子間隙に溶浸充填され、焼結体の密度を高める結合相として存在する。
(2) Alkaline earth carbonate powder When diamond powder, boron powder and alkaline earth carbonate powder are mixed and used as a raw material powder for sintering under ultrahigh pressure and high temperature conditions, the first stage is 5 Sintering in the temperature range of 1300-1800 ° C. under pressure conditions of 0.0-8.0 GPa causes the boron component to diffuse into the diamond, which is the second stage, ie 6.0-9.0 GPa. By sintering in the temperature range of 1600 to 2500 ° C. under the pressure conditions of the above, the above binder phase component is melted, and the melted binder phase component is infiltrated and filled into the gap between the boron-doped diamond powder particles, and the sintered body It exists as a binder phase that increases the density of.

(3)原料粉末の配合割合
この発明では、ダイヤモンド焼結体が、ダイヤモンドが本来有する硬度、熱伝導性、化学安定性というすぐれた特性を失わないで、かつ、良導電性をも保持するという観点から、原料粉末中のダイヤモンド粉末の配合割合を80〜99.4wt%と定め、また、ボロン粉末の配合割合を0.5〜15wt%と定め、一方、ダイヤモンド焼結体に良導電性を付与させつつ、耐熱性を高め、さらに、所定の焼結体密度を保持するという観点から、アルカリ土類炭酸塩粉末の配合割合を0.1〜10wt%と定めた。
つまり、ダイヤモンド粉末の配合割合が80wt%未満、ボロン粉末の配合割合が0.5wt%未満、あるいは、アルカリ土類炭酸塩粉末の配合割合が10wt%を超えた場合には、ダイヤモンド焼結体に所定の良導電性を付与できないばかりか、焼結体としての硬度、熱伝導性、化学安定性、緻密度が低下し、一方、アルカリ土類炭酸塩粉末の配合割合が0.1wt%未満、あるいは、ダイヤモンド粉末の配合割合が99.4wt%を超えた場合またボロン粉末の配合割合が15wt%を超えた場合には、結合相成分の減少による焼結性の低下、焼結体強度の低下とともに耐熱性が低下するようになるからである。
なお、原料粉末の配合にあたり、ダイヤモンド粉末、ボロン粉末、アルカリ土類炭酸塩粉末の各粉末を直接配合するのではなく、先行技術として示した方法により製造した(予めボロンをドープした)ボロンドープダイヤモンドをアルカリ土類炭酸塩粉末と配合し、これを原料粉末として焼結を行うことも考えられるが、ボロンドープダイヤモンドのダイヤモンド粒子内には、合成時に使用した金属触媒等の一部が不純物として残留していることがあり、この場合には焼結体の特性(例えば、耐熱性)に悪影響を及ぼし、また、合成で得られたボロンドープダイヤモンドは塊状であるため、これを破砕し、化学処理により金属不純物等の除去を行い、その後分級を行う必要があり、後工程での手間がかかる。それ故、原料粉末としては、ダイヤモンド粉末、ボロン粉末およびアルカリ土類炭酸塩粉末を、それぞれ所定割合で配合したものを使用することが必要である。そして、ダイヤモンド粉末、ボロン粉末、アルカリ土類炭酸塩粉末をそれぞれ所定割合で配合したものを原料粉末とすれば、ダイヤモンド粒子内への不純物の混入を防止できるばかりか、ボロンドープダイヤモンド合成後の後工程も不要になり、さらに、焼結体中のダイヤモンドとボロンの含有割合を、配合比の調整により的確かつ容易に設定することができる。
(3) Mixing ratio of raw material powder In this invention, the diamond sintered body does not lose excellent properties such as hardness, thermal conductivity, and chemical stability inherent in diamond, and also maintains good conductivity. From the viewpoint, the blending ratio of the diamond powder in the raw material powder is determined to be 80 to 99.4 wt%, and the blending ratio of the boron powder is determined to be 0.5 to 15 wt%. On the other hand, the diamond sintered body has good conductivity. From the viewpoint of increasing the heat resistance and maintaining a predetermined sintered body density while imparting, the blending ratio of the alkaline earth carbonate powder was determined to be 0.1 to 10 wt%.
That is, when the blending ratio of diamond powder is less than 80 wt%, the blending ratio of boron powder is less than 0.5 wt%, or the blending ratio of alkaline earth carbonate powder exceeds 10 wt%, Not only can the predetermined good conductivity not be imparted, but also the hardness, thermal conductivity, chemical stability and density as a sintered body are reduced, while the blending ratio of alkaline earth carbonate powder is less than 0.1 wt%, Alternatively, when the blending ratio of the diamond powder exceeds 99.4 wt% and when the blending ratio of the boron powder exceeds 15 wt%, the sinterability decreases due to the decrease in the binder phase component, and the sintered body strength decreases. It is because heat resistance will fall with it.
Boron-doped diamond produced by the method shown in the prior art (previously doped with boron), instead of directly blending each powder of diamond powder, boron powder, and alkaline earth carbonate powder when blending the raw material powder It is conceivable to mix with alkaline earth carbonate powder and sinter using this as raw material powder. However, some of the metal catalyst used during synthesis remains as impurities in the diamond particles of boron-doped diamond. In this case, it adversely affects the properties of the sintered body (for example, heat resistance), and the boron-doped diamond obtained by synthesis is agglomerated, so it is crushed and chemically treated. Thus, it is necessary to remove metal impurities and the like, and then perform classification, which takes time in subsequent steps. Therefore, as the raw material powder, it is necessary to use a mixture of diamond powder, boron powder and alkaline earth carbonate powder in a predetermined ratio. If the raw material powder is a mixture of diamond powder, boron powder, and alkaline earth carbonate powder in predetermined proportions, not only can impurities be prevented from entering the diamond particles, but also after boron-doped diamond synthesis. A process is also unnecessary, and the content ratio of diamond and boron in the sintered body can be accurately and easily set by adjusting the mixing ratio.

(4)超高圧高温装置における焼結条件
超高圧高温装置による焼結において、その第1段階として5.0〜8.0GPaの加圧条件下で1300〜1800℃の温度範囲において、ダイヤモンド粉末へのボロンの拡散が生じ、これによって、焼結体に導電性を付与することができるが、加圧条件、加熱温度条件が上記範囲未満であると、ボロンの拡散が不十分になり、焼結体に満足できる導電性を付与することができず、また、加圧条件、加熱温度条件が上記範囲を超えると、炭酸塩が溶融しはじめてボロン拡散相が十分に形成されないままダイヤモンドが焼結されることから、焼結第1段階における加圧条件、加熱温度を、それぞれ、5.0〜8.0GPa、1300〜1800℃と定めた。
また、第2段階の焼結において、加圧圧力が6.0GPa未満では十分な緻密化が図れず、また、その効果は9.0GPa以下で十分であり、それを超えると装置コストが高くなるので、加圧圧力は6.0〜9.0GPaと定めた。さらに、加熱温度が1600℃未満では、アルカリ土類炭酸塩の溶融、溶浸、充填が不十分になるとともに焼結反応も不十分であるため焼結体の緻密化を図れず、一方、加熱温度が2500℃を超えると過焼結状態となり、ダイヤモンド粒子がグラファイト化する現象が生じることから、加熱温度を1600〜2500℃と定めた。
なお、原料粉末を超高圧高温発生装置に装入するにあたり、この発明では、ダイヤモンド粉末、ボロン粉末およびアルカリ土類炭酸塩粉末を混合し、この混合粉末を原料粉末として超高圧高温発生装置内へ装入するとしたが、原料粉末を混合粉末とせずに、ダイヤモンド粉末、ボロン粉末、アルカリ土類炭酸塩粉末のそれぞれが粉末層を形成し、この粉末層が積層された状態の原料粉末を、超高圧高温発生装置内に装入した状態で焼結を行うことも勿論可能である。
(4) Sintering conditions in an ultra-high pressure and high-temperature apparatus In the sintering in an ultra-high pressure and high-temperature apparatus, as a first step, to a diamond powder in a temperature range of 1300 to 1800 ° C under a pressure condition of 5.0 to 8.0 GPa. Boron diffusion occurs, and this makes it possible to impart conductivity to the sintered body. However, if the pressurizing condition and heating temperature condition are less than the above ranges, the boron diffusion becomes insufficient, and the sintered body is sintered. The body cannot be provided with satisfactory conductivity, and when the pressurization and heating temperature conditions exceed the above ranges, the carbonate starts to melt and the diamond is sintered without the boron diffusion phase being sufficiently formed. Therefore, the pressurizing condition and the heating temperature in the first stage of sintering were set to 5.0 to 8.0 GPa and 1300 to 1800 ° C., respectively.
In addition, in the second stage sintering, if the pressure is less than 6.0 GPa, sufficient densification cannot be achieved, and the effect is sufficient if the pressure is 9.0 GPa or less. Therefore, the pressurizing pressure was determined to be 6.0 to 9.0 GPa. Furthermore, if the heating temperature is less than 1600 ° C., the alkaline earth carbonate is insufficiently melted, infiltrated and filled, and the sintering reaction is insufficient, so that the sintered body cannot be densified. When the temperature exceeds 2500 ° C., the oversintering state occurs, and the phenomenon that the diamond particles are graphitized occurs. Therefore, the heating temperature was set to 1600 to 2500 ° C.
In addition, when charging the raw material powder into the ultra-high pressure and high-temperature generator, in the present invention, diamond powder, boron powder and alkaline earth carbonate powder are mixed, and this mixed powder is used as the raw powder into the ultra-high pressure and high-temperature generator. Although the raw material powder is not mixed powder, each of diamond powder, boron powder, and alkaline earth carbonate powder forms a powder layer. Of course, it is also possible to perform the sintering in a state of being charged in the high-pressure and high-temperature generator.

この発明のダイヤモンド焼結体の製造方法によれば、ダイヤモンド粉末、ボロン粉末と、焼結体の結合相を形成するアルカリ土類炭酸塩粉末とを、超高圧高温条件下、その第1段階として、ボロンをダイヤモンドへ拡散させ導電性を付与し、そして、その第2段階として、結合相成分を溶融させて粒子間隙に溶浸充填させるという簡易かつ効率的な2段階の工程で良導電性を有するダイヤモンド焼結体を得ることができる。
そして、この発明により製造したダイヤモンド焼結体は、良導電性ばかりか、すぐれた耐熱性を備え、さらに、硬度、熱伝導性、化学安定性については天然ダイヤモンドに匹敵する特性を備えるものであることから、放電加工で容易に加工できるという優れた加工特性を生かし、多方面への応用が期待されることから、実用上の効果は非常に大きい。
According to the method for producing a diamond sintered body of the present invention, diamond powder, boron powder, and alkaline earth carbonate powder forming a binder phase of the sintered body are used as the first stage under ultrahigh pressure and high temperature conditions. , Boron is diffused into diamond to provide conductivity, and as the second step, good electrical conductivity is achieved in a simple and efficient two-step process in which the binder phase component is melted and infiltrated and filled in the particle gaps. A diamond sintered body can be obtained.
The diamond sintered body produced according to the present invention has not only good conductivity but also excellent heat resistance, and further has properties comparable to natural diamond in terms of hardness, thermal conductivity and chemical stability. Therefore, it is expected to be applied in various fields by taking advantage of the excellent machining characteristics that it can be easily machined by electric discharge machining, so that the practical effect is very large.

表1に、この発明の実施例で使用したダイヤモンド粉末、ボロン粉末、アルカリ土類炭酸塩粉末の具体例を示す。   Table 1 shows specific examples of diamond powder, boron powder, and alkaline earth carbonate powder used in the examples of the present invention.

表1に示される各種のダイヤモンド粉末、ボロン粉末およびアルカリ土類炭酸塩粉末を、表2に示される配合割合で混合し、原料粉末1〜15を用意した。これらの原料粉末1〜15を、通常のベルト型超高圧高温装置に装入し、本発明法1〜15として、表3に示される条件で第一段階、第二段階の焼結を行い、表4に示されるダイヤモンド焼結体1〜15(以下、本発明焼結体1〜15という)を製造した。本発明法1〜15により製造した本発明焼結体1〜15の諸特性(電気伝導度(電気抵抗値)、耐熱性、硬度、熱伝導度、化学安定性等)を測定し、その測定値を表4に示す。   Various diamond powders, boron powders, and alkaline earth carbonate powders shown in Table 1 were mixed at a blending ratio shown in Table 2 to prepare raw material powders 1-15. These raw material powders 1 to 15 are charged into a normal belt-type ultra-high pressure and high temperature apparatus, and as the present invention methods 1 to 15, the first stage and second stage sintering are performed under the conditions shown in Table 3, Diamond sintered bodies 1 to 15 shown in Table 4 (hereinafter referred to as the present invention sintered bodies 1 to 15) were produced. Various properties (electric conductivity (electric resistance value), heat resistance, hardness, thermal conductivity, chemical stability, etc.) of the sintered bodies 1 to 15 of the present invention produced by the present invention methods 1 to 15 are measured and measured. Values are shown in Table 4.

比較例Comparative example

比較の目的で、原料粉末1、5、10を使用して、比較法1、5、10として表5に示される条件で焼結を行い、比較焼結体1、5、10を製造した。その諸特性を表6に示す。
また、参考のため、従来法1(特表2006−502955号公報記載の方法)により製造したボロンドープダイヤモンド焼結体(従来焼結体1という)、および従来法2(特許第2795738号明細書)により製造したダイヤモンド−炭酸塩系焼結体(従来焼結体2という)についても、その諸特性を同じく表6に示す。
For the purpose of comparison, raw powders 1, 5, and 10 were used, and sintering was performed under the conditions shown in Table 5 as comparative methods 1, 5, and 10 to produce comparative sintered bodies 1, 5, and 10. Table 6 shows the characteristics.
For reference, a boron-doped diamond sintered body (referred to as the conventional sintered body 1) manufactured by the conventional method 1 (the method described in JP 2006-502955 A) and a conventional method 2 (Japanese Patent No. 2795738) Table 6 also shows the characteristics of the diamond-carbonate-based sintered body (referred to as “conventional sintered body 2”) manufactured by the above method.

なお、上記実施例、比較例において、電気伝導度(電気抵抗値)、耐熱性及び化学安定性の評価は次のようにして行った。
電気伝導度評価試験;4端子法により電気抵抗を測定した。
耐熱性評価試験;真空炉にて、温度800℃と1200℃でそれぞれ保持時間30分間の条件で熱処理する耐熱試験を行い、その後、XRD(X線)分析により、熱処理後のグラファイト化(ダイヤモンドの逆変換)の有無を確認した。
化学安定性評価試験;焼結体を150℃の熱フッ酸に2時間浸漬し、焼結体の形状変化の有無を調べた。
In the above Examples and Comparative Examples, the electrical conductivity (electric resistance value), heat resistance and chemical stability were evaluated as follows.
Electrical conductivity evaluation test: Electrical resistance was measured by the 4-terminal method.
Heat resistance evaluation test: A heat resistance test is performed in a vacuum furnace at a temperature of 800 ° C. and 1200 ° C. with a holding time of 30 minutes, respectively. After that, by XRD (X-ray) analysis, graphitization after the heat treatment (diamond The presence or absence of reverse conversion was confirmed.
Chemical stability evaluation test: The sintered body was immersed in hot hydrofluoric acid at 150 ° C. for 2 hours, and the presence or absence of a shape change of the sintered body was examined.

Figure 0005376274
Figure 0005376274

Figure 0005376274
Figure 0005376274

Figure 0005376274
Figure 0005376274

Figure 0005376274
Figure 0005376274

Figure 0005376274
Figure 0005376274

Figure 0005376274
Figure 0005376274

表4、表6に示される本発明焼結体1〜15と、比較焼結体1、5、10および従来焼結体1、2の特性比較からも明らかなように、本発明法1〜15で製造した本発明焼結体1〜15は、良導電性とすぐれた耐熱性とを兼ね備え、さらに、硬度、熱伝導性、化学安定性についても天然ダイヤモンドに匹敵する特性を備えるのに対して、製造条件が本発明法から外れる比較法1、5、10で製造した比較焼結体1、5、10あるいは従来法1、2で製造した従来焼結体1、2は、導電性、熱伝導性、耐熱性、硬度、化学安定性の何れかが本発明焼結体1〜15より劣っている。
以上の通り、本発明によれば、良導電性を有するダイヤモンド焼結体を簡易な工程で効率的に製造することができ、しかも、本発明の製造法により得たダイヤモンド焼結体は、放電加工による加工が十分可能である導電性を備えているので、ダイヤモンド焼結体の応用分野が広がり、実用上の効果はきわめて大である。
As is apparent from the comparison of the characteristics of the sintered bodies 1 to 15 of the present invention shown in Tables 4 and 6 and the comparative sintered bodies 1, 5 and 10 and the conventional sintered bodies 1 and 2, The sintered bodies 1 to 15 of the present invention produced in No. 15 have both good conductivity and excellent heat resistance, and also have properties comparable to natural diamond in terms of hardness, thermal conductivity, and chemical stability. The comparative sintered bodies 1, 5, 10 produced by the comparative methods 1, 5, 10, which have manufacturing conditions deviating from the method of the present invention, or the conventional sintered bodies 1, 2 produced by the conventional methods 1, 2 are electrically conductive, Any of thermal conductivity, heat resistance, hardness, and chemical stability is inferior to the sintered bodies 1 to 15 of the present invention.
As described above, according to the present invention, a diamond sintered body having good conductivity can be efficiently manufactured by a simple process, and the diamond sintered body obtained by the manufacturing method of the present invention Since it has conductivity sufficient for processing by processing, the application field of the diamond sintered body is expanded, and the practical effect is extremely large.

Claims (1)

ダイヤモンド粉末80〜99.4wt%と、ボロン粉末0.5〜15wt%と、結合相成分として、Mg、Ca、Sr、Baの炭酸塩並びにこれらの2種以上の複合炭酸塩のうちの1種または2種以上からなる炭酸塩粉末0.1〜10wt%とを混合した原料粉末を超高圧高温発生装置に装入し、該超高圧高温発生装置内で、第1段階として、5.0〜8.0GPaの加圧条件下で1300〜1800℃の温度に加熱してダイヤモンド粉末へのボロンの拡散を行い、その後、第2段階として、6.0〜9.0GPaの加圧条件下で1600〜2500℃の温度に加熱して上記結合相成分を溶融させ、ボロンが拡散したダイヤモンド粉末粒子間隙に溶融した結合相成分を溶浸充填させることを特徴とする良導電性ダイヤモンド焼結体の製造方法。   Diamond powder 80 to 99.4 wt%, boron powder 0.5 to 15 wt%, and Mg, Ca, Sr, Ba carbonate as a binder phase component and one of these two or more complex carbonates Alternatively, a raw material powder mixed with 0.1 to 10 wt% of carbonate powder composed of two or more kinds is charged into an ultra-high pressure and high-temperature generator, and within the ultra-high pressure and high-temperature generator, as a first step, 5.0 to Boron is diffused into the diamond powder by heating to a temperature of 1300 to 1800 ° C. under a pressure of 8.0 GPa, and then as a second stage, 1600 under a pressure of 6.0 to 9.0 GPa. Heating to a temperature of ˜2500 ° C. to melt the binder phase component, and infiltrating and filling the melted binder phase component into the gaps between the diamond powder particles in which boron has diffused, Method
JP2007261683A 2006-10-31 2007-10-05 Method for producing highly conductive diamond sintered body Active JP5376274B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007261683A JP5376274B2 (en) 2006-10-31 2007-10-05 Method for producing highly conductive diamond sintered body
KR1020097010921A KR101356374B1 (en) 2006-10-31 2007-10-26 Diamond sinter with satisfactory electrical conductivity and process for producing the same
CN2007800385746A CN101528634B (en) 2006-10-31 2007-10-26 Diamond sinter with satisfactory electrical conductivity and process for producing the same
US12/446,353 US8043533B2 (en) 2006-10-31 2007-10-26 Diamond sintered compact having high electrical conductivity and production method thereof
EP07830622.2A EP2100863B1 (en) 2006-10-31 2007-10-26 Process for manufacturing a boron-doped diamond sinter with satisfactory electrical conductivity
PCT/JP2007/070888 WO2008053796A1 (en) 2006-10-31 2007-10-26 Diamond sinter with satisfactory electrical conductivity and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006296903 2006-10-31
JP2006296903 2006-10-31
JP2007261683A JP5376274B2 (en) 2006-10-31 2007-10-05 Method for producing highly conductive diamond sintered body

Publications (2)

Publication Number Publication Date
JP2008133173A JP2008133173A (en) 2008-06-12
JP5376274B2 true JP5376274B2 (en) 2013-12-25

Family

ID=39558284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261683A Active JP5376274B2 (en) 2006-10-31 2007-10-05 Method for producing highly conductive diamond sintered body

Country Status (1)

Country Link
JP (1) JP5376274B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174793A (en) * 2014-03-14 2015-10-05 学校法人東京理科大学 Method of producing boron-doped diamond nanoparticles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391540B2 (en) * 2007-10-05 2014-01-15 三菱マテリアル株式会社 Multi-layered diamond-based sintered body with both conductive layer region and non-conductive layer region
JP5263500B2 (en) * 2008-07-22 2013-08-14 三菱マテリアル株式会社 Multi-layered diamond-based sintered body, diamond tool, and method for producing the same
JP7188726B2 (en) * 2017-06-28 2022-12-13 トーメイダイヤ株式会社 Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same
CN111356651A (en) 2017-11-16 2020-06-30 株式会社大赛璐 Electrode material for capacitor
JP6803582B2 (en) 2019-03-06 2020-12-23 株式会社ダイセル Electrode forming material for electrochemical capacitors
JP7359522B2 (en) * 2020-11-30 2023-10-11 住友電工ハードメタル株式会社 Sintered bodies and cutting tools

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795738B2 (en) * 1990-07-13 1998-09-10 科学技術庁無機材質研究所長 Diamond based sintered material
US5266236A (en) * 1991-10-09 1993-11-30 General Electric Company Thermally stable dense electrically conductive diamond compacts
JPH09142932A (en) * 1995-11-21 1997-06-03 Sumitomo Electric Ind Ltd Diamond sintered compact and its production
JPH11292630A (en) * 1998-04-08 1999-10-26 Ishizuka Kenkyusho:Kk Diamond-silicon carbide composite sintered compact and its production
JP2005290403A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Electrolysis method by conductive diamond particle and method for manufacturing conductive diamond particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174793A (en) * 2014-03-14 2015-10-05 学校法人東京理科大学 Method of producing boron-doped diamond nanoparticles

Also Published As

Publication number Publication date
JP2008133173A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5376274B2 (en) Method for producing highly conductive diamond sintered body
KR101356374B1 (en) Diamond sinter with satisfactory electrical conductivity and process for producing the same
EP1704913B1 (en) High-hardness conductive diamond polycrystalline body and method for producing same
Chakravarty et al. Spark plasma sintering of magnesia‐doped alumina with high hardness and fracture toughness
JPH0769731A (en) High-strength, high-density conductive ceramic
JP6344844B2 (en) Boron carbide / titanium boride composite ceramics and method for producing the same
JP4900569B2 (en) Method for producing aluminum-containing zinc oxide sintered body
JP4691891B2 (en) C-SiC sintered body and manufacturing method thereof
JP5376273B2 (en) Boron-doped diamond sintered body and method for producing the same
KR101745034B1 (en) Carbon material and process for production thereof
KR101659823B1 (en) A HfC Composites and A Manufacturing method of the same
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
JP2007045918A (en) Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material
CN106892663B (en) Lamellar nitride ceramic particles and preparation method thereof
JP2005343749A (en) Cemented carbide and method of manufacturing the same
CN104465875B (en) A kind of preparation method of photovoltaic cell silver grating line
JP2012066980A (en) High-hardness, electrically conductive polycrystalline diamond and method for producing the same
JP5391540B2 (en) Multi-layered diamond-based sintered body with both conductive layer region and non-conductive layer region
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JP2004039372A (en) Diamond granular body containing nitrogen and boron having conductivity and fluidized-bed electrode using the diamond granular body
JP2005200239A (en) Highly heat-conductive graphite material and its production method
JP7003734B2 (en) Bulk body containing strontium and its manufacturing method
KR200490068Y1 (en) MANUFACTURING METHOD OF Ti2AlC AND ELECTRODE AND HIGH TEMPERATURE MEMBER USING IT
JP4499139B2 (en) Conductive diamond granules for fluidized bed and fluidized bed for fluidized bed electrolytic treatment equipment
KR102414539B1 (en) A SiC powder, SiC sintered body and Manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5376274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150