JP4410066B2 - Manufacturing method of electrical contact material - Google Patents

Manufacturing method of electrical contact material Download PDF

Info

Publication number
JP4410066B2
JP4410066B2 JP2004262786A JP2004262786A JP4410066B2 JP 4410066 B2 JP4410066 B2 JP 4410066B2 JP 2004262786 A JP2004262786 A JP 2004262786A JP 2004262786 A JP2004262786 A JP 2004262786A JP 4410066 B2 JP4410066 B2 JP 4410066B2
Authority
JP
Japan
Prior art keywords
powder
electrical contact
contact material
press
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004262786A
Other languages
Japanese (ja)
Other versions
JP2005146412A (en
Inventor
孝典 曽根
武文 伊藤
浩行 寺本
剛 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004262786A priority Critical patent/JP4410066B2/en
Publication of JP2005146412A publication Critical patent/JP2005146412A/en
Application granted granted Critical
Publication of JP4410066B2 publication Critical patent/JP4410066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気接点材料の製造方法に関し、特に、Agと耐熱性非酸化物とからなる電気接点材料およびAgと耐熱性非酸化物と金属酸化物とからなる電気接点材料の製造方法に関する。 The present invention relates to the production how electrical contact material, in particular, the manufacture of electrical contact materials made of the electrical contact material and Ag and heat resistance non-oxide and a metal oxide consisting of Ag and heat resistance non-oxide Regarding the method.

Ag−CdO系の電気接点材料は、耐溶着性および耐消耗性に優れ、小電流域から高電流域までの幅広い接点材料として従来より使用されてきたが、環境への配慮等の観点から、Cdフリー化の要求が高まっている。   Ag-CdO-based electrical contact materials are excellent in welding resistance and wear resistance and have been conventionally used as a wide range of contact materials from a small current range to a high current range, but from the viewpoint of environmental considerations, etc. The demand for Cd-free is increasing.

Ag−CdO系に代わる電気接点材料としては、Ag−SnO系、Ag−In系、またはAg−SnO−In系がある。これらの電気接点材料の製造には、Ag粉末とSn粉末、Ag粉末とIn粉末、またはAg粉末とSn粉末とIn粉末を溶解して、それぞれAg−Sn合金、Ag−In合金、またはAg−Sn−In合金とした後に、500℃、10atm(1MPa)で、この合金のSn、In、またはSnとInのみを選択酸化する内部酸化法がとられている(特許文献1参照)。これらの電気接点材料は金属酸化物の熱安定性を利用して耐溶着性を図ったものであるが、これらの金属酸化物をAg中に分散させるだけでは耐溶着性は不十分である。 As an electrical contact material replacing the Ag—CdO system, there is an Ag—SnO 2 system, an Ag—In 2 O 3 system, or an Ag—SnO 2 —In 2 O 3 system. In the production of these electrical contact materials, Ag powder and Sn powder, Ag powder and In powder, or Ag powder and Sn powder and In powder are dissolved, and Ag-Sn alloy, Ag-In alloy, or Ag- After forming a Sn—In alloy, an internal oxidation method is employed in which only Sn, In, or only Sn and In of this alloy is selectively oxidized at 500 ° C. and 10 atm (1 MPa) (see Patent Document 1). These electrical contact materials are intended to have welding resistance utilizing the thermal stability of metal oxides, but the welding resistance is insufficient only by dispersing these metal oxides in Ag.

また、耐溶着性および耐溶損性を強化するためにグラファイトをさらに加えたAg−SnO−グラファイト系の電気接点材料(特許文献2参照)がある。この電気接点材料の製造には、Ag粉末およびSnO粉末にグラファイト粉末を混合し、この混合粉末を1〜3t/cm(98〜294MPa)で圧縮成型し、ついで不活性ガス雰囲気中、電気炉中で高温(800℃)焼結する粉末冶金法がとられている。さらに、Niを加えて耐磨耗性および耐溶着性を改良したAg−Ni−SnO系の電気接点材料(特許文献3参照)がある。この電気接点材料の製造には、Ag粉末およびSnO粉末にNi粉末を混合し、この混合粉末を4t/cm(392MPa)で圧縮成型し、ついで不活性ガス雰囲気中、電気炉中で高温(800℃)焼結する粉末冶金法がとられている。 In addition, there is an Ag—SnO 2 -graphite-based electrical contact material (see Patent Document 2) to which graphite is further added in order to enhance the welding resistance and the erosion resistance. For the production of this electrical contact material, Ag powder and SnO 2 powder are mixed with graphite powder, and this mixed powder is compression molded at 1 to 3 t / cm 2 (98 to 294 MPa), and then in an inert gas atmosphere, Powder metallurgy is used in which high temperature (800 ° C.) sintering is performed in a furnace. Furthermore, there is an Ag—Ni—SnO 2 -based electric contact material (see Patent Document 3) in which Ni is added to improve wear resistance and welding resistance. In the production of this electrical contact material, Ni powder is mixed with Ag powder and SnO 2 powder, this mixed powder is compression molded at 4 t / cm 2 (392 MPa), and then heated in an inert gas atmosphere in an electric furnace. The powder metallurgy method (800 degreeC) sintering is taken.

一方、Ag粉末と、WC粉末、W粉末、Mo粉末、カーボン粉末(あるいはグラファイト粉末)、またはNi粉末などの耐熱性非酸化物材料を含有するAg−WC、Ag−W、Ag−Mo、Ag−C(グラファイト)系の電気接点材料があり、これらは耐溶着性、耐消耗性および耐アーク性に優れているので、中電流または高電流域帯で使用されている。また、接点抵抗が小さいAg−Ni系の電気接点材料は、リレー用接点などの低電流域帯で使用されている。これらの電気接点材料の製造方法には、Ag粉末と耐熱性非酸化物材料とを混合し、この混合粉末を圧縮成型し、ついで不活性ガス中、電気炉中で高温焼結する粉末冶金法がとられている。しかしながら、Agとこれらの材料とは濡れ性が悪く、Ag粉末とこれら粉末の混合粉末とを圧縮成形して高温で焼結を行っても、緻密化が上がらず耐消耗性が不十分となる。   Meanwhile, Ag-WC, Ag-W, Ag-Mo, Ag containing Ag powder and heat-resistant non-oxide material such as WC powder, W powder, Mo powder, carbon powder (or graphite powder), or Ni powder. There are -C (graphite) -based electrical contact materials, which are excellent in welding resistance, wear resistance and arc resistance, and are used in the medium current or high current range. In addition, Ag—Ni electric contact materials with low contact resistance are used in low current bands such as relay contacts. These electric contact materials are produced by mixing powdered Ag and heat-resistant non-oxide material, compression molding the mixed powder, and then sintering at high temperature in an inert gas and electric furnace. Has been taken. However, Ag and these materials have poor wettability, and even if compression molding of Ag powder and a mixed powder of these powders and sintering at high temperature, densification does not increase and wear resistance is insufficient. .

そこで、材料を緻密化する方法として、Ag粉末およびグラファイト粉末の混合粉末を200kg/cm(20MPa)で圧縮成形すると同時に800℃で焼結を行うホットプレス法がある(特許文献4参照)。また、Ag粉末、WC粉末、炭素粉末、さらにWC粒子の結合強度を向上させるためにCo粉末を混合し、この混合粉末を成形して焼結した後、さらにこの焼結体を再度600℃〜800℃、4〜10Torr/cm(0.0005〜0.001MPa)で熱間プレスする方法もある(特許文献5参照)。 Therefore, as a method for densifying the material, there is a hot press method in which a mixed powder of Ag powder and graphite powder is compression-molded at 200 kg / cm 2 (20 MPa) and simultaneously sintered at 800 ° C. (see Patent Document 4). Further, Ag powder, WC powder, carbon powder, and Co powder are mixed in order to improve the bonding strength of the WC particles, and after the mixed powder is molded and sintered, the sintered body is again formed at 600 ° C. to There is also a method of hot pressing at 800 ° C. and 4 to 10 Torr / cm 2 (0.0005 to 0.001 MPa) (see Patent Document 5).

特公昭59−37532号公報Japanese Patent Publication No.59-37532 特開昭48−36695号公報JP 48-36695 A 特公昭61−48572号公報Japanese Patent Publication No. 61-48572 特開昭48−63297号公報JP-A-48-63297 特開昭62−224648号公報JP 62-224648 A

しかしながら、Ag−SnOまたはAg−In系の電気接点材料は、十分な耐溶着性が得られず、さらにこれにグラファイトやNiを追加して、通常の粉末冶金法によりAg−SnO−Ni系、Ag−SnO−グラファイト系の電気接点材料を作製しても、十分な耐溶着性および耐消耗性が得られない。
また一般に、WC等の耐熱性非酸化物粉末とSnO等の金属酸化物粉末とを用いる場合には、高温で耐熱性非酸化物粉末と金属酸化物粉末とが反応するため、充分に加熱することができず、緻密化された電気接点材料を得ることができない。
これに対して、Ag−耐熱性非酸化物系の電気接点材料は、ホットプレス法により緻密化されることができるが、耐熱性非酸化物の酸化を防止するために真空中や不活性ガス中で高温焼結を行う必要があり、工程が煩雑で低コスト化の障害となる。
従って本発明は、耐溶着性および耐消耗性に優れ、緻密化された電気接点材料を効率良く得ることを目的とする。
However, the Ag—SnO 2 or Ag—In 2 O 3 based electric contact material does not provide sufficient welding resistance, and further, graphite or Ni is added to the Ag—SnO 2 based on the usual powder metallurgy method. 2 -Ni system, Ag-SnO 2 - be made of graphite-based electrical contact material, sufficient welding resistance and wear resistance can not be obtained.
In general, when a heat-resistant non-oxide powder such as WC and a metal oxide powder such as SnO 2 are used, the heat-resistant non-oxide powder and the metal oxide powder react at a high temperature. It is impossible to obtain a densified electrical contact material.
On the other hand, the Ag-heat resistant non-oxide based electrical contact material can be densified by a hot press method, but in vacuum or an inert gas to prevent oxidation of the heat resistant non-oxide. It is necessary to perform high-temperature sintering, and the process is complicated and becomes an obstacle to cost reduction.
Accordingly, an object of the present invention is to efficiently obtain a densified electrical contact material that is excellent in welding resistance and wear resistance.

本発明の電気接点材料の製造方法は、Agと、WC、W、Mo、NiおよびCからなる群より選択される少なくとも1種の耐熱性非酸化物とからなる電気接点材料の製造方法であって、Ag粒子と前記耐熱性非酸化物の粒子とからなる混合物を、少なくとも100MPaの圧力および500℃未満の温度の条件下で温間プレスすることを特徴としている。また、本発明の電気接点材料の製造方法は、Agと、WC、W、Mo、NiおよびCからなる群より選択される少なくとも1種の耐熱性非酸化物と、SnO、In、ZnO、CuOおよびCuOからなる群より選択される少なくとも1種の金属酸化物とからなる電気接点材料の製造方法であって、Ag粒子と、前記耐熱性非酸化物の粒子と、前記金属酸化物の粒子とからなる混合物を、少なくとも100MPaの圧力および500℃未満の温度の条件下で温間プレスすることを特徴としている

The method for producing an electrical contact material of the present invention is a method for producing an electrical contact material comprising Ag and at least one heat-resistant non-oxide selected from the group consisting of WC, W, Mo, Ni and C. The mixture of Ag particles and the heat-resistant non-oxide particles is warm-pressed under conditions of a pressure of at least 100 MPa and a temperature of less than 500 ° C. Moreover, the manufacturing method of the electrical contact material of the present invention includes Ag, at least one heat-resistant non-oxide selected from the group consisting of WC, W, Mo, Ni and C, SnO 2 , In 2 O 3. , A method for producing an electrical contact material comprising at least one metal oxide selected from the group consisting of ZnO, CuO and Cu 2 O, Ag particles, the heat-resistant non-oxide particles, the mixture consisting of particles of metal oxides, is characterized by pressing the warm under the conditions of a temperature of less than pressure and 500 ° C. of at least 100 MPa.

本発明は、Ag粒子と所定の耐熱性非酸化物粒子とからなる混合物に対して、少なくとも100MPaの圧力および500℃未満の温度の条件下で温間プレスすることにより、Agと所定の耐熱性非酸化物とからなり、且つ耐溶着性および耐消耗性に優れ、緻密化された電気接点材料を効率よく提供することができる。また、Ag粒子と所定の耐熱性非酸化物粒子と所定の金属酸化物粒子とからなる混合物に対して、少なくとも100MPaの圧力および500℃未満の温度の条件下で温間プレスすることにより、Agと所定の耐熱性非酸化物と所定の金属酸化物とからなり、且つ耐溶着性および耐消耗性に優れ、緻密化された電気接点材料を効率よく提供することができる。 The present invention is, relative to the mixture consisting of Ag particles and a predetermined heat-resistant non-oxide particles, by pressing the warm under the conditions of a temperature of less than pressure and 500 ° C. of at least 100 MPa, Ag and a predetermined heat resistance It consists of a non-oxide, and adhesion resistance and excellent wear resistance, it is possible to provide a densified electrical contact material efficiently. Further, by pressing the mixture of Ag particles, predetermined heat-resistant non-oxide particles, and predetermined metal oxide particles under a condition of at least a pressure of 100 MPa and a temperature of less than 500 ° C., Ag is obtained. And a predetermined heat-resistant non-oxide and a predetermined metal oxide, and is excellent in welding resistance and wear resistance, and a dense electrical contact material can be efficiently provided.

本発明は、Agと所定の耐熱性非酸化物とからなる電気接点材料を、Ag粒子と所定の耐熱性非酸化物粒子とからなる混合物に、所定の圧力および所定の温度の条件下で温間プレスすることによって得るものである。また、本発明は、Agと所定の耐熱性非酸化物と所定の金属酸化物とからなる電気接点材料を、Ag粒子と所定の耐熱性非酸化物粒子と所定の金属酸化物粒子とからなる混合物に、所定の圧力および所定の温度の条件下で温間プレスすることによって得るものである。
下、Agと耐熱性非酸化物とからなる電気接点材料を、Ag−耐熱性非酸化物の電気接点材料と表し、Agと耐熱性非酸化物と金属酸化物とからなる電気接点材料を、Ag−耐熱性非酸化物−金属酸化物の電気接点材料と表す。
In the present invention, an electrical contact material composed of Ag and a predetermined heat-resistant non-oxide is heated to a mixture composed of Ag particles and a predetermined heat-resistant non-oxide particle under conditions of a predetermined pressure and a predetermined temperature. It is obtained by pressing for a while. The present invention also provides an electrical contact material composed of Ag, a predetermined heat-resistant non-oxide, and a predetermined metal oxide, and is composed of Ag particles, predetermined heat-resistant non-oxide particles, and predetermined metal oxide particles. It is obtained by warm-pressing the mixture under conditions of a predetermined pressure and a predetermined temperature.
Below, an electrical contact material made of Ag and heat-resistant non-oxide, expressed as an electrical contact material Ag- refractory non-oxide, an electrical contact material made of Ag and heat-resistant non-oxide and metal oxide , Ag-heat resistant non-oxide-metal oxide electrical contact material.

本発明に係る耐熱性非酸化物粒子は、耐溶着性に優れるWC、W、Mo、NiおよびCからなる群より選択される少なくとも1種であり、金属酸化物粒子を更に加える場合には、WC、WおよびMoからなる群より選択される少なくとも1種であることが耐アーク性の観点から好ましい。なお、これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。
ここで、本明細書における「耐熱性」とは、融点が1,400℃以上の温度(CuおよびAgの融点より十分高温)であることを意味する。
The heat-resistant non-oxide particles according to the present invention are at least one selected from the group consisting of WC, W, Mo, Ni and C having excellent welding resistance. It is preferable from the viewpoint of arc resistance that it is at least one selected from the group consisting of WC, W and Mo. In addition, these may be used independently and may be used in combination of 2 or more type.
Here, “heat resistance” in the present specification means that the melting point is a temperature of 1,400 ° C. or higher (sufficiently higher than the melting points of Cu and Ag).

また、耐熱性非酸化物粒子と共に使用可能な金属酸化物粒子は、熱安定性に優れるSnO、In、ZnO、CuOおよびCuOからなる群より選択される少なくとも1種であり、Ag−Ni−金属酸化物の電気接点材料の場合には、ZnO、CuOおよびCuOからなる群より選択される少なくとも1種であることが遮断特性の観点から好ましい。なお、これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The metal oxide particles that can be used together with the heat-resistant non-oxide particles are at least one selected from the group consisting of SnO 2 , In 2 O 3 , ZnO, CuO, and Cu 2 O, which are excellent in thermal stability. In the case of the electrical contact material of Ag-Ni-metal oxide, it is preferable from the viewpoint of the interruption characteristic that it is at least one selected from the group consisting of ZnO, CuO and Cu 2 O. In addition, these may be used independently and may be used in combination of 2 or more type.

Ag−耐熱性非酸化物−金属酸化物の電気接点材料は、Ag−耐熱性非酸化物の電気接点材料の耐溶着性および耐消耗性に加えて、金属酸化物の熱安定性をさらに有している。中でも、Agと、WC、WおよびMoからなる群より選択される少なくとも1種の耐熱性非酸化物と、SnO、In、ZnO、CuOおよびCuOからなる群より選択される少なくとも1種の金属酸化物とからなる電気接点材料は、前記特性に加えて、さらに優れた耐アーク性を有している。また、Agと、Niと、ZnO、CuOおよびCuOからなる群より選択される少なくとも1種の金属酸化物とからなる電気接点材料は、前記特性に加えて、さらに優れた遮断特性を有している。 The Ag-heat resistant non-oxide-metal oxide electrical contact material further has the thermal stability of the metal oxide in addition to the welding resistance and wear resistance of the Ag-heat-resistant non-oxide electrical contact material. is doing. Among these, at least one heat-resistant non-oxide selected from the group consisting of Ag, WC, W and Mo, and a group consisting of SnO 2 , In 2 O 3 , ZnO, CuO and Cu 2 O are selected. electrical contact material comprising at least one metal oxide, in addition to the properties, and has a more excellent arc resistance. Also, Yu and Ag, and Ni, ZnO, electrical contact material comprising at least one metal oxide selected from the group consisting of CuO and Cu 2 O, in addition to the characteristics, the better barrier properties is doing.

Ag粒子、耐熱性非酸化物粒子および金属酸化物粒子の平均粒径は、それぞれ0.05μm〜20μmであることが好ましい。粒径は細かいほど、得られる電気接点材料の接点特性のばらつきを少なくすることができるが、平均粒径が0.05μm未満では、嵩密度が高く扱いにくくなるため好ましくない。一方、平均粒径が20μmを超える場合には、電気接点材料の接点特性のばらつきが生じやすくなるため好ましくない。   The average particle diameters of Ag particles, heat-resistant non-oxide particles, and metal oxide particles are preferably 0.05 μm to 20 μm, respectively. The smaller the particle size, the smaller the variation in contact characteristics of the obtained electrical contact material. However, an average particle size of less than 0.05 μm is not preferable because the bulk density is high and difficult to handle. On the other hand, when the average particle diameter exceeds 20 μm, the contact characteristics of the electrical contact material tend to vary, which is not preferable.

Ag粒子および耐熱性非酸化物粒子、場合によって金属酸化物粒子は、混合されて混合物を形成するが、混合物としては、粉体のままの混合粉体であってもよく、混合粉体を室温でプレス成形した成形体であってもよい。成形体とする場合には、この後の処理までの昇温中に成形体中に取り込まれているガスを放出し易くするため、閉気孔を極力形成しないようにすることが好ましい。閉気孔を形成しないようにするには、例えば粒径を細かくすることが挙げられる。
前記混合粉体を室温でプレス成形した成形体の理論密度比は85%以下であり、80%以下がより好ましい。85%を超えると、閉気孔の形成が多くなってしまう。ここで、理論密度比というのは、材料に気孔の全くない理想的な緻密体の密度に対する実際の材料の密度の比(実際の材料の密度/理想的な緻密体の密度×100%)をとったものである。
Ag particles and heat-resistant non-oxide particles, and in some cases, metal oxide particles are mixed to form a mixture. The mixture may be a powder mixture as it is, and the mixed powder may be mixed at room temperature. It may be a compact that is press-molded. In the case of a molded body, it is preferable not to form closed pores as much as possible in order to easily release the gas taken into the molded body during the temperature rise until the subsequent processing. In order to prevent the formation of closed pores, for example, the particle diameter can be reduced.
The theoretical density ratio of a molded body obtained by press-molding the mixed powder at room temperature is 85% or less, and more preferably 80% or less. If it exceeds 85%, the formation of closed pores will increase. Here, the theoretical density ratio is the ratio of the density of the actual material to the density of the ideal dense body having no pores in the material (actual material density / ideal dense body density × 100%). It is what I took.

本発明に係る耐熱性非酸化物粒子の配合量は、得られる電気接点材料全体に対する質量換算で5〜80%の範囲となる量であることが好ましい。質量換算5%未満では、接点の電気抵抗は下がるが、耐溶着性の効果が充分でないため好ましくない。一方、質量換算80%を超える場合には、耐溶着性は向上するが、接点の電気抵抗が不必要に高くなるため好ましくない。
一方、金属酸化物粒子の配合量は、得られる電気接点材料全体に対する質量換算で2〜20%の範囲とすることが好ましい。質量換算2%未満では、接点の電気抵抗は下がるが、熱安定性が充分でなく、質量換算20%を超えると、熱安定性は向上するが、接点の抵抗が不必要に高くなるため好ましくない。
本発明の電気接点材料は、耐熱性非酸化物と、金属酸化物と、Agとで構成されているので、上述した微量成分を除き、残部はAgとなる。このため、Ag粒子の配合量は、得られる電気接点材料全体に対する質量換算で20〜93%となることが好ましい。
The blending amount of the heat-resistant non-oxide particles according to the present invention is preferably an amount that is in the range of 5 to 80% in terms of mass with respect to the entire obtained electrical contact material. If the mass conversion is less than 5%, the electrical resistance of the contact is lowered, but the effect of welding resistance is not sufficient, which is not preferable. On the other hand, if it exceeds 80% in terms of mass, the welding resistance is improved, but the electrical resistance of the contact becomes unnecessarily high, which is not preferable.
On the other hand, it is preferable to make the compounding quantity of a metal oxide particle into the range of 2-20% in conversion of the mass with respect to the whole electric contact material obtained. If the mass conversion is less than 2%, the electrical resistance of the contact decreases, but the thermal stability is not sufficient. If the mass conversion exceeds 20%, the thermal stability is improved, but the contact resistance becomes unnecessarily high, which is preferable. Absent.
Since the electrical contact material of the present invention is composed of a heat-resistant non-oxide, a metal oxide, and Ag, the balance is Ag except for the above-described trace components. For this reason, it is preferable that the compounding quantity of Ag particle | grains will be 20 to 93% in conversion of the mass with respect to the whole electrical contact material obtained.

本発明では、Ag粒子と所定の耐熱性非酸化物粒子とからなる混合物、またはAg粒子と所定の耐熱性非酸化物粒子と所定の金属酸化物粒子とからなる混合物を、所定の温度および圧力の条件下で温間プレスする。
ここで、温間プレス時の圧力は、少なくとも100MPaであり、プレス型材料やプレス装置の能力の観点から好ましくは100〜1000MPaである。また効率よく材料の緻密化を達成することができる観点から最も好ましいのは100〜700MPaである。100MPa未満では緻密化のためのAgの塑性変形が不十分である。
In the present invention, a mixture consisting of Ag particles and a predetermined heat-resistant non-oxide particles, or a mixture of the Ag particles and a predetermined heat-resistant non-oxide particles and a predetermined metal oxide particles, predetermined temperature and pressure Press under warm conditions.
Here, the pressure at the time of warm pressing is at least 100 MPa, and is preferably 100 to 1000 MPa from the viewpoint of the capability of the press mold material and the pressing device. Moreover, 100 to 700 MPa is most preferable from the viewpoint of efficiently achieving densification of the material. If it is less than 100 MPa, the plastic deformation of Ag for densification is insufficient.

また、温間プレス時の温度は、500℃未満である。500℃未満であれば耐熱性非酸化物粒子と金属酸化物粒子とが同時に存在しても両者が反応することがない。また、温度は好ましくは200〜450℃である。200℃未満では焼結が不十分となるので好ましくない。ここで、本明細書における「温間」とは、500℃未満の温度を言い、一方、500℃を以上の温度は「熱間」とし、「温間プレス」とは、温間に相当する温度と圧力とが付与されることを意味する。
なお、温間プレス後の成形体の理論密度比は、95%以上であることが好ましい。90%未満であると、緻密化が十分でなく、十分な耐消耗性が得られない。
Moreover, the temperature at the time of warm press is less than 500 degreeC. If it is less than 500 degreeC, even if a heat resistant non-oxide particle and a metal oxide particle exist simultaneously, both will not react. The temperature is preferably 200 to 450 ° C. If it is less than 200 ° C., sintering is insufficient, which is not preferable. Here, “warm” in this specification refers to a temperature of less than 500 ° C., while 500 ° C. or higher is “hot”, and “warm press” corresponds to warm. It means that temperature and pressure are applied.
The theoretical density ratio of the compact after warm pressing is preferably 95% or more. If it is less than 90%, the densification is not sufficient and sufficient wear resistance cannot be obtained.

このように、本発明では、Ag粒子と所定の耐熱性非酸化物粒子とからなる混合物、またはAg粒子と所定の耐熱性非酸化物粒子と所定の金属酸化物粒子とからなる混合物に対して、100MPa以上の高圧力を付与することにより、Agの塑性変型が促進され、500℃未満の温度でも電気接点材料を緻密化することができる。
これにより、温間プレス中において耐熱性非酸化物粒子の酸化を防止することができるので、大気中での電気接点材料の製造を可能にして工程を著しく簡素化することができる。また、500℃未満で緻密化を行うため、耐熱性非酸化物粒子と金属酸化物粒子とが存在していても互いに反応することがなく、Ag−耐熱性非酸化物−金属酸化物の高接触性能の電気接点材料を得ることができる。
なお、本発明により大気中での電気接点材料の製造が可能となるが、不活性ガス中、または真空中での製造を拒むものではない。
Thus, in the present invention, relative to the mixture consisting of Ag particles and a given mixture consisting of heat-resistant non-oxide particles, or Ag particles and a predetermined heat-resistant non-oxide particles and a predetermined metal oxide particles By applying a high pressure of 100 MPa or more, plastic deformation of Ag is promoted, and the electrical contact material can be densified even at a temperature of less than 500 ° C.
Thereby, since oxidation of the heat-resistant non-oxide particles can be prevented during the warm press, the production of the electrical contact material in the air can be performed, and the process can be greatly simplified. In addition, since densification is performed at a temperature lower than 500 ° C., there is no reaction between the heat-resistant non-oxide particles and the metal oxide particles, and Ag—heat-resistant non-oxide—metal oxide An electrical contact material having contact performance can be obtained.
In addition, although manufacture of the electrical contact material in air | atmosphere is attained by this invention, manufacture in an inert gas or a vacuum is not refused.

また、Agと、WC、WおよびMoからなる群より選択される少なくとも1種の耐熱性非酸化物と、SnO、In、ZnO、CuOおよびCuOからなる群より選択される少なくとも1種の金属酸化物とからなる電気接点材料、並びにAgと、Niと、ZnO、CuOおよびCuOからなる群より選択される少なくとも1種の金属酸化物とからなる電気接点材料については、前記のような温間プレスによる製造の他に、不活性ガス中または真空中、500℃を超える温度で圧力を付与せずに焼結することによっても製造することができる。 Also, is selected from at least one heat resistance non-oxide of, SnO 2, In 2 O 3 , ZnO, group consisting of CuO and Cu 2 O Ag and is selected from the group consisting of WC, W and Mo electrical contact material comprising at least one metal oxide, and a Ag, and Ni, ZnO, for the electrical contact material comprising at least one metal oxide selected from the group consisting of CuO and Cu 2 O In addition to the production by the warm press as described above, the production can be carried out by sintering in an inert gas or in a vacuum at a temperature exceeding 500 ° C. without applying pressure.

本発明の電気接点材料を製造するために使用可能な装置は、当業界でこの用途に使用可能なプレス装置であれば、如何なるものも使用でき、ホットプレス装置、パルス通電加圧焼結装置など、温間に相当する温度と圧力を付与されることが可能なプレス装置を挙げることができる。ホットプレス装置などを用いる場合には、例えば、ホットプレス装置にセット可能なWC製の超硬合金プレス型に混合物を入れる。この場合、プレス型への混合物の充填は、成形体とせずに混合粒子の状態そのままでもよい。
パルス通電加圧焼結装置は、成形体を構成する粒子間の接触箇所がパルス電流により優先的に加熱され、かつパルス衝撃によりこの接触箇所の酸化膜を破壊することができるので、低温であっても混合物の緻密化を促進させて、耐消耗性の高い電気接点材料を得ることができる。このため、本発明においては、このようなパルス通電加圧焼結装置を使用することが好ましい。
Any apparatus that can be used for producing the electrical contact material of the present invention can be used as long as it is a press apparatus that can be used for this purpose in the industry, such as a hot press apparatus, a pulse current pressurizing and sintering apparatus, and the like. And a press apparatus capable of being applied with a temperature and pressure corresponding to warm. When using a hot press apparatus etc., a mixture is put into the cemented carbide press die made from WC which can be set to a hot press apparatus, for example. In this case, filling of the mixture into the press mold may be performed as it is in the form of mixed particles without forming a molded body.
In the pulsed current pressure sintering apparatus, the contact location between the particles constituting the compact is preferentially heated by the pulse current, and the oxide film at this contact location can be destroyed by the pulse impact. However, it is possible to promote densification of the mixture and obtain an electrical contact material with high wear resistance. For this reason, in this invention, it is preferable to use such a pulse electric current pressurization sintering apparatus.

また本発明では、混合物を台座部材上に配置して温間プレスすることができる。これにより、電気接点材料と台座とを接合する工程を省くことができると共に、接点材料の量を容易に調整するだけで台座にとりつけることができるので、台座付き電気接点材料を容易に製造することができる。   Moreover, in this invention, a mixture can be arrange | positioned on a base member and warm-pressed. As a result, the step of joining the electrical contact material and the pedestal can be omitted, and the electrical contact material with the pedestal can be easily manufactured because it can be attached to the pedestal simply by adjusting the amount of the contact material. Can do.

台座部材は、当業界で電気接点材料の台座として使用可能な金属および金属化合物であれば、如何なるものも使用でき、銅、黄銅、リン青銅などの銅合金、炭素鋼、銀、ニッケル合金などを挙げることができる。なお温間に相当する温度において酸化する金属の場合には、予め銀メッキやニッケルメッキを施すことが好ましい。また温間プレスの間に酸化膜が形成された場合には、その後に酸洗浄をすることにより酸化膜を除去することが好ましい。   The base member can be any metal and metal compound that can be used as a base for electrical contact materials in the industry, including copper alloys such as copper, brass, phosphor bronze, carbon steel, silver, nickel alloys, etc. Can be mentioned. In the case of a metal that oxidizes at a temperature corresponding to warm, it is preferable to perform silver plating or nickel plating in advance. In addition, when an oxide film is formed during warm pressing, it is preferable to remove the oxide film by acid cleaning thereafter.

台座付き電気接点材料を製造する場合には、混合物を台座部材上に配置して温間プレスを行う。これを、図1を参照して説明する。図1にはプレス型2が示されている。このプレス型2には、特定の形状のプレス部が設けられ、その形状に応じたプレス棒3が挿入可能となっている。プレス部の底部には、台座となる台座部材1がまず配置され、その上に
電気接点材料となる混合物4が配置される。プレス棒3がプレス部に挿入された後、プレス型2がプレス装置(図示せず)にセットされる。温間プレス工程によってプレス棒3が加重されると、プレス棒3が混合物4と台座部材1とに、少なくとも100MPaの圧力が加えられる。これによって、電気接点材料の作製と、台座との接合が同時に行われ、接合工程を設けることなく台座付き電気接点材料を得ることができる。なお、プレス型への混合物と台座部材の配置およびプレス型は、これに限定されるものではない。
When producing an electrical contact material with a pedestal, the mixture is placed on the pedestal member and warm pressed. This will be described with reference to FIG. FIG. 1 shows a press die 2. The press die 2 is provided with a press portion having a specific shape, and a press bar 3 corresponding to the shape can be inserted. A pedestal member 1 serving as a pedestal is first disposed at the bottom of the press unit, and a mixture 4 serving as an electrical contact material is disposed thereon. After the press bar 3 is inserted into the press section, the press die 2 is set in a press device (not shown). When the press bar 3 is loaded by the warm pressing process, the press bar 3 applies a pressure of at least 100 MPa to the mixture 4 and the base member 1. As a result, the production of the electrical contact material and the joining to the pedestal are performed simultaneously, and the pedestal-attached electrical contact material can be obtained without providing a joining step. Note that the arrangement of the mixture and the base member in the press die and the press die are not limited to this.

(実施例1)
平均粒径1μmのAg粉末と、平均粒径1.5μmのWC粉末、平均粒径1.3μmのSnO粉末を質量換算70:25:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、室温でプレス成形し、理論密度比が80%程度の粉末成形体とした。この成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力300MPaを印加し5分間温間プレスした。これにより、理論密度比99.2%のAg−WC−SnOの電気接点材料を作製した。温間プレスに用いたプレス型は所望の接点形状が得られるようにあらかじめ寸法が調整されており、本発明では直径4.3mm、厚さ1.1mmの円板状の電気接点材料とした。この電気接点材料の導電率、硬度、並びに付加電圧200V、負荷電流100A(60Hz)、力率0.4、および接点圧300gで6000回の開閉試験を行ったときの消耗量(mg)と溶着の程度を「優、良、可、不可」の4段階で評価した。
Example 1
Ag powder having an average particle diameter of 1 μm, WC powder having an average particle diameter of 1.5 μm, and SnO 2 powder having an average particle diameter of 1.3 μm were blended in a mass conversion of 70: 25: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill was press-molded at room temperature to obtain a powder compact having a theoretical density ratio of about 80%. This compact was put into a cemented carbide press die made of WC, and this press die was set in a hot press apparatus. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 300 MPa was applied to the press die and warm pressing was performed for 5 minutes. Thus, to produce an electrical contact material of the theoretical density ratio 99.2% of Ag-WC-SnO 2. The dimensions of the press die used for the warm press are adjusted in advance so as to obtain a desired contact shape. In the present invention, a disk-shaped electrical contact material having a diameter of 4.3 mm and a thickness of 1.1 mm is used. The electrical conductivity and hardness of this electrical contact material, as well as the amount of wear (mg) and welding when performing an open / close test 6000 times at an additional voltage of 200 V, a load current of 100 A (60 Hz), a power factor of 0.4, and a contact pressure of 300 g. The grade was evaluated in four grades: “excellent, good, good, bad”.

(実施例2)
平均粒径1μmのAg粉末と、平均粒径1μmのW粉末を質量換算60:40で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で200℃まで10℃/分で昇温した。200℃に到達したときに、プレス型に圧力700MPaを印加し30分間温間プレスした。これにより、理論密度比97.8%のAg−Wの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 2)
Ag powder having an average particle diameter of 1 μm and W powder having an average particle diameter of 1 μm were blended at a mass conversion of 60:40 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press die was heated to 200 ° C. at 10 ° C./min in the air. When the temperature reached 200 ° C., a pressure of 700 MPa was applied to the press die and warm pressing was performed for 30 minutes. As a result, an Ag-W electrical contact material having a theoretical density ratio of 97.8% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例3)
平均粒径1.4μmのAg粉末と、平均粒径1μmのW粉末、平均粒径1.4μmのMo粉末を質量換算50:30:20で配合し、ボールミルにより混合した。ボールミル混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で300℃まで20℃/分で昇温した。300℃に到達したときに、プレス型に圧力500MPaを印加し30分間温間プレスした。これにより、理論密度比97.4%のAg−W−Moの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 3)
Ag powder with an average particle size of 1.4 μm, W powder with an average particle size of 1 μm, and Mo powder with an average particle size of 1.4 μm were blended in a mass conversion of 50:30:20 and mixed by a ball mill. The ball mill mixed powder was press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact was placed in a WC cemented carbide press die and this press die was hot pressed. Set in the device. Subsequently, the cemented carbide press mold was heated to 300 ° C. at 20 ° C./min in the air. When the temperature reached 300 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 30 minutes. As a result, an Ag—W—Mo electrical contact material having a theoretical density ratio of 97.4% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例4)
平均粒径1.4μmのAg粉末と、平均粒径1.5μmのWC粉末を質量換算70:30で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。つづいて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力500MPaを印加し10分間温間プレスした。これにより、理論密度比99.4%のAg−WCの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
Example 4
Ag powder having an average particle size of 1.4 μm and WC powder having an average particle size of 1.5 μm were blended at a mass conversion of 70:30 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press die was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 10 minutes. As a result, an Ag-WC electrical contact material having a theoretical density ratio of 99.4% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例5)
平均粒径1.4μmのAg粉末と、平均粒径1.5μmのWC粉末、平均粒径17μmのグラファイト粉末を質量換算80:15:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力500MPaを印加し30分間温間プレスした。これにより、理論密度比99.6%のAg−WC−グラファイトの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 5)
Ag powder having an average particle size of 1.4 μm, WC powder having an average particle size of 1.5 μm, and graphite powder having an average particle size of 17 μm were blended at a mass conversion of 80: 15: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 30 minutes. Thus, an electrical contact material of Ag-WC-graphite having a theoretical density ratio of 99.6% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例6)
平均粒径1μmのAg粉末と、平均粒径1.6μmのNi粉末を質量換算85:15で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で450℃まで20℃/分で昇温した。450℃に到達したときに、プレス型に圧力200MPaを印加し5分間温間プレスした。これにより、理論密度比99.5%のAg−Niの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。さらに、遮断試験として負荷電圧500V、負荷電流200A(60Hz)、力率0.35を印加したときの最大アーク時間を調べた。なお、最大アーク時間が短ければ短いほど遮断特性に優れた電気接点材料ということができる。
(Example 6)
Ag powder having an average particle diameter of 1 μm and Ni powder having an average particle diameter of 1.6 μm were blended at a mass conversion of 85:15 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 450 ° C. at 20 ° C./min in the air. When the temperature reached 450 ° C., a pressure of 200 MPa was applied to the press die and warm pressing was performed for 5 minutes. As a result, an Ag—Ni electrical contact material having a theoretical density ratio of 99.5% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1. Furthermore, the maximum arc time when a load voltage of 500 V, a load current of 200 A (60 Hz), and a power factor of 0.35 were applied as an interruption test was examined. In addition, it can be said that the shorter the maximum arc time is, the better the electrical contact material has excellent breaking characteristics.

(実施例7)
平均粒径1.4μmのAg粉末と、平均粒径17μmのグラファイト粉末を質量換算95:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で450℃まで20℃/分で昇温した。450℃に到達したときに、プレス型に圧力100MPaを印加し30分間温間プレスした。これにより、理論密度比98.9%のAg−グラファイトの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 7)
Ag powder having an average particle size of 1.4 μm and graphite powder having an average particle size of 17 μm were blended at a mass conversion of 95: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 450 ° C. at 20 ° C./min in the air. When the temperature reached 450 ° C., a pressure of 100 MPa was applied to the press die and warm pressing was performed for 30 minutes. As a result, an Ag-graphite electrical contact material having a theoretical density ratio of 98.9% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例8)
平均粒径1μmのAg粉末と、平均粒径1.5μmのWC粉末、平均粒径1.6μmのNi粉末を質量換算65:30:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力300MPaを印加し10分間温間プレスした。これにより、理論密度比99.4%のAg−WC−Niの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 8)
Ag powder having an average particle diameter of 1 μm, WC powder having an average particle diameter of 1.5 μm, and Ni powder having an average particle diameter of 1.6 μm were blended at a mass conversion of 65: 30: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 300 MPa was applied to the press die and warm pressing was performed for 10 minutes. As a result, an Ag-WC-Ni electrical contact material having a theoretical density ratio of 99.4% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例9)
平均粒径1μmのAg粉末と、平均粒径1.5μmのWC粉末、平均粒径0.8μmのIn粉末を質量換算70:25:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力300MPaを印加し30分間温間プレスした。これにより、理論密度比99.5%のAg−WC−Inの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
Example 9
Ag powder having an average particle diameter of 1 μm, WC powder having an average particle diameter of 1.5 μm, and In 2 O 3 powder having an average particle diameter of 0.8 μm were blended in a mass conversion of 70: 25: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 300 MPa was applied to the press die and warm pressing was performed for 30 minutes. Thus, to produce an electrical contact material of the theoretical density ratio of 99.5% Ag-WC-In 2 O 3 . The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例10)
平均粒径1μmのAg粉末と、平均粒径1.5μmのWC粉末、平均粒径1.5μmのCuO粉末を質量換算80:15:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力300MPaを印加し30分間温間プレスした。これにより、理論密度比99.6%のAg−WC−CuOの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 10)
Ag powder having an average particle diameter of 1 μm, WC powder having an average particle diameter of 1.5 μm, and CuO powder having an average particle diameter of 1.5 μm were blended at a mass conversion of 80: 15: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 300 MPa was applied to the press die and warm pressing was performed for 30 minutes. Thereby, an electrical contact material of Ag-WC-CuO having a theoretical density ratio of 99.6% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例11)
平均粒径1μmのAg粉末と、平均粒径1.5μmのWC粉末、平均粒径2μmのZnO粉末を質量換算80:15:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力300MPaを印加し30分間温間プレスした。これにより、理論密度比99.5%のAg−WC−ZnOの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 11)
Ag powder having an average particle diameter of 1 μm, WC powder having an average particle diameter of 1.5 μm, and ZnO powder having an average particle diameter of 2 μm were blended at a mass conversion of 80: 15: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 300 MPa was applied to the press die and warm pressing was performed for 30 minutes. This produced the electrical contact material of Ag-WC-ZnO with a theoretical density ratio of 99.5%. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例12)
平均粒径1μmのAg粉末と、平均粒径1μmのW粉末、平均粒径1.2μmのCuO粉末を質量換算70:25:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で300℃まで20℃/分で昇温した。300℃に到達したときに、プレス型に圧力500MPaを印加し10分間温間プレスした。これにより、理論密度比98.1%のAg−W−CuOの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
Example 12
Ag powder having an average particle diameter of 1 μm, W powder having an average particle diameter of 1 μm, and CuO 2 powder having an average particle diameter of 1.2 μm were blended in a mass conversion of 70: 25: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 300 ° C. at 20 ° C./min in the air. When the temperature reached 300 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 10 minutes. Thus, to produce an electrical contact material of the theoretical density ratio 98.1% of Ag-W-CuO 2. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例13)
平均粒径1μmのAg粉末と、平均粒径1.5μmのWC粉末、平均粒径1.6μmのNi粉末、平均粒径1.3μmのSnO粉末を質量換算60:30:5:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力300MPaを印加し5分間温間プレスした。これにより、理論密度比99.1%のAg−WC−Ni−SnOの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 13)
Ag powder having an average particle diameter of 1 μm, WC powder having an average particle diameter of 1.5 μm, Ni powder having an average particle diameter of 1.6 μm, and SnO 2 powder having an average particle diameter of 1.3 μm in a mass conversion of 60: 30: 5: 5 Blended and mixed by ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 300 MPa was applied to the press die and warm pressing was performed for 5 minutes. Thus, to produce an electrical contact material of the theoretical density ratio 99.1% of Ag-WC-Ni-SnO 2 . The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例14)
平均粒径1μmのAg粉末と、平均粒径1.5μmのWC粉末、平均粒径1.6μmのNi粉末、平均粒径0.8μmのIn粉末を質量換算60:30:5:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力300MPaを印加し5分間温間プレスした。これにより、理論密度比99.3%のAg−WC−Ni−Inの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 14)
Ag powder having an average particle diameter of 1 μm, WC powder having an average particle diameter of 1.5 μm, Ni powder having an average particle diameter of 1.6 μm, and In 2 O 3 powder having an average particle diameter of 0.8 μm are converted into mass by 60: 30: 5: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 300 MPa was applied to the press die and warm pressing was performed for 5 minutes. Thus, to produce an electrical contact material of the theoretical density ratio 99.3% of Ag-WC-Ni-In 2 O 3. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例15)
平均粒径1.4μmのAg粉末と、平均粒径1.5μmのWC粉末を質量換算70:30で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をパルス通電加圧焼結装置(住友石炭鉱業株式会社製)にセットした。続いて超硬合金プレス型を大気中で400℃まで40℃/分で昇温した。400℃に到達したときに、プレス型に圧力500MPaを印加し2分間温間プレスした。これにより、理論密度比99.7%のAg−WCの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 15)
Ag powder having an average particle size of 1.4 μm and WC powder having an average particle size of 1.5 μm were blended at a mass conversion of 70:30 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It set to the pulse electric pressure sintering apparatus (made by Sumitomo Coal Mining Co., Ltd.). Subsequently, the cemented carbide press die was heated to 400 ° C. at 40 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 2 minutes. As a result, an Ag-WC electrical contact material having a theoretical density ratio of 99.7% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例16)
平均粒径1.4μmのAg粉末と、平均粒径1.5μmのWC粉末、平均粒径1.3μmのSnO粉末を質量換算70:25:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型を、実施例15で使用したものと同一のパルス通電加圧焼結装置にセットした。続いて超硬合金プレス型を大気中で400℃まで40℃/分で昇温した。400℃に到達したときに、プレス型に圧力500MPaを印加し2分間温間プレスした。これにより、理論密度比99.5%のAg−WCの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法で行った。
(Example 16)
Ag powder with an average particle size of 1.4 μm, WC powder with an average particle size of 1.5 μm, and SnO 2 powder with an average particle size of 1.3 μm were blended in a mass conversion of 70: 25: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. The same pulse-current pressure sintering apparatus as that used in Example 15 was set. Subsequently, the cemented carbide press die was heated to 400 ° C. at 40 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 2 minutes. As a result, an Ag-WC electrical contact material having a theoretical density ratio of 99.5% was produced. The produced electrical contact material was evaluated in the same manner as in Example 1.

(実施例17)
平均粒径1μmのAg粉末と、平均粒径1.6μmのNi粉末、平均粒径2μmのZnO粉末を質量換算87:5:8で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型をホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力500MPaを印加し10分間温間プレスした。これにより、理論密度比99.1%のAg−Ni−ZnOの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法に加えて、実施例6と同様の遮断試験を行った。
(Example 17)
Ag powder having an average particle diameter of 1 μm, Ni powder having an average particle diameter of 1.6 μm, and ZnO powder having an average particle diameter of 2 μm were blended in a mass conversion of 87: 5: 8 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. It was set in a hot press machine. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 10 minutes. Thus, an electrical contact material of Ag—Ni—ZnO having a theoretical density ratio of 99.1% was produced. In addition to the same method as in Example 1, the electrical contact material produced was subjected to the same interruption test as in Example 6.

(実施例18)
実施例17と同様の配合比および方法で作製した理論密度比が80%程度の粉末成形体を、WC製の超硬合金プレス型に入れ、このプレス型を実施例15で使用したものと同一のパルス通電加圧焼結装置にセットした。続いて超硬合金プレス型を大気中で400℃まで40℃/分で昇温した。400℃に到達したときに、プレス型に圧力500MPaを印加し5分間温間プレスした。これにより、理論密度比99.7%のAg−Ni−ZnOの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法に加えて、実施例6と同様の遮断試験を行った。
(Example 18)
A powder compact having a theoretical density ratio of about 80% produced by the same blending ratio and method as in Example 17 was placed in a WC cemented carbide press die, and this press die was the same as that used in Example 15. Were set in a pulsed electric current pressure sintering apparatus. Subsequently, the cemented carbide press die was heated to 400 ° C. at 40 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 5 minutes. This produced the electrical contact material of Ag-Ni-ZnO with a theoretical density ratio of 99.7%. In addition to the same method as in Example 1, the electrical contact material produced was subjected to the same interruption test as in Example 6.

(実施例19)
平均粒径1μmのAg粉末と、平均粒径1.6μmのNi粉末、平均粒径1.5μmのCuO粉末を質量換算90:5:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型を実施例15で使用したものと同一のパルス通電加圧焼結装置にセットした。続いて超硬合金プレス型を大気中で400℃まで40℃/分で昇温した。400℃に到達したときに、プレス型に圧力500MPaを印加し5分間温間プレスした。これにより、理論密度比99.6%のAg−Ni−CuOの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法に加えて、実施例6と同様の遮断試験を行った。
(Example 19)
Ag powder having an average particle diameter of 1 μm, Ni powder having an average particle diameter of 1.6 μm, and CuO powder having an average particle diameter of 1.5 μm were blended in a mass conversion of 90: 5: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. The same pulse-current pressure sintering apparatus as that used in Example 15 was set. Subsequently, the cemented carbide press die was heated to 400 ° C. at 40 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 5 minutes. This produced the electrical contact material of Ag-Ni-CuO with a theoretical density ratio of 99.6%. In addition to the same method as in Example 1, the electrical contact material produced was subjected to the same interruption test as in Example 6.

(実施例20)
平均粒径1μmのAg粉末と、平均粒径1.6μmのNi粉末、平均粒径1.5μmのCuO粉末を質量換算90:5:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体をWC製の超硬合金プレス型に入れ、このプレス型を実施例15で使用したものと同一のパルス通電加圧焼結装置にセットした。続いて超硬合金プレス型を大気中で400℃まで40℃/分で昇温した。400℃に到達したときに、プレス型に圧力500MPaを印加し5分間温間プレスした。これにより、理論密度比99.5%のAg−Ni−CuOの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法に加えて、実施例6と同様の遮断試験を行った。
(Example 20)
Ag powder having an average particle diameter of 1 μm, Ni powder having an average particle diameter of 1.6 μm, and Cu 2 O powder having an average particle diameter of 1.5 μm were blended in a mass conversion of 90: 5: 5 and mixed by a ball mill. The mixed powder mixed with the ball mill is press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%, and this powder compact is placed in a WC cemented carbide press die. The same pulse-current pressure sintering apparatus as that used in Example 15 was set. Subsequently, the cemented carbide press die was heated to 400 ° C. at 40 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 5 minutes. Thus, to produce an electrical contact material of the theoretical density ratio 99.5% Ag-Ni-Cu 2 O. In addition to the same method as in Example 1, the electrical contact material produced was subjected to the same interruption test as in Example 6.

(実施例21)
平均粒径1.4μmのAg粉末と、平均粒径1.5μmのWC粉末を質量換算70:30で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、実施例1と同様にプレス成形して理論密度比が80%程度の粉末成形体とした。台座部材として銀メッキ済みの銅を使用した。図1に示されるように、この台座部材をWC製の超硬合金プレス型の下部に配置し、この上に粉末成形体を置いてホットプレス装置にセットした。続いて超硬合金プレス型を大気中で400℃まで20℃/分で昇温した。400℃に到達したときに、プレス型に圧力500MPaを印加し10分間温間プレスした。これにより、銅の台座を接合した理論密度比99.0%のAg−WCの電気接点材料を作製した。
(Example 21)
Ag powder having an average particle size of 1.4 μm and WC powder having an average particle size of 1.5 μm were blended at a mass conversion of 70:30 and mixed by a ball mill. The mixed powder obtained by ball mill mixing was press-molded in the same manner as in Example 1 to obtain a powder compact having a theoretical density ratio of about 80%. Silver plated copper was used as the base member. As shown in FIG. 1, this pedestal member was placed at the bottom of a WC cemented carbide press die, and a powder compact was placed thereon and set in a hot press apparatus. Subsequently, the cemented carbide press mold was heated to 400 ° C. at 20 ° C./min in the air. When the temperature reached 400 ° C., a pressure of 500 MPa was applied to the press die and warm pressing was performed for 10 minutes. As a result, an Ag-WC electrical contact material having a theoretical density ratio of 99.0%, in which a copper base was joined, was produced.

(比較例1)
平均粒径1.4μmのAg粉末と、平均粒径1.5μmのWC粉末を質量換算70:30で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、室温でプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体を真空焼結炉の中にセットした。続いて焼結炉を真空引きし、800℃まで10℃/分で昇温した。800℃到達後にこの温度で、30分間無加圧で保持することにより理論密度比85.5%のAg−WCの電気接点材料を作製した。作製した接点の評価は実施例1と同様の方法で行った。
(Comparative Example 1)
Ag powder having an average particle size of 1.4 μm and WC powder having an average particle size of 1.5 μm were blended at a mass conversion of 70:30 and mixed by a ball mill. The ball mill mixed powder was press-molded at room temperature to form a powder compact having a theoretical density ratio of about 80%, and this powder compact was set in a vacuum sintering furnace. Subsequently, the sintering furnace was evacuated and heated up to 800 ° C. at a rate of 10 ° C./min. After reaching 800 ° C., an Ag-WC electrical contact material having a theoretical density ratio of 85.5% was produced by holding the product at this temperature for 30 minutes without applying pressure. The produced contacts were evaluated in the same manner as in Example 1.

(比較例2)
平均粒径1.4μmのAg粉末と、平均粒径1.3μmのSnO粉末を質量換算90:10で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、室温でプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体を真空焼結炉の中にセットした。続いて焼結炉を真空引きし、800℃まで10℃/分で昇温した。800℃到達後にこの温度で、30分間無加圧で保持することにより理論密度比87.1%のAg−WCの電気接点材料を作製した。作製した接点の評価は実施例1と同様の方法に加えて、実施例6と同様の遮断試験を行った。
(Comparative Example 2)
Ag powder having an average particle size of 1.4 μm and SnO 2 powder having an average particle size of 1.3 μm were blended at a mass conversion of 90:10 and mixed by a ball mill. The ball mill mixed powder was press-molded at room temperature to form a powder compact having a theoretical density ratio of about 80%, and this powder compact was set in a vacuum sintering furnace. Subsequently, the sintering furnace was evacuated and heated up to 800 ° C. at a rate of 10 ° C./min. After reaching 800 [deg.] C., an Ag-WC electrical contact material having a theoretical density ratio of 87.1% was prepared by holding at this temperature for 30 minutes under no pressure. In addition to the same method as in Example 1, the produced contact was evaluated by the same interruption test as in Example 6.

(比較例3)
平均粒径1μmのAg粉末と、平均粒径1.6μmのNi粉末、平均粒径1.3μmのSnO粉末を質量換算90:5:5で配合し、ボールミルにより混合した。ボールミル混合した混合粉末は、室温でプレス成形して理論密度比が80%程度の粉末成形体とし、この粉末成形体を真空焼結炉の中にセットした。続いて焼結炉を真空引きし、800℃まで10℃/分で昇温した。800℃到達後にこの温度で、30分間無加圧で保持することにより理論密度比91.0%のAg−Ni−SnOの電気接点材料を作製した。作製した電気接点材料の評価は実施例1と同様の方法に加えて、実施例6と同様の遮断試験を行った。
(Comparative Example 3)
Ag powder having an average particle diameter of 1 μm, Ni powder having an average particle diameter of 1.6 μm, and SnO 2 powder having an average particle diameter of 1.3 μm were blended in a mass conversion of 90: 5: 5 and mixed by a ball mill. The ball mill mixed powder was press-molded at room temperature to form a powder compact having a theoretical density ratio of about 80%, and this powder compact was set in a vacuum sintering furnace. Subsequently, the sintering furnace was evacuated and heated up to 800 ° C. at a rate of 10 ° C./min. After reaching 800 ° C., an electric contact material made of Ag—Ni—SnO 2 having a theoretical density ratio of 91.0% was produced by holding at this temperature for 30 minutes without applying pressure. In addition to the same method as in Example 1, the electrical contact material produced was subjected to the same interruption test as in Example 6.

表1に実施例1〜20および比較例1〜3による電気接点材料の組成成分の質量換算、温間プレス条件(比較例は焼結条件)、理論密度比、導電率、および硬度示す。なお各電気接点材料の組成成分の質量換算は、それぞれの配合量の質量換算と同一であった。   Table 1 shows the mass conversion of the composition components of the electrical contact materials according to Examples 1 to 20 and Comparative Examples 1 to 3, warm press conditions (comparative examples are sintering conditions), theoretical density ratio, electrical conductivity, and hardness. In addition, the mass conversion of the composition component of each electric contact material was the same as the mass conversion of each compounding quantity.

Figure 0004410066
Figure 0004410066

表2に実施例1〜20および比較例1〜3による電気接点材料の消耗量および溶着の程度を示す。   Table 2 shows the amount of electric contact material consumption and the degree of welding according to Examples 1 to 20 and Comparative Examples 1 to 3.

Figure 0004410066
Figure 0004410066

表3に実施例6および17〜20、並びに比較例2および3による電気接点材料の遮断試験のアーク時間(×10−3 秒)を示す。 Table 3 shows arc times (× 10 −3 seconds) of the interruption test of the electrical contact materials according to Examples 6 and 17 to 20 and Comparative Examples 2 and 3.

Figure 0004410066
Figure 0004410066

表1および表2において、実施例4と比較例1の電気接点材料は、組成成分およびその質量換算が同じで、製造方法のみが異なるものである(実施例4は温間プレス、比較例1は粉末冶金法による)。このような実施例4と比較例1を比較すると、実施例4は、比較例1よりも理論密度比、導電率、硬度がいずれも高く、さらに消耗量が著しく減少すると共に溶着の程度が向上し、バランスよく良好な接点特性を有する電気接点材料であった。他の実施例も同様に、バランスよく良好な接点特性を有する電気接点材料であった。つまり、温間プレスすることにより、Ag−耐熱性非酸化物の電気接点材料の接点性能が向上した。また、本発明に係るAg−耐熱性非酸化物−金属酸化物の電気接触材料も接点性能に優れていた。
また、実施例1と実施例16の電気接点材料は、組成成分およびその質量換算が同じで、使用するプレス装置のみが異なるものである(実施例1はホットプレス装置、実施例16はパルス通電加圧焼結装置による)。実施例16は、実施例1よりも理論密度比、導電率、硬度がより高く、さらに消耗量もより減少し、バランスよく良好な接点特性を有する電気接点材料であった。実施例15および18も同様に、それぞれ実施例4および17よりバランスよく良好な接点特性を有する電気接点材料であった。つまり、パルス通電加圧焼結装置を使用することにより、電気接点材料の接点性能がより向上した。
さらに、表3において、実施例6(Ag−Ni)および17〜20(Ag−Ni−ZnO、CuO、CuO)は、比較例2〜3よりもアーク時間が短く、特に実施例17〜20は、実施例6よりもさらにアーク時間が短かった。つまり、Agと、Niと、ZnO、CuOおよびCuOからなる群より選択される少なくとも1種の金属酸化物とからなる電気接点材料は、遮断特性により優れていた。

In Tables 1 and 2, the electrical contact materials of Example 4 and Comparative Example 1 have the same compositional components and mass conversion, but differ only in the production method (Example 4 is a warm press, Comparative Example 1). By powder metallurgy). When Example 4 and Comparative Example 1 are compared, Example 4 has a higher theoretical density ratio, electrical conductivity, and hardness than Comparative Example 1, and further reduces the amount of wear and improves the degree of welding. In addition, the electrical contact material has good contact characteristics with a good balance. The other examples were also electric contact materials having well-balanced and good contact characteristics. That is, the contact performance of the Ag-heat resistant non-oxide electrical contact material was improved by warm pressing. The Ag-heat resistant non-oxide-metal oxide electrical contact material according to the present invention was also excellent in contact performance.
In addition, the electrical contact materials of Example 1 and Example 16 are the same in composition components and mass conversion, and are different only in the press device used (Example 1 is a hot press device, and Example 16 is a pulse energization). By pressure sintering equipment). Example 16 was an electrical contact material having higher theoretical density ratio, electrical conductivity, and hardness than Example 1, further reducing the amount of consumption, and having good contact characteristics in a well-balanced manner. Similarly, Examples 15 and 18 were electrical contact materials having better contact characteristics in a better balance than Examples 4 and 17, respectively. That is, the contact performance of the electrical contact material was further improved by using a pulse current pressure sintering apparatus.
Furthermore, in Table 3, Examples 6 (Ag—Ni) and 17 to 20 (Ag—Ni—ZnO, CuO, Cu 2 O) have shorter arc times than Comparative Examples 2 to 3, and in particular, Examples 17 to No. 20 had a shorter arc time than Example 6. That is, the electrical contact material composed of Ag, Ni, and at least one metal oxide selected from the group consisting of ZnO, CuO, and Cu 2 O was superior in blocking characteristics.

本発明に係る台座付き電気接点材料を製造するためのプレス型への混合物と台座部材の配置を示した概略断面図である。It is the schematic sectional drawing which showed arrangement | positioning of the mixture and pedestal member to the press die for manufacturing the electrical contact material with a pedestal which concerns on this invention.

符号の説明Explanation of symbols

1 台座部材、2 プレス型、3 プレス棒、4 混合物。   1 base member, 2 press mold, 3 press rod, 4 mixture.

Claims (5)

Agと、WC、W、Mo、NiおよびCからなる群より選択される少なくとも1種の耐熱性非酸化物とからなる電気接点材料の製造方法であって、
Ag粒子と、前記耐熱性非酸化物の粒子とからなる混合物を、少なくとも100MPaの圧力および500℃未満の温度の条件下で温間プレスすることを特徴とする電気接点材料の製造方法。
A method for producing an electrical contact material comprising Ag and at least one heat-resistant non-oxide selected from the group consisting of WC, W, Mo, Ni and C,
A method for producing an electrical contact material, comprising: warm-pressing a mixture of Ag particles and the heat-resistant non-oxide particles at a pressure of at least 100 MPa and a temperature of less than 500 ° C.
Agと、WC、W、Mo、NiおよびCからなる群より選択される少なくとも1種の耐熱性非酸化物と、SnO、In、ZnO、CuOおよびCuOからなる群より選択される少なくとも1種の金属酸化物とからなる電気接点材料の製造方法であって、
Ag粒子と、前記耐熱性非酸化物の粒子と、前記金属酸化物の粒子とからなる混合物を、少なくとも100MPaの圧力および500℃未満の温度の条件下で温間プレスすることを特徴とする電気接点材料の製造方法。
Selected from the group consisting of Ag, at least one heat-resistant non-oxide selected from the group consisting of WC, W, Mo, Ni and C, and SnO 2 , In 2 O 3 , ZnO, CuO and Cu 2 O A method for producing an electrical contact material comprising at least one metal oxide,
A mixture of Ag particles, the heat-resistant non-oxide particles, and the metal oxide particles is warm-pressed under conditions of a pressure of at least 100 MPa and a temperature of less than 500 ° C. Manufacturing method of contact material.
前記圧力が100〜700MPaであり、前記温度が200〜450℃であることを特徴とする請求項1または2に記載の電気接点材料の製造方法。   The method for producing an electrical contact material according to claim 1 or 2, wherein the pressure is 100 to 700 MPa, and the temperature is 200 to 450 ° C. パルス通電加圧焼結装置を用いて、前記混合物を温間プレスすることを特徴とする請求項1または2に記載の電気接点材料の製造方法。   The method for producing an electrical contact material according to claim 1 or 2, wherein the mixture is warm-pressed using a pulsed current pressure sintering apparatus. 前記混合物を台座部材上に配置して温間プレスすることを特徴とする請求項1または2に記載の電気接点材料の製造方法。   The method for producing an electrical contact material according to claim 1, wherein the mixture is placed on a base member and warm-pressed.
JP2004262786A 2003-10-21 2004-09-09 Manufacturing method of electrical contact material Expired - Fee Related JP4410066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262786A JP4410066B2 (en) 2003-10-21 2004-09-09 Manufacturing method of electrical contact material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003361098 2003-10-21
JP2004262786A JP4410066B2 (en) 2003-10-21 2004-09-09 Manufacturing method of electrical contact material

Publications (2)

Publication Number Publication Date
JP2005146412A JP2005146412A (en) 2005-06-09
JP4410066B2 true JP4410066B2 (en) 2010-02-03

Family

ID=34703069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262786A Expired - Fee Related JP4410066B2 (en) 2003-10-21 2004-09-09 Manufacturing method of electrical contact material

Country Status (1)

Country Link
JP (1) JP4410066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151830A (en) * 2011-03-08 2011-08-17 郴州雄风稀贵金属材料股份有限公司 Preparation method of silver-rare earth refractory metal oxide electrical contact material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002398B2 (en) * 2007-09-28 2012-08-15 株式会社東芝 Contact materials for vacuum circuit breakers
DE102008056263A1 (en) * 2008-11-06 2010-05-27 Ami Doduco Gmbh Process for producing a semifinished product and semifinished product for electrical contacts and contact piece
WO2011162106A1 (en) * 2010-06-22 2011-12-29 株式会社アライドマテリアル Electrical contact material
US9287018B2 (en) * 2010-12-03 2016-03-15 Wenzhou Hongfeng Electrical Alloy Co., Ltd. Method of preparing silver-based electrical contact materials with fiber-like arrangement of reinforcing nanoparticles
CN102002651B (en) * 2010-12-03 2013-04-03 温州宏丰电工合金股份有限公司 Method for preparing silver-based electrical contact material with fibrous structure
CN102031408B (en) * 2010-12-30 2012-08-22 温州宏丰电工合金股份有限公司 Method for preparing silver-based oxide electrical contact material with fibrous structure
CN102142325B (en) * 2010-12-30 2013-04-03 温州宏丰电工合金股份有限公司 Preparation method of particle direction-arrangement enhanced silver-based oxide electrical contact material
JPWO2014136617A1 (en) * 2013-03-05 2017-02-09 株式会社アライドマテリアル Electrical contact materials and breakers
CN104103434B (en) * 2013-04-15 2016-04-20 济南大学 A kind of low-voltage electrical apparatus copper base electric contact composite material and temperature-pressure formation thereof
JP6053612B2 (en) * 2013-05-29 2016-12-27 三菱電機株式会社 Electrical contactor for circuit breaker and manufacturing method thereof
JP6302276B2 (en) * 2014-02-12 2018-03-28 日本タングステン株式会社 Electrical contact materials, electrical contact pairs and circuit breakers
JP6403659B2 (en) * 2015-12-15 2018-10-10 三菱電機株式会社 Composite powder and method for producing the same, and electrical contact material and method for producing the same
CN107240513B (en) * 2016-03-29 2019-02-22 三菱电机株式会社 Ag-Ni- metal oxide-type electric contact material and its manufacturing method, breaker and electromagnetic contactor
JP2020200504A (en) * 2019-06-10 2020-12-17 日本電産株式会社 Electric contact material powder, and method of producing electric contact material powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151830A (en) * 2011-03-08 2011-08-17 郴州雄风稀贵金属材料股份有限公司 Preparation method of silver-rare earth refractory metal oxide electrical contact material
CN102151830B (en) * 2011-03-08 2012-08-29 郴州雄风稀贵金属材料股份有限公司 Preparation method of silver-rare earth refractory metal oxide electrical contact material

Also Published As

Publication number Publication date
JP2005146412A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4410066B2 (en) Manufacturing method of electrical contact material
JPS60228602A (en) Dispersion-enhanced metal composite body
JP4857206B2 (en) Infiltration powder
JP6343447B2 (en) Electrical contact material and manufacturing method thereof
JP3825275B2 (en) Electrical contact member and its manufacturing method
JP4898977B2 (en) Electrical contact material
US9779854B2 (en) Method for producing a semifinished product for electrical contacts and contact piece
JP3763006B2 (en) Copper tungsten alloy and method for producing the same
JP4579348B1 (en) Electrical contact material
US5985440A (en) Sintered silver-iron material for electrical contacts and process for producing it
JP2010106331A (en) Composite metallic glass having both of strength and electroconductivity, and method for manufacturing the same
WO2000065623A1 (en) METHOD FOR PREPARING Ag-ZnO TYPE ELECTRIC CONTACT MATERIAL AND ELECTRIC CONTACT MATERIAL
JP2004190084A (en) Sintered alloy and manufacturing method therefor
JPH11269579A (en) Silver-tungsten/wc base sintered type electric contact material and its production
JP2007045918A (en) Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material
JP5134166B2 (en) Electrical contact material
JP2000319734A (en) Composite material produced by powder metallurgy, and its production
RU2522584C1 (en) Method of material manufacturing for arc-quenching and electric break contacts and material
CN112779436A (en) AgNi electrical contact material and preparation method thereof
JP4898978B2 (en) Electrical contact material
JP2016216775A (en) Ag-ZnO-BASED ELECTRICAL CONTACT MATERIAL AND PRODUCTION METHOD THEREFOR
JP3325034B2 (en) Sintered sliding member comprising multiple layers and method for producing the same
JP4222223B2 (en) High-hardness tungsten-based sintered material with fine grain structure suitable for use as a hot press mold for optical glass lenses
JPH0325499B2 (en)
JP4508736B2 (en) Copper-based material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees