JPS58199776A - Diamond sintered body for tool and manufacture - Google Patents

Diamond sintered body for tool and manufacture

Info

Publication number
JPS58199776A
JPS58199776A JP57080788A JP8078882A JPS58199776A JP S58199776 A JPS58199776 A JP S58199776A JP 57080788 A JP57080788 A JP 57080788A JP 8078882 A JP8078882 A JP 8078882A JP S58199776 A JPS58199776 A JP S58199776A
Authority
JP
Japan
Prior art keywords
diamond
diamond particles
boron
sintered body
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57080788A
Other languages
Japanese (ja)
Other versions
JPH0128094B2 (en
Inventor
哲男 中井
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57080788A priority Critical patent/JPS58199776A/en
Publication of JPS58199776A publication Critical patent/JPS58199776A/en
Publication of JPH0128094B2 publication Critical patent/JPH0128094B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Metal Extraction Processes (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 現在、非鉄金属、プラスチック、セラミックの切削用、
伸線ダイス用、ドレッサー用、ドリルビット用途にダイ
ヤモンドの含有量が容積で70%を越した焼結体が市販
されている。これらのダイヤモンド焼結体は多結晶体で
あるので天然ダイヤモンドの如くへき開による欠損がな
く、一部の用途では好評を博している。
[Detailed description of the invention] Currently, for cutting non-ferrous metals, plastics, and ceramics,
Sintered bodies with a diamond content exceeding 70% by volume are commercially available for use in wire drawing dies, dressers, and drill bits. Since these diamond sintered bodies are polycrystalline bodies, they do not suffer from defects due to cleavage unlike natural diamonds, and are popular in some applications.

しかし、ダイヤモンド焼結体には次のような欠点がある
。通常、ダイヤモンド焼結体はダイヤモンド粒度が大き
い程、その耐摩耗性が良好となるのでセラミック切削、
ドレッサー、ドリルビットの如く硬質物質の加工にはダ
イヤモンド粒度の大きい焼結体が使用される。一方、非
鉄金属等の切削は良好な面粗度の要求される場合が多く
、刃立性が良くなければならないためダイヤモンド粒度
の細かい焼結体が使用されるが、Al−高Si合金の如
く、硬質粒子が多量に含有される金属切削では刃先が摩
耗し、充分な性能を発揮できない場合がある。また前述
した如く、ダイヤモンド焼結体においてはダイヤモンド
粒度が粗くなるほど耐摩耗性は向上する反面、加工が困
難となる。ダイヤモンド焼結体はダイヤモンド砥石によ
る研削加工かあるいは放電加工の如く、電気化学的な加
工方法が用いられるが、ダイヤモンド粒子が粗くなると
研削加工のみならずダイヤモンド粒子は絶縁体で  、
あるため放電加工も困難となる。
However, diamond sintered bodies have the following drawbacks. Generally, the larger the diamond particle size of a diamond sintered body, the better its wear resistance.
Sintered bodies with large diamond grains are used for machining hard materials such as dressers and drill bits. On the other hand, cutting nonferrous metals often requires good surface roughness, and sintered bodies with fine diamond grains are used because they must have good edge sharpness. When cutting metals that contain a large amount of hard particles, the cutting edge may wear out and may not be able to exhibit sufficient performance. Furthermore, as described above, in a diamond sintered body, the coarser the diamond grain size, the better the wear resistance, but the more difficult it is to process. Diamond sintered bodies are produced using electrochemical processing methods such as grinding with a diamond grindstone or electrical discharge machining, but when diamond particles become coarse, not only grinding but also diamond particles are insulators.
This also makes electrical discharge machining difficult.

本発明はこれらの問題点を解決したダイヤモンド焼結体
に関するものである。
The present invention relates to a diamond sintered body that solves these problems.

ダイヤモンド焼結体は通常ダイヤモンドとこれを溶解し
うるFe5NieCosを用いてダイヤモンドが  ゛
安定な超高温高圧下で製造されるが、この製造過程でダ
イヤモンド粒子同志が互いに接合して焼結される。この
ためダイヤモンド粒子は主としてダイヤモンド粒子との
直接結合により保持されている。本発明者等は切削用ダ
イヤモンド焼結体の摩耗状態を調べるためA/−高Si
合金の如く、硬質物質を多量に含んだ被削材を用いて切
削テストを行い刃先の摩耗状態を観察した。その結果ダ
イヤモンド粒子が摩耗するよりも、むしろダイヤモンド
粒子が脱落して摩耗していた。この焼結体の耐摩耗性を
改善するにはダイヤモンド粒子の保持力を向上させる必
要があり、ダイヤモンド粒子同志の結合部(以下ダイヤ
モンドスケルトン部と称す)を強固にせねばならないと
考えられる。
A diamond sintered body is normally manufactured using diamond and Fe5NieCos that can melt it under extremely high temperature and high pressure conditions where the diamond is stable.During this manufacturing process, the diamond particles are bonded to each other and sintered. Therefore, the diamond particles are mainly held by direct bonding with the diamond particles. In order to investigate the wear state of diamond sintered bodies for cutting, the present inventors
A cutting test was conducted using a work material containing a large amount of hard material, such as an alloy, and the state of wear on the cutting edge was observed. As a result, rather than the diamond particles being worn away, the diamond particles fell off and were worn out. In order to improve the wear resistance of this sintered body, it is necessary to improve the holding power of the diamond particles, and it is considered that the joints between the diamond particles (hereinafter referred to as diamond skeleton parts) must be made stronger.

ダイヤモンド焼結体において、ダイヤモンドスケルトン
部を発達させ、さらにダイヤモンド含有量を増すことに
関する発明は既に米国特許第4.268..276号に
記載されている。この特許はダイヤモンド粒子として硼
素を均一に分散したダイヤモンド粒子を用いて焼結体を
製造することに関する特許で、硼素を分散したダイヤモ
ンド粒子は塑性変形しやすく通常のダイヤモンド粒子を
焼結する条件より低温低圧で焼結することが可能であり
、ダイヤモンドスケルトン部も発達することが述べられ
ている。本発明者等は、この特許に記載されていること
について確認テストを行ったところ、緻密でダイヤモン
ドスケルトン部が発達したダイヤモンド焼結体を得るこ
とができた。このダイヤモンド焼結体を用いて切削用の
バイトを作成し、A/−25%Si 合金を切削した結
果、ダイヤモンド粒子の脱落は減少したもののダイヤモ
ンド粒子の摩耗量が増大するという問題があった。特に
硼素を均一に分散させた粒度の粗いダイヤモンド粒子を
用いて焼結体を作成し、岩石を切削した場合、ダイヤモ
ンド粒子の摩耗に顕著な差が現われた。
An invention relating to developing a diamond skeleton portion and further increasing the diamond content in a diamond sintered body has already been disclosed in US Pat. No. 4.268. .. It is described in No. 276. This patent relates to manufacturing a sintered body using diamond particles in which boron is uniformly dispersed, and the diamond particles in which boron is dispersed are easily plastically deformed at a temperature lower than the conditions for sintering ordinary diamond particles. It is stated that it is possible to sinter at low pressure and that a diamond skeleton part also develops. When the present inventors conducted a test to confirm what is described in this patent, they were able to obtain a diamond sintered body that was dense and had a developed diamond skeleton. When a cutting tool was prepared using this diamond sintered body to cut an A/-25% Si alloy, there was a problem in that although the number of diamond particles falling off was reduced, the amount of wear of the diamond particles increased. In particular, when a sintered body was made using coarse diamond particles with boron uniformly dispersed therein and rock was cut, a remarkable difference appeared in the wear of the diamond particles.

硼素を均一に含有したダイヤモンドはUSP4268,
276に記載されている恕、<、A、塑性変形しやすい
ため、ダイヤモンド粒子の緻密化に対しては有利である
が、ダイヤモンド粒子の耐摩耗性からみれば硼素を含有
しないダイヤモンド粒子より劣るものと考えられる。
Diamond containing uniform boron is USP4268,
恕<,A, described in 276, is easy to plastically deform, so it is advantageous for densification of diamond particles, but from the viewpoint of wear resistance of diamond particles, it is inferior to diamond particles that do not contain boron. it is conceivable that.

本発明者等はダイヤモンド粒子の耐摩耗性を低下させる
ことなく、ダイヤモンドスケルトン部の強固な焼結体を
得るため鋭意研究を重ねた。その結果、硼素を含有しな
いダイヤモンド粒子あるいはこれに周期律表4a + 
5a e 6a  の炭化物を加えた粉末を鉄族金属を
触媒として焼結する際に微量の硼素または硼化物を添加
すれば、ダイヤモンドスケルトン部が大きく成長し、さ
らにダイヤモンドスケルトン部と、ダイヤモンド粒子の
周囲にのみ、硼素もしくは硼化物が存在した焼結体を得
ることが可能であることが判明した。このダイヤモンド
焼結体を加工して切削用のバイトを作成し、Al−25
%Si合金を切削したところダイヤモンド粒子の脱落は
少なかった。またダイヤモンド粒子自体の耐摩耗性を調
べるため粒度の粗いダイヤモンド焼結体を作成し岩石を
切削したが、硼素の含有による耐摩耗性の低下はなかっ
た。
The present inventors have conducted extensive research in order to obtain a strong sintered body of the diamond skeleton without reducing the wear resistance of the diamond particles. As a result, boron-free diamond particles or diamond particles of periodic table 4a +
If a small amount of boron or boride is added when sintering the carbide-added powder of 5a e 6a using an iron group metal as a catalyst, the diamond skeleton portion will grow larger, and the diamond skeleton portion and the surroundings of the diamond particles will grow. It has been found that it is only possible to obtain sintered bodies in which boron or boride is present. This diamond sintered body was processed to create a cutting tool, and Al-25
When cutting the %Si alloy, few diamond particles fell off. Furthermore, in order to investigate the wear resistance of the diamond particles themselves, coarse-grained diamond sintered bodies were prepared and rock was cut, but there was no decrease in wear resistance due to the boron content.

本発明焼結体が優れた耐摩耗性を有するのは、次の如く
考えられる。ダイヤモンド粒子の焼結は超高圧高温下で
鉄族金属等の触媒によるダイヤモンドの溶解、析出現象
により生じる。硼素または硼素化合物を添加した場合、
鉄族金属が低下するのと、溶解析出速度が増すためダイ
ヤモンドスケルトン部が大きくなり、ダイヤモンド粒子
の保持力が向上したものと推測できる。またダイヤモン
ド粒子の焼結時にはダイヤモンドと触媒金属の接触面で
のみ溶解、析出現象が生じるため、硼素または硼化物は
ダイヤモンドスケルトン部及びダイヤモンド粒子の周囲
にのみしか存在せず、ダイヤモンド粒子自体の強度は低
下しない。また本発明の焼結体においては周期律表の4
as5a+6a 族の炭化物を結合材の一部としで含有
させることにより、ダイヤモンド焼結体の耐熱性を向上
させることができる。これは結合材に炭化物が含有する
ことにより結合材の熱膨張係数がダイヤモンドの熱膨張
係数に近くなるからであろう。本発明の焼結体は耐摩耗
性が優れるのみならず放電加工も可能となるがこの原因
は次の如く推定される。ダイヤモンド焼結体は前述して
いるようにダイヤモンド粒子と触媒金属より成り立って
いるがダイヤモンド粒子が粗い場合、これは絶縁体であ
るため、この部分で放電せず加工できない。ダイヤモン
ド粒子に微量の硼素が含有されれば電導性を有すること
はUSP4268,276記載されているが、本発明焼
結体はダイヤモンド粒子の周囲に電導性を有する層が存
在するため、触媒金属のみならずダイヤモンド粒子の表
面でも放電し、加工することができるものと考えられる
The reason why the sintered body of the present invention has excellent wear resistance is considered to be as follows. Sintering of diamond particles is caused by dissolution and precipitation of diamond by a catalyst such as an iron group metal under ultra-high pressure and high temperature. When boron or boron compounds are added,
It can be inferred that the diamond skeleton part became larger due to the decrease in iron group metal content and the increase in the dissolution precipitation rate, and the holding power of the diamond particles was improved. Furthermore, when diamond particles are sintered, dissolution and precipitation phenomena occur only at the contact surface between the diamond and the catalyst metal, so boron or boride exists only in the diamond skeleton and around the diamond particles, and the strength of the diamond particles themselves is Does not decrease. In addition, in the sintered body of the present invention, 4 of the periodic table
By including carbides of the as5a+6a group as part of the binder, the heat resistance of the diamond sintered body can be improved. This is probably because the presence of carbide in the binder makes the coefficient of thermal expansion of the binder close to that of diamond. The sintered body of the present invention not only has excellent wear resistance but also can be subjected to electric discharge machining, and the reason for this is presumed to be as follows. As mentioned above, a diamond sintered body is made up of diamond particles and a catalyst metal, but if the diamond particles are coarse, this is an insulator, so electrical discharge will not occur in this part and machining cannot be performed. It is stated in US Pat. No. 4,268,276 that diamond particles have electrical conductivity if they contain a small amount of boron, but since the sintered body of the present invention has an electrically conductive layer around the diamond particles, only the catalytic metal It is thought that the surface of diamond particles can also be processed by electrical discharge.

本発明におけるダイヤモンド粒子の含有量は重量で70
〜9596が好ましい。ダイヤモンドの含有量が重量で
’1096$満であると焼結体の耐摩耗性は低下し、9
5%を越えるとダイヤモンド焼結時に触媒作用するFe
5Ni*Co  等の含有量が減少し、充1分に発達し
たダイヤモンドスケルトンを有する焼結体を得ることが
できない。焼結体中に存在する硼素または硼化物の含有
量は焼結体中の重量で0.00596〜0.15%が好
ましい。硼素または硼化物の含有量が0.005%未満
であると、ダイヤモンドスケルトン部の形成が遅く、ま
たダイヤモンド焼結体の放電加工性も低下する。一方硼
素または硼化物の含有量が0.1596を越す急ダイヤ
モンドスケルトン部やダイヤモンド粒子の周囲に多量の
硼素原子を含有した層が生じるためダイヤモンド焼結体
の耐摩耗性は低下する。硼化物としてはB4C1BN。
The content of diamond particles in the present invention is 70% by weight.
~9596 is preferred. If the diamond content is less than $1096 by weight, the wear resistance of the sintered body decreases, and
If it exceeds 5%, Fe acts as a catalyst during diamond sintering.
The content of 5Ni*Co and the like decreases, making it impossible to obtain a sintered body with a fully developed diamond skeleton. The content of boron or boride present in the sintered body is preferably 0.00596 to 0.15% by weight in the sintered body. If the content of boron or boride is less than 0.005%, the formation of a diamond skeleton portion is slow and the electrical discharge machinability of the diamond sintered body is also reduced. On the other hand, since a layer containing a large amount of boron atoms is formed around the diamond skeleton or diamond particles where the boron or boride content exceeds 0.1596, the wear resistance of the diamond sintered body is reduced. B4C1BN is a boride.

Bs0a 鉄族金属の硼化物、周期律表4a#5a#6
a 族の硼化物を用いることができる。本発明の焼結体
に使用するダイヤモンド原料は5ioμm以下で合成ダ
イヤモンド、天然ダイヤモンドのいずれでも良い。特に
ダイヤモンド焼結体の耐摩耗性が必要な場合、ダイヤモ
ンド粒子の粒度は2μm以上が好ましい。一方500μ
m以上になると、ダイヤモンド粒子の外周部に硼素を含
有した層が存在しても、放電加工は困難となる。
Bs0a Boride of iron group metals, periodic table 4a #5a #6
A group a boride can be used. The diamond raw material used for the sintered body of the present invention may be either synthetic diamond or natural diamond with a diameter of 5 ioμ or less. In particular, when wear resistance of the diamond sintered body is required, the particle size of the diamond particles is preferably 2 μm or more. On the other hand, 500μ
m or more, electrical discharge machining becomes difficult even if a boron-containing layer exists on the outer periphery of the diamond particles.

Cを用いることがモきる。炭化物とFe *Nt ec
o s等の触媒金属の割合いは少くとも焼結時に炭化物
が固体として存在するだけの量は必要であり、例えばW
CとCoを用いた場合、籠とCo  の量的割合は前者
を重量で50%以上含む必要がある。
It is possible to use C. Carbide and Fe *Nt ec
The proportion of catalytic metal such as o s or at least the amount such that carbide exists as a solid during sintering is necessary; for example, W
When C and Co are used, the quantitative proportion of the cage and Co must be 50% or more by weight of the former.

本発明のダイヤモンド焼結体を製造するには、原料とす
るダイヤモンド粉末と硼素あるいは硼化物およびFe5
CosNi eCrの触媒金属粉末あるいはこれに炭化
物を加えた粉末を均一にボールミル等の手段を用いて混
合する。また本発明者等の先願(特願昭52−5188
1号)の如く、ボールミル時のポットとポールを混入す
る炭化物と鉄族金属の焼結体で作成しておきダイヤモン
ド粉末と硼素あるいは硼化物を混合すると同時にポット
とボールから炭化物と鉄族金属の焼結体の微細粉末を混
入せしめる方法もあ暮。
In order to produce the diamond sintered body of the present invention, diamond powder as a raw material, boron or boride, and Fe5
A catalytic metal powder of CosNieCr or a powder obtained by adding a carbide thereto is uniformly mixed using a means such as a ball mill. In addition, the inventors' earlier application (Japanese Patent Application No. 52-5188
As in No. 1), the pot and pole used in ball milling are made of a sintered body of carbide and iron group metal, and at the same time diamond powder and boron or boride are mixed, the carbide and iron group metal are mixed from the pot and ball. There is also a method of mixing fine powder of sintered body.

混合した粉末を超高圧高温装置に入れ、ダイヤモンドが
安定な条件下で焼結する。このとき使用した触媒金属と
硼素と炭素あるいはこれに炭化物を加えたものの共晶液
相出現温度以上で焼結する必要がある。またダイヤモン
ド粉末と金属硼素あるいは硼化物の混合粉末またはこれ
に炭化物粉末を加えた粉末を超高圧高温装置に入れ、焼
結時に外部よりFe eNl sCo ecr等の触媒
金属を侵入させてもよい。
The mixed powder is placed in an ultra-high-pressure, high-temperature device and sintered under conditions where the diamond is stable. It is necessary to sinter at a temperature higher than the temperature at which the eutectic liquid phase appears of the catalyst metal, boron, and carbon used at this time, or a carbide added thereto. Alternatively, a mixed powder of diamond powder and metallic boron or boride, or a powder obtained by adding carbide powder thereto, may be placed in an ultra-high pressure and high temperature apparatus, and a catalyst metal such as Fe eNl sCo ecr may be introduced from the outside during sintering.

本発明の焼結体の用途としては切削工具の他に掘削工具
ドレッサー及び伸線用ダイスにも使用できる。切削工具
や掘削工具用途として使用する場合、ダイヤモンド焼結
体の靭性を向上させるため超硬合金等の支持体に超高圧
焼結中に接合させることも可能である。また伸線用ダイ
スとして使用する場合、特に高強度の線材を線引きする
とき、焼結ダイヤモンドダイス内面には高枦力が発生す
るが、ダイヤモンド焼結体の外径が小さく肉厚が薄い場
合は伸線中にダイヤモンド焼結体が縦方向に割れること
がある。このような場合はダイヤモンド焼結体の外周を
超硬合金の支持体で包囲してダイヤモンド焼結体の外周
から予圧を加えることにより伸線中の縦割れを防止する
ことが可能である。
In addition to cutting tools, the sintered body of the present invention can also be used in excavation tool dressers and wire drawing dies. When used as a cutting tool or excavation tool, it is possible to bond the diamond sintered body to a support such as cemented carbide during ultra-high pressure sintering to improve the toughness of the diamond sintered body. In addition, when used as a wire drawing die, especially when drawing a high-strength wire rod, a high resiliency force is generated on the inner surface of the sintered diamond die. The diamond sintered body may crack in the vertical direction. In such a case, it is possible to prevent vertical cracking during wire drawing by surrounding the outer periphery of the diamond sintered body with a cemented carbide support and applying preload from the outer periphery of the diamond sintered body.

以下、実施例により具体的に説明する。Hereinafter, this will be explained in detail using examples.

実施例1゜ 粒度5〜12μと粒度2〜6μ″のダイヤモンド粒子を
8:lの割合いで混合した。このダイヤモンド粉末とC
o  粉末及び金属硼素の粉末を重量比で90:9.9
:0.1  に配合した後、MO製の容器に詰め超高圧
高温装置を用いて先ず圧力を55Kb加え、引続いて1
400℃に加熱して10分間保持した。これらの焼結体
を取出して組織観察したところダイヤモンド粒子同志は
ダイヤモンドスケルトン部を介して強固に接合されてい
た。この焼結体を用いて、切削用のバイトを作成した。
Example 1 Diamond particles with a particle size of 5 to 12 μ'' and a particle size of 2 to 6 μ'' were mixed in a ratio of 8:1. This diamond powder and C
o Powder and metallic boron powder in a weight ratio of 90:9.9
:0.1, then packed in an MO container and applied a pressure of 55 Kb using an ultra-high pressure and high temperature device, followed by 1.
It was heated to 400°C and held for 10 minutes. When these sintered bodies were taken out and their structures were observed, it was found that the diamond particles were firmly bonded to each other through the diamond skeleton. A cutting tool was created using this sintered body.

なお比較のため、硼素を含有しない焼結体及び同じダイ
ヤモンド粒度のもので、B原子を均一に含有したダイヤ
モンド焼結体も作成し、切削用バイトに仕上げた。これ
らのバイトを用いてkl−2596Si を速度300
m/分で60分間切削した。切削テスト後のダイヤモン
ド焼結体の逃げ面摩耗中Vnを測定した結果、本発明焼
結体のVnは0.040u+cであったのに対し、硼素
を含有しない焼結体のVBは0.070B硼素を均一に
含有したダイヤモンドを用いた焼結体のVBは0.05
0amであった。
For comparison, a sintered body containing no boron and a sintered diamond body having the same diamond particle size and uniformly containing B atoms were also prepared and finished into a cutting tool. Using these bytes kl-2596Si speed 300
Cutting was performed for 60 minutes at m/min. As a result of measuring the Vn during flank wear of the diamond sintered body after the cutting test, the Vn of the sintered body of the present invention was 0.040u+c, whereas the VB of the sintered body containing no boron was 0.070B. The VB of a sintered body using diamond uniformly containing boron is 0.05.
It was 0am.

実施例2゜ 粒度100μmのダイヤモンド粉末とB4C粉末を重量
比で99.85 : 0.15の割合で混合した。この
混合粉末をMo 製の容器に入れ、この上にNi−Cr
板を置き、この容器を超高圧高温装置に入れ、52Kb
Example 2 Diamond powder having a particle size of 100 μm and B4C powder were mixed in a weight ratio of 99.85:0.15. This mixed powder was placed in a container made of Mo, and Ni-Cr was placed on top of the container.
Place the plate and place this container in an ultra-high pressure and high temperature equipment to produce 52Kb.
.

1880℃で10分間焼結した。この焼結体を取り出し
て観察したところ焼結中にNi−Crの液相が混合粉末
中に侵入してダイヤモンド同志を結合させていた。比較
のため実施例1と同様に同じ粒度のダイヤモンド粒子で
84C粉末を混合しなかったもの、及び硼素を均一に含
有したダイヤモンド粒子より成る焼結体を作成した。次
に切削テスト用のバイトを作成するため、これらの焼結
体をワイヤ放電切削機で加工しよう−としたところ、本
発明焼結体及び硼素を均一に含有したダイヤモンド粒子
の焼結体は加工可能であったが、硼素を含有しない焼結
体の加工はできず、レーザー加工により切削した。これ
らのバイートを用いて外径100Bの安山岩を速度50
m/分、切り込みIIK、送り0.5IuL/回転湿式
で60分間切削した。切削後の逃げ面摩耗中vB  を
測定したところ、本発明焼結体はα15駄であったのに
対し、硼素を均一に含有したダイヤモンド粒子の焼結体
のVBはQ、30B1硼素を含有していないダイヤモン
ド焼結体のvBは0.40JLl+!であった。
Sintering was performed at 1880°C for 10 minutes. When this sintered body was taken out and observed, it was found that the Ni--Cr liquid phase entered the mixed powder during sintering and bonded the diamonds together. For comparison, sintered bodies were prepared in the same manner as in Example 1, including diamond particles of the same particle size but without 84C powder mixed therein, and diamond particles uniformly containing boron. Next, when attempting to process these sintered bodies using a wire electric discharge cutting machine in order to create bites for cutting tests, the sintered bodies of the present invention and the sintered bodies of diamond particles uniformly containing boron could not be machined. Although it was possible, it was not possible to process a sintered body that does not contain boron, so cutting was done by laser processing. Use these bites to cut andesite with an outer diameter of 100B at a speed of 50
Cutting was carried out for 60 minutes with a wet cutting speed of m/min, depth of cut IIK, and feed rate of 0.5 IuL/rotation. When the vB during flank wear after cutting was measured, the sintered body of the present invention was α15, whereas the VB of the sintered body of diamond particles uniformly containing boron was Q, 30B1 containing boron. The vB of the diamond sintered body without oxidation is 0.40JLl+! Met.

実施例3、 粒度300μのダイヤモンド粒子と粒度150μのダイ
ヤモンド粒子を8;lに混合した。この混合粉末とCo
粉末とCo5B粉末を容積比で92ニア、9:0.1に
配合し、完成粉末とした。この完成粉末を実施例1と同
様にして、超高圧焼結を行った。次にこの焼結体を放電
加工機で加工し、ドレッサーに仕立て、SiC系の砥石
をドレッシングした。比較のため市販のドレッサー用途
の焼結体につい又もテストしたところ、本発明焼結体は
100回ドレッシングして、0,95B摩耗したのに対
し、市販のドレッサー用途の焼結体は0.151JL摩
耗した。
Example 3 Diamond particles with a particle size of 300μ and diamond particles with a particle size of 150μ were mixed in a ratio of 8:1. This mixed powder and Co
The powder and the Co5B powder were blended at a volume ratio of 92 near, 9:0.1 to obtain a finished powder. This completed powder was subjected to ultra-high pressure sintering in the same manner as in Example 1. Next, this sintered body was processed using an electrical discharge machine to make a dresser, and a SiC-based grindstone was dressed. For comparison, a commercially available sintered body for dresser use was tested again, and the sintered body of the present invention wore 0.95B after dressing 100 times, while the commercially available sintered body for dresser use wore 0.95B. 151JL was worn out.

また本発明焼結体の硼素の存在している個所をIMA(
イオンマイクロアナライザー)により調査したところ、
硼素はダイヤモンドスケルトン部とダイヤモンド粒子の
外周部に存在しており、ダイヤモンド粒子内には含有さ
れていなかった。
In addition, the locations where boron is present in the sintered body of the present invention were
When investigated using an ion microanalyzer,
Boron was present in the diamond skeleton and the outer periphery of the diamond particles, and was not contained within the diamond particles.

実施例生 第1表に示す完成粉末を作成した。この混合粉末を実施
例1と同様にして超高圧焼結した。次にこれらの焼結体
を加工して、切削工具用のバイトを作成し、A/aOa
セラミックを速度50m/分、切込み0.5 B、送1
)0.8ia/回転、湿式で10分間切削した。この結
果も合わせて第1表に記す。
EXAMPLE A finished powder shown in Table 1 was prepared. This mixed powder was subjected to ultra-high pressure sintering in the same manner as in Example 1. Next, these sintered bodies are processed to create a cutting tool bit, and A/aOa
Ceramic at speed 50m/min, depth of cut 0.5B, feed 1
) 0.8ia/rotation, wet cutting for 10 minutes. These results are also shown in Table 1.

20〜30μダイヤモンド粒子、o−iμダイヤ11 モンド粒子、0〜lμWC,B粉末を重量比で70:2
0:9.9:0.1に混合した。この混合粉末を超硬合
金より成る容器に充てんした後、co 板を置き、超高
圧高温装置を用いて、焼結した。
20-30 μ diamond particles, o-i μ diamond 11 diamond particles, 0-1 μ WC, B powder in a weight ratio of 70:2
The mixture was mixed at a ratio of 0:9.9:0.1. After filling this mixed powder into a container made of cemented carbide, a CO plate was placed and sintered using an ultra-high pressure and high temperature device.

この焼結体を穴径0.250mxのダイスに加工し、真
ちゅうメッキされた鋼線(スチールコード)を速度80
0m/min  で伸線した。
This sintered body was processed into a die with a hole diameter of 0.250 mx, and a brass-plated steel wire (steel cord) was processed at a speed of 80 m.
Wire drawing was performed at 0 m/min.

比較のため粒度20〜30μより成る市販のダイヤモン
ド焼結体のダイスも作成し、同時にテストした。本発明
の焼結体は47を伸線できたのに対し、市販の焼結体は
1.5tl、か伸線できなかった。
For comparison, a commercially available diamond sintered die having a particle size of 20 to 30 microns was also prepared and tested at the same time. The sintered body of the present invention could be drawn into a wire of 47 liters, whereas the commercially available sintered body could only be drawn into a wire of 1.5 tl.

手続補正書 昭和58年2月8日 1、事件の表示 昭和57年特許願 第 80788  号2、発明の名
称 工具用ダイヤモンド焼結体及びその製造方法3、補正を
する者 事件との関係   特許出願人 住所    大阪市東区北浜5丁目15番地名称(21
3)住友電気工業株式会社 社長 用上哲部 4、代理人 住所     大阪市此花区島屋1丁目1番3号住友電
気工業株式会社内 6、補正の対象 明細書中発明の詳細な説明の欄 7、補正の内容 (1)明細書第16頁16行目、 「削した。」を「断した。」に訂正する。
Procedural amendment February 8, 1981 1. Indication of the case 1988 Patent Application No. 80788 2. Name of the invention Diamond sintered body for tools and its manufacturing method 3. Person making the amendment Relationship with the case Patent application Address: 5-15 Kitahama, Higashi-ku, Osaka Name (21
3) President of Sumitomo Electric Industries, Ltd., Tetsube 4, Agent address: 6, Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka, Column 7 for detailed explanation of the invention in the specification subject to amendment , Contents of the amendment (1) On page 16, line 16 of the specification, "deleted." is corrected to "cut."

(2)同書同頁18行目、 「回転湿式」を「回転、湿式」に訂正する。(2) Same book, same page, line 18, Correct "rotating wet type" to "rotating, wet type".

(3)同書第19頁第1表を別紙の通り訂正する。(3) Table 1 on page 19 of the same book is corrected as shown in the attached sheet.

Claims (9)

【特許請求の範囲】[Claims] (1)粒度500μm以下のダイヤモンド粒子が重量で
70〜95%、硼素もしくは硼化’1m1O,005〜
0.15%含有し、残部がFe5Ni*CoeCrの一
種または二種以上の合金より成り、硼素もしくは硼化物
がダイヤモンド粒子同志の結合部及びダイヤモンド粒子
の外周部に存在することを特徴とする工具用ダイヤモン
ド焼結体。
(1) 70 to 95% by weight of diamond particles with a particle size of 500 μm or less, boron or boronide '1 ml O,005 ~
0.15%, the remainder is an alloy of one or more of Fe5Ni*CoeCr, and boron or boride is present in the joints between diamond particles and in the outer periphery of the diamond particles. Diamond sintered body.
(2)ダイヤモンド粒子の粒度が2〜500μm であ
る特許請求の範囲第(1)項記載の工具用ダイヤモンド
焼結体。
(2) The diamond sintered body for tools according to claim (1), wherein the diamond particles have a particle size of 2 to 500 μm.
(3)粒度500μm 以下のダイヤモンド粒子が重量
で70〜9596、硼素もしくは硼化物を0.005〜
0.1596含有し、残部が粒度1μm以下の周期律表
第4ae 5ae aa 族の炭化物とFee Ni、
 Cos Cr  の一種、または二種以上の合金よし
成り、硼素もしく・  は硼化物がダイヤモンド粒子同
志の結合部及びダイヤモンド粒子の外周部に存在するこ
とを特徴とする工具用ダイヤモンド焼結体。
(3) Diamond particles with a particle size of 500 μm or less are 70 to 9,596 in weight, and boron or boride is 0.005 to 9,596 in weight.
0.1596 and the remainder is a carbide of group 4ae 5ae aa of the periodic table with a particle size of 1 μm or less and Fee Ni,
A diamond sintered body for tools, characterized in that it is made of one or more alloys of Cos Cr, and boron or boride is present in bonding parts between diamond particles and in the outer periphery of the diamond particles.
(4)ダイヤモンド粒子の粒度が2〜500μm であ
る特許請求の範囲第(3)項記載の工具用ダイヤそンド
焼結体。
(4) A diamond sand sintered body for a tool according to claim (3), wherein the diamond particles have a particle size of 2 to 500 μm.
(5)粒度500μm以下のダイヤモンド粒子と硼素粉
末または硼化物粉末を混合し、この混合粉末の上にFe
5Ni*CoeCrの一種または二種以上の合金板を載
置した後、固体圧力媒体を用いた超高圧高温装置を使用
してダイヤモンドが安定な高温高圧下でFe5Ni*C
oeCrの一種または二種以上の合金の液相をダイヤモ
ンド粒子間に浸入させることによりダイヤモンド粒子を
焼結せしめることを特徴とする500μm以下のダイヤ
モンド粒子が重量で70〜9596、硼素もしくは硼化
物0.005〜0.15%含有し、残部がFe*N1e
Co*Crの一種もしくは二種以上の合金よし成り硼素
もしくは硼化物がダイヤモンド粒子同志の結合部及びダ
イヤモンド粒子の外周部をζ存在する工具用ダイヤモン
ド焼結体の製造方法。
(5) Mix diamond particles with a particle size of 500 μm or less and boron powder or boride powder, and place Fe on top of this mixed powder.
After placing an alloy plate of one or more types of 5Ni*CoeCr, Fe5Ni*C is heated under high temperature and pressure at which the diamond is stable using an ultra-high pressure and high temperature device using a solid pressure medium.
The diamond particles are sintered by infiltrating the liquid phase of one or more alloys of oeCr between the diamond particles.The diamond particles are 500 μm or less in weight and contain boron or boride with a weight of 70 to 9596. 005 to 0.15%, the balance being Fe*N1e
A method for producing a diamond sintered body for a tool, in which boron or boride made of one or more alloys of Co*Cr is present in bonding parts between diamond particles and in the outer periphery of the diamond particles.
(6)粒度500μm以下のダイヤモンド粒子、硼素粉
末もしくは硼化物粉末、及びFe eNi *Co +
Crの一種または二種以上の合金粉末を混合し、この混
合粉末を固体圧力媒体を用いた超高圧高温装置を使用し
てダイヤモンドが安定な高温高圧下で焼結せしめること
を特徴とする500μm以下の夛イヤモンド粒子が重量
で70〜9596.硼素もしくは硼化物0.005−0
.15%含有し、残部がFetNi sco+crの一
種もしくは二種以上の合金より成り、硼素もしくは硼化
物がダイヤモンド粒子同志の結合部及びダイヤモンド粒
子の外周部に存在する工具用ダイヤモンド焼結体の製造
方法。
(6) Diamond particles with a particle size of 500 μm or less, boron powder or boride powder, and Fe eNi *Co +
500 μm or less characterized by mixing one or more types of Cr alloy powder and sintering this mixed powder under high temperature and high pressure where the diamond is stable using an ultra-high pressure and high temperature device using a solid pressure medium. The weight of diamond particles is 70-9596. Boron or boride 0.005-0
.. A method for manufacturing a diamond sintered body for tools, in which boron or boride is present in bonding parts between diamond particles and in the outer periphery of the diamond particles, with the remainder being an alloy of one or more of FetNisco+Cr.
(7)ダイヤモンドの粒度が2〜500μmである特許
請求の範囲第(5)、(6)項記載の工具用ダイヤモン
ド焼結体の製造方法。
(7) The method for manufacturing a diamond sintered body for tools according to claims (5) and (6), wherein the diamond particle size is 2 to 500 μm.
(8)粒度500μm以下のダイヤモンド粒子と硼素粉
末または硼化物粉末および周期律表第4a+5a+6a
  族の炭化物粉末を混合し、この混合粉末の上にFe
 +Ni sco +Crの一種または二種以上の合金
板を載置した後、固体圧力媒体を用いた超高圧、高温装
置を使用して、ダイヤモンドが安定な高温高圧下でFe
5Ni*Co*針の一種または二種以上の合金の液相を
ダイヤモンド粒子間に浸入させることによりダイヤモン
ド粒子を焼結せしめることを特徴とする500μm以下
のダイヤモンド粒子が重量で70−95%、硼素もしく
は硼化物0.005〜0.1596含有し、残部が粒度
1μm以下の周期律表第4ae5ae6a 族の炭化物
とFe+Nt+Co+Crの一種または二種以上の合金
より成り、硼素もしくは硼化物がダイヤモンド粒子同志
の結合部及びダイヤモンド粒子の外周部に存在する工具
用ダイヤモンド焼結体の製造方法。
(8) Diamond particles with a particle size of 500 μm or less, boron powder or boride powder, and periodic table Nos. 4a+5a+6a
Fe
After placing an alloy plate of one or more types of +Nisco +Cr, using an ultra-high pressure and high temperature device using a solid pressure medium, Fe is
Diamond particles are sintered by infiltrating the liquid phase of one or more alloys of 5Ni*Co* needles between diamond particles.Diamond particles of 500 μm or less contain 70-95% by weight of boron. Or, it contains 0.005 to 0.1596 borides, and the remainder consists of carbides of group 4ae5ae6a of the periodic table with a particle size of 1 μm or less and an alloy of one or more of Fe+Nt+Co+Cr, and the boron or boride is a bond between diamond particles. A method for manufacturing a diamond sintered body for a tool, which is present in the outer periphery of diamond particles.
(9)粒度500μm以下のダイヤモンド粒子硼素粉末
もしくは硼化物粉末、周期律表第4a * 5a e 
6a 族の炭化物粉末及びFeeNisCotCrの一
種または二種以上の合金粉末を混合し、この混合粉末を
固体圧力媒体を用いた超高圧高温装置を使用してダイヤ
モンドが安定な高温高圧下で焼結せしめることを特徴と
する500μm以下のダイヤモンド粒子が重量で70〜
959/)、硼素もしくは硼化物0.005〜0.15
%含有し、残部が粒度1μm以下の周期律表第4a+5
atOa 族の炭化物及びFe mN15co +Cr
の一種または二種以上の合金より成り、硼素もしくは硼
化物がダイヤモンド粒子同志の結合部及びダイヤモンド
粒子の外周部に存在することを特徴とする工具用ダイヤ
モンド焼結体の製造方法。 QOダイヤモンド粒度が2〜500μm である特許請
求の範囲第(8)、(9)項記載の工具用ダイヤモンド
焼結体の製造方法。
(9) Diamond particles boron powder or boride powder with a particle size of 500 μm or less, periodic table 4a * 5a e
Mixing a group 6a carbide powder and an alloy powder of one or more types of FeeNisCotCr, and sintering this mixed powder under high temperature and high pressure where diamond is stable using an ultra-high pressure and high temperature device using a solid pressure medium. Diamond particles of 500 μm or less are characterized by a weight of 70 ~
959/), boron or boride 0.005-0.15
% and the remainder has a particle size of 1 μm or less, periodic table 4a+5
atOa group carbide and Fe mN15co +Cr
1. A method for producing a diamond sintered body for tools, characterized in that boron or a boride is present in the joints between diamond particles and in the outer periphery of the diamond particles. The method for manufacturing a diamond sintered body for tools according to claims (8) and (9), wherein the QO diamond particle size is 2 to 500 μm.
JP57080788A 1982-05-12 1982-05-12 Diamond sintered body for tool and manufacture Granted JPS58199776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080788A JPS58199776A (en) 1982-05-12 1982-05-12 Diamond sintered body for tool and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080788A JPS58199776A (en) 1982-05-12 1982-05-12 Diamond sintered body for tool and manufacture

Publications (2)

Publication Number Publication Date
JPS58199776A true JPS58199776A (en) 1983-11-21
JPH0128094B2 JPH0128094B2 (en) 1989-06-01

Family

ID=13728183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080788A Granted JPS58199776A (en) 1982-05-12 1982-05-12 Diamond sintered body for tool and manufacture

Country Status (1)

Country Link
JP (1) JPS58199776A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003291036A (en) * 2002-02-26 2003-10-14 Smith Internatl Inc Semiconductive polycrystal diamond
JP2006167893A (en) * 2004-12-20 2006-06-29 Sodick Co Ltd Electrode for electric discharge machining and electric discharge machining method
WO2007023949A1 (en) * 2005-08-25 2007-03-01 Hiroshi Ishizuka Tool with sintered body polishing surface and method of manufacturing the same
JP2009091179A (en) * 2007-10-05 2009-04-30 Mitsubishi Materials Corp Diamond base sintered body having multilayer integral structure having conductive layer region and non-conductive layer region
JP2017001105A (en) * 2015-06-04 2017-01-05 株式会社新日本テック Blade processing device and blade processing method
JP2018047551A (en) * 2017-11-27 2018-03-29 株式会社新日本テック Workpiece processing device and workpiece processing method
JP2019006662A (en) * 2017-06-28 2019-01-17 博 石塚 Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003291036A (en) * 2002-02-26 2003-10-14 Smith Internatl Inc Semiconductive polycrystal diamond
JP4624649B2 (en) * 2002-02-26 2011-02-02 スミス インターナショナル,インコーポレイティド Cutting element manufacturing method and drill bit including the same
JP2006167893A (en) * 2004-12-20 2006-06-29 Sodick Co Ltd Electrode for electric discharge machining and electric discharge machining method
JP4575134B2 (en) * 2004-12-20 2010-11-04 株式会社ソディック Electric discharge machining electrode and electric discharge machining method
WO2007023949A1 (en) * 2005-08-25 2007-03-01 Hiroshi Ishizuka Tool with sintered body polishing surface and method of manufacturing the same
AU2006282293B2 (en) * 2005-08-25 2011-06-23 Hiroshi Ishizuka Tool with sintered body polishing surface and method of manufacturing the same
JP2009091179A (en) * 2007-10-05 2009-04-30 Mitsubishi Materials Corp Diamond base sintered body having multilayer integral structure having conductive layer region and non-conductive layer region
JP2017001105A (en) * 2015-06-04 2017-01-05 株式会社新日本テック Blade processing device and blade processing method
JP2019006662A (en) * 2017-06-28 2019-01-17 博 石塚 Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same
JP2018047551A (en) * 2017-11-27 2018-03-29 株式会社新日本テック Workpiece processing device and workpiece processing method

Also Published As

Publication number Publication date
JPH0128094B2 (en) 1989-06-01

Similar Documents

Publication Publication Date Title
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
EP2101903B1 (en) Abrasive compacts with improved machinability
JP5226522B2 (en) Cubic boron nitride compact
US20170157746A1 (en) Methods of fabricating a polycrystalline diamond compact
US2137201A (en) Abrasive article and its manufacture
EP2675983B1 (en) Polycrystalline compacts including metallic alloy compositions in interstitial spaces between grains of hard material, cutting elements and earth-boring tools including such polycrystalline compacts, and related methods
SE457537B (en) DIAMOND PRESSURE BODY FOR A TOOL AND WAY TO MANUFACTURE IT
JPH0333675B2 (en)
WO2004031425A1 (en) Method for producing a sintered, supported polycrystalline diamond compact
JP2594785B2 (en) Diamond crystal-sintered carbide composite polycrystal
JPS6167740A (en) Diamond sintered body for tools and its manufacture
Sokolov et al. The influence of temperature on interaction of Sn–Cu–Co–W binders with diamond in sintering the diamond-containing composite materials
JPS58199776A (en) Diamond sintered body for tool and manufacture
JPH0530897B2 (en)
JPH0762468A (en) Production of diamond sintered compact for tool
JPS6355161A (en) Manufacture of industrial diamond sintered body
EP0181979B1 (en) High hardness sintered compact and process for producing the same
JPS58199777A (en) Diamond sintered body for tool and manufacture
JPS6319585B2 (en)
JPH01116048A (en) High hardness sintered diamond and its manufacture
JPH10296636A (en) Metal bond grinding wheel
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
JPS5891056A (en) Diamond sintered body for tools and manufacture
JPS58213676A (en) Diamond sintered body for tool and manufacture
JPS6411703B2 (en)