JP2007045918A - Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material - Google Patents

Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material Download PDF

Info

Publication number
JP2007045918A
JP2007045918A JP2005231232A JP2005231232A JP2007045918A JP 2007045918 A JP2007045918 A JP 2007045918A JP 2005231232 A JP2005231232 A JP 2005231232A JP 2005231232 A JP2005231232 A JP 2005231232A JP 2007045918 A JP2007045918 A JP 2007045918A
Authority
JP
Japan
Prior art keywords
particles
self
sintered body
producing
lubricating sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005231232A
Other languages
Japanese (ja)
Inventor
Takeshi Nakai
毅 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005231232A priority Critical patent/JP2007045918A/en
Publication of JP2007045918A publication Critical patent/JP2007045918A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain raw powder having good sintering property and usable for the production of a self-lubricating sintered material by powder metallurgy. <P>SOLUTION: A stainless steel mill pot of a planetary mill containing stainless steel balls is charged with WS<SB>2</SB>particles and Ni particles and is rotated in an argon gas atmosphere. An Ni coating film is formed on the surface of the WS<SB>2</SB>particle by the process. The WS<SB>2</SB>particles having the Ni film, the W particles and Ni-Fe-B particles are used as raw powder and a self-lubricating sintered material is produced by the powdery metallurgy of the raw powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、二硫化タングステン(WS2 )または二硫化モリブデン(MoS2 )を固体潤滑剤として含有する自己潤滑性焼結体を、粉末冶金法で製造する際に使用される原料粉末と、その製造方法、および前記原料粉末を用いた自己潤滑性焼結体の製造方法に関する。 The present invention relates to a raw material powder used when a self-lubricating sintered body containing tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ) as a solid lubricant is produced by a powder metallurgy method, and The present invention relates to a manufacturing method and a manufacturing method of a self-lubricating sintered body using the raw material powder.

従来より、高温環境や真空環境等のグリース潤滑ができない環境下では、固体潤滑剤である二硫化タングステンや二硫化モリブデンを含有する自己潤滑性焼結体が使用されており、その製造方法が下記の特許文献1〜3に記載されている。
特許文献1には、窒化ホウ素粉末と、二硫化タングステン粉末と、ニッケル(Ni)および硼素(B)を含む結合相形成用の合金粉末とを、混合および成形後、非酸化性雰囲気中で700℃以上1300℃以下の温度で焼結する方法が記載されている。
Conventionally, self-lubricating sintered bodies containing tungsten disulfide and molybdenum disulfide, which are solid lubricants, have been used in environments where grease lubrication is not possible, such as high-temperature environments and vacuum environments. Patent Documents 1 to 3 of the following.
Patent Document 1 discloses that a boron nitride powder, a tungsten disulfide powder, and an alloy powder for forming a binder phase containing nickel (Ni) and boron (B) are mixed and molded, and then mixed in a non-oxidizing atmosphere. A method of sintering at a temperature of not less than 1 ° C and not more than 1300 ° C is described.

特許文献2には、二硫化タングステン(WS2 )と、ボロン(B)と、コバルト(Co)と、ニッケル(Ni)と、銅(Cu)と、タングステン(W)の各粉末を混合し、所定圧力で成形した後、1000〜1300℃の温度で、真空ないし不活性雰囲気中で焼結する方法が記載されている。
特許文献3には、二硫化タングステン(WS2 )粉末と、Ni−20Cr−3B合金粉末と、Ni−12.7Bと、WB粉末と、をボールミルで混合し、所定圧力で成形した後、950℃で真空焼結する方法が記載されている。
In Patent Document 2, each powder of tungsten disulfide (WS 2 ), boron (B), cobalt (Co), nickel (Ni), copper (Cu), and tungsten (W) is mixed, A method is described in which after molding at a predetermined pressure, sintering is performed at a temperature of 1000 to 1300 ° C. in a vacuum or in an inert atmosphere.
In Patent Document 3, tungsten disulfide (WS 2 ) powder, Ni-20Cr-3B alloy powder, Ni-12.7B, and WB powder are mixed with a ball mill and molded at a predetermined pressure, and then 950 A method of vacuum sintering at 0 ° C. is described.

これらの文献では、各原料粉末をボールミル等により所定の組成となるように混合した後に、得られた混合粉末を成形して焼結する方法(粉末冶金法)で、自己潤滑性焼結体を製造している。また、原料粉末として、固体潤滑剤成分の粉末と、結合相成分である合金、金属、または金属化合物の粉末を用い、これらをそのまま混合している。
特公平8−26338号公報 特許3355060号公報 特開2000−226590号公報
In these documents, each raw material powder is mixed so as to have a predetermined composition by a ball mill or the like, and then the obtained mixed powder is molded and sintered (powder metallurgy method). Manufacture. Further, as a raw material powder, a solid lubricant component powder and a binder phase component alloy, metal, or metal compound powder are used and mixed as they are.
Japanese Patent Publication No. 8-26338 Japanese Patent No. 3355060 JP 2000-226590 A

しかしながら、前記特許文献1〜3に記載の方法で得られた自己潤滑性焼結体には、焼結時の固体潤滑剤成分粒子と結合相成分粒子の濡れ性が不十分となって、粒子間に粗大なポアーが発生し易く、緻密な焼結体が得られ難いという問題点がある。また、この焼結体を潤滑材として使用すると、潤滑剤成分粒子が先に脱落し、潤滑性能が短時間で得られなくなる。
本発明は、このような従来技術の問題点に着目してなされたものであり、粉末冶金法で自己潤滑性焼結体を製造する際に使用する原料粉末(固体潤滑剤成分粒子)として、焼結時に結合相成分粒子との濡れ性が良好で、緻密な焼結体が得られるものを提供することを課題とする。
However, in the self-lubricating sintered body obtained by the method described in Patent Documents 1 to 3, the wettability of the solid lubricant component particles and the binder phase component particles at the time of sintering becomes insufficient. There is a problem that coarse pores are likely to occur between them, and it is difficult to obtain a dense sintered body. Further, when this sintered body is used as a lubricant, the lubricant component particles fall off first, and the lubricating performance cannot be obtained in a short time.
The present invention was made paying attention to such problems of the prior art, and as a raw material powder (solid lubricant component particles) used when producing a self-lubricating sintered body by powder metallurgy, It is an object of the present invention to provide a dense sintered body that has good wettability with binder phase component particles during sintering.

上記課題を解決するために、本発明の自己潤滑性焼結体の原料粉末は、二硫化タングステン(WS2 )または二硫化モリブデン(MoS2 )を固体潤滑剤として含有する自己潤滑性焼結体を、粉末冶金法で製造する際に使用される原料粉末であって、二硫化タングステン(WS2 )または二硫化モリブデン(MoS2 )からなる粒子の表面に、鉄(Fe)、ニッケル(Ni)、銅(Cu)、錫(Sn)、およびコバルト(Co)からなる群より選択される一種類以上の金属からなる被膜が形成されていることを特徴とする。
本発明の「自己潤滑性焼結体の原料粉末」によれば、WS2 またはMoS2 からなる粒子の表面に、前記金属からなる被膜が形成されているため、前記被覆が無い原料粉末と比較して、焼結時の結合相成分粒子との濡れ性が良好となる。
In order to solve the above problems, the raw powder of the self-lubricating sintered body of the present invention is a self-lubricating sintered body containing tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ) as a solid lubricant. Is a raw material powder used in manufacturing by powder metallurgy, and iron (Fe), nickel (Ni) is formed on the surface of particles made of tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ). And a film made of one or more kinds of metals selected from the group consisting of copper (Cu), tin (Sn), and cobalt (Co).
According to the “raw powder of the self-lubricating sintered body” of the present invention, since the coating film made of the metal is formed on the surface of the particles made of WS 2 or MoS 2 , it is compared with the raw material powder without the coating. Thus, the wettability with the binder phase component particles during sintering is improved.

前記「自己潤滑性焼結体の原料粉末」の製造方法としては、二硫化タングステン(WS2 )または二硫化モリブデン(MoS2 )からなる固体潤滑剤粒子と、鉄(Fe)粒子、ニッケル(Ni)粒子、銅(Cu)粒子、錫(Sn)粒子、およびコバルト(Co)粒子からなる群より選択される一種類以上の金属粒子と、ステンレス鋼、セラミックス、または超硬合金からなるボールを、遊星ミルのステンレス鋼製または超硬合金製のミルポットに入れて、ミルポット内を不活性ガス雰囲気として、このミルポットを回転させること(メカニカルアロイング法)により、前記固体潤滑剤粒子の表面に鉄(Fe)、ニッケル(Ni)、銅(Cu)、錫(Sn)、およびコバルト(Co)からなる群より選択される一種類以上の金属からなる被膜を形成する方法が挙げられる。 As the method for producing the “raw powder of self-lubricating sintered body”, solid lubricant particles made of tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ), iron (Fe) particles, nickel (Ni ) One or more types of metal particles selected from the group consisting of particles, copper (Cu) particles, tin (Sn) particles, and cobalt (Co) particles, and balls made of stainless steel, ceramics, or cemented carbide, Put in a planetary mill stainless steel or cemented carbide mill pot, and rotate the mill pot with an inert gas atmosphere inside the mill pot (mechanical alloying method). A coating made of one or more metals selected from the group consisting of Fe), nickel (Ni), copper (Cu), tin (Sn), and cobalt (Co). How to formation, and the like.

前記金属被膜は合金粒子の表面全体に形成されていることが好ましい。そのため、固体潤滑剤粒子と被膜用の金属粒子は、質量比で、固体潤滑剤粒子:金属粒子=10:1.0〜4.0の比率で配合することが好ましい。金属粒子の量が前記比率の範囲より少ないと、金属被膜により固体潤滑剤の表面を十分に被覆することができない。金属粒子の量が前記範囲より多いと、被膜が剥がれ易くなる。
また、固体潤滑剤粒子および金属粒子としては、平均粒径が3〜50μmのものを使用することが好ましい。これにより、厚さ5〜10μmの金属被膜の付いた直径10〜50μmの原料粉末(固体潤滑剤成分粒子)が得られる。
The metal coating is preferably formed on the entire surface of the alloy particles. Therefore, the solid lubricant particles and the metal particles for coating are preferably blended in a mass ratio of solid lubricant particles: metal particles = 10: 1.0 to 4.0. If the amount of the metal particles is less than the above range, the surface of the solid lubricant cannot be sufficiently covered with the metal coating. When the amount of the metal particles is larger than the above range, the coating is easily peeled off.
Further, as the solid lubricant particles and the metal particles, those having an average particle diameter of 3 to 50 μm are preferably used. Thereby, a raw material powder (solid lubricant component particles) having a diameter of 10 to 50 μm and a metal coating having a thickness of 5 to 10 μm is obtained.

本発明はまた、二硫化タングステン(WS2 )または二硫化モリブデン(MoS2 )を固体潤滑剤として含有する自己潤滑性焼結体の製造方法において、本発明の原料粉末と、タングステン(W)粒子またはモリブデン(Mo)粒子と、ニッケル、鉄、および硼素からなる合金(Ni−Fe−B)粒子と、の混合物を金型に入れて加圧成形する成形工程と、成形工程で得られた成形体を不活性ガス雰囲気下または減圧下で焼結する焼結工程と、を備えたことを特徴とする自己潤滑性焼結体の製造方法を提供する。 The present invention also provides a method for producing a self-lubricating sintered body containing tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ) as a solid lubricant, the raw material powder of the present invention, and tungsten (W) particles. Alternatively, a molding process in which a mixture of molybdenum (Mo) particles and alloy (Ni-Fe-B) particles made of nickel, iron, and boron (Ni-Fe-B) is put in a mold, and molding obtained in the molding process And a sintering step of sintering the body in an inert gas atmosphere or under reduced pressure. A method for producing a self-lubricating sintered body is provided.

本発明はまた、二硫化タングステン(WS2 )を固体潤滑剤として含有する自己潤滑性焼結体の製造方法において、表面にニッケル(Ni)被膜が形成された二硫化タングステン(WS2 )粒子と、タングステン(W)粒子と、ニッケル、鉄、および硼素からなる合金(Ni−Fe−B)粒子と、の混合物を金型に入れて加圧成形する成形工程と、成形工程で得られた成形体を不活性ガス雰囲気下または減圧下で焼結する焼結工程と、を備えたことを特徴とする自己潤滑性焼結体の製造方法を提供する。 The present invention also provides a method for producing a self-lubricating sintered body containing tungsten disulfide (WS 2 ) as a solid lubricant, and tungsten disulfide (WS 2 ) particles having a nickel (Ni) film formed on the surface thereof. , A molding process in which a mixture of tungsten (W) particles and alloy (Ni-Fe-B) particles made of nickel, iron, and boron (Ni-Fe-B) is put in a mold, and molding obtained in the molding process And a sintering step of sintering the body in an inert gas atmosphere or under reduced pressure. A method for producing a self-lubricating sintered body is provided.

本発明の自己潤滑性焼結体の製造方法において、前記焼結工程は、成形工程で得られた成形体を20℃/minの速度で1100℃以上1300℃以下の温度まで昇温させ、前記温度で30分以上保持することにより行うことが好ましい。
本発明の「自己潤滑性焼結体の製造方法」によれば、焼結時の結合相成分粒子との濡れ性が良好な原料粉末(固体潤滑剤成分粒子)を用いて前記条件で焼結を行うことにより、緻密な自己潤滑性焼結体が得られる。
In the method for producing a self-lubricating sintered body of the present invention, the sintering step is to raise the temperature of the molded body obtained in the molding step to a temperature of 1100 ° C. or higher and 1300 ° C. or lower at a rate of 20 ° C./min, It is preferable to carry out by holding at temperature for 30 minutes or more.
According to the “method for producing a self-lubricating sintered body” of the present invention, sintering is performed using the raw material powder (solid lubricant component particles) having good wettability with the binder phase component particles during sintering under the above conditions. By performing the above, a dense self-lubricating sintered body is obtained.

本発明の「自己潤滑性焼結体の原料粉末」は、固体潤滑剤粒子の表面に金属被膜が形成されていることにより、金属被膜が形成されていないものと比較して焼結時の濡れ性が良好になるため、緻密な自己潤滑性焼結体を製造することができる。
また、本発明の原料粉末を用い、本発明の方法で自己潤滑性焼結体を製造することにより、緻密な自己潤滑性焼結体が得られる。
The “raw material powder of the self-lubricating sintered body” of the present invention has a metal film formed on the surface of the solid lubricant particles, so that the wettability during sintering is compared with that without the metal film formed. Therefore, a dense self-lubricating sintered body can be produced.
Moreover, a dense self-lubricating sintered body can be obtained by using the raw material powder of the present invention and producing a self-lubricating sintered body by the method of the present invention.

以下、本発明の実施形態について説明する。
<サンプルNo.1>
二硫化タングステン(WS2 )を固体潤滑剤として含有する自己潤滑性焼結体を、以下の方法で作製した。この方法は、被膜形成工程、混合工程、成形工程、および焼結工程からなる。
[被膜形成工程]
平均粒径が10μmであるWS2 粉末85質量部と、平均粒径が10μmであるNi粉末15質量部を、直径10mmのステンレス鋼ボールが入っている遊星ミルのステンレス鋼ミルポットに入れ、アルゴンガス雰囲気下、このミルポットを回転速度600min-1で100時間回転させた。これにより、平均粒径10μmのWS2 粒子の表面に、厚さ5μmのNi被膜が形成された。このNi被膜を有するWS2 粒子が自己潤滑性焼結体の原料粉末(固体潤滑剤成分粒子)であり、その組成はWS2 Ni0.50である。
Hereinafter, embodiments of the present invention will be described.
<Sample No.1>
A self-lubricating sintered body containing tungsten disulfide (WS 2 ) as a solid lubricant was produced by the following method. This method includes a film forming step, a mixing step, a forming step, and a sintering step.
[Film formation process]
85 parts by weight of WS 2 powder having an average particle diameter of 10 μm and 15 parts by weight of Ni powder having an average particle diameter of 10 μm are put into a stainless steel mill pot of a planetary mill containing stainless steel balls having a diameter of 10 mm, and argon gas is added. Under the atmosphere, the mill pot was rotated at a rotation speed of 600 min −1 for 100 hours. As a result, a Ni film having a thickness of 5 μm was formed on the surface of WS 2 particles having an average particle diameter of 10 μm. The WS 2 particles having the Ni coating are raw powder (solid lubricant component particles) of a self-lubricating sintered body, and the composition thereof is WS 2 Ni 0.50 .

[混合工程]
次に、得られた「Ni被膜を有するWS2 粒子」を固体潤滑剤成分粒子として60質量部と、平均粒径が5μmであるタングステン(W)粒子30質量部と、平均粒径が10μmである「ニッケル、鉄、および硼素からなる合金(Ni−Fe−B)粒子」10質量部を、ミルポットがステンレス鋼製で、ボールがステンレス鋼製で、ボールの直径が10mmであるボールミルに入れ、アルゴンガス雰囲気下、回転速度50min-1の条件で20時間回転させた。
[Mixing process]
Next, 60 parts by mass of the obtained “WS 2 particles having a Ni coating” as solid lubricant component particles, 30 parts by mass of tungsten (W) particles having an average particle diameter of 5 μm, and an average particle diameter of 10 μm 10 parts by mass of certain “alloy (Ni—Fe—B) particles made of nickel, iron, and boron” are put into a ball mill in which the mill pot is made of stainless steel, the ball is made of stainless steel, and the diameter of the ball is 10 mm. The substrate was rotated for 20 hours under an argon gas atmosphere at a rotation speed of 50 min −1 .

[成形工程]
得られた混合物を、試験片作製用の型に入れ、油圧プレスにより圧力9.8×107 Pa(1ton/cm2 )、室温の条件で加圧成形した。
[焼結工程]
得られた成形体を直ぐに焼結炉に入れ、大気圧下で、炉内に窒素ガスを導入し、炉内の温度を、室温から1300℃まで3.0℃/minの速度で昇温し、1300℃で1時間保持することにより焼結を行った。
これにより、組成が(WS2 0.40Ni0.200.30(Ni−Fe−B)0.10である自己潤滑性焼結体の試験片が得られた。
[Molding process]
The obtained mixture was put into a mold for preparing a test piece and subjected to pressure molding with a hydraulic press under the conditions of a pressure of 9.8 × 10 7 Pa (1 ton / cm 2 ) and room temperature.
[Sintering process]
The obtained compact is immediately put into a sintering furnace, nitrogen gas is introduced into the furnace at atmospheric pressure, and the temperature in the furnace is increased from room temperature to 1300 ° C. at a rate of 3.0 ° C./min. Sintering was performed by holding at 1300 ° C. for 1 hour.
Thereby, a test piece of a self-lubricating sintered body having a composition (WS 2 ) 0.40 Ni 0.20 W 0.30 (Ni—Fe—B) 0.10 was obtained.

<サンプルNo.2>
得られた成形体を5時間大気中に放置した後に、焼結炉に入れて焼結工程を行った。これ以外はサンプルNo.1と同じ方法で、自己潤滑性焼結体の試験片を得た。
<サンプルNo.3>
[被膜形成工程]を行なわずに、[混合工程]で、固体潤滑剤成分粒子として平均粒径が10μmであるWS2 粉末を60質量部を用いた。これ以外は、サンプルNo.1と同じ方法で、自己潤滑性焼結体の試験片を得た。得られた自己潤滑性焼結体の組成は(WS2 0.400.50(Ni−Fe−B)0.10である
<Sample No.2>
The obtained molded body was left in the atmosphere for 5 hours, and then placed in a sintering furnace to perform a sintering process. Except for this, a test piece of a self-lubricating sintered body was obtained in the same manner as Sample No. 1.
<Sample No. 3>
Without performing the [film formation step], 60 parts by weight of WS 2 powder having an average particle size of 10 μm was used as the solid lubricant component particles in [Mixing step]. Except for this, a test piece of a self-lubricating sintered body was obtained by the same method as Sample No. 1. The composition of the obtained self-lubricating sintered body is (WS 2 ) 0.40 W 0.50 (Ni—Fe—B) 0.10 .

<サンプルNo.4>
得られた成形体を5時間大気中に放置した後に、真空焼結炉に入れて熱処理工程を行った。これ以外はサンプルNo.3と同じ方法で、自己潤滑性焼結体の試験片を得た。
これらの各試験片を用いて、圧縮強度、酸素含有率、相対密度(焼結体中の粒子が占める割合)を測定した。圧縮強度は、一軸圧縮試験装置を用い、ひずみ速度1mm/minの条件で測定した。酸素含有率は酸素分析装置を用いて測定した。また、アルキメデス法により比重を測定し、この測定比重を理論比重(空孔率が0の場合の比重)で除算することにより相対密度を求めた。その結果を下記の表1に示す。
<Sample No. 4>
The obtained molded body was left in the atmosphere for 5 hours, and then placed in a vacuum sintering furnace to perform a heat treatment step. Except for this, a test piece of a self-lubricating sintered body was obtained in the same manner as Sample No. 3.
Using each of these test pieces, the compressive strength, oxygen content, and relative density (ratio occupied by particles in the sintered body) were measured. The compressive strength was measured using a uniaxial compression test apparatus under the condition of a strain rate of 1 mm / min. The oxygen content was measured using an oxygen analyzer. The specific gravity was measured by the Archimedes method, and the relative density was determined by dividing this measured specific gravity by the theoretical specific gravity (specific gravity when the porosity is 0). The results are shown in Table 1 below.

Figure 2007045918
Figure 2007045918

この結果から以下のことが分かる。
焼結前の大気中での放置時間が同じ場合の比較で、Ni被膜を有するWS2 粒子を固体潤滑剤粒子として用いて製造したNo. 1は、Ni被膜のないWS2 粒子を固体潤滑剤粒子として用いて製造したNo. 3よりも、圧縮強度が高く、酸素含有率が低く、相対密度が高い。同様に、Ni被膜を有するWS2 粒子を固体潤滑剤粒子として用いて製造したNo. 2は、Ni被膜のないWS2 粒子を固体潤滑剤粒子として用いて製造したNo. 4よりも、圧縮強度が高く、酸素含有率が低く、相対密度が高い。
From this result, the following can be understood.
In comparison of the case standing time in the pre-sintered in the air are the same, No. 1 manufactured using the WS 2 particles as solid lubricant particles having a Ni coating, Ni uncoated WS 2 particles of solid lubricant It has higher compressive strength, lower oxygen content, and higher relative density than No. 3 produced as particles. Similarly, No. 2 produced using WS 2 particles having a Ni coating as solid lubricant particles has a higher compressive strength than No. 4 produced using WS 2 particles having no Ni coating as solid lubricant particles. Is high, the oxygen content is low, and the relative density is high.

この結果から、Ni被膜を有するWS2 粒子を固体潤滑剤粒子として用いることにより、Ni被膜のないWS2 粒子を固体潤滑剤粒子として用いた場合よりも、緻密で圧縮強度の良好な自己潤滑性焼結体が得られることが分かる。
焼結前の大気中での放置時間が0分の場合と5時間の場合を比較すると、Ni被膜を有するWS2 粒子を固体潤滑剤粒子として用いて製造したNo. 1とNo. 2は、圧縮強度、酸素含有率、および相対密度のいずれにも違いがない。これに対して、Ni被膜のないWS2 粒子を固体潤滑剤粒子として用いて製造したNo. 3とNo. 4では、大気中での放置時間が5時間であるNo. 4は、放置時間が0分であるNo. 3よりも、圧縮強度が低下し、酸素含有率が増加し、相対密度が低下している。
この結果から、Ni被膜を有するWS2 粒子は、Ni被膜のないWS2 粒子よりも酸化され難いことが分かる。
From this result, the self-lubricating property with finer and better compressive strength is obtained by using WS 2 particles having Ni coating as solid lubricant particles than when WS 2 particles without Ni coating are used as solid lubricant particles. It turns out that a sintered compact is obtained.
Comparing the case where the standing time in the atmosphere before sintering is 0 minutes and 5 hours, No. 1 and No. 2 produced using WS 2 particles having a Ni coating as solid lubricant particles are: There is no difference in any of compressive strength, oxygen content, and relative density. On the other hand, in No. 3 and No. 4 manufactured using WS 2 particles having no Ni coating as solid lubricant particles, the standing time in the atmosphere is 5 hours. Compared with No. 3 which is 0 minutes, the compressive strength is lowered, the oxygen content is increased, and the relative density is lowered.
From this result, it can be seen that WS 2 particles having a Ni coating are less likely to be oxidized than WS 2 particles having no Ni coating.

Claims (5)

二硫化タングステン(WS2 )または二硫化モリブデン(MoS2 )を固体潤滑剤として含有する自己潤滑性焼結体を、粉末冶金法で製造する際に使用される原料粉末であって、
二硫化タングステン(WS2 )または二硫化モリブデン(MoS2 )からなる粒子の表面に、鉄(Fe)、ニッケル(Ni)、銅(Cu)、錫(Sn)、およびコバルト(Co)からなる群より選択される一種類以上の金属からなる被膜が形成されていることを特徴とする自己潤滑性焼結体の原料粉末。
A raw material powder used when a self-lubricating sintered body containing tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ) as a solid lubricant is produced by a powder metallurgy method,
A group consisting of iron (Fe), nickel (Ni), copper (Cu), tin (Sn), and cobalt (Co) on the surface of particles made of tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ) A raw material powder for a self-lubricating sintered body, wherein a film made of one or more kinds of metals selected from the above is formed.
請求項1記載の原料粉末を製造する方法であって、
二硫化タングステン(WS2 )または二硫化モリブデン(MoS2 )からなる固体潤滑剤粒子と、
鉄(Fe)粒子、ニッケル(Ni)粒子、銅(Cu)粒子、錫(Sn)粒子、およびコバルト(Co)粒子からなる群より選択される一種類以上の金属粒子と、
ステンレス鋼、セラミックス、または超硬合金からなるボールを、
遊星ミルのステンレス鋼製または超硬合金製のミルポットに入れて、ミルポット内を不活性ガス雰囲気として、このミルポットを回転させることにより、前記固体潤滑剤粒子の表面に鉄(Fe)、ニッケル(Ni)、銅(Cu)、錫(Sn)、およびコバルト(Co)からなる群より選択される一種類以上の金属からなる被膜を形成することを特徴とする自己潤滑性焼結体原料粉末の製造方法。
A method for producing the raw material powder according to claim 1,
Solid lubricant particles made of tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 );
One or more metal particles selected from the group consisting of iron (Fe) particles, nickel (Ni) particles, copper (Cu) particles, tin (Sn) particles, and cobalt (Co) particles;
Balls made of stainless steel, ceramics, or cemented carbide
By placing the planetary mill in a stainless steel or cemented carbide millpot and setting the inside of the millpot to an inert gas atmosphere, the millpot is rotated, so that iron (Fe), nickel (Ni ), Copper (Cu), tin (Sn), and cobalt (Co), a film made of one or more metals selected from the group consisting of cobalt (Co) is produced. Method.
二硫化タングステン(WS2 )または二硫化モリブデン(MoS2 )を固体潤滑剤として含有する自己潤滑性焼結体の製造方法において、
請求項1記載の原料粉末と、タングステン(W)粒子またはモリブデン(Mo)粒子と、ニッケル、鉄、および硼素からなる合金(Ni−Fe−B)粒子と、の混合物を金型に入れて加圧成形する成形工程と、
成形工程で得られた成形体を不活性ガス雰囲気下または減圧下で焼結する焼結工程と、を備えたことを特徴とする自己潤滑性焼結体の製造方法。
In a method for producing a self-lubricating sintered body containing tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ) as a solid lubricant,
A mixture of the raw material powder according to claim 1, tungsten (W) particles or molybdenum (Mo) particles, and alloy (Ni-Fe-B) particles made of nickel, iron, and boron is added to a mold. Molding process for pressure molding;
A method for producing a self-lubricating sintered body, comprising: a sintering step of sintering the molded body obtained in the molding step under an inert gas atmosphere or under reduced pressure.
二硫化タングステン(WS2 )を固体潤滑剤として含有する自己潤滑性焼結体の製造方法において、
表面にニッケル(Ni)被膜が形成された二硫化タングステン(WS2 )粒子と、タングステン(W)粒子と、ニッケル、鉄、および硼素からなる合金(Ni−Fe−B)粒子と、の混合物を金型に入れて加圧成形する成形工程と、
成形工程で得られた成形体を不活性ガス雰囲気下または減圧下で焼結する焼結工程と、を備えたことを特徴とする自己潤滑性焼結体の製造方法。
In the method for producing a self-lubricating sintered body containing tungsten disulfide (WS 2 ) as a solid lubricant,
A mixture of tungsten disulfide (WS 2 ) particles having a nickel (Ni) film formed on the surface, tungsten (W) particles, and alloy (Ni—Fe—B) particles made of nickel, iron, and boron. A molding process of pressure molding in a mold;
A method for producing a self-lubricating sintered body, comprising: a sintering step of sintering the molded body obtained in the molding step under an inert gas atmosphere or under reduced pressure.
前記焼結工程は、成形工程で得られた成形体を20℃/minの速度で1100℃以上1300℃以下の温度まで昇温させ、前記温度で30分以上保持することにより行うことを特徴とする請求項3または4記載の自己潤滑性焼結体の製造方法。   The sintering step is performed by heating the molded body obtained in the molding step to a temperature of 1100 ° C. or higher and 1300 ° C. or lower at a rate of 20 ° C./min, and holding the temperature for 30 minutes or longer. The method for producing a self-lubricating sintered body according to claim 3 or 4.
JP2005231232A 2005-08-09 2005-08-09 Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material Pending JP2007045918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231232A JP2007045918A (en) 2005-08-09 2005-08-09 Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231232A JP2007045918A (en) 2005-08-09 2005-08-09 Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material

Publications (1)

Publication Number Publication Date
JP2007045918A true JP2007045918A (en) 2007-02-22

Family

ID=37849021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231232A Pending JP2007045918A (en) 2005-08-09 2005-08-09 Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material

Country Status (1)

Country Link
JP (1) JP2007045918A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108297A1 (en) * 2012-01-19 2013-07-25 日本精工株式会社 Self-lubricating composite material and rolling bearing
WO2014120434A1 (en) 2013-01-29 2014-08-07 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
CN109023184A (en) * 2018-09-03 2018-12-18 湘潭大学 A method of preparing the iron-nickel alloy containing shot-range ordered structure
CN112501555A (en) * 2020-11-19 2021-03-16 南京大学 Preparation method of single-layer molybdenum disulfide film
CN116117143A (en) * 2023-03-02 2023-05-16 得发科精密制造无锡有限公司 Method for preparing miniature sliding block body by adopting powder metallurgy method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108297A1 (en) * 2012-01-19 2013-07-25 日本精工株式会社 Self-lubricating composite material and rolling bearing
WO2014120434A1 (en) 2013-01-29 2014-08-07 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
EP2914682A4 (en) * 2013-01-29 2016-06-01 Halliburton Energy Services Inc Wellbore fluids comprising mineral particles and methods relating thereto
EP2912134A4 (en) * 2013-01-29 2016-06-01 Halliburton Energy Services Inc Wellbore fluids comprising mineral particles and methods relating thereto
US9777207B2 (en) 2013-01-29 2017-10-03 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
CN109023184A (en) * 2018-09-03 2018-12-18 湘潭大学 A method of preparing the iron-nickel alloy containing shot-range ordered structure
CN112501555A (en) * 2020-11-19 2021-03-16 南京大学 Preparation method of single-layer molybdenum disulfide film
CN116117143A (en) * 2023-03-02 2023-05-16 得发科精密制造无锡有限公司 Method for preparing miniature sliding block body by adopting powder metallurgy method
CN116117143B (en) * 2023-03-02 2023-10-31 得发科精密制造无锡有限公司 Method for preparing miniature sliding block body by adopting powder metallurgy method

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
JP5059022B2 (en) Iron-copper composite powder for powder metallurgy and method for producing the same
JP6106323B1 (en) Sintered tungsten-based alloy and method for producing the same
CN110369730B (en) Copper-coated iron powder and preparation method thereof
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
JP2007045918A (en) Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material
JP4410066B2 (en) Manufacturing method of electrical contact material
JPS63297502A (en) High-strength alloy steel powder for powder metallurgy and its production
CN107427923B (en) Mechanical part and its manufacturing method
EP3321000B1 (en) Mixed powder for iron-based powder metallurgy, and method for producing same
JP3849118B2 (en) Powder metallurgy and sintered metal bodies
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
US5346529A (en) Powdered metal mixture composition
JP2001294905A (en) Method for producing micromodule gear
JP2006503981A (en) Method for controlling dimensional changes during sintering of iron-based powder mixtures
JP2016160523A (en) Copper-molybdenum composite material and method for producing the same
JP2019123898A (en) Manufacturing method of copper alloy sintering material
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
JP4161299B2 (en) Sintering method using tungsten-copper composite powder, sintered body, and heat sink
KR102356988B1 (en) Dispersion Hardened Silver-based Composite for Measuring Device Element of Electronic Parts and Manufacturing Process of the Dispersion Hardened Silver-based Composite by Powder Metallurgy
TWI790032B (en) Low-temperature sintering counterweight production method
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JP2011214097A (en) Alloy-steel-powder mixed powder with small variation of sintering strength
TWI797882B (en) Method for making non-magnetic counterweight