JP7188726B2 - Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same - Google Patents

Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same Download PDF

Info

Publication number
JP7188726B2
JP7188726B2 JP2017203486A JP2017203486A JP7188726B2 JP 7188726 B2 JP7188726 B2 JP 7188726B2 JP 2017203486 A JP2017203486 A JP 2017203486A JP 2017203486 A JP2017203486 A JP 2017203486A JP 7188726 B2 JP7188726 B2 JP 7188726B2
Authority
JP
Japan
Prior art keywords
diamond
boron
based composite
diamond particles
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017203486A
Other languages
Japanese (ja)
Other versions
JP2019006662A (en
Inventor
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomei Diamond Co Ltd
Original Assignee
Tomei Diamond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomei Diamond Co Ltd filed Critical Tomei Diamond Co Ltd
Publication of JP2019006662A publication Critical patent/JP2019006662A/en
Application granted granted Critical
Publication of JP7188726B2 publication Critical patent/JP7188726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ダイヤモンド粒子が炭化ホウ素を介して固結一体化されたダイヤモンド質複合材、及びその製造方法に関する。本発明は特に、硬度及び耐熱性に優れた切削工具要素および研磨研削材として鉄系金属材を始め多様な材種の加工に適用可能で、また幅広い分野の切削,研削・研磨加工に使用可能なダイヤモンド集合体及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a diamond composite material in which diamond particles are consolidated and integrated via boron carbide, and a method for producing the same. In particular, the present invention can be applied to the processing of various types of materials including ferrous metals as a cutting tool element and polishing abrasive with excellent hardness and heat resistance, and can be used for cutting, grinding and polishing in a wide range of fields. It relates to a diamond aggregate and a method for producing the same.

硬度が高く耐摩耗性に優れた研磨材である粉状ダイヤモンドを結合させた焼結体が切削工具のチップ等の製作に利用されてきた。このような焼結体はダイヤモンド多結晶体(PCD)とも呼ばれ、一般には超高圧高温下でコバルト(Co)を溶融してダイヤモンド粉末間に流入させ、融液相を介してダイヤモンド粉末を一体化したもので、工具材として広く利用されている。 A sintered body in which powdered diamond, which is an abrasive material with high hardness and excellent wear resistance, is bonded has been used for manufacturing tips of cutting tools and the like. Such a sintered body is also called a polycrystalline diamond (PCD). Generally, cobalt (Co) is melted under ultra-high pressure and high temperature and flowed between the diamond powders, and the diamond powders are integrated through the melt phase. It is widely used as a tool material.

しかしながら結合材のコバルトは700℃位からダイヤモンドをグラファイト化させる触媒として作用し、温度上昇に伴ってこの作用が顕著になるので、切削時の発熱による高温条件下での使用が困難という耐熱性の問題があった。また、ダイヤモンド自体、鉄との反応性があるという問題もある。従ってダイヤモンドに内包されるこれらの問題を克服し、極めて硬いダイヤモンドの特性が発揮できる切削チップ材として、鉄系材質の切削にも適用可能なダイヤモンド質塊体の開発が望まれている。 However, the cobalt binder acts as a catalyst to graphitize diamond from about 700°C, and this effect becomes more pronounced as the temperature rises. I had a problem. Another problem is that diamond itself is reactive with iron. Therefore, it is desired to develop a diamond mass that overcomes these problems inherent in diamond and that can be applied to cutting ferrous materials as a cutting tip material that exhibits the properties of extremely hard diamond.

コバルトを使用せずにダイヤモンド多結晶体(塊体)を調製する方法は公知である。例えば結合材としてコバルトに代えてアルカリ土類炭酸塩(特許文献1)、炭化ホウ素(特許文献2)を用いる方法、結合材を用いないで、ダイヤモンドが直接結合した一体品とする方法(特許文献3)が知られている。 Methods for preparing diamond polycrystals (agglomerates) without the use of cobalt are known. For example, a method of using alkaline earth carbonate (Patent Document 1) or boron carbide (Patent Document 2) instead of cobalt as a binder, a method of forming an integrated product in which diamond is directly bonded without using a binder (Patent Document 3) is known.

特許文献1の方法においては、ダイヤモンド粉末に導電性付与のためのドーピング材としてボロン粉末0.5~15wt%と、焼結体の結合相を形成する成分としてMg、Ca等の「アルカリ土類炭酸塩」粉末とが混合添加され、第一段階でボロンの拡散によるダイヤモンド粉末への導電性付与、第二段階で結合相のダイヤモンド粉末粒子間隙への溶浸充填によって導電性のダイヤモンド焼結体が得られている。これらの処理には超高圧高温が必要で、特に第二段階は6.0~9.0GPa、1600~2500℃で行われている。 In the method of Patent Document 1, 0.5 to 15 wt% of boron powder is used as a doping material for imparting conductivity to the diamond powder, and "alkaline earth carbonates" such as Mg and Ca are used as components that form the binding phase of the sintered body. A conductive diamond sintered body is obtained by infiltration-filling the interstices of the diamond powder grains with the bonding phase in the second step. It is These processes require ultra-high pressure and high temperature, especially the second stage is performed at 6.0-9.0GPa and 1600-2500℃.

特許文献2の方法においては溶融温度2450℃の炭化ホウ素を溶融乃至半溶融状態でダイヤモンドの粒子間へ浸透させる操作が必要であり、微粉末化による焼結温度の低下を見込んでも2000℃程度の加熱を必要とし、この温度においてダイヤモンドを熱力学的に安定な状態に保つには7GPa以上の超高圧力維持が必要で、焼結装置の負担がさらに大きくなる。 In the method of Patent Document 2, it is necessary to infiltrate the boron carbide with a melting temperature of 2450°C into the diamond grains in a molten or semi-molten state. Heating is required, and in order to keep diamond in a thermodynamically stable state at this temperature, it is necessary to maintain an ultra-high pressure of 7GPa or more, which further increases the burden on the sintering equipment.

特許文献3の方法はグラファイトからダイヤモンドへの直接変換と焼結とを同時に実施することで、ダイヤモンドのみで構成されたタフな焼結体が得られるが、高温での反応においてダイヤモンドの熱力学的安定性を確保するために、8GPa以上の更なる超高圧力維持が必要とされる。 In the method of Patent Document 3, a tough sintered body composed only of diamond is obtained by simultaneously performing direct conversion from graphite to diamond and sintering. To ensure stability, a further ultra-high pressure maintenance of 8GPa or more is required.

特開2008-133173号公報Japanese Patent Application Laid-Open No. 2008-133173 米国特許第3,136,615号U.S. Patent No. 3,136,615 特開2012-106925号公報Japanese Patent Application Laid-Open No. 2012-106925

本発明は、ダイヤモンド粒子が添加したホウ素との反応で生じた炭化ホウ素を介して強固に結合一体化したと解される複合材に関するものである。
本発明は特に、鉄を含むすべての材料の加工への適用が可能であり、結合材によるグラファイト化への相転換促進も生じず、さらに現在一般的なコバルト系ダイヤモンド焼結体(PCD)製造条件で製作が可能なダイヤモンド集合体を提供することを課題とする。
The present invention relates to composite materials believed to be strongly bonded together via boron carbide produced by reaction of diamond particles with added boron.
In particular, the present invention can be applied to the processing of all materials containing iron, does not promote phase conversion to graphitization by binders, and is currently used in the manufacture of cobalt-based diamond sintered bodies (PCD) that are commonly used. An object of the present invention is to provide a diamond aggregate that can be manufactured under certain conditions.

本発明は切削工具等の素材として、或いは研磨・研削砥粒の原料として好適な高硬度ダイヤモンド集合体の作成において、結合材として、ダイヤモンドのグラファイト化への触媒作用を持つ従来のコバルト等の鉄系金属や、高融点物質であるボロンカーバイドに代えてホウ素を用いることにより、各種鋼材等、鉄系材料加工への利用が可能なダイヤモンド-ホウ素複合集合体を提供するものである。 The present invention uses conventional iron such as cobalt, which has a catalytic effect on the graphitization of diamond, as a binder in the production of a high-hardness diamond aggregate suitable as a material for cutting tools or as a raw material for abrasive grains for polishing and grinding. A diamond-boron composite aggregate that can be used for processing iron-based materials such as various steel materials by using boron instead of boron carbide, which is a high-melting-point material, is provided.

本発明は、ダイヤモンド粒子を単体の(金属)ホウ素粉末と密に混合して加圧下での加熱操作に供し、その際にダイヤモンド粒子の表面に形成された(in situ formed)炭化ホウ素層を結合材として一体化したものである。ダイヤモンド粒子の表面のホウ化物層はダイヤモンドの酸素との接触を断つ保護層として作用するため、本発明の処理には必ずしもダイヤモンドが熱力学的に安定な超高圧を必要としない。即ち従来のダイヤモンド焼結体に匹敵する硬さを有する複合材が、より低圧領域でも製作可能という、利点が達成される。 The present invention involves intimately mixing diamond particles with a single (metallic) boron powder and subjecting it to a heating operation under pressure, which binds the in situ formed boron carbide layer on the surface of the diamond particles. It is an integrated material. Because the boride layer on the surface of the diamond grain acts as a protective layer that keeps the diamond out of contact with oxygen, the process of the present invention does not necessarily require ultrahigh pressures where diamond is thermodynamically stable. That is, an advantage is achieved that a composite material having a hardness comparable to that of a conventional diamond sintered body can be manufactured even in a lower pressure range.

ダイヤモンド粒子を、予め形成された(preformed)炭化ホウ素BCで結合する試みは前記のとおり公知である。また導電性付与のドープ材としてのホウ素粉末を結合材粉末と混合してダイヤモンド粒子と共に超高圧高温下で加圧加熱処理する方法も公知である。しかしこの例においては前記のように結合相成分としてMg、Ca、Sr、Baの炭酸塩やこれらの複合炭酸塩が使用され、これらはダイヤモンド粒子間隙中に溶浸することによって焼結体が製造されており、多数のダイヤモンド粒子を一体化・塊体とする際に金属ホウ素を結合材として用いダイヤモンド粒子と混合処理した例は見られない。 Attempts to bond diamond particles with preformed boron carbide B 4 C are known, as mentioned above. Also known is a method in which boron powder as a doping material for imparting conductivity is mixed with binder powder, and the mixture is pressurized and heated together with diamond particles under ultra-high pressure and high temperature. However, in this example, carbonates of Mg, Ca, Sr, and Ba and their composite carbonates are used as binder phase components as described above, and sintered bodies are produced by infiltrating these into the interstices of diamond grains. However, there is no example of using metallic boron as a binder and mixing it with diamond particles when integrating and agglomerating a large number of diamond particles.

ダイヤモンド(炭素)とホウ素との反応によって炭化ホウ素を形成する反応は発熱反応であることから、加熱加圧操作において両成分の界面では、周囲からの加熱温度に加えてホウ化物形成反応による反応熱が生じることにより、局部的に生成ホウ化物の融点を超える箇所も出現し、緻密化が促進されると考えられる。この反応熱を利用することにより、加熱に必要なエネルギーの消費量を軽減することが出来る。 Since the reaction between diamond (carbon) and boron to form boron carbide is an exothermic reaction, at the interface between the two components during the heating and pressurizing operation, the reaction heat from the boride formation reaction in addition to the surrounding heating temperature It is thought that by the occurrence of , the melting point of the produced boride is locally exceeded, and the densification is promoted. By utilizing this heat of reaction, the energy consumption required for heating can be reduced.

炭化ホウ素の形成は固相における相互拡散でも生じるが、加熱温度の上昇に伴ってより速やかに進行する。但し界面に形成されたBC層は相互拡散の障壁になり、新たなBC層の形成速度が低下すると考えられ、実際通常の加熱操作においてダイヤモンドの全量が炭化ホウ素に転化する現象は認められていない。 Boron carbide formation also occurs by interdiffusion in the solid phase, but proceeds more rapidly with increasing heating temperature. However, the B 4 C layer formed at the interface is thought to act as a barrier to interdiffusion, which slows down the rate of formation of a new B 4 C layer. not allowed.

本発明においてはまた、少量の金属、特に遷移金属を添加することにより、金属ホウ化物形成時の大きな反応熱を利用した緻密化と、金属ホウ化物による集合体への靭性付与を行うこともできる。この場合には添加した金属とダイヤモンドとの間で金属炭化物の形成も生じる。この反応も大きな発熱を伴い、生成物の緻密化と化学結合による相互の一体化が促進される。 In the present invention, by adding a small amount of a metal, especially a transition metal, densification using a large amount of reaction heat during formation of the metal boride and toughness of the aggregate by the metal boride can be imparted. . Metal carbide formation also occurs in this case between the added metal and the diamond. This reaction is also highly exothermic, promoting densification of the products and mutual integration through chemical bonding.

すなわち本発明は、以下のダイヤモンド複合材およびその製造方法に関する。
[1] 複数個のダイヤモンド粒子と、ホウ素或いはホウ素および不可避不純物からなる結合材料とからなる出発物質の加圧加熱処理によって、結合一体化された複合材。
[2] 出発物質全体におけるダイヤモンド粒子の含有量が60%~99.5%(質量比。以下同様)、ホウ素或いはホウ素および不可避不純物からなる結合材料の含有量が0.5%~40%である、[1]に記載の複合材。
[3]複数個のダイヤモンド粒子と金属ホウ素とを含む出発物質の加圧加熱処理によって緻密に結合一体化された複合材であって、ダイヤモンド粒子の表面が上記加圧加熱処理においてホウ素との反応により形成された炭化ホウ素層を有し、かつ該ダイヤモンド粒子の隣接粒子同士が直接結合および/又は出発物質成分および/又はその派生物と共に結合一体化されてなる[1]または[2]に記載のダイヤモンド基複合材。
[4]前記出発物質に加えてさらに、第一の金属質成分を、該出発物質の質量に対して15%以下含有せしめた、[1]乃至[3]のいずれか一項に記載のダイヤモンド基複合材。
[5]第一の金属質成分が前記加圧加熱処理において少なくとも表面に成分ホウ素との反応によりその場で形成されたホウ化物層を有する、[4]に記載のダイヤモンド基複合材。
[6]前記第一の金属質成分がAl、Si、Fe、Co、Ni、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、WCから選ばれる1種以上である、[4]または[5]に記載のダイヤモンド基複合材。
[7]ビッカース硬さが40GPa以上である、[1]乃至[6]のいずれか一項に記載のダイヤモンド基複合材。
[8]前記ダイヤモンド粒子の平均粒径が100μm以下である、[1]乃至[7]のいずれか一項に記載のダイヤモンド基複合材。
[9]前記ダイヤモンド粒子の平均粒径が20μm以下である、[8]に記載のダイヤモンド基複合材。
[10]前記ダイヤモンド粒子の平均粒径が1μm以下である、[8]又は[9]に記載のダイヤモンド基複合材。
[11]前記ダイヤモンド粒子が規定された粒度分布及び平均粒度を有する、[1]乃至[10]のいずれか一項に記載のダイヤモンド基複合材。
That is, the present invention relates to the following diamond composite material and its manufacturing method.
[1] Composite material bonded and integrated by pressure and heat treatment of a starting material comprising a plurality of diamond particles and a bonding material comprising boron or boron and unavoidable impurities.
[2] The content of diamond particles in the entire starting material is 60% to 99.5% (mass ratio; the same shall apply hereinafter), and the content of binding material composed of boron or boron and inevitable impurities is 0.5% to 40%, [1 ].
[3] A composite material in which a starting material containing a plurality of diamond particles and metallic boron is densely bonded and integrated by pressure and heat treatment, wherein the surfaces of the diamond particles react with boron in the pressure and heat treatment. and wherein adjacent diamond grains are directly bonded and/or bonded together with starting material components and/or derivatives thereof. diamond matrix composites.
[4] The diamond according to any one of [1] to [3], which further contains a first metallic component in an amount of 15% or less based on the mass of the starting material in addition to the starting material. matrix composite.
[5] The diamond-based composite according to [4], wherein the first metallic component has a boride layer formed in situ on at least the surface thereof by reaction with the component boron during the pressure and heat treatment.
[6] The first metallic component is one or more selected from Al, Si, Fe, Co, Ni, Cu, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and WC. , [4] or [5].
[7] The diamond-based composite material according to any one of [1] to [6], which has a Vickers hardness of 40 GPa or more.
[8] The diamond-based composite material according to any one of [1] to [7], wherein the diamond particles have an average particle size of 100 µm or less.
[9] The diamond-based composite material according to [8], wherein the diamond particles have an average particle size of 20 µm or less.
[10] The diamond-based composite material according to [8] or [9], wherein the diamond particles have an average particle size of 1 µm or less.
[11] The diamond-based composite according to any one of [1] to [10], wherein the diamond particles have a defined particle size distribution and average particle size.

[12]ダイヤモンド粒子の集合体を粉末状のホウ素と混合してなる出発混合集合体を処理セルに充填し、1500℃以上の反応温度にて加熱加圧処理することを特徴とするダイヤモンド基複合材の製法。
[13]前記ダイヤモンド粒子の集合体を粉末状のホウ素及び粉末状の第一金属材と密に混合して処理セルに充填する、[12]に記載の方法。
[14]前記第一金属がAl、Si、Fe、Co、Ni、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、WCから選ばれる1種以上である、[13]に記載の方法。
[15]前記加熱加圧処理をダイヤモンドの熱力学的安定領域内の温度圧力条件で行う、[12]乃至[14]のいずれか一項に記載の方法。
[16]前記加熱加圧処理をホットプレス工程によって行う、[12]乃至[14]のいずれか一項に記載の方法。
[17]前記加熱加圧処理を放電プラズマ工程によって行う、[12]乃至[14]のいずれか一項に記載の方法。
[18]前記加熱加圧処理を燃焼合成反応によって行う、[12]乃至[14]のいずれか一項に記載の方法。
[19][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材で構成される切削工具要素。
[20][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材から一定の形状に切り出された切削工具要素。
[21][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材で構成される構造部材。
[22][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材を破砕して得られた研削砥粒。
[23][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材を破砕して砕粒とし、該砕粒の集合体を整粒し、さらに金属質、樹脂質又はセラミック質ボンド剤で成形してなる研磨研削工具。
[12] A diamond-based composite characterized by filling a treatment cell with a starting mixed aggregate obtained by mixing an aggregate of diamond particles with powdered boron and subjecting the mixture to heat and pressure at a reaction temperature of 1500°C or higher. Material manufacturing method.
[13] The method of [12], wherein the aggregate of diamond particles is intimately mixed with powdered boron and powdered first metal material to fill the processing cell.
[14] The first metal is one or more selected from Al, Si, Fe, Co, Ni, Cu, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and WC. ] The method described in .
[15] The method according to any one of [12] to [14], wherein the heat and pressure treatment is performed under temperature and pressure conditions within the thermodynamically stable region of diamond.
[16] The method according to any one of [12] to [14], wherein the heat and pressure treatment is performed by a hot press process.
[17] The method according to any one of [12] to [14], wherein the heating and pressurizing treatment is performed by a discharge plasma process.
[18] The method according to any one of [12] to [14], wherein the heat and pressure treatment is performed by a combustion synthesis reaction.
[19] A cutting tool element composed of the diamond-based composite material according to any one of [1] to [11].
[20] A cutting tool element cut into a predetermined shape from the diamond-based composite material according to any one of [1] to [11].
[21] A structural member composed of the diamond-based composite material according to any one of [1] to [11].
[22] Grinding grains obtained by crushing the diamond-based composite material according to any one of [1] to [11].
[23] The diamond-based composite material according to any one of [1] to [11] is crushed to obtain crushed granules, the aggregate of the crushed granules is sized, and a metallic, resinous or ceramic bonding agent is used. Abrasive grinding tool formed by molding.

本発明の炭化ホウ素結合ダイヤモンド基複合材は、特にダイヤモンド粒子と共に出発物質として不定形ホウ素を用い、ダイヤモンド粒子を炭化ホウ素及びホウ素を結合材として一体化結合することにより、ダイヤモンド基の硬質複合材が、従来のB4C結合による焼結体よりも低温で製造可能となる、という優れた効果を奏する。 The boron carbide-bonded diamond-based composite material of the present invention is obtained by using amorphous boron as a starting material together with diamond particles, and integrally bonding the diamond particles using boron carbide and boron as binders to obtain a diamond-based hard composite material. , the sintered body can be produced at a lower temperature than the conventional sintered body by B4C bonding.

集合体としての硬さは結合材の硬さにも依存する。本発明においてはダイヤモンド粒子の表面がホウ素と接触し、両者の反応によって炭化ホウ素の層が形成されることにより、ホウ素との間に強い結合力が発生していると考えることができる。炭化ホウ素はバルク材ではビッカース硬さは33GPa(約3370VHN)とされているが、本発明における炭化ホウ素層の厚さはnmオーダーまたはそれ以下の薄膜であることから、本発明品における炭化ホウ素の影響は限定的である。 The hardness of the aggregate also depends on the hardness of the binder. In the present invention, the surface of the diamond particle comes into contact with boron, and the reaction between the two forms a layer of boron carbide, which is thought to generate a strong bonding force with boron. Boron carbide has a Vickers hardness of 33 GPa (approximately 3370 VHN) as a bulk material. Limited impact.

本発明の複合材においてはまた、ダイヤモンド粒子間にホウ素が存在する可能性があるが、標準状態において安定なβ-ホウ素が45GPa(約4590VHN)の硬さを有しており、硬さの面では焼結バインダーを用いたcBN(立方晶窒化硼素)焼結体を凌ぐレベルである。従ってダイヤモンド粒子の結合材としてホウ素由来の硬質材料を用いる本発明品は、ダイヤモンドに近い硬さを有する複合材として、鉄系材料を含むすべての材料の切削加工工具素材としての、広い用途が期待される。 In the composite material of the present invention, there may also be boron between the diamond grains. This is a level surpassing a cBN (cubic boron nitride) sintered body using a sintering binder. Therefore, the product of the present invention, which uses a boron-derived hard material as a binder for diamond particles, is expected to be widely used as a composite material having a hardness close to that of diamond and as a cutting tool material for all materials including ferrous materials. be done.

さらに、本発明のダイヤモンド複合材は、従来のダイヤモンド焼結体とは異なり、ダイヤモンドのグラファイト化への相転換を促進するコバルト等の鉄系金属を含まない、または微量に含んでいてもダイヤモンドへの影響が殆どないことから、耐熱性の高いダイヤモンド集合体となる。
なお、本発明の複合材は、その構造または特性により直接特定することが、凡そ実際的でないものである。
Furthermore, unlike conventional diamond sintered bodies, the diamond composite material of the present invention does not contain iron-based metals such as cobalt that promote the phase conversion of diamond to graphitization, or even if it contains a trace amount, it can be converted into diamond. Since there is almost no influence of , it becomes a diamond aggregate with high heat resistance.
It is almost impractical to directly specify the composite material of the present invention by its structure or properties.

本発明のダイヤモンド-ホウ素複合体は、ダイヤモンド粒子を粉末状の結晶質または不定形またはこれらの混在したホウ素と混合し、この混合粉末を、加圧状態での高温下に置く加圧・加熱処理によって、より効率よく得られる。加圧方法として最も好ましいのはダイヤモンド焼結体製造用の超高圧高温装置であって、1450℃以上、5GPa以上の温度、圧力の使用が好ましい。 The diamond-boron composite of the present invention is obtained by mixing diamond particles with powdered crystalline or amorphous boron or a mixture thereof, and subjecting the mixed powder to a high temperature under pressure. can be obtained more efficiently by The most preferable pressurizing method is an ultrahigh-pressure and high-temperature apparatus for producing diamond sintered bodies, and it is preferable to use a temperature and pressure of 1450° C. or higher and 5 GPa or higher.

上記の圧力条件は、長時間の高温付与を行った場合にも、ダイヤモンドのグラファイト化を効果的に防止してダイヤモンドが熱力学的に安定相として存在できる環境を実現するための要件である。 The above pressure conditions are requirements for realizing an environment in which diamond can be present as a thermodynamically stable phase by effectively preventing graphitization of diamond even when high temperature is applied for a long time.

但し、超高圧力の付与は必須ではない。ダイヤモンドとホウ素との反応により、ダイヤモンド粒子表面にB4C層が形成される反応は速く、グラファイト化への誘導時間内のごく短時間で完了することが予期される。一方、誘導時間は還元雰囲気中では長くなることが認められていることから、ダイヤモンドのグラファイト化への誘導時間内に実質的な反応完了が可能な加熱方法を用いる場合には、HIP、ホットプレス、放電プラズマ焼結、あるいは燃焼合成技術も用いることができる。 However, application of ultra-high pressure is not essential. The reaction of diamond and boron to form a B 4 C layer on the surface of diamond particles is rapid and is expected to be completed in a very short time within the induction time for graphitization. On the other hand, it is recognized that the induction time becomes longer in a reducing atmosphere. Therefore, when using a heating method that allows substantial completion of the reaction within the induction time for graphitization of diamond, HIP, hot press, etc. are used. , spark plasma sintering, or combustion synthesis techniques can also be used.

従って本発明のダイヤモンド基複合材の製造には、既存の各種焼結装置を用いることができ、高性能切削、研削工具素材の大量生産が可能である。 Therefore, various existing sintering apparatuses can be used for the production of the diamond-based composite material of the present invention, and high-performance cutting and grinding tool materials can be mass-produced.

加熱操作を還元雰囲気内で実施するために、出発原料中に例えば水素化チタンなどの金属水素化物を添加することもできる。昇温の際に生じたガスによって出発原料が水素雰囲気に保たれ、反応によって生じる金属ホウ化物は、複合体の靭性、導電性などの物性に好ましい効果を生じる。 Metal hydrides, such as titanium hydride, can also be added to the starting material in order to carry out the heating operation in a reducing atmosphere. The starting material is maintained in a hydrogen atmosphere by the gas generated during the temperature rise, and the metal boride produced by the reaction has a favorable effect on the physical properties of the composite, such as toughness and electrical conductivity.

本発明のダイヤモンド基複合材は硬質材として様々な用途への利用が見込まれる。この際、特に切削工具、研磨・研削工具の用途を意図する場合には、結合材の靭性改善のために少量の金属成分の添加が有効である。このような靭性改善金属としてはAl、Si、Fe、Co、Ni、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、Wが適し、これらの金属種は単独又は組み合わせて利用可能である。靭性改善金属の添加は得られる複合材の硬度を低下させることから、ダイヤモンドとホウ素とから成る出発材料に添加する際、好適な硬度を維持するために、出発材料の質量に対し外掛けで15%以下とすることが望ましい。 The diamond-based composite material of the present invention is expected to be used in various applications as a hard material. In this case, especially when intended for use as a cutting tool or polishing/grinding tool, it is effective to add a small amount of metal components to improve the toughness of the binder. Al, Si, Fe, Co, Ni, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W are suitable as such toughness-improving metals, and these metals can be used singly or in combination. be. Since the addition of the toughness-improving metal reduces the hardness of the resulting composite, when added to the diamond-boron starting material, it is recommended to add 15% to the mass of the starting material in order to maintain suitable hardness. % or less is desirable.

前記の金属成分の添加は、放電加工等のために導電性を付与する場合にも有効に作用する。添加する金属成分の種類及び量は、個々の用途に応じて適宜選択決定される。さらにこれらの金属は使用目的に合わせて炭化物、窒化物或いはホウ化物等、化合物の形で添加することも可能である。 Addition of the above-described metal component is also effective in imparting electrical conductivity for electric discharge machining or the like. The type and amount of the metal component to be added are appropriately selected and determined according to individual uses. Furthermore, these metals can be added in the form of compounds such as carbides, nitrides or borides depending on the purpose of use.

一方、本発明において結合一体化されるダイヤモンド粒子としては、目的とする硬さに応じて100μmまで如何なる粒度のものも使用可能であるが、加工工具として必要な靭性を確保する観点からは20μm以下、特に1μm以下の粒子が好適である。 On the other hand, as the diamond particles to be bonded and integrated in the present invention, any particle size up to 100 μm can be used according to the desired hardness, but from the viewpoint of ensuring the toughness necessary for processing tools, it is 20 μm or less. Particles of 1 μm or less are particularly preferred.

本発明において複合材に含有されるホウ素は、ダイヤモンド粒子と接触して表面に炭化ホウ素層を形成すると解される。このためホウ素の量は複合材中に一様に分布しダイヤモンド粒子成分の全表面と接触させるのに十分な量を含有させることが好ましいが、一方生成される複合材中にホウ素相が過剰に存在すると複合材の靭性が低下することになる。従って複合材に含有されるホウ素の量は用いるダイヤモンドの粒度にもよるが、全体の0.5%以上40%以下が好適である。 It is understood that the boron contained in the composite in the present invention forms a boron carbide layer on the surface upon contact with the diamond particles. For this reason, it is preferred that the amount of boron be distributed uniformly in the composite and sufficient to contact all surfaces of the diamond particle component. Their presence will reduce the toughness of the composite. Therefore, although the amount of boron contained in the composite material depends on the grain size of the diamond used, it is preferably 0.5% or more and 40% or less of the total.

これまでに単体のホウ素をダイヤモンド粒子と組合せ、加熱操作によってその場で形成された炭化ホウ素によってダイヤモンド粒子を結合した複合材は知られていない。本願発明においては、効果的な結合材の有効な利用によってきわめて高い硬度と共に、またダイヤモンド粒子のグラファイトへの相転移を来さない高い耐熱性も同時に達成された、高性能の複合体が達成される。 Heretofore no composite material is known in which elemental boron is combined with diamond particles and the diamond particles are bound by boron carbide formed in situ by a heating operation. In the present invention, a high-performance composite material has been achieved that has extremely high hardness and high heat resistance that does not cause a phase transition of diamond grains to graphite due to the effective use of binders. be.

耐熱性の発現は、ダイヤモンド粒子表面において、結合した炭化ホウ素を含むホウ化物から転じた酸化ホウ素膜がダイヤモンド粒子表面を覆い、ダイヤモンドが酸素に触れることによるグラファイト化の開始が阻止されることによる、とも説明されている。 Heat resistance is developed by covering the surface of the diamond grains with a boron oxide film that is converted from a boride containing boron carbide bonded to the surface of the diamond grains, thereby preventing the initiation of graphitization due to contact of the diamonds with oxygen. is also explained.

本発明によるダイヤモンド基複合材は、従来の超砥粒焼結体と同様に、反応装置から取出し未切断の原複合材塊体として所定の形状に整えられ、さらにレーザー切断や放電切断により所要形状に切断して、或いは未切断のまま各種切削工具ブランクや工具要素として利用可能である。ここで塊体とは、焼結体調製装置から回収され、混在物を除去して単離された工具要素に切断される前の大断面複合材塊体を指す。 The diamond-based composite material according to the present invention is taken out from the reaction apparatus and prepared into a predetermined shape as an uncut original composite material block, and then cut into a desired shape by laser cutting or electric discharge cutting, in the same manner as a conventional superabrasive sintered body. It can be used as various cutting tool blanks and tool elements after being cut into pieces or uncut. A mass, as used herein, refers to a large cross-section composite mass that has been recovered from a sinter preparation apparatus and prior to removal of inclusions and cutting into isolated tool elements.

本発明の複合体はまた、高強度の研削砥粒、特に通常の高温・高圧合成技術では製作が困難な粒径0.5mm以上の研磨研削工具用の高硬度砥粒を製造するための原料としても用いることができる。即ち一旦直径数十mmの大断面の複合材塊体を調製した後、破砕して篩い分け整粒することにより、呼称#40よりも粗いダイヤモンド―ホウ素複合材からなるダイヤモンド多結晶粒子が容易に得られる。ホウ素はダイヤモンド、炭化ホウ素に比して脆いので、複合材中に未反応の形で残留しているホウ素の箇所で破断する傾向がある。 The composite of the present invention can also be used as a raw material for producing high-strength abrasive grains, especially high-hardness abrasive grains for abrasive grinding tools with a particle size of 0.5 mm or more, which are difficult to produce by ordinary high-temperature and high-pressure synthesis techniques. can also be used. That is, once a composite material mass with a large cross section of several tens of mm in diameter is prepared, it is crushed, sieved, and sized to obtain polycrystalline diamond particles coarser than the nominal #40-boron composite material. can get. Since boron is brittle compared to diamond and boron carbide, it tends to fracture at points of boron remaining in unreacted form in the composite.

得られた多結晶質集合粒子はcBN砥粒に匹敵する硬さであることから、重研削に耐える大粒の安価な研削砥粒として、コバルトボンド、超硬合金ボンド、あるいはセラミックスボンドの掘削工具として岩盤掘削に用いたり、鉄筋コンクリート構造物の切断や穿孔のための工具に用いることができる。ダイヤモンド粒子表面を覆っている炭化ホウ素は工具製作のための上記各種ボンド剤と容易に化合物を生じるので、各ボンド剤による砥粒保持力がダイヤモンド単体を用いた工具に比して向上する傾向が認められる。 Since the obtained polycrystalline aggregated particles have a hardness comparable to cBN abrasive grains, they can be used as large, inexpensive abrasive grains that can withstand heavy grinding, and as drilling tools for cobalt bond, cemented carbide bond, or ceramic bond. It can be used for rock excavation, or as a tool for cutting and drilling reinforced concrete structures. Boron carbide covering the surface of diamond grains easily forms a compound with the various bonding agents for tool manufacturing, so the abrasive grain holding power of each bonding agent tends to be improved compared to tools using diamond alone. Is recognized.

特にメタルボンド砥石の製作の際にNi、Coが含まれるボンド剤を用いてこの砥粒を固定すると、1000℃付近の砥石の加熱成型の段階で、砥粒はBC層や表面に残留しているホウ素とボンド剤金属とによって生じる金属ホウ化物を介して、化学結合によりボンド剤金属中に固定される。即ちダイヤモンド・炭化ホウ素・金属ホウ化物・ボンド剤金属がそれぞれ化学結合によって連続した組織となる。 In particular, when the abrasive grains are fixed using a bonding agent containing Ni and Co when manufacturing a metal bond grindstone, the abrasive grains remain on the B4C layer and surface during the heat molding stage of the grindstone at around 1000°C. It is fixed in the bond metal by chemical bonding via metal borides produced by the boron and the bond metal. That is, the diamond, boron carbide, metal boride, and bonding agent metal form a continuous structure by chemical bonding.

一方、ミクロンサイズにまで粉砕した多結晶質集合粒子をコバルトで結合した複合材は、超硬合金において炭化タングステン粒子をダイヤモンド粒子で置換した構造となり、ダイヤモンド粒子は表面の炭化ホウ素層を介してコバルトと化学結合していることから、超硬合金よりも硬く、超硬合金と同等の抗折力を有する切削、旋削工具として用いることができる。 On the other hand, a composite material in which aggregated polycrystalline particles pulverized to micron size are bonded with cobalt has a structure in which tungsten carbide particles are replaced with diamond particles in the cemented carbide, and the diamond particles are coated with cobalt through the boron carbide layer on the surface. Because it is chemically bonded to the cemented carbide, it can be used as a cutting and turning tool that is harder than the cemented carbide and has the same transverse rupture strength as the cemented carbide.

〔実施例1〕
平均粒度1μmの合成ダイヤモンド(トーメイダイヤ株式会社製IRM級。以下同様)及び呼称粒度1μm(比表面積値12.5m2/g)の不定形ホウ素粉末を質量比85:15(容積比でほぼ80:20)の割合でボールミルに入れ、充分に混合して出発材料とした。この混合粉末200gをニオブ製のカプセルに充填して超高圧高温装置に装填し5.5GPa、1600℃の条件下に15分間供して複合材塊体を完成させた。
回収された複合材塊体は強固に結合されており、ビッカース硬さ62GPaを示した。
[Example 1]
Synthetic diamond with an average particle size of 1 μm (IRM grade manufactured by Tomei Diamond Co., Ltd.; the same shall apply hereinafter) and amorphous boron powder with a nominal particle size of 1 μm (specific surface area value of 12.5 m 2 /g) were mixed at a mass ratio of 85:15 (approximately 80 by volume). 20) in a ball mill and thoroughly mixed to obtain a starting material. 200 g of this mixed powder was filled in a capsule made of niobium, charged into an ultra-high pressure and high temperature apparatus, and subjected to conditions of 5.5 GPa and 1600° C. for 15 minutes to complete a composite material mass.
The recovered composite material mass was strongly bonded and exhibited a Vickers hardness of 62 GPa.

〔実施例2〕
平均粒度1μmの合成ダイヤモンドに、結合材として(上記と同じ)粒度1μmの不定形ホウ素粉末に粒度約2μmの炭化タングステン(WC)粉末を加えてボールミルに入れて混合し、ダイヤモンド:B:WC質量比75:10:15の出発材料とした。この混合粉末200gをニオブ製のカプセルに充填して超高圧高温装置に装填し5.5GPa、1600℃の条件下に15分間供して複合材塊体を完成させた。
回収された複合材塊体は抗折力及びビッカース硬さの測定においてそれぞれ0.9GPa及び65GPaを示した。また20~30Ωcmの電気抵抗値を有した。
[Example 2]
Synthetic diamond with an average particle size of 1 μm was mixed with amorphous boron powder with a particle size of 1 μm (same as above) and tungsten carbide (WC) powder with a particle size of about 2 μm as a binder, and mixed in a ball mill. A ratio of 75:10:15 was used as starting material. 200 g of this mixed powder was filled in a capsule made of niobium, charged into an ultra-high pressure and high temperature apparatus, and subjected to conditions of 5.5 GPa and 1600° C. for 15 minutes to complete a composite material mass.
The recovered composite mass showed 0.9 GPa and 65 GPa in transverse rupture strength and Vickers hardness measurements, respectively. It also had an electrical resistance value of 20-30 Ωcm.

前記実施例と同種の合成ダイヤモンド、不定形ホウ素粉末及びWC粉末を用い、但し比率を変えて混合し、出発材料とした。それぞれを実施例1と同様に超高圧高温装置に装填し加熱加圧操作を行った。得られた複合材塊体の密度及びビッカース硬さを出発材料の組成と共に表1に示す。 Synthetic diamond, amorphous boron powder and WC powder of the same kind as those in the above examples were used, but mixed at different ratios to obtain starting materials. Each was loaded into an ultra-high pressure and high temperature apparatus in the same manner as in Example 1, and subjected to heating and pressurization. The density and Vickers hardness of the resulting composite mass are shown in Table 1 together with the composition of the starting material.

Figure 0007188726000001
Figure 0007188726000001

〔実施例3〕
前記実施例と同種の合成ダイヤモンド、不定形ホウ素粉末及びWC粉末を用い、ただし出発材料におけるホウ素の比率を0.5%から35%まで変えて加圧加熱操作を行った。ダイヤモンドの粒度はホウ素0.5%の場合のみ、1μmと10μmとを混合使用し、他は全量1μmとした。得られた複合材塊体の密度、ビッカース硬さ及び電気抵抗値を測定し、表2の結果を得た。
[Example 3]
The same kind of synthetic diamond, amorphous boron powder and WC powder as in the above examples were used, but the boron ratio in the starting material was changed from 0.5% to 35%, and the pressurization and heating operations were carried out. As for the grain size of diamond, a mixture of 1 μm and 10 μm was used only when boron was 0.5%, and the total amount of diamond was 1 μm in the other cases. The density, Vickers hardness and electrical resistance of the resulting composite material mass were measured, and the results shown in Table 2 were obtained.

Figure 0007188726000002
Figure 0007188726000002

〔実施例4〕
平均粒度1μmの合成ダイヤモンド、及び結合材として1μmのホウ素及び公称粒度1.85μmのTiC粉末をそれぞれ質量比70:20:10の割合でボールミルに入れ、充分に混合して出発材料とした。この混合粉末200gをニオブ製のカプセルに充填して超高圧高温装置に装填し6GPa、1650℃の条件下に15分間供して一体化を完成させた。回収された複合材塊体は58.1GPaの硬さを示した。
[Example 4]
Synthetic diamond with an average particle size of 1 µm, and boron with a particle size of 1 µm as a binder and TiC powder with a nominal particle size of 1.85 µm were placed in a ball mill at a mass ratio of 70:20:10, respectively, and thoroughly mixed to obtain a starting material. 200 g of this mixed powder was filled in a capsule made of niobium, charged into an ultra-high pressure and high temperature apparatus, and subjected to conditions of 6 GPa and 1650° C. for 15 minutes to complete integration. The recovered composite mass showed a hardness of 58.1 GPa.

〔実施例5〕
実施例4における結合材中のTiC粉末に代えて6μmの金属Si粉末を用いて前記操作を繰り返した。平均粒度1μmの合成ダイヤモンド、及び結合材としてホウ素及びSiをそれぞれ質量比70:20:10の割合で配合、充分に混合して出発材料とした。この混合粉末を前記同様に超高圧高温装置に装填し、加圧加熱条件に供した。回収された複合材塊体のXRD観察においてSiは炭化物に変換しており、複合材塊体のビッカース硬さは52.0GPaを示した。
[Example 5]
The procedure was repeated using 6 μm metallic Si powder instead of the TiC powder in the binder in Example 4. Synthetic diamond having an average particle size of 1 μm, and boron and Si as binders were blended in a mass ratio of 70:20:10, respectively, and thoroughly mixed to obtain a starting material. This mixed powder was loaded into an ultrahigh-pressure and high-temperature apparatus in the same manner as described above, and subjected to pressurization and heating conditions. XRD observation of the recovered composite material mass showed that Si was converted to carbide, and the composite material mass had a Vickers hardness of 52.0 GPa.

〔実施例6〕
焼結アルミナの切削加工素材として、呼称 1μm以下のダイヤモンド微粉、呼称0.6μmのアモルファスホウ素、呼称0.8μmのタングステン粉末を75:15:10で混合し、6GPa、1700℃に15分間保持した。得られた複合材はビッカース硬さ59GPa、抗折力1.35GPaを示した。
[Example 6]
As a material for cutting sintered alumina, fine diamond powder of 1 µm or less, amorphous boron of 0.6 µm, and tungsten powder of 0.8 µm were mixed at a ratio of 75:15:10 and held at 6 GPa and 1700°C for 15 minutes. The resulting composite exhibited a Vickers hardness of 59 GPa and a transverse rupture strength of 1.35 GPa.

〔実施例7〕
平均粒径4.5μmのダイヤモンド粉、平均粒径1μmのダイヤモンド粉、呼称0. 6μmのアモルファスホウ素粉(比表面積25m2/g)、呼称10μm以下の水素化チタン粉を50:10:30:10の割合(質量比。以下同様)で混合し、出発原料とした。カーボンるつぼに充填した混合原料を面圧200kg/cm2で加圧しながら、高周波によってるつぼ温度1500℃に加熱し、5分間保持した。
生成物は一部がガラス状となったTiB2を介して一体化した塊体となっており、ワイヤーカットによってスチール加工用の切削バイトに仕上げた。
[Example 7]
Diamond powder with an average particle size of 4.5 µm, diamond powder with an average particle size of 1 µm, nominal 0.6 µm amorphous boron powder (specific surface area: 25 m 2 /g), and nominal 10 µm or less titanium hydride powder at a ratio of 50:10:30:10. (mass ratio; the same shall apply hereinafter) to obtain a starting material. While pressurizing the mixed raw material filled in the carbon crucible with a surface pressure of 200 kg/cm 2 , the crucible was heated to a temperature of 1500° C. by high frequency and held for 5 minutes.
The product was a mass integrated through TiB2, which was partly vitrified, and was finished into a cutting tool for steel processing by wire cutting.

〔実施例8〕
呼称2-3μmのダイヤモンド粒子(平均粒径1.9μm、比表面積4m2/g)200gと呼称0.6μmのアモルファスホウ素20gとの混合粉末をニオブ製のカプセルに充填し、6GPa、1650℃に15分間保持した。反応生成物の塊体は鋼球を用いるボールミルで粉砕し、粉砕の際に生じた鉄粉を塩酸で溶解除去した後、比重差を利用して未反応ホウ素を除いた。
[Example 8]
A mixed powder of 200 g of 2-3 μm diamond particles (average particle size 1.9 μm, specific surface area 4 m 2 /g) and 20 g of 0.6 μm amorphous boron was filled into a niobium capsule and subjected to 6 GPa and 1650°C for 15 minutes. held. The mass of the reaction product was pulverized with a ball mill using steel balls, iron powder generated during pulverization was removed by dissolving with hydrochloric acid, and then unreacted boron was removed using the difference in specific gravity.

得られたBCで被覆されたダイヤモンド粒子と、粒径2μmのコバルト粉末とを85:15で混合し、カーボン型を用いて1300℃でホットプレス焼結を行った。
得られた切削バイト素材の物性値はビッカース硬さHv 70GPa、抗折力 1.23GPaであった。
The obtained diamond particles coated with B 4 C and cobalt powder having a particle size of 2 μm were mixed at a ratio of 85:15, and hot-press sintered at 1300° C. using a carbon mold.
The physical properties of the obtained cutting tool material were Vickers hardness Hv of 70 GPa and transverse rupture strength of 1.23 GPa.

〔実施例9〕
粒径50μmのダイヤモンド粉、粒径6μmのダイヤモンド粉、粒径1μmのダイヤモンド粉、呼称0.6μmのアモルファスホウ素粉、呼称1μmのモリブデン粉を200:40:5:2.5:20の割合で混合し、出発原料とした。
先端部を円錐形に加工したカーボン型へ入れた混合原料を、面圧200kg/cm2で加圧しながら、高周波加熱によって1800℃に5分間保持した。得られた複合材は円錐部を研磨仕上げし、円筒研削盤のレースセンターとして用いた。
[Example 9]
Diamond powder with a particle size of 50 μm, diamond powder with a particle size of 6 μm, diamond powder with a particle size of 1 μm, amorphous boron powder with a nominal size of 0.6 μm, and molybdenum powder with a nominal size of 1 μm were mixed at a ratio of 200:40:5:2.5:20, used as the starting material.
The mixed raw material placed in a carbon mold with a cone-shaped tip was held at 1800° C. for 5 minutes by high-frequency heating while applying a surface pressure of 200 kg/cm 2 . The resulting composite material was used as a race center for a cylindrical grinder after polishing the conical portion.

〔実施例10〕
平均粒度0.6μmの合成ダイヤモンド、結合材として比表面積値27.1m2/gの不定形ホウ素及び呼称3μmのAl粉末をそれぞれ質量比90:7:3の割合で配合、充分に混合した出発材料を用い、5.5GPa、1550℃の条件に供して直径65mm、厚さ5mmの板状複合材を多数作製した。これを集めて内径1m長さ1.2mのボールミル中で直径25mmの鋼球1トンを用いて粉砕し、5時間ごとに粉砕物を取出して篩分ける操作を繰り返し、20/30メッシュの多結晶質複合砥粒を得た。
この砥粒をコバルト粉末中に埋め込んで焼結してブレード用のチップを作製し、耐火煉瓦切断ブレードの刃として用いた。
[Example 10]
Synthetic diamond with an average particle size of 0.6 μm, amorphous boron with a specific surface area of 27.1 m 2 /g and Al powder with a nominal name of 3 μm as binders were blended in a mass ratio of 90:7:3, respectively, and the starting materials were thoroughly mixed. A large number of plate-like composite materials with a diameter of 65 mm and a thickness of 5 mm were fabricated under the conditions of 5.5 GPa and 1550°C. This was collected and pulverized in a ball mill with an inner diameter of 1 m and a length of 1.2 m using 1 ton of steel balls with a diameter of 25 mm. A composite abrasive grain was obtained.
The abrasive grains were embedded in cobalt powder and sintered to prepare a tip for a blade, which was used as a blade for cutting a refractory brick.

〔実施例11〕
呼称#170のダイヤモンド粒子(粒径約100μm)200gと呼称0.6μmのアモルファスホウ素(比表面積25m2/g) 10gとの混合粉末をニオブ製のカプセルに充填し、6GPa、1650℃に15分間保持した。
反応生成物の塊体は鋼球を用いてボールミル粉砕し、粉砕の際に生じた鉄粉と未反応ホウ素とを篩い分けによって除いた後、残留鉄分を塩酸で溶解除去した。
得られたB4Cで被覆されたダイヤモンド粒子はブロンズボンド(主成分% Cu:75、Sn:15、Ni:10)(質量%)の研削砥石としてダイス鋼の仕上げ加工に用いた。
[Example 11]
A mixed powder of 200 g of #170 diamond particles (particle size: about 100 μm) and 10 g of 0.6 μm amorphous boron (specific surface area: 25 m 2 /g) was filled into a niobium capsule and held at 6 GPa and 1,650°C for 15 minutes. did.
The mass of the reaction product was pulverized in a ball mill using steel balls, iron powder generated during pulverization and unreacted boron were removed by sieving, and residual iron was dissolved and removed with hydrochloric acid.
The obtained diamond particles coated with B 4 C were used as a grinding wheel for bronze bond (main components % Cu: 75, Sn: 15, Ni: 10) (mass %) for finishing of die steel.

〔実施例12〕
石材研削砥石用の砥粒として、平均粒径20μmのダイヤモンド粉、呼称0.6μmのアモルファスホウ素、呼称2μmのニッケル粉を75:13:12で混合し出発原料とした。この混合原料150gを内径 100 mm、長さ200mmの円筒状カーボン型に充填し、5トンの荷重を加えた状態で上下のカーボンパンチを経由して通電加熱することにより、1500℃に昇温し1分間保持した。
[Example 12]
As abrasive grains for stone grinding wheels, diamond powder with an average particle size of 20 μm, amorphous boron with a nominal diameter of 0.6 μm, and nickel powder with a nominal diameter of 2 μm were mixed at a ratio of 75:13:12 to prepare a starting material. 150 g of this mixed raw material was filled in a cylindrical carbon mold with an inner diameter of 100 mm and a length of 200 mm, and the temperature was raised to 1500°C by heating it electrically via the upper and lower carbon punches while applying a load of 5 tons. Hold for 1 minute.

得られた複合材を粉砕し、篩い分けによって#100の砥粒とした。この砥粒からはX線回折によってダイヤモンドの他にBC、NiBも検出された。この砥粒をコバルトボンドの円筒研削砥石として使用したところ、通常のダイヤモンドの裸砥粒を用いた砥石に比して、50%の寿命向上が得られた。 The resulting composite was pulverized and sieved to #100 abrasive grains. In addition to diamond, B 4 C and Ni 2 B were also detected from this abrasive grain by X-ray diffraction. When this abrasive grain was used as a cobalt-bonded cylindrical grinding wheel, the tool life was improved by 50% compared to the grinding wheel using normal diamond bare abrasive grains.

本発明において使用するダイヤモンド粒子は、合成された、または天然に産出するダイヤモンド材を処理して個々の粒子の集合体(粉体)とし、さらに粒度を揃えた、即ち管理された一定の粒度分布を有する粉体の構成粒子を言い、市販されているメッシュサイズ及びミクロン・サブミクロンサイズの粒度のものを含む。 また、複数の粒度分布、複数の平均粒度の粒子粉体の配合とは、一定の粒度分布の或る平均粒度を有する粒子群と、それとは異なる粒度分布および平均粒度を有する複数の粒子群が混ざっているものを指す。 The diamond particles used in the present invention are synthesized or naturally produced diamond materials are processed into an aggregate (powder) of individual particles, and the particle size is uniform, that is, a controlled constant particle size distribution. and includes commercially available mesh size and micron/submicron size particles. In addition, the blending of particles with a plurality of particle size distributions and a plurality of average particle sizes means that a group of particles having a certain average particle size with a constant particle size distribution and a group of particles having a different particle size distribution and average particle size are mixed. Refers to mixed things.

Claims (20)

複数個のダイヤモンド粒子と、ホウ素或いはホウ素および不可避不純物からなる結合材料とからなる出発物質の加圧加熱処理によって、結合一体化された複合材であって、
出発物質全体におけるダイヤモンド粒子の含有量が60%~90%(質量比。以下同様)、ホウ素或いはホウ素および不可避不純物からなる結合材料の含有量が10%~40%である、前記複合材。
A composite material bonded and integrated by pressure and heat treatment of a starting material comprising a plurality of diamond particles and a bonding material comprising boron or boron and unavoidable impurities ,
The above composite material, wherein the content of diamond particles in the entire starting material is 60% to 90 % (mass ratio; the same shall apply hereinafter), and the content of the binding material composed of boron or boron and inevitable impurities is 10 % to 40%.
複数個のダイヤモンド粒子と金属ホウ素とを含む出発物質の加圧加熱処理によって緻密に結合一体化された複合材であって、ダイヤモンド粒子の表面が上記加圧加熱処理においてホウ素との反応により形成された炭化ホウ素層を有し、かつ該ダイヤモンド粒子の隣接粒子同士が直接結合および/又は出発物質成分および/又はその派生物と共に結合一体化されてなる請求項1に記載のダイヤモンド基複合材。 A composite material in which a starting material containing a plurality of diamond particles and metallic boron is densely bonded and integrated by a heat treatment under pressure, wherein the surfaces of the diamond particles are formed by reaction with boron in the heat treatment under pressure. 2. A diamond-based composite according to claim 1, wherein said diamond-based composite has a layer of boron carbide, and said diamond particles are directly bonded together and/or bonded together with starting material components and/or derivatives thereof. 請求項1に記載のダイヤモンド基複合材における出発物質に加えてさらに、Al、Si、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、WCから選ばれる1種以上である第一の金属質成分を、該出発物質の質量に対して15%以下含有せしめた出発物質の加圧加熱処理によって、結合一体化された複合材であって出発物質全体におけるダイヤモンド粒子の含有量が60%~90%(質量比。以下同様)、ホウ素或いはホウ素および不可避不純物からなる結合材料の含有量が10%~40%である、前記複合材。 In addition to the starting material in the diamond-based composite according to claim 1, one or more selected from Al, Si, Cu, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and WC A composite material bonded and integrated by pressurized heat treatment of a starting material containing a certain first metallic component in an amount of 15% or less based on the mass of the starting material, wherein diamond grains in the entire starting material are The composite material has a content of 60% to 90% (mass ratio; the same shall apply hereinafter) and a content of a binding material composed of boron or boron and inevitable impurities of 10% to 40% . 第一の金属質成分が前記加圧加熱処理において少なくとも表面に成分ホウ素との反応によりその場で形成されたホウ化物層を有する、請求項3に記載のダイヤモンド基複合材。 4. The diamond-based composite of claim 3, wherein the first metallic component has a boride layer formed in situ on at least the surface thereof by reaction with the component boron in said pressure heat treatment. ビッカース硬さが40GPa以上である、請求項1乃至4のいずれか一項に記載のダイヤモンド基複合材。 5. The diamond-based composite according to any one of claims 1 to 4, having a Vickers hardness of 40 GPa or more. 前記ダイヤモンド粒子の平均粒径が100μm以下である、請求項1乃至5のいずれか一項に記載のダイヤモンド基複合材。 6. A diamond-based composite according to any one of claims 1 to 5, wherein said diamond particles have an average particle size of 100 [mu]m or less. 前記ダイヤモンド粒子の平均粒径が20μm以下である、請求項6に記載のダイヤモンド基複合材。 7. The diamond-based composite according to claim 6, wherein said diamond particles have an average particle size of 20 [mu]m or less. 前記ダイヤモンド粒子の平均粒径が1μm以下である、請求項6又は7に記載のダイヤモンド基複合材。 8. The diamond-based composite according to claim 6, wherein said diamond particles have an average particle size of 1 [mu]m or less. 前記ダイヤモンド粒子が規定された粒度分布及び平均粒度を有する、請求項1乃至8のいずれか一項に記載のダイヤモンド基複合材。 9. A diamond-based composite according to any preceding claim, wherein the diamond particles have a defined particle size distribution and average particle size. ダイヤモンド粒子の集合体を粉末状のホウ素と混合したもののみからなる出発混合集合体であって、出発混合集合体全体におけるダイヤモンド粒子の含有量が60%~90%(質量比。以下同様)、ホウ素或いはホウ素および不可避不純物からなる結合材料の含有量が10%~40%である、前記出発混合集合体を処理セルに充填し、1500℃以上の反応温度にて加熱加圧処理することを特徴とするダイヤモンド基複合材の製法。 A starting mixed aggregate consisting only of aggregates of diamond particles mixed with powdered boron, wherein the content of diamond particles in the entire starting mixed aggregate is 60% to 90% (mass ratio; the same shall apply hereinafter) , The content of boron or a binding material composed of boron and unavoidable impurities is 10% to 40%. A process for producing a diamond matrix composite, characterized in that: 請求項10に記載の方法における出発混合集合体において、さらにAl、Si、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、WCから選ばれる1種以上である粉末状の第一金属材を出発物質の質量に対して15%以下密に混合して処理セルに充填し、ここにおいて出発物質全体におけるダイヤモンド粒子の含有量が60%~90%(質量比。以下同様)、ホウ素或いはホウ素および不可避不純物からなる結合材料の含有量が10%~40%であり、1500℃以上の反応温度にて加熱加圧処理することを特徴とするダイヤモンド基複合材の製法。 In the starting mixed assembly in the method according to claim 10, at least one selected from Al, Si, Cu, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W and WC A certain powdery first metal material is densely mixed to 15% or less based on the mass of the starting material and filled in the processing cell, where the content of diamond particles in the entire starting material is 60% to 90% (mass ratio The same shall apply hereinafter), the content of a binding material comprising boron or boron and inevitable impurities is 10% to 40%, and a diamond-based composite material characterized by being heat-pressed at a reaction temperature of 1500°C or higher. Manufacturing method . 前記加熱加圧処理をダイヤモンドの熱力学的安定領域内の温度圧力条件で行う、請求項10または11に記載の方法。 12. The method according to claim 10 or 11 , wherein the heat and pressure treatment is performed under temperature and pressure conditions within the thermodynamically stable region of diamond. 前記加熱加圧処理をホットプレス工程によって行う、請求項10または11に記載の方法。 12. The method according to claim 10 or 11 , wherein said heating and pressurizing treatment is performed by a hot pressing process. 前記加熱加圧処理を放電プラズマ工程によって行う、請求項10または11に記載の方法 12. The method according to claim 10 or 11 , wherein said heating and pressurizing treatment is performed by a discharge plasma process. 前記加熱加圧処理を燃焼合成反応によって行う、請求項10または11に記載の方法。 12. The method according to claim 10 or 11 , wherein said heat and pressure treatment is performed by a combustion synthesis reaction. 請求項1乃至のいずれか一項に記載のダイヤモンド基複合材で構成される切削工具要素。 A cutting tool element composed of a diamond-based composite according to any one of claims 1-9 . 請求項1乃至のいずれか一項に記載のダイヤモンド基複合材から一定の形状に切り出された切削工具要素。 A cutting tool element cut into a shape from the diamond-based composite according to any one of claims 1 to 9 . 請求項1乃至のいずれか一項に記載のダイヤモンド基複合材で構成される構造部材。 A structural member comprising the diamond-based composite according to any one of claims 1-9 . 請求項1乃至のいずれか一項に記載のダイヤモンド基複合材を破砕して得られた研削砥粒。 A grinding grain obtained by crushing the diamond-based composite material according to any one of claims 1 to 9 . 請求項1乃至のいずれか一項に記載のダイヤモンド基複合材を破砕して砕粒とし、該砕粒の集合体を整粒し、さらに金属質、樹脂質又はセラミック質ボンド剤で成形してなる研磨研削工具。 The diamond-based composite material according to any one of claims 1 to 9 is crushed to obtain crushed granules, the aggregate of the crushed granules is sized, and further molded with a metallic, resinous or ceramic bonding agent. Abrasive grinding tool.
JP2017203486A 2017-06-28 2017-10-20 Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same Active JP7188726B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017126280 2017-06-28
JP2017126280 2017-06-28

Publications (2)

Publication Number Publication Date
JP2019006662A JP2019006662A (en) 2019-01-17
JP7188726B2 true JP7188726B2 (en) 2022-12-13

Family

ID=65025753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203486A Active JP7188726B2 (en) 2017-06-28 2017-10-20 Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same

Country Status (1)

Country Link
JP (1) JP7188726B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079954A1 (en) * 2019-10-24 2021-04-29 積水化学工業株式会社 Resin composition and heat dissipation member
JP7441441B2 (en) 2020-11-18 2024-03-01 トーメイダイヤ株式会社 Sintered diamond electrode material
JP7470291B2 (en) 2020-11-27 2024-04-18 トーメイダイヤ株式会社 Carbide-bonded polycrystalline diamond electrode material
KR20230111194A (en) * 2020-11-30 2023-07-25 스미또모 덴꼬오 하드메탈 가부시끼가이샤 sinter and cutting tools
CN116041063B (en) * 2022-12-24 2024-04-30 河南联合精密材料股份有限公司 Preparation method of diamond boron carbide composite ceramic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018267A (en) 2001-12-28 2002-01-22 Toyo Tanso Kk Graphite material for synthesizing semiconductor diamond and semiconductor diamond manufactured using the same
JP2003011019A (en) 2001-07-03 2003-01-15 Ishizuka Kenkyusho:Kk Sintered super abrasive grain tip material and method of manufacture
JP2003181765A (en) 2002-12-24 2003-07-02 Alps Electric Co Ltd Porous supergrain grinding stone and method for manufacturing the same
JP2008133173A (en) 2006-10-31 2008-06-12 Mitsubishi Materials Corp Diamond sinter with good electrical conductivity and process for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823343B2 (en) * 1980-05-30 1983-05-14 科学技術庁無機材質研究所長 Manufacturing method of diamond sintered body
JPS58199776A (en) * 1982-05-12 1983-11-21 住友電気工業株式会社 Diamond sintered body for tool and manufacture
JPS62114879A (en) * 1986-03-29 1987-05-26 Osaka Daiyamondo Kogyo Kk Manufacture of grinding stone of abrasive grains composed of massive grain-formed grinding stone piece
JPH06199571A (en) * 1991-06-20 1994-07-19 Nippon Seratetsuku:Kk Wear resistant ceramic material and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011019A (en) 2001-07-03 2003-01-15 Ishizuka Kenkyusho:Kk Sintered super abrasive grain tip material and method of manufacture
JP2002018267A (en) 2001-12-28 2002-01-22 Toyo Tanso Kk Graphite material for synthesizing semiconductor diamond and semiconductor diamond manufactured using the same
JP2003181765A (en) 2002-12-24 2003-07-02 Alps Electric Co Ltd Porous supergrain grinding stone and method for manufacturing the same
JP2008133173A (en) 2006-10-31 2008-06-12 Mitsubishi Materials Corp Diamond sinter with good electrical conductivity and process for producing the same

Also Published As

Publication number Publication date
JP2019006662A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP7188726B2 (en) Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same
US11498873B2 (en) Superhard constructions and methods of making same
JP3309897B2 (en) Ultra-hard composite member and method of manufacturing the same
US20100104874A1 (en) High pressure sintering with carbon additives
US20190017153A1 (en) Superhard constructions & methods of making
CN105392584B (en) Superhard constructions and methods of making same
JP2011520031A (en) Super hard reinforced cemented carbide
GB2539746A (en) Superhard constructions & methods of making same
WO2016000820A2 (en) Superhard constructions & methods of making same
US20140123564A1 (en) Abrasive compacts
US20230135812A1 (en) Superhard constructions and methods of making same
WO2017009417A1 (en) Superhard polycrystalline constructions and methods of making same
KR100642841B1 (en) Heat-resistant composite diamond sintered product and method for production thereof
CN110735075A (en) Preparation method of WC-based hard alloys with high wear resistance
GB2524401A (en) Superhard constructions & methods of making same
JP6528516B2 (en) Method of manufacturing diamond-metal carbide composite sintered body
KR100700197B1 (en) Process for Manufacturing Sintered Materials Containing Cobalt Component
JP7473149B2 (en) High-hardness diamond-based block tool material and its manufacturing method
CN114728853B (en) Polycrystalline diamond with iron-containing binder
JP2020147462A (en) Diamond-based conductive hard sintered material and manufacturing method thereof
CN115052698A (en) Polycrystalline diamond structure and method of making same
JPH0333674B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171020

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220809

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20220822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220922

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221124

R150 Certificate of patent or registration of utility model

Ref document number: 7188726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150