JP5358960B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP5358960B2
JP5358960B2 JP2008015761A JP2008015761A JP5358960B2 JP 5358960 B2 JP5358960 B2 JP 5358960B2 JP 2008015761 A JP2008015761 A JP 2008015761A JP 2008015761 A JP2008015761 A JP 2008015761A JP 5358960 B2 JP5358960 B2 JP 5358960B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor chip
semiconductor
chip
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008015761A
Other languages
English (en)
Other versions
JP2009177039A (ja
Inventor
和男 下山
博樹 脇本
学 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008015761A priority Critical patent/JP5358960B2/ja
Publication of JP2009177039A publication Critical patent/JP2009177039A/ja
Application granted granted Critical
Publication of JP5358960B2 publication Critical patent/JP5358960B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)

Description

この発明は、電力変換装置などに使用される縦型パワー半導体装置およびその製造方法に関する。さらに詳しくは双方向の耐圧特性を有する双方向デバイスまたは逆阻止デバイスにおける分離層形成プロセスに関し、高い性能のデバイス特性と高い長期信頼性を持つ逆阻止IGBT(RB(Reverse blocking)−IGBT)を、低コストと短いリードタイムおよび高い良品率で製造できる半導体装置およびその製造方法に関する。
モーター駆動向けの交流−交流直接変換装置として、マトリックスコンバーターが実用化されつつある。このマトリックスコンバーターは、9個の双方向スイッチを必要とする。この双方向スイッチとして逆阻止IGBTを2つ用いた場合、ダイオードを必要とせずに双方向スイッチが形成できるので、トータルの素子数を大幅に削減でき、またオン状態での電圧降下を削減できる。
図14は、従来の逆阻止IGBTの要部断面図である。IGBTチップ12の側面62に深い熱拡散で形成されたp分離拡散層63aが配置され、pコレクタ層51上にnドリフト層52が配置され、nドリフト層52上にpベース層53が配置され、pベース層53の表面層にnエミッタ層54が配置されている。nエミッタ層54とnドリフト層52に挟まれたpベース層53上にゲート絶縁膜55を介してゲート電極56が配置され、ゲート電極56上の層間絶縁膜57上にnエミッタ層54およびpベース層53に接続するエミッタ電極58が配置される。またゲート電極56と接続する図示しないゲート電極パッドがエミッタ電極58と隣接して配置される。pコレクタ層51上にコレクタ電極64が配置される。pベース層53とチップ端部の間に耐圧構造部60が配置され、この耐圧構造部60の一部であるp端部層61とpコレクタ層51の両層に接するp拡散分離層62がIGBTチップ12の側面62に配置される。チップ側面はダイシングライン13に沿って切断された研削面である。
この逆阻止IGBT(RB−IGBT)は、図14、図15に示すように、ダイシングラインとなる領域に表面より拡散深さが深いp分離拡散層63a(図15のIsolation layor)をIGBTのウエハプロセスの初期段階で形成させた後に、通常のIGBTのウエハプロセスを経て製造される。
この深いp分離拡散層63aが、ダイシングライン13を完全にカバーするため、図15に示すように、逆バイアス時に空乏層がダイシング面近傍の結晶欠陥層やダメージ層に接しなくなり、そのためキャリア発生が抑えられて、逆阻止能力を持つようになる。
尚、図15において、左上の図はNPT−IGBT(Non Punchi Through IGBT)の断面図でダイシング面(Dicing Surface)に接する空乏層(Deplation region)で発生するキャリアの動きを示している。左下は逆阻止IGBTの断面図で図14に相当する。空乏層がダイシング面に接しないのでダイシング面からのキャリアの発生がなく漏れ電流が小さいことを示している。また、右側のグラフは縦軸が電流、横軸が電圧を示し、両IGBTの順方向と逆方向のV−I曲線を示している。逆阻止IGBT(RB−IGBT)の逆方向耐圧が順方向耐圧とほぼ同じであることが分かる。
従来技術である塗布拡散によるp分離拡散層63aの形成の為には、図16に示すように、まず、シリコンウエハ上に膜厚が約2.5μm程度の熱酸化をドーパントマスクとして形成する。次に、このマスク酸化膜にパターニング・エッチングにより、p分離拡散層63aを形成するために100μm程度開口する。続いて、ボロンソースを塗布後、拡散炉により高温、長時間の熱処理を行うことにより、おおよそ数百μm程度の深さのp分離拡散層を形成する。
また、特許文献1には、半導体チップの側面を機械的研磨と化学処理でベベル構造とし、このベベル面にp分離拡散を形成することが開示されている。
また、特許文献2には、ダイシングラインをエッチングしてベベル構造を形成し、ベベル面にイオン注入してp分離拡散を形成することが開示されている。
また、特許文献3には、ダイシングラインを裏面からエッチングしてベベル構造を形成し、ベベル面にイオン注入してp分離拡散を形成することが開示されている。
また、特許文献4、5には、チップを個片化した後、側面を研磨し、イオン注入を行って3次元デバイスを形成することが開示されている。
特開2001−185727号公報 特開2006−156926号公報 特開2006−303410号公報 特開2000−101020号公報 特許第4003578公報
前記した従来技術による逆阻止IGBTにおいて、IGBTチップ12の表側の表面からボロンソースを塗布し熱処理にてボロンを拡散し、数百μm程度の深い拡散深さのp分離拡散層を形成するためには、高温、長時間の拡散処理を必要とする。
このため、拡散炉を構成する石英ボード、石英管(石英チューブ)、石英ノズルなど石英冶具のへたりや、ヒーターからの汚染、石英冶具の失透現象による強度低下などを発生させてしまう。
また、この塗布拡散法によるp分離拡散層の形成では、ドーパントマスク酸化膜(図16に示す酸化膜)に、マスク性能が高い酸化膜、すなわち良質な酸化膜が要求される。良質なシリコン酸化膜を得るためには熱酸化による方法が必要である。p分離拡散層の拡散処理には高温で長時間(例えば1300℃、200時間)の熱処理が行われるが、この熱処理において、ボロンがマスク酸化膜を突き抜けないようにするためには、約2.5μm程度の膜厚の熱酸化膜を形成する必要がある。
2.5μm程度の膜厚の熱酸化膜を形成するには、例えば1150℃の酸化温度において必要な酸化時間は、ウェットもしくはパイロジェニック酸化で行なったとしても、約15時間と非常に長い酸化時間を必要とする。
さらに、これらの酸化処理でウエハ中には、大量の酸素がシリコンウエハ中に導入される為に、酸素析出物や酸化誘起積層欠陥などの結晶欠陥導入されたり、酸素ドナー化発生したりすることによるデバイス特性の劣化や信頼性の低下が生じる。
さらに、ボロンソース塗布後の拡散でも、通常は酸化雰囲気下で上記高温長時間の拡散処理を行われるため、ウエハ内に格子間酸素が導入され、この工程でも酸素析出物や酸素ドナー化現象、酸化誘起積層欠陥(OSF:oxidation induced stacking fault)や、スリップ転位など結晶欠陥が導入されてしまう。
これらの結晶欠陥が導入されたウエハに形成されたpn接合では、リーク電流が高くなってしまったり、ウエハ上に熱酸化により形成された絶縁膜の耐圧や信頼性が大幅に劣化したりすることが知られている。
また、拡散処理中に取り込まれた酸素が、別の熱処理によりドナー化し、耐圧が低下するという弊害を生じさせる。
図16に示したように、ドーパント(ボロン)の拡散はマスク開口部から、シリコンバルクへとほぼ等方的に進行するため、深さ方向に200μm程度のドーパント拡散を行う場合、必然的に横方向にもドーパントは180μm程度拡散されてしまうため、デバイスピッチやチップサイズの縮小に対しての弊害を生じさせる。
また、逆阻止IGBTと、通常のNPT型−IGBTの違いは、チップ端部のダイシング面をカバーするp分離拡散層が有るか無いかだけであり、その他のデバイス構造において本質的な相違はない。
しかしながら、従来の製造方法では、このp分離拡散層の形成がウエハプロセスの初期段階で形成する必要があり、p分離拡散層の有無以外は本質的に同一であるものの、逆阻止IGBTと通常NPT−IGBTは、それぞれ個別に受注量にあわせて製造管理しなくてはならなかった。
また、前記特許文献1〜3では、ウエハをスクライブしてチップとした後、チップを個片化しない状態(シートからチップを剥がさない状態)でダイシングラインにイオン注入し、レーザーアニールで不純物を拡散し活性化してp分離拡散層を形成することは記載されていない。
また、前記特許文献4、5では、個片化した後、並べて、チップの側面にイオン注入して逆阻止IGBTのp分離拡散層を形成することは記載されていない。
この発明の目的は、前記の課題を解決して、高い性能のデバイス特性と高い長期信頼性を持つ逆阻止デバイスを、低コストと短いリードタイムおよび高い良品率で製造できる半導体チップの側壁にp分離拡散層を形成した半導体装置およびその製造方法を提供することにある。
前記の目的を達成するために、半導体チップの側面に形成された分離拡散層と、該分離拡散層と接続し半導体チップ裏面に形成されたコレクタ層と、前記分離拡散層と接続し前記半導体チップの表面層に形成された耐圧構造部と、前記耐圧構造部に囲まれた前記半導体チップ表面層に形成されたエミッタ層ならびにゲート電極と、前記コレクタ層上に形成されたコレクタ電極と、前記エミッタ層上に形成されるエミッタ電極と、前記ゲート電極と接続し前記エミッタ電極と隣接するゲート電極パッドと、を有する半導体装置において、前記半導体チップの側面が、断面形状がV字型もしくは逆台形型のブレードを用いてダイシングを行った研削面で前記半導体チップ裏面と前記半導体チップ側面のなす角度が40度以上70度以下、あるいは130度以上150度以下であり、前記分離拡散層が前記半導体チップの側面の表面層に形成された拡散層である構成とする
た、前記ゲート電極が、半導体基板表面にゲート絶縁膜を介して形成されるプレーナゲート電極もしくはトレンチ側壁にゲート絶縁膜を介して形成されるトレンチゲート電極であるとよい。
また、半導体チップの側面に形成された分離拡散層と、該分離拡散層と接続し半導体チップ裏面に形成されたコレクタ層と、前記分離拡散層と接続し前記半導体チップの表面層に形成された耐圧構造部と、前記耐圧構造部に囲まれた前記半導体チップ表面層に形成されたエミッタ層ならびにゲート電極と、前記コレクタ層上に形成されたコレクタ電極と、前記エミッタ層上に形成されるエミッタ電極と、前記ゲート電極と接続し前記エミッタ電極と隣接するゲート電極パッドと、を有する半導体装置の製造方法において、半導体ウエハの表側に前記エミッタ層、前記エミッタ電極、前記ゲート電極、前記ゲート電極パッド、前記表面保護膜を、半導体ウエハの裏側に前記コレクタ層、前記コレクタ電極を形成する工程(側面の分離拡散層を除く全てのウエハプロセスが終了した後)と、前記半導体ウエハの裏側をダイシングテープを介してダイシングフレーム(このダイシングフレームはダイシング台に設置される)に貼り付ける工程と、断面形状がV字型もしくは逆台形型のブレード(ブレードで切断される半導体基板の途中の断面の形状はV溝もしくは逆台形溝となり、チップ化された側面はどちらも傾斜面となる。)を用いて前記半導体ウエハの表側からダイシングを行い、半導体チップ裏面と半導体チップ側面のなす角度が90°未満である半導体チップにする工程と、前記ダイシングフレームに前記半導体チップが貼り付いた状態で前記半導体チップの側面に前記コレクタ層と同一の導電型の不純物をイオン注入する工程と、少なくとも前記半導体チップの側面に選択的にレーザー光を照射しレーザーアニールを行い、前記半導体チップの側面に導入された前記不純物を活性化した分離拡散層を形成する工程とを有する製造方法とする。
また、半導体チップの側面に形成された分離拡散層と、該分離拡散層と接続し半導体チップ裏面に形成されたコレクタ層と、前記分離拡散層と接続し前記半導体チップの表面層に形成された耐圧構造部と、前記耐圧構造部に囲まれた前記半導体チップ表面層に形成されたエミッタ層ならびにゲート電極と、前記コレクタ層上に形成されたコレクタ電極と、前記エミッタ層上に形成されるエミッタ電極と、前記ゲート電極と接続し前記エミッタ電極と隣接するゲート電極パッドと、を有する半導体装置の製造方法において、半導体ウエハの表側に前記エミッタ層、前記エミッタ電極、前記ゲート電極、前記ゲート電極パッド、前記表面保護膜を、半導体ウエハの裏側に前記コレクタ層、前記コレクタ電極を形成する工程と、前記半導体ウエハの表側ダイシングテープを介してダイシングフレームに貼り付ける工程と、断面形状がV字型もしくは逆台形型のブレードを用いて前記半導体チップの表側からダイシングを行い、半導体チップ裏面と半導体チップ側面のなす角度が90°超である半導体チップにする工程と、前記ダイシングフレームに前記半導体チップが貼り付いた状態で前記半導体チップの側面に前記コレクタ層と同一の導電型の不純物をイオン注入する工程と、少なくとも前記半導体チップの側面に選択的にレーザー光を照射しレーザーアニールを行い、前記半導体チップの側面に導入された前記不純物を活性化した分離拡散層を形成する工程とを有することを特徴とする製造方法とする。
また、前記分離拡散層を形成する工程は、前記半導体チップの裏側全面にレーザー光を照射してレーザーアニールを行い、前記半導体チップの側面に導入された前記不純物を活性化した分離拡散層を形成する工程であるとよい。
また、半導体チップの側面に形成された分離拡散層と、該分離拡散層と接続し半導体チップ裏面に形成されたコレクタ層と、前記分離拡散層と接続し前記半導体チップの表面層に形成された耐圧構造部と、前記耐圧構造部に囲まれた前記半導体チップ表面層に形成されたエミッタ層ならびにゲート電極と、前記コレクタ層上に形成されたコレクタ電極と、前記エミッタ層上に形成されるエミッタ電極と、前記ゲート電極と接続し前記エミッタ電極と隣接するゲート電極パッドと、を有する半導体装置の製造方法において、半導体ウエハの表側に前記エミッタ層、前記エミッタ電極、前記ゲート電極、前記ゲート電極パッド、前記表面保護膜を、半導体ウエハの裏側に前記コレクタ層、前記コレクタ電極を形成する工程と、前記半導体ウエハにダイシングを行い側面の角度が半導体チップ裏面を基準としてほぼ直角である半導体チップにする工程と、前記半導体チップの側面を揃えて前記半導体チップを積層してチップ積層塊とする工程と、前記チップ積層塊の側面に前記コレクタ層と同一の導電型の不純物をイオン注入する工程と、イオン注入された前記チップ積層塊をアニールして前記不純物を拡散しながら活性化して前記半導体チップの前記分離拡散層を形成する工程とを有する製造方法とする。
また、前記チップ積層塊において、隣接する前記半導体チップ同士の間に前記半導体チップより面積が小さなクッション材を前記半導体チップの中央部に配置して隣接する前記半導体チップ間に隙間を設けるとよい。
また、前記チップ積層塊の側面にCMPを行うとよい。
また、前記半導体チップの積層方向を軸として前記チップ積層塊を回転させなが前記チップ積層塊の側面にイオン注入するとよい。
また、前記不純物のイオン注入方向が前記チップ積層塊の側面に対して斜めになると半導体チップの端部にチッピングや欠けができても不純物がイオン注入されてよい。
この発明によれば、深い熱拡散を必要としないので熱履歴が大幅に削減される。また厚いマスク熱酸化膜を必要としないので、高温長時間の熱酸化処理に起因する結晶欠陥も削減される。さらに横方向拡散によるチップサイズ増大が伴わない。
高耐圧化によるさらに深いp分離拡散層の形成が、熱履歴の増加を伴わずに非常に容易にできるとともに、結晶方位と関係なく任意にベベル角θを選定することができる
また、表側のウエハプロセスと裏側のプロセスを終了した通常のNPT−IGBTウエハから逆阻止IGBTの製造が可能となり、それぞれの製造受注状態に対応して逆阻止IGBTおよび通常のNPT型−IGBTを迅速に製造できるので一括して製造管理することができる。
縦型IGBTの表面ウエハプロセス(ウエハの表側に施した拡散プロセスと電極付けを含むプロセス)および裏面ウエハプロセス工程(ウエハの裏側に施した拡散プロセスと電極付けを含むプロセス)終了した後、ウエハをダイシングテープに貼り合わせて、ダイシングした後、テープに貼り合わせた状態でイオン注入とレーザーアニールを行ってp分離拡散層を形成することで、逆阻止IGBTを簡便に製造することができる。
また、表面ウエハプロセスおよび裏面ウエハプロセスを終了した後、ブレードダイシングもしくは、レーザーダイシングによるチップ化した後、複数のチップを垂直に、密着もしくは一定間隔を置いて重ねてチップ積層塊にし、チップ側面にイオン注入および熱処理を行うことによって、p分離拡散層を形成して逆阻止IGBTを簡便に製造することができる。
p分離拡散層がダイシング面の結晶欠陥/ダメージ層をカバーするように形成されることによって、逆バイアス印加時のキャリア発生を防いで逆阻止能力を持たせることができる。
また、本発明の製造方法を採用することにより、高い性能のデバイス特性と高い長期信頼性を持つ逆阻止IGBTを、低コストと短いリードタイムおよび高い良品率で製造することができる。
次に、発明の実施の形態を以下の実施例で具体的に説明する。尚、従来構造と同一部位には同一符号を付した。
図1は、この発明の第1実施例の半導体装置の製造方法を説明する工程図であって、図1(a)〜図1(d)は工程順に示した製造工程図である。ここでは、逆阻止IGBTチップの製造プロセスフローであり、特にp分離拡散層63(高濃度のp層)の形成工程を示す。
図1(a)に示すように、縦型IGBTの表面ウエハプロセス工程でウエハ100の表側1に図3で示すnエミッタ層54、ゲート電極56、エミッタ電極58、ゲート電極56と接続する図示しないゲート電極パッドおよび表面保護膜59などを形成し、裏面ウエハプロセス工程でウエハ100の裏側21(図4(a)参照)に図3で示すpコレクタ層51およびコレクタ電極64を形成した後、ウエハ100の裏側21のコレクタ電極64面とダイシングテープ3を向かい合わせて貼り合わせる。ダイシングテープ3はダイシングフレーム(リング状をしたダイシングフレームで図示しないダイシング台に設置されている)に固定されている。ウエハ100にはIGBTチップ12となるIGBTチップ形成領域11が多数形成されている。
次に、図1(b)に示すように、断面がV字型のブレード4(ダイシングブレードのこと)を用いてダイシングライン13に沿ってダイシング(切断)を行ないウエハ100をチップ化する。各IGBTチップ12はダイシングテープ3に貼りついたままである。ブレード4はブレードスピンドルに接続している。
図2には、ブレード4の断面形状と途中まで切削されたウエハの断面形状が示されている。右側のブレード4の断面形状はV字型をしている場合、左側のブレード4の断面形状は側面が斜めになっており底部が平坦な場合である。途中まで切削されたウエハ100(半導体基板)の切削部は、右側はV溝となり左側は逆台形溝となる。いずれの場合もチップ化された段階ではチップ側面は傾斜面となる。
次に、図1(c)に示すように、ダイシングテープ3にウエハ100(IGBTチップ12)が貼り付いた状態のまま、ウエハ100全面にボロンのイオン注14を行って露出しているダイシングライン13(IGBTチップ12の側面)にボロンを導入する。図1(b)の時点で、ウエハ100はIGBTチップ12に個片化されているが、ここでは、IGBTチップ12がダイシングテープ3に貼りついた状態のものも便宜的にウエハ100と呼ぶことにする。
次に、図1(d)に示すように、ダイシングライン13に沿って、IGBTチップ12の側面に選択的にレーザー照射機5から発射されるレーザー光16を照射(走査照射)する。ここでは、レーザー光16にスポット径が120μm程度のものを用いた。後述するように、ベベル角θ(ダイシング後の裏面を基準としたIGBTチップ12の側面の角度)を70°程度,ウエハの厚さを100μm程度,切断後のIGBTチップ12の距離(最短部分)を40μm程度とすると、ダイシングラインの開口の幅は120μm弱となる。レーザー光16のスポット径が120μm程度であるので、ダイシングライン13に沿ってレーザー光16走査照射することで、ダイシングライン13の両側のIGBTチップ12の側面を同時にレーザーアニールすることができる。IGBTチップ12の側面に導入されたボロンは、上記のレーザーアニールにより活性化と拡散が行われ、図3に示すp分離拡散層63(高濃度のp層)が形成される。その後IGBTチップ12をダイシングテープ3から外して逆阻止IGBTの製造工程は終了する。
上記の例では、ダイシングラインの開口の幅とレーザー光のスポット径をほぼ同じとし、1回のレーザー光16の走査照射でレーザーアニールを完了させている。このほかに、レーザー光16の光軸を、IGBTチップ12の裏面に垂直な状態から側面に垂直な状態に近づけて行ってもよい。すなわち、各側面について少なくとも1回ずつ(1つのダイシングラインについては少なくとも2回)行うことで、IGBTチップ12の側面に照射されたエネルギーを、ボロンの活性化と拡散に効率よく利用できる。このとき、より小さなスポット径のレーザー光を用いれば、不要な部分へのレーザー光16の照射を防ぐことができる。
イオン注入14する前に表面ウエハプロセスは全て終了している。そのため、IGBTチップ12の活性領域の表面には3〜5μm程度の厚いアルミニウムによるエミッタ電極58や図示しないゲート電極パッド、厚いポリイミド膜やシリコン窒化膜やBPSG(ボロン・リンガラス)膜による表面保護膜59(パッシベーション膜)などが形成され、表面がこれらの金属電極や保護膜で被覆されている。
その状態で表面に1×1014ions/cm2程度のボロンがイオン注入されても、前記の電極や保護膜でイオン注入14のボロンが遮蔽されるので、ウエハ100全面にイオン注入14を行っても問題がなく、耐圧やチャネル抵抗などの電気的特性に影響を与えない。
尚、前記のB+イオン注入をIGBTチップ12の側面62のみに行っても構わない。しかし、この場合、B+イオンビームをIGBTチップ12の側面62のみ、つまりダイシングライン13のみに選択的に照射することになり、ビーム径を微小にするなどの高精度なイオン注入技術が必要になる。
また、本製造方法では、V溝型のブレード4の側面の傾斜を変えることで、ベベル角θ(ダイシング後の裏面を基準としたIGBTチップ12の側面の角度)を任意に変えることができる。イオン注入14の観点からベベル角θは裏面を基準として40°〜70°程度が好ましい。ベベル角θが40°程度より小さい場合には、ダイシングライン13の幅が広がり微細化の支障となる。また、ベベル角θが70°程度より大きいと、側面62からのボロンの打ち込み深さが浅くなり、p分離拡散層63の厚さが薄くなり空乏層がIGBTチップ12の側面に達して漏れ電流の増大を招く。また、イオン注入されたボロンイオンのレーザーアニールによる活性化も困難になる。
また、ボロンのイオン注入角度はIGBTチップ12の側面62に対して出来るだけ直角に近いほど、IGBTチップ12の側面62からの進入深さが深くなるので好ましい。
前記の特許文献2で記載されたエッチングでチップの側面を形成すると、使用するウエハの結晶方位の関係からベベル角θ(θ=125.3°)が固定されてしまう。しかし、本製造方法では研削でIGBTチップ12の側面62を形成するために、結晶方位と関係なく任意にベベル角θを選定することができる。
図3は、図1の製造方法で製作した逆阻止IGBTの要部断面図である。pコレクタ層51上にnドリフト層52が配置され、nドリフト層52上にpベース層53が配置され、pベース層53の表面層にnエミッタ層54が配置されている。nエミッタ層54とnドリフト層52に挟まれたpベース層53上にゲート絶縁膜55を介してゲート電極56が配置され、ゲート電極56上の層間絶縁膜57上にnエミッタ層54およびpベース層53に接続するエミッタ電極58が配置される。またゲート電極56と接続する図示しないゲート電極パッドがエミッタ電極58と隣接して配置される。pコレクタ層51上にコレクタ電極64が配置される。pベース層53とチップ端部の間に耐圧構造部60が配置され、この耐圧構造部60の一部であるp端部層61とpコレクタ層51の両層に接するp拡散分離層63がIGBTチップ12の側面62の表面層に配置される。IGBTチップ12の側面62は、ダイシングライン13に沿ってV溝型のブレード4で形成されたベベル加工面(ベベル角θは40°〜70°程度)であり、研削面である。尚、前記のゲート構造はプレーナ型であるが、図6に示すようなトレンチ型の場合もある。
図4は、この発明の第2実施例の半導体装置の製造方法を説明する工程図であって、図4(a)〜図4(d)は工程順に示した製造工程図である。ここでは、逆阻止IGBTチップの製造プロセスフローであり、特にp分離拡散層の形成工程を示す。
図4(a)に示すように、縦型IGBTの表面ウエハプロセス工程でウエハ100の表側1に図5に示すエミッタ層54、ゲート電極56、エミッタ電極58、ゲート電極56と接続する図示しないゲート電極パッドおよび表面保護膜60などを形成し、裏面ウエハプロセス工程でウエハ100の裏側21にコレクタ層およびコレクタ電極を形成した後、ウエハ100の表側1とダイシングテープ3を向かい合わせて貼り合わせる。ダイシングテープ3はダイシングフレーム2に固定されている。
次に、図4(b)において、断面がV溝型のブレード4を用いてウエハ100の裏面21よりダイシングを行いチップ化する。ここでダイシングは、裏面のコレクタ電極64面からブレード4を入れるのでダイシングの位置決め(アライメント)を可能とするために、予め両面アライナーなどで裏面にアライメントマーキング22を形成しておく。
次に、図4(c)に示すように、ダイシングフレーム2にウエハ100が貼り付いた状態のまま、ウエハ100全面にボロンのイオン注入14を行って露出しているダイシングライン13(IGBTチップ12の側面62)にボロンを導入する。
次に、図4(d)に示すように、ウエハ100全面にレーザー照射機15から発射されるレーザー光16を照射(走査照射)してレーザーアニールを行って、IGBTチップ12の側面62に導入されたボロンの活性化と拡散を行こないp分離拡散層63(高濃度のp層)を形成し、逆阻止IGBTの製造工程が終了する。尚、レーザー光16の走査照射はステージXY機構を動かして行なう。
+イオン注入は、先に述べたように、ダイシングライン13のみに注入されればよいが、イオンビーム径が大きいために、ダイシングライン13のみに選択的に注入することは困難である。
しかし、本発明では裏面ウエハプロセスは全て終了しており、裏側21の全面にAl/Ti/Ni/Auによる厚い複合金属電極膜(コレクタ電極64)が形成されているため、1×1014ions/cm2程度の低ドーズのB+が注入されても、この複合金属電極膜で遮蔽されるので問題はない。
V溝型のブレード4によるダイシングによってベベル加工したIGBTチップ12の側面62へ注入されたボロンの活性化はレーザーアニールによって行なう。レーザー照射機15から発射されるレーザー光16はダイシングラインに沿って走査してもよいが、アライメントが煩雑であればウエハ100全面にレーザー光16を走査してアニールしても良い。
IGBTチップ12の側面62以外に照射されても、レーザー光16は金属電極膜によって反射されるので吸収は起こらない。側面62以外の部分へレーザー光16が照射されることによるコレクタ層への不要な熱履歴が生じるなどの問題にはならない。
尚、イオン注入14の観点からベベル角θは裏面を基準として130°〜150°程度が好ましい。ベベル角θが130°程度より小さい場合には、側面62からのボロンの打ち込み深さが浅くなり、p分離拡散層63の厚さが薄くなり空乏層がIGBTチップ12の側面62に達して漏れ電流の増大を招く。また、ベベル角θが150°程度より大きいとダイシングライン13の幅が広がり微細化の支障となると同時に表側1のIGBTチップ12のエッジが欠け易くなるので好ましくない。
このように、裏側21より表側1を広くすることにより、活性領域を広くすることができるので第1実施例より好ましい。
前記したように、特許文献2で記載されたエッチングでIGBTチップ62の側面62を形成すると、使用するウエハ100の結晶方位(面方位が(100)面)の関係からベベル角θが固定されてしまう。しかし、本製造方法では研削でIGBTチップ12の側面62を形成するために、結晶方位と関係なく任意にベベル角θを選定することができる。
図5は、図4の製造方法で製作した逆阻止IGBTの要部断面図である。pコレクタ層51上にnドリフト層52が配置され、nドリフト層52上にpベース層53が配置され、pベース層53の表面層にnエミッタ層54が配置されている。nエミッタ層54とnドリフト層52に挟まれたpベース層53上にゲート絶縁膜55を介してゲート電極56が配置され、ゲート電極56上の層間絶縁膜57上にnエミッタ層54およびpベース層53に接続するエミッタ電極58が配置される。またゲート電極56と接続する図示しないゲート電極パッドがエミッタ電極58と隣接して配置される。pコレクタ層51上にコレクタ電極64が配置される。pベース層53とチップ端部の間に耐圧構造部60が配置され、この耐圧構造部60の一部であるp端部層61とpコレクタ層51の両層に接するp拡散分離層62がIGBTチップ12の側面62に配置される。IGBTチップ12の側面62は、ダイシングライン13に沿ってV溝型のブレード4で形成されたベベル加工面(角度は表面を基準として130°〜150°程度)であり、研削面である。
図6は、本発明を用いて形成したトレンチゲート構造の逆阻止IGBTの要部断面図である。図5との違いは、半導体基板の表面層にpベース層53を貫通しnドリフト層52に達するトレンチを形成しこのトレンチの側壁にゲート絶縁膜55を介してゲート電極56が形成されている点である。
図7は、この発明の第3実施例の半導体装置の製造方法を説明する工程図であって、図7(a)〜図7(d)は工程順に示した製造工程図である。ここでは、逆阻止IGBTチップの製造プロセスフローであり、特にp分離拡散層の形成工程を示す。
図7(a)に示すように、縦型IGBTの表面ウエハプロセスおよび裏面ウエハプロセス工程で図13に示すエミッタ電極58、図示しないゲート電極パッドおよび表面保護膜60やコレクタ電極64などの形成が終了した後、ブレードによるダイシング、もしくはレーザー光によるダイシングによってチップ化(ベベル角はほぼ90°程度)し、複数のIGBTチップ12を垂直に重ねて配置してチップ積層塊31(直方体塊)とする。なお、IGBTチップ12の個片化の方法は上記の方法に限るものではない。
IGBTチップ12の厚さが100μm程度の場合には、重ねるチップの枚数は数十枚から数百枚のチップ積層塊31とする。このときチップの側面を図示しない治具を用いて数十μm程度以内に揃える。また、チップの厚さが100μm程度と薄い場合には10枚程度重ねてダイシングしてチップ化してもよい。また、重ねられたチップには互いにずれないように圧接力を加えるとよい。
その際の複数のIGBTチップ12の積層に当たっては、隣接するIGBTチップ12同士の間隔を空けずに密着させてもよいが、図8に示すように、IGBTチップ12の間に弱い粘着性を持ったクッションシート34(スペーサー)を挟んで、一定間隔のスペースを確保してもよい。尚、図8は、半導体チップ12同士に間隔を空けた場合を示し、図8(a)はその斜視図、図8(b)は半導体12同士の間にクッションシート34を挟んだチップ積層塊の断面図である。
この場合、図9に示されるように、その後のイオン注入工程において、IGBTチップ12の側面62のみではなく、IGBTチップ12の表面および裏面の端部側の一部領域についても、チルトイオン注入14a(斜めイオン注入)が可能となる。
IGBTチップ12のエッジ部にダイシングによるチッピングやハンドリングによるチップ欠けが生じている場合、このチルトイオン注入14aにより、図10に示されるチッピング部にもイオン注入されるので非常に効果的である。
またクッションシート34により隣り合うIGBTチップ12同士が擦れあってキズをつけてしまうことを防止できる。
次に、図7(b)に示すように、このチップ積層塊31の側面をCMP(chemical mechanical polishing)盤32を用いてCMPによる研磨を行なう。この工程は、ダイシング面が鏡面に近い仕上がりの場合は省いても構わない。
このCMP研磨処理は、図11に示されるように、ダンシング面近傍の結晶欠陥36やダメージ層37や微小なチッピングなど除去するのに効果的である。
次に、図7(c)に示すように、CMP研磨後の洗浄を行った後、チップ積層塊31の側面にイオン注入14を行う。チップ積層塊31の側面全てに渡ってイオン注入14によるドーパント導入をするために、チップ積層塊31を回転軸33回転させながらイオン注入14する。または、図示しないステージに固定してイオン注入14を4つの側面についてそれぞれ行ってもよい。
このチップ積層塊31の回転方法として、図12に示すように複数の円柱形状の支持棒38にチップ積層塊31を挟み、この支持棒38を回転させることで、このチップ積層塊31をイオン注入14中に回転させることができる。
チップ積層塊31を、キズつけずに滑らかに回転させるためには、支持棒37の表面の材質がシリコーン樹脂などの柔らかい材質でコーティングされている事が望ましい。
また支持棒38のチップ積層塊31への押し付けは、図12(b)に示されるように、バネ39などの弾力材で押し付けるのが望ましい。
また、図示しない回転支持棒を用いて回転軸方向へチップ積層塊31を圧接しながら回転させてイオン注入14しても構わない。
CMP研磨で除去できなかったダイシング面近傍の結晶欠陥36やダメージ層37の影響を少なくするため、高加速のイオン注入装置を用いて、できるだけ高い注入エネルギー(深い飛程)でイオン注入を行い、IGBTチップ12の側面62から深い位置までボロンが導入されたp分離拡散層63を形成することが望ましい。
高加速イオン注入装置は高価であり、さらに十分なイオンビーム電流が得られないので、高ドーズ量のイオン注入は時間が掛かって難しいが、本発明によれば、チップを束ねて、一括して注入するので、高加速イオン注入装置を用いて時間を掛けて高ドーズ量注入しても、十分スループットが得られる。
次に、図7(d)に示すように、イオン注入14後、アルミ電極(エミッタ電極58)に熱ダメージを与えないような温度範囲で電気炉でアニールを行うか、もしくはチップ積層塊31に高エネルギーのパルスレーザーを照射してレーザーアニールしてもよい。
レーザーアニール後、チップ積層塊31を再び個々のチップに分解し、逆阻止IGBTチップの製造工程が全て終了する。
前記の第1〜第3実施例で示した本発明によれば、ウエハ100の表面から深い熱拡散を必要としないので大幅に熱履歴が削減される。厚いマスク熱酸化膜を必要としないので、高温長時間の熱酸化処理に起因する結晶欠陥も削減されることで高い良品率を確保できる。また、長時間の熱拡散処理が短時間でよくなり、リード時間を短縮できる。
さらに横方向拡散によるチップサイズ増大が伴わない。
高耐圧化によるさらに深いp分離拡散層63の形成も、従来技術ではこれ以上の深い熱拡散は困難であるが、本発明によれば、さらに深いp分離拡散層63、つまり高耐圧の逆阻止IGBTの製造が熱履歴の増加を伴わずに非常に容易できる。熱履歴の増加を伴わないことで、高い良品率を確保できる。
また、本発明によれば表面ウエハプロセスおよび裏面ウエハプロセスを終了した通常のNPT(Non Punch Through)−IGBTウエハから逆阻止IGBTの製造が可能になる。それぞれのタイプのIGBTの製造受注状態に応じて逆阻止IGBTおよびNPT型−IGBTを短時間で製造することができることから、それぞれ個別に受注量にあわせて製造管理する必要がなくなり、製造管理の簡略化を図ることができる。
図13は、図7の製造方法で製作した逆阻止IGBTの要部断面図である。pコレクタ層51上にnドリフト層52が配置され、nドリフト層52上にpベース層53が配置され、pベース層53の表面層にnエミッタ層54が配置されている。nエミッタ層54とnドリフト層52に挟まれたpベース層53上にゲート絶縁膜55を介してゲート電極56が配置され、ゲート電極56上の層間絶縁膜57上にnエミッタ層54と接続するエミッタ電極58が配置される。またゲート電極56と接続する図示しないゲート電極パッドがエミッタ電極58と隣接して配置される。pコレクタ層51上にコレクタ電極64が配置される。pベース層53とチップ端部の間に耐圧構造部60が配置され、この耐圧構造部60の一部であるp端部層61とpコレクタ層51の両層に接するp拡散分離層63がIGBTチップ12の側面62に配置される。IGBTチップ12の側面62は、ダイシングラインに沿ってブレード4で形成されたベベル加工面(角度は裏面を基準として90°程度)であり、研削面である。尚、前記のゲート構造はプレーナ型であるが、トレンチ型の場合もある。
この発明の第1実施例の半導体装置の製造方法を説明する工程図であって、(a)〜(d)は工程順に示した製造工程図。 ブレード4の断面形状と切削されたウエハの断面形状を示した図 図1の製造方法で製作した逆阻止IGBTの要部断面図 この発明の第2実施例の半導体装置の製造方法を説明する工程図であって、(a)〜(d)は工程順に示した製造工程図 図4の製造方法で製作した逆阻止IGBTの要部断面図 本発明を用いて形成したトレンチゲート構造の逆阻止IGBTの要部断面図 この発明の第3実施例の半導体装置の製造方法を説明する工程図であって、(a)〜(d)は工程順に示した製造工程図 半導体チップ12同士に間隔を空けた場合を示し、(a)はその斜視図、(b)は半導体12同士の間にクッションシート34を挟んだチップ積層塊の断面図 チップ積層塊にイオン注入している図 チップ積層塊のチップにチッピングや欠けがある場合の図であり、同図(a)はチップ同士を密着した場合の断面図、同図(b)はチップ同士の間にクッションシートを挟んだ場合の断面図 IGBTチップの側面に欠陥がある場合であり、同図(a)は結晶欠陥がある図、同図(b)はダメージ層がある図 支持棒でチップ積層塊を押さえて回転させている図であり、同図(a)はその斜視図、同図(b)は支持棒をバネで押さえ付けている図 図7の製造方法で製作した逆阻止IGBTの要部断面図 従来の逆阻止IGBTの要部断面図 従来の逆阻止IGBTと従来のNPT−IGBTの断面図とI−V曲線図 従来のp分離拡散層を形成する様子を示す図
符号の説明
1 表側
2 ダイシングフレーム
3 ダイシングテープ
4 ブレード
5 ブレードスピンドル
11 IGBTチップ形成領域
12 IGBTチップ
13 ダイシングライン
14 イオン注入
14a チルトイオン注入
15 レーザー照射機
16 レーザー光
21 裏側
22 アライメントマーキング
23 ステージXY機構
31 チップ積層塊
32 CMP盤
33 回転軸
34 クッションシート
35 チッピング
36 結晶欠陥
37 ダメージ層
38 支持棒
39 バネ
51 pコレクタ層
52 nドリフト層
53 pベース層
54 nエミッタ層
55 ゲート絶縁膜
56 ゲート電極
57 層間絶縁膜
58 エミッタ電極
59 表面保護膜
60 耐圧構造部
61 p端部層
62 側面
63 p分離拡散層
100 ウエハ

Claims (10)

  1. 半導体チップの側面に形成された分離拡散層と、該分離拡散層と接続し半導体チップ裏面に形成されたコレクタ層と、前記分離拡散層と接続し前記半導体チップの表面層に形成された耐圧構造部と、前記耐圧構造部に囲まれた前記半導体チップ表面層に形成されたエミッタ層ならびにゲート電極と、前記コレクタ層上に形成されたコレクタ電極と、前記エミッタ層上に形成されるエミッタ電極と、前記ゲート電極と接続し前記エミッタ電極と隣接するゲート電極パッドと、を有する半導体装置において、
    前記半導体チップの側面が、断面形状がV字型もしくは逆台形型のブレードを用いてダイシングを行った研削面で前記半導体チップ裏面と前記半導体チップの側面のなす角度が40度以上70度以下、あるいは130度以上150度以下であり、前記分離拡散層が前記半導体チップの側面の表面層に形成された拡散層であることを特徴とする半導体装置。
  2. 前記ゲート電極が、半導体基板表面にゲート絶縁膜を介して形成されるプレーナゲート電極もしくはトレンチ側壁にゲート絶縁膜を介して形成されるトレンチゲート電極であることを特徴とする請求項1に記載の半導体装置。
  3. 半導体チップの側面に形成された分離拡散層と、該分離拡散層と接続し半導体チップ裏面に形成されたコレクタ層と、前記分離拡散層と接続し前記半導体チップの表面層に形成された耐圧構造部と、前記耐圧構造部に囲まれた前記半導体チップ表面層に形成されたエミッタ層ならびにゲート電極と、前記コレクタ層上に形成されたコレクタ電極と、前記エミッタ層上に形成されるエミッタ電極と、前記ゲート電極と接続し前記エミッタ電極と隣接するゲート電極パッドと、を有する半導体装置の製造方法において、
    半導体ウエハの表側に前記エミッタ層、前記エミッタ電極、前記ゲート電極、前記ゲート電極パッド、前記表面保護膜を、半導体ウエハの裏側に前記コレクタ層、前記コレクタ電極を形成する工程と、
    前記半導体ウエハの裏側をダイシングテープを介してダイシングフレームに貼り付ける工程と、
    断面形状がV字型もしくは逆台形型のブレードを用いて前記半導体ウエハの表側からダイシングを行い、半導体チップ裏面と半導体チップ側面のなす角度が90°未満である半導体チップにする工程と、
    前記ダイシングフレームに前記半導体チップが貼り付いた状態で前記半導体チップの側面に前記コレクタ層と同一の導電型の不純物をイオン注入する工程と、
    少なくとも前記半導体チップの側面に選択的にレーザー光を照射しレーザーアニールを行い、前記半導体チップの側面に導入された前記不純物を活性化した分離拡散層を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  4. 半導体チップの側面に形成された分離拡散層と、該分離拡散層と接続し半導体チップ裏面に形成されたコレクタ層と、前記分離拡散層と接続し前記半導体チップの表面層に形成された耐圧構造部と、前記耐圧構造部に囲まれた前記半導体チップ表面層に形成されたエミッタ層ならびにゲート電極と、前記コレクタ層上に形成されたコレクタ電極と、前記エミッタ層上に形成されるエミッタ電極と、前記ゲート電極と接続し前記エミッタ電極と隣接するゲート電極パッドと、を有する半導体装置の製造方法において、
    半導体ウエハの表側に前記エミッタ層、前記エミッタ電極、前記ゲート電極、前記ゲート電極パッド、前記表面保護膜を、半導体ウエハの裏側に前記コレクタ層、前記コレクタ電極を形成する工程と、
    前記半導体ウエハの表側ダイシングテープを介してダイシングフレームに貼り付ける工程と、
    断面形状がV字型もしくは逆台形型のブレードを用いて前記半導体チップの側からダイシングを行い、半導体チップ裏面と半導体チップ側面のなす角度が90°超である半導体チップにする工程と、
    前記ダイシングフレームに前記半導体チップが貼り付いた状態で前記半導体チップの側面に前記コレクタ層と同一の導電型の不純物をイオン注入する工程と、
    少なくとも前記半導体チップの側面に選択的にレーザー光を照射しレーザーアニールを行い、前記半導体チップの側面に導入された前記不純物を活性化した分離拡散層を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  5. 前記分離拡散層を形成する工程は、前記半導体チップの裏側全面にレーザー光を照射してレーザーアニールを行い、前記半導体チップの側面に導入された前記不純物を活性化した分離拡散層を形成する工程であることを特徴とする請求項に記載の半導体装置の製造方法。
  6. 半導体チップの側面に形成された分離拡散層と、該分離拡散層と接続し半導体チップ裏面に形成されたコレクタ層と、前記分離拡散層と接続し前記半導体チップの表面層に形成された耐圧構造部と、前記耐圧構造部に囲まれた前記半導体チップ表面層に形成されたエミッタ層ならびにゲート電極と、前記コレクタ層上に形成されたコレクタ電極と、前記エミッタ層上に形成されるエミッタ電極と、前記ゲート電極と接続し前記エミッタ電極と隣接するゲート電極パッドと、を有する半導体装置の製造方法において、
    半導体ウエハの表側に前記エミッタ層、前記エミッタ電極、前記ゲート電極、前記ゲート電極パッド、前記表面保護膜を、半導体ウエハの裏側に前記コレクタ層、前記コレクタ電極を形成する工程と、
    前記半導体ウエハにダイシングを行い側面の角度が半導体チップ裏面を基準としてほぼ直角である半導体チップにする工程と、
    前記半導体チップの側面を揃えて前記半導体チップを積層してチップ積層塊とする工程と、
    前記チップ積層塊の側面に前記コレクタ層と同一の導電型の不純物をイオン注入する工程と、
    イオン注入された前記チップ積層塊をアニールして前記不純物を拡散しながら活性化して前記半導体チップの前記分離拡散層を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  7. 前記チップ積層塊において、隣接する前記半導体チップ同士の間に前記半導体チップより面積が小さなクッション材を前記半導体チップの中央部に配置して隣接する前記半導体チップ間に隙間を設けることを特徴とした請求項に記載の半導体装置の製造方法。
  8. 前記チップ積層塊の側面にCMPを行うことを特徴とする請求項または請求項に記載の半導体装置の製造方法。
  9. 前記半導体チップの積層方向を軸として前記チップ積層塊を回転させなが前記チップ積層塊の側面にイオン注入することを特徴とする請求項6〜8のいずれか一項に記載の半導体装置の製造方法。
  10. 前記不純物のイオン注入方向が前記チップ積層塊の側面に対して斜めになることを特徴とする請求項6〜9のいずれか一項に記載の半導体装置の製造方法。
JP2008015761A 2008-01-28 2008-01-28 半導体装置およびその製造方法 Expired - Fee Related JP5358960B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015761A JP5358960B2 (ja) 2008-01-28 2008-01-28 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015761A JP5358960B2 (ja) 2008-01-28 2008-01-28 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2009177039A JP2009177039A (ja) 2009-08-06
JP5358960B2 true JP5358960B2 (ja) 2013-12-04

Family

ID=41031812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015761A Expired - Fee Related JP5358960B2 (ja) 2008-01-28 2008-01-28 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP5358960B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621271B2 (ja) * 2010-02-12 2014-11-12 富士電機株式会社 逆阻止形絶縁ゲート型バイポーラトランジスタの製造方法
JP5195816B2 (ja) 2010-05-17 2013-05-15 富士電機株式会社 半導体装置の製造方法
JP2012129285A (ja) * 2010-12-14 2012-07-05 Disco Abrasive Syst Ltd ウェーハ生産方法
JP6111527B2 (ja) * 2012-04-02 2017-04-12 富士電機株式会社 逆阻止型半導体装置
CN206194745U (zh) * 2016-07-22 2017-05-24 三垦电气株式会社 半导体装置
JP6953246B2 (ja) * 2017-09-08 2021-10-27 浜松ホトニクス株式会社 半導体ウエハの製造方法、半導体エネルギー線検出素子の製造方法、及び半導体ウエハ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353455A (ja) * 2001-05-28 2002-12-06 Toshiba Corp 電力用半導体素子
JP2003142774A (ja) * 2001-11-06 2003-05-16 Matsushita Electric Ind Co Ltd 半導体レーザ装置及びその製造方法
JP5011634B2 (ja) * 2003-08-29 2012-08-29 富士電機株式会社 半導体装置およびその半導体装置を用いた双方向スイッチ素子
JP4857578B2 (ja) * 2005-03-28 2012-01-18 富士電機株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2009177039A (ja) 2009-08-06

Similar Documents

Publication Publication Date Title
JP5082211B2 (ja) 半導体装置の製造方法
JP4982948B2 (ja) 半導体装置の製造方法
US8507327B2 (en) Semiconductor device manufacturing method thereof
JP5358960B2 (ja) 半導体装置およびその製造方法
JP5614451B2 (ja) 半導体装置の製造方法
JP5655931B2 (ja) 半導体装置の製造方法
JP5560538B2 (ja) 半導体装置の製造方法
JP5807724B2 (ja) 半導体装置および半導体装置の製造方法
US9779968B2 (en) Method for processing semiconductor substrate and method for manufacturing semiconductor device in which said processing method is used
JP2003505860A (ja) 中性子変質を使用する電荷補償半導体素子の製造方法
JP4857578B2 (ja) 半導体装置の製造方法
WO2019012875A1 (ja) 半導体装置の製造方法
JP4826290B2 (ja) 半導体素子の製造方法
JP2006319079A (ja) 半導体装置およびその製造方法
JP5549532B2 (ja) 半導体装置の製造方法
JP2007123357A (ja) 半導体素子の製造方法
JP5201305B2 (ja) 半導体装置の製造方法
US9385210B2 (en) Method for manufacturing semiconductor device using a gettering layer
JP2013239600A (ja) 半導体装置の製造方法および半導体製造装置
JP4572529B2 (ja) 半導体素子の製造方法
JP4882214B2 (ja) 逆阻止型絶縁ゲート形半導体装置およびその製造方法
JP5382098B2 (ja) 半導体装置の製造方法
JP2012004174A (ja) 逆阻止型絶縁ゲート形バイポーラトランジスタおよびその製造方法
JP2017069269A (ja) 半導体装置および半導体装置の製造方法
JP5857575B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees