JP5333863B2 - 回転角検出装置 - Google Patents

回転角検出装置 Download PDF

Info

Publication number
JP5333863B2
JP5333863B2 JP2010094061A JP2010094061A JP5333863B2 JP 5333863 B2 JP5333863 B2 JP 5333863B2 JP 2010094061 A JP2010094061 A JP 2010094061A JP 2010094061 A JP2010094061 A JP 2010094061A JP 5333863 B2 JP5333863 B2 JP 5333863B2
Authority
JP
Japan
Prior art keywords
rotation angle
phase difference
signal
output signal
sine wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010094061A
Other languages
English (en)
Other versions
JP2011069806A (ja
Inventor
武史 上田
由信 冷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2010094061A priority Critical patent/JP5333863B2/ja
Priority to EP10811780.5A priority patent/EP2472232B1/en
Priority to CN201080037553.4A priority patent/CN102483335B/zh
Priority to US13/389,985 priority patent/US8933692B2/en
Priority to PCT/JP2010/064102 priority patent/WO2011024730A1/ja
Publication of JP2011069806A publication Critical patent/JP2011069806A/ja
Application granted granted Critical
Publication of JP5333863B2 publication Critical patent/JP5333863B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

この発明は、回転体の回転角を検出する回転角検出装置に関する。
電動パワーステアリング装置などに使用されるブラシレスモータは、ロータの回転角度に合わせてステータ巻線に電流を通電することによって制御される。そこで、例えば、図13に示す回転角検出装置が知られている。回転角検出装置は、2つの磁極を有する磁石を含むロータ1と、ロータ1の回転中心軸を中心として90°の角度間隔をおいて配置された2つの磁気センサ11,12とを持つ。各磁気センサ11,12は、互いに90°の位相差を有する正弦波信号を出力し、これらの2つの正弦波信号に基づいてロータ1の回転角が検出される。両磁気センサ11,12は、図13に鎖線で示す基板2上に実装されている。
図13に矢印で示す方向をロータ1の正方向の回転方向とする。そして、ロータ1が正方向に回転されるとロータ1の回転角が大きくなり、ロータ1が逆方向に回転されると、ロータ1の回転角が小さくなるものとする。ロータ1の回転角をθとすると、一方の磁気センサ11の出力信号V1は、V1=A1・sinθと表され、他方の磁気センサ12の出力信号V2は、V2=A2・sin(θ+π/2)=A2・cosθと表される。A1,A2は、それぞれ振幅を表している。
これらの振幅A1,A2が互いに等しい値Aであるとみなすか、あるいは両振幅が所定の規定値Aとなるように両信号V1,V2を正規化したとすると、一方の出力信号V1はV1=A・sinθと表され、他方の出力信号V2はV2=A・cosθと表される。さらに、A=1とすると、一方の出力信号V1はV1=sinθで表され、他方の出力信号V2はV2=cosθで表される。そこで、説明を簡単にするために、各磁気センサ11,12の出力信号V1,V2を、V1=sinθ、V2=cosθで表すことにする。
ロータの回転角θは、両出力信号V1,V2を用いて、たとえば、次式(1)に基づいて求めることができる。
θ=tan−1(sinθ/cosθ)
=tan−1(V1/V2)…(1)
特表平9-508214号公報
前述したような従来の回転角検出装置において、2つの磁気センサ11,12を、ロータ1の回転中心軸を中心として、90°の角度間隔をおいて正確に配置することができれば、図14(a)に示すように、各磁気センサ11,12から、互いに90°の位相差を有する正弦波信号を出力させることができる。この場合には、図14(b)に示すように、回転角検出装置によって検出されるロータの回転角に角度誤差は発生しない。
しかし、各磁気センサ11,12の基板2への取り付け誤差や、基板2の組み付け誤差等により、両磁気センサ11,12間の角度間隔が90°からずれると、たとえば、図15(a)に示すように、両磁気センサ11,12の出力信号間の位相差も90°からずれてしまい、図15(b)に示すように、回転角検出装置によって検出されるロータの回転角に角度誤差が発生する。
そこで、この発明の目的は、2つのセンサの出力信号間に両センサの相対的な配置誤差に起因した位相差誤差が存在する場合においても、正確な回転角を検出することができる回転角検出装置を提供することである。
また、この発明の目的は、2つのセンサの相対的な配置を任意に決定することが可能となる回転角検出装置を提供することである。
また、この発明の目的は、2つのセンサのうちのいずれかが故障した場合に、そのことを検知することができる回転角検出装置を提供することである。
請求項1記載の発明は、回転体の回転角を検出する回転角検出装置において、前記回転体の周囲である第1の位置に配置され、第1の正弦波信号を前記回転体の回転に応じて出力する、第1のセンサと、前記第1の位置とは角度間隔を持って前記回転体の周囲である第2の位置に配置され、前記第1の正弦波信号とは前記角度間隔に対応する配置位相差を有する第2の正弦波信号を前記回転体の回転に応じて出力する、第2のセンサと、前記第1の正弦波信号と前記第2の正弦波信号とに基づき前記回転角を演算する、回転角演算装置と、を備えた回転角検出装置であって、前記回転角演算装置は、前記第1の正弦波信号及び前記第2の正弦波信号のうちの一方の正弦波信号を、それらの信号間の位相差である前記配置位相差が、目標位相差となるように補正する、信号補正部と、前記信号補正部によって補正された一方の正弦波信号と、他方の正弦波信号とに基づいて前記回転角を演算する、回転角演算部と、前記信号補正部によって補正された一方の正弦波信号と、前記第2の正弦波信号とに基づいて、前記第1の正弦波信号が異常であるか否かを判定する第1の信号異常判定部と、前記信号補正部によって補正された一方の正弦波信号と、前記第1の正弦波信号とに基づいて、前記第2の正弦波信号が異常であるか否かを判定する第2の信号異常判定部と、を含む回転角検出装置である。
請求項1記載の発明では、第1の正弦波信号及び第2の正弦波信号のうちの一方の正弦波信号が、それらの信号間の位相差である配置位相差が、目標位相差となるように補正される。そして、補正された一方の正弦波信号と、他方の正弦波信号とに基づいて回転角が演算される。したがって、2つの正弦波信号の配置位相差にかかわらず、それらの信号のうちの一方の正弦波信号を、それらの信号間の位相差が目標位相差となるように、補正することができる。この目標位相差は、たとえば、回転体の回転角を演算するのに適した位相差に設定することができるので、正確な回転角を検出できるようになる。
また、請求項1記載の発明では、第1のセンサに故障が発生した場合には、第1の信号異常判定部によって、第1の正弦波信号が異常であると判定されるから、第1のセンサの故障を検知することができる。また、第2のセンサに故障が発生した場合には、第2の信号異常判定部によって、第2の正弦波号が異常であると判定されるから、第2のセンサの故障を検知することができる。
請求項記載の発明は、前記目標位相差は、前記配置位相差とは異なる、請求項1に記載の回転角検出装置である。請求項記載の発明では、2つの正弦波信号の配置位相差にかかわらず、それらの信号のうちの一方の正弦波信号を、それらの信号間の位相差が配置位相差とは異なる目標位相差となるように、補正することができる。この目標位相差は、たとえば、回転体の回転角を演算するのに適した位相差(たとえば、90°)に設定することができるので、2つの正弦波信号の配置位相差にかかわらず、回転体の回転角を演算することが可能となる。したがって、2つのセンサの相対的な配置を任意に決定することが可能となる。
請求項記載の発明は、前記配置位相差には、前記第1のセンサと前記第2のセンサとの相対的な配置誤差に起因して発生する、前記二つの正弦波信号間の位相差誤差が重畳されており、前記回転角演算装置は、前記位相差誤差を演算する位相差誤差演算部を更に含み、前記信号補正部は、前記配置位相差及び前記位相差誤差に基づいて、前記一方の正弦波信号を補正する、請求項に記載の回転角検出装置である。
請求項記載の発明では、第1のセンサと第2のセンサとの相対的な配置誤差に起因して発生する、二つの正弦波信号間の位相差誤差が重畳されている場合においても、2つの正弦波信号のうちの一方の正弦波信号を、それらの信号間の位相差が配置位相差とは異なる目標位相差となるように、補正することができる。
請求項記載の発明は、前記配置位相差は、前記目標位相差より小さい、請求項またはに記載の回転角検出装置である。請求項記載の発明によれば、2つのセンサを実装するための基板を小さくすることが可能となる。たとえば、目標位相差が90°である場合には、配置位相差を90°より小さくできる。この場合には、2つのセンサ間の角度間隔を90°より小さい角度間隔にできるので、2つのセンサ間の角度間隔が90°である場合に比べて、2つのセンサを実装するための基板を小さくできる。
この発明の第1の実施形態に係る回転角検出装置の構成を示す模式図である。 回転角演算装置の詳細な構成を示す機能ブロック図である。 位相差誤差演算部による位相差誤差の演算方法を説明するための説明図である。 回転角演算装置による回転角演算処理の手順を示すフローチャートである。 この発明の第2の実施形態に係る回転角検出装置の構成を示す模式図である。 回転角演算装置による回転角演算処理の手順を示すフローチャートである。 この発明の第2の実施形態に係る回転角検出装置の構成を示す模式図である。 第1のV1異常監視部の動作例を示すフローチャートである。 第1のV2異常監視部の動作例を示すフローチャートである。 第2のV1異常監視部の動作例を示すフローチャートである。 第2のV2異常監視部の動作例を示すフローチャートである。 各異常監視部の動作を説明するための説明図である。 従来の回転角検出装置による回転角検出方法を説明するための模式図である。 2つのセンサ間の角度間隔が90°の場合の各センサの出力信号と、従来の回転角検出装置によって検出される回転角の角度誤差とを示す模式図である。 2つのセンサ間の角度間隔が90°からずれている場合の各センサの出力信号と、従来の回転角検出装置によって検出される回転角の角度誤差とを示す模式図である。
以下では、この発明をブラシレスモータのロータの回転角を検出するための回転角検出装置に適用した場合の実施形態について、添付図面を参照して詳細に説明する。
図1は、この発明の第1の実施形態に係る回転角検出装置の構成を示す模式図である。
この回転角検出装置は、たとえば、電動パワーステアリングのブラシレスモータのロータの回転角を検出するために用いることができる。回転角検出装置は、たとえば、ブラシレスモータの回転に応じて回転する検出用ロータ1を有している。ロータ1は、複数の磁極対を有する円筒状の磁石を含んでいる。この例では、磁石は、1対の磁極対を有している。つまり、磁石は、等間隔に配置された2つの磁極N,Sを有している。
ロータ1の周囲には、第1の磁気センサ11及び第2の磁気センサ12が、ロータ1の周方向に間隔をおいてそれぞれ第1の位置及び第2の位置に配置されている。磁気センサとしては、たとえば、ホール素子、磁気抵抗素子(MR素子)等、磁界の作用により電気的特性が変化する特性を有する素子を備えたものを用いることができる。
両磁気センサ11,12は、ロータ1の回転中心軸を中心として、予め設定された所定の位相差(以下、「目標位相差」という)に対応する角度間隔をおいて配置されることが好ましい。この実施形態では、目標位相差は90°に設定されている。しかし、実際には、製造誤差等により、両磁気センサ11,12間の角度間隔は、目標位相差に対応する角度間隔とならない場合がある。この実施形態では、両磁気センサ11,12間の実際の角度間隔が、製造誤差等により、目標位相差に対応した90°ではなく、(90°+α)となっているものとする。αは、目標位相差に対する位相差誤差である。両磁気センサ11,12間の実際の角度間隔に対応した位相差(この例では、(90°+α))を、配置位相差ということにする。各位相差は、電気角である。
図1に矢印で示す方向をロータ1の正方向の回転方向とする。そして、ロータ1が正方向に回転されるとロータ1の回転角が大きくなり、ロータ1が逆方向に回転されると、ロータ1の回転角が小さくなるものとする。ロータ1の回転角をθとすると、第1の磁気センサ11の出力信号V1は、V1=A1・sinθと表され、第2の磁気センサ12の出力信号V2は、V2=A2・sin(θ+90°+α)=A2・cos(θ+α)と表される。A1,A2は、それぞれ振幅を表している。
これらの振幅A1,A2が互いに等しい値Aであるとみなすか、あるいは両振幅が所定の規定値Aとなるように両信号V1,V2を正規化したとすると、両信号V1,V2は、それぞれ、A・sinθおよびA・cos(θ+α)と表される。ここで、A=1とすると、両信号V1,V2は、それぞれ、sinθおよびcos(θ+α)と表される。そこで、以下の説明においては、説明を簡単にするために、各磁気センサ11,12の出力信号V1,V2を、それぞれV1=sinθ,V2=cos(θ+α)と表すことにする。
各磁気センサ11,12の出力信号V1,V2は、回転角演算装置20に入力される。回転角演算装置20は、各磁気センサ11,12の出力信号V1,V2に基づいて、ロータ1の回転角θを演算する。回転角演算装置20は、たとえば、マイクロコンピュータから構成され、CPU(中央演算処理装置)およびメモリ(ROM,RAM等)を含んでいる。回転角演算装置20は、ROMに格納された所定のプログラムをCPUが実行することにより、複数の機能処理部として機能する。この複数の機能処理部は、位相差誤差演算部(位相差誤差演算手段)21、出力信号補正部(信号補正手段)22および回転角演算部(回転角演算手段)23を含む。
位相差誤差演算部21は、両磁気センサ11,12の出力信号V1,V2に基づいて、位相差誤差αを演算する。位相差誤差演算部21は、ブラシレスモータの駆動制御を行なう前に、位相差誤差αを予め演算して、メモリに格納しておく。たとえば、位相差誤差演算部21は、この回転角検出装置が備え付けられた製品が出荷される前に、位相差誤差αを演算して、メモリに格納する。なお、この回転角検出装置が備え付けられた製品が出荷された後において、一定期間毎または所定の指令に基づいて、位相差誤差演算部21が位相差誤差αの再演算を行ない、メモリ内の位相差誤差αを更新させるようにしてもよい。
出力信号補正部22は、ブラシレスモータの駆動制御が行なわれる際に、位相差誤差演算部21によって演算されてメモリに格納されている位相差誤差αに基づいて、一方の磁気センサ12の出力信号V2を補正することにより、位相差誤差αが補正された信号V2’を求める。ここで、位相差誤差αが補正された信号V2’とは、出力信号V1に対する位相差が目標位相差(この例では90°)となる信号(cosθ)である。回転角演算部23は、出力信号補正部22によって位相差誤差αが補正された信号V2’(=cosθ)と、他方の出力信号V1(=sinθ)とに基づいて、ロータ1の回転角θを演算する。
図2は、回転角演算装置20のさらに詳細な構成を示す機能ブロック図である。
位相差誤差演算部21は、信号和演算部31と、第1の振幅演算部32と、信号差演算部33と、第2の振幅演算部34と、振幅差演算部35と、誤差演算部36と、メモリ37とを含んでいる。
信号和演算部31は、2つの磁気センサ11,12の出力信号V1,V2の和を演算する。出力信号V1,V2の和に相当する信号(以下、「和信号」という)は、次式(2)で表される。
Figure 0005333863
したがって、この和信号の振幅B1は、次式 (3)で表される。
Figure 0005333863
第1の振幅演算部32は、信号和演算部31の演算結果に基づいて、前記和信号の振幅B1を求める。具体的には、たとえば、ロータ1を回転させながら、信号和演算部31によって信号和(V1+V2)を演算させることにより、ロータ1の複数の任意の回転角それぞれに対応する信号和を取得する。このようにして取得された複数の回転角に対応する信号和から、和信号の極大値および極小値を抽出し、抽出した極大値および極小値に基づいて和信号の振幅B1を求める。たとえば、抽出された極大値の平均から抽出された極小値の平均を減算した値の1/2を振幅B1として求めることができる。
信号差演算部33は、2つの磁気センサ11,12の出力信号V1,V2の差(V1−V2)を演算する。出力信号V1,V2の差に相当する信号(以下、「差信号」という)は、次式(4)で表される。
Figure 0005333863
したがって、この差信号の振幅B2は、次式 (5)で表される。
Figure 0005333863
第2の振幅演算部34は、信号差演算部33の演算結果に基づいて、前記差信号の振幅B2を求める。具体的には、たとえば、ロータ1を回転させながら、信号差演算部33によって信号差(V1−V2)を演算させることにより、ロータ1の複数の任意の回転角それぞれに対応する信号差を取得する。このようにして取得された複数の回転角に対応する信号差から、差信号の極大値および極小値を抽出し、抽出した極大値および極小値に基づいて差信号の振幅B2を求める。たとえば、抽出された極大値の平均から抽出された極小値の平均を減算した値の1/2を振幅B2として求めることができる。
振幅差演算部35は、第1の振幅演算部32によって演算された振幅B1と、第2の振幅演算部34によって演算された振幅B2との差ΔB(=B2−B1)を演算する。なお、振幅差ΔBは、前記式(3),(5)を用いて演算すると、次式(6)で表される。
Figure 0005333863
誤差演算部36は、振幅差演算部35によって演算された振幅差ΔBに基づいて、位相差誤差αを演算する。前記式(6)で表されているように、振幅差ΔBは、αの関数(2√2・sin(α/2))となる。この関数をグラフで表すと、図3に示すようなサインカーブとなる。ただし、図3の横軸は、αではなく、α/2である。この関数は、αの絶対値が小さい範囲では、ほぼ直線とみなすことができる。この実施形態では、αが、−π/6≦α≦π/6の範囲内である場合には、次式(7)に示すように、α/2が2√2・sin(α/2)に比例するとみなしている。
2√2・sin(α/2)=K・α/2 …(7)
前記式(7)において、Kは比例定数である。この比例定数Kは、図3に示すサインカーブのうち、横軸の値が−(π/6)/2〜(π/6)/2である範囲内の部分を直線とみなした場合に、その直線の傾きy/xに相当する。したがって、比例定数Kは、次式(8)で表される。
Figure 0005333863
前記式(6)で示されるように、ΔB=2√2・sin(α/2)であるので、前記式(7),(8)を用いることにより、次式(9)のように、ΔBを近似的に表すことができる。
Figure 0005333863
前記式(9)を変形することにより、位相差誤差αは、次式(10)で表される。
Figure 0005333863
位相差誤差演算部36は、振幅差演算部35によって演算された振幅差ΔBを用い、前記式(10)に基づいて、位相差誤差αを演算する。演算された位相差誤差αは、メモリ37に格納される。
出力信号補正部22は、次式(11)に基づいて、出力信号V2(=cos(θ+α))を補正することにより、位相差誤差αが補正された信号V2’(=cosθ)を得る。つまり、出力信号補正部22は、出力信号V1(=sinθ)と、出力信号V2(=cos(θ+α))と、sinαと、cosαとから、補正された信号V2’(=cosθ)を求める。なお、式(11)は、cos(θ+α)を三角関数の加法定理により展開した式に基づいて、導出することができる。
Figure 0005333863
回転角演算部23は、位相差誤差αが補正された信号V2’(=cosθ)と、他方の出力信号V1(=sinθ)とを用い、たとえば、次式(12)に基づいて、ロータ1の回転角θを演算する。
θ=tan−1(sinθ/cosθ)
=tan−1(V1/V2’)…(12)
なお、回転角演算部23は、式(12)を用いる方法とは異なる方法を用いて、信号V2’(=cosθ)および出力信号V1(=sinθ)から回転角θを求めるようにしてもよい。たとえば、特開2001-264114号公報に開示されている方法を用いて、信号V2’(=cosθ)および出力信号V1(=sinθ)から回転角θを求めるようにしてもよい。
図4は、回転角演算装置20によって実行される回転角演算処理の手順を示すフローチャートである。位相差誤差αは、位相差誤差演算部21によって既に演算されて、メモリに格納されているものとする。
回転角演算処理は、所定の演算周期毎に繰り返し行なわれる。まず、回転角演算装置20は、磁気センサ11,12の出力信号V1(=sinθ),V2(=cos(θ+α))を取り込む(ステップS1)。そして、回転角演算装置20の出力信号補正部22は、ステップS1で取り込まれた出力信号V1,V2とメモリに格納されている位相差誤差αとを用い、前記式(11)に基づいて、第2の出力信号V2を補正する(ステップS2)。これにより、位相差誤差αが補正された信号V2’(=cosθ)が得られる。
次に、回転角演算装置20の回転角演算部23は、位相差誤差αが補正された信号V2’(=cosθ)と、ステップS1で取り込まれた出力信号V1(=sinθ)とを用い、前記式(12)に基づいて、ロータ1の回転角θを演算する(ステップS3)。
前記第1の実施形態によれば、2つの磁気センサ11,12間の角度間隔(両センサ11,12の相対的な配置)に誤差がある場合でも、正確な回転角θを検出することができるようになる。
前記第1の実施形態では、第1の磁気センサ11の出力信号V1をsinθとし、第2の磁気センサ12の出力信号V2をcos(θ+α)として、第2の磁気センサ12の出力信号V2を補正しているが、第2の磁気センサ12の出力信号V2をcosθとし、第1の磁気センサ11の出力信号V1をsin(θ+α)として、第1の磁気センサ11の出力信号V1を補正するようにしてもよい。また、αが、−π/6≦α≦π/6の範囲内である場合に、α/2が2√2・sin(α/2)に比例するとみなしているが、α/2が2√2・sin(α/2)に比例するとみなすαの範囲は、2√2・sin(α/2)がほぼ線形性を保つ範囲であればよく、前記範囲に限られない。
また、前記第1の実施形態では、αが小さい範囲においては、α/2が2√2・sin(α/2)に比例するとみなすことにより、αを近似的に求めているが、次のようにしてαを求めてもよい。つまり、前記式(6)に基づいて、αと振幅差ΔB(=2√2・sin(α/2))とを対応付けたテーブル(マップ)を予め作成して記憶しておき、そのテーブルから振幅差演算部35(図2参照)によって求められた振幅差ΔBに対応するαを読み出すことにより、αを求める。
さらに、前記第1の実施形態では、和信号の振幅B1および差信号の振幅B2は、抽出した極大値の平均から極小値の平均を減算した値の1/2としているが、ロータ1に複数組の磁極対が設けられている場合には、磁極対毎の極大値から極小値を減算した値の1/2とし、位相差誤差αを磁極対毎に算出してもよい。
図5は、この発明の第2の実施形態に係る回転角検出装置の構成を示す模式図である。
ロータ1は、2つの磁極N,Sを有する磁石を含んでいる。ロータ1の周囲には、第1の磁気センサ11及び第2の磁気センサ12が、ロータ1の回転中心軸を中心として所定の角度間隔φをおいてそれぞれ第1の位置及び第2の位置に配置されている。この角度間隔φは、任意の角度に設定することができる。この実施形態では、両磁気センサ11,12間の角度間隔φは、90度より小さい角度間隔に設定されている。両磁気センサ11,12は、図5に鎖線で示す基板33上に実装されている。
第1の実施形態と同様に、図5に矢印で示す方向を、ロータ1の正方向の回転方向とする。また、第1の実施形態と同様に、各磁気センサ11,12の出力信号を、その振幅が1であるものとして簡易的に表すことにする。つまり、θをロータ1の回転角として、第1の磁気センサ11の出力信号V1を、V1=sinθとして表し、第2の磁気センサ12の出力信号V2を、V2=sin(θ+φ)として表すことにする。したがって、両出力信号V1,V2の位相差(配置位相差)はφとなる。配置位相差は電気角である。
各磁気センサ11,12の出力信号V1,V2は、回転角演算装置40に入力される。回転角演算装置40は、各磁気センサ11,12の出力信号V1,V2に基づいて、ロータ1の回転角θを演算する。回転角演算装置40は、たとえば、マイクロコンピュータから構成され、CPU(中央演算処理装置)およびメモリ(ROM,RAM等)を含んでいる。回転角演算装置40は、ROMに格納された所定のプログラムをCPUが実行することにより、複数の機能処理部として機能する。この複数の機能処理部は、出力信号補正部(信号補正手段)41および回転角演算部(回転角演算手段)42を含む。両磁気センサ11,12の角度間隔φ、つまり、両出力信号V1,V2の配置位相差φは、メモリに格納されている。なお、配置位相差φをメモリに格納する代わりに、sinφの値およびcosφの値をメモリに格納するようにしてもよい。
出力信号補正部41は、両磁気センサ11,12の出力信号V1,V2に基づいて、出力信号V2を補正する。具体的には、出力信号補正部41は、出力信号V2を、出力信号V1に対する位相差が所定の目標位相差となる信号に補正する。目標位相差は電気角である。この実施形態では、目標位相差は、90°に設定されている。したがって、出力信号補正部41は、出力信号V2を、出力信号V1に対する位相差が90°となる信号V2’(=sin(θ+90°)=cosθ)に補正する。
出力信号V2(=sin(θ+φ))は、三角関数の加法定理により、次式(13)のように展開することができる。
V2=sin(θ+φ)=sinθ・cosφ+cosθ・sinφ…(13)
この式(13)を変形することにより、信号V2を信号V2’に補正するための式(14)が得られる。
Figure 0005333863
出力信号補正部41は、前記式(14)に基づいて、出力信号V2を、出力信号V1に対する位相差が90°となる信号V2’(=cosθ)に補正する。つまり、出力信号補正部41は、出力信号V1(=sinθ)と、出力信号V2(=sin(θ+φ))と、メモリに格納されている配置位相差φを用いて、信号V2を補正する。なお、メモリにsinφの値およびcosφの値が格納されている場合には、配置位相差φの代わりにこれらの値sinφ,cosφを用いて、出力信号V2が補正される。
回転角演算部42は、出力信号補正部41によって補正された信号V2’(=cosθ)と、他方の出力信号V1(=sinθ)とを用い、たとえば、次式(15)に基づいて、ロータ1の回転角θを演算する。
θ=tan−1(sinθ/cosθ)=tan−1(V1/V2’)…(15)
なお、回転角演算部42は、式(15)を用いる方法とは異なる方法で、信号V2’(=cosθ)および出力信号V1(=sinθ)から回転角θを求めるようにしてもよい。たとえば、特開2001-264114号公報参照に開示されている方法を用いて、信号V2’(=cosθ)および出力信号V1(=sinθ)から回転角θを求めるようにしてもよい。
図6は、回転角演算装置40によって実行される回転角演算処理の手順を示すフローチャートである。“配置位相差φ”または“sinφおよびcosφ”の値が、メモリに格納されているものとする。
回転角演算処理は、所定の演算周期毎に繰り返し行なわれる。まず、回転角演算装置40は、磁気センサ11,12の出力信号V1(=sinθ),V2(=sin(θ+φ))を取り込む(ステップS11)。そして、回転角演算装置40の出力信号補正部41は、ステップS11で取り込まれた出力信号V1,V2と、メモリに格納されている“配置位相差φ”または“sinφおよびcosφ”の値を用い、前記式(14)に基づいて、第2の出力信号V2を補正する(ステップS12)。これにより、出力信号V1に対する位相差が90°(目標位相差)となる補正信号V2’(=cosθ)が得られる。
次に、回転角演算装置40の回転角演算部42は、出力信号補正部41によって得られた信号V2’(=cosθ)と、ステップS11で取り込まれた出力信号V1(=sinθ)とを用い、前記式(15)に基づいて、ロータ1の回転角θを演算する(ステップS13)。
前記第2の実施形態によれば、2つの磁気センサ11,12の出力信号V1,V2の配置位相差にかかわらず、それらの信号のうちの一方の出力信号を、それらの信号間の位相差がロータ1の回転角θを演算するのに適した目標位相差(たとえば90°)となるように、補正することができる。このため、2つの磁気センサ11,12の出力信号V1,V2の配置位相差にかかわらず、ロータ1の回転角θを演算することが可能となるので、2つの磁気センサ11,12間の角度間隔(両センサ11,12の相対的な配置)を任意に決定することができるようになる。
これにより、たとえば、図5に示したように、2つの磁気センサ11,12間の角度間隔(配置位相差)を目標位相差である90°より小さい角度に設定することが可能となる。図5に示すように2つの磁気センサ11,12間の角度間隔を90°より小さい角度に設定した場合には、図13に示すように、2つの磁気センサ11,12間の角度間隔を90°に設定した場合に比べて、磁気センサ11,12を実装する基板2,3を小さくすることが可能となる。
前記第2の実施形態において、出力信号V2を、出力信号V1に対する位相差が90°の信号V2’(=cosθ)に補正(変換)するための式(14)の右辺の分母は、sinφとなっている。このため、sinφの値が小さいと、式(14)の右辺の分母が小さくなるため、V2をV2’に補正したときの誤差が大きくなる。そこで、sinφの値が比較的小さくなるようなφの範囲を避けて、両センサ11,12の角度間隔φを決定することが好ましい。具体的には、φが0〜4度、176〜184度および356〜360度の範囲にある場合に、sinφは比較的小さな値となる。したがって、両センサ11,12の角度間隔φを、5〜175度または185〜355度の範囲内で決定することが好ましい。
前記第2の実施形態においても、前記第1の実施形態のように、2つの磁気センサ11,12の配置誤差αを考慮して、回転角θを演算することができる。たとえば、図5において、2つの磁気センサ11,12の配置に誤差(位相差誤差)αがあるために、両磁気センサ11,12の角度間隔が(φ+α)となっている場合、すなわち、配置位相差に位相差誤差が重畳されている場合を想定する。
第1の磁気センサ11の出力信号V1をsinθとし、第2の磁気センサ12の出力信号V2をsin(θ+φ+α)とすると、両信号V1,V2の和に相当する和信号は、次式(16)で表される。
Figure 0005333863
したがって、この和信号の振幅C1は、次式(17)で表される。
Figure 0005333863
一方、両信号V1,V2の差(V1−V2)に相当する差信号は、次式(18)で表される。
Figure 0005333863
したがって、この差信号の振幅C2は、次式(19)で表される。
Figure 0005333863
両振幅C1,C2の差ΔCは、次式(20)で表される。
Figure 0005333863
つまり、振幅差ΔCは、φをパラメータ(媒介変数)として有するαの関数となる。そこで、φに応じた振幅差ΔCとαとを対応付けたテーブル(マップ)を予め作成しておく。そして、第1の実施形態と同様にして、振幅差ΔCを演算し、得られた振幅差ΔCに対応するαを位相差誤差αとして求める。なお、前記式(20)の右辺中の((φ−90°)/2)が0に近い場合には、第1の実施形態で説明したように、αが小さい所定範囲内では、振幅差ΔCがα/2に比例するとみなして、位相差誤差αを求めるようにしてもよい。
一方、sin(θ+φ+α)を、三角関数の加法定理により展開すると、次式(21)が得られる。
sin(θ+φ+α)=sinθ・cos(φ+α)+cosθ・sin(φ+α)…(21)
この式(21)を変形すると、次式(22)が得られる。
Figure 0005333863
そこで、φ,α,出力信号V1(=sinθ)および出力信号V2(=sin(θ+φ+α))を用い、前記式(22)に基づいて、cosθを演算する。そして、得られたcosθと出力信号V1(=sinθ)とから、回転角θを演算する。
図7は、この発明の第3の実施形態に係る回転角検出装置の構成を示す模式図である。
ロータ1は、2つの磁極N,Sを有する磁石を含んでいる。ロータ1の周囲には、第1の磁気センサ11及び第2の磁気センサ12が、ロータ1の回転中心軸を中心として所定の角度間隔φをおいてそれぞれ第1の位置及び第2の位置に配置されている。この角度間隔φは、任意の角度に設定することができる。この実施形態では、両磁気センサ11,12間の角度間隔φは、90度より小さい角度間隔に設定されている。両磁気センサ11,12は、図7に鎖線で示す基板33上に実装されている。
図7に矢印で示す方向を、ロータ1の正方向の回転方向とする。また、第1の実施形態と同様に、各磁気センサ11,12の出力信号を、その振幅が1であるものとして簡易的に表すことにする。つまり、θをロータ1の回転角として、第1の磁気センサ11の出力信号V1を、V1=sinθとして表し、第2の磁気センサ12の出力信号V2を、V2=sin(θ+φ)として表すことにする。したがって、両出力信号V1,V2の位相差(配置位相差)はφとなる。配置位相差は電気角である。
各磁気センサ11,12の出力信号V1,V2は、回転角演算装置50に入力される。回転角演算装置50は、たとえば、マイクロコンピュータから構成され、CPU(中央演算処理装置)およびメモリ(ROM,RAM等)を含んでいる。回転角演算装置50は、ROMに格納された所定のプログラムをCPUが実行することにより、複数の機能処理部として機能する。この複数の機能処理部は、回転角演算ユニット60とセンサ故障検出ユニット70とを含む。両磁気センサ11,12の角度間隔φ、つまり、両出力信号V1,V2の配置位相差φは、メモリに格納されている。なお、配置位相差φをメモリに格納する代わりに、sinφの値およびcosφの値をメモリに格納するようにしてもよい。
回転角演算ユニット60は、所定の第1の演算周期毎にロータ1の回転角θを演算する。つまり、回転角演算ユニット60は、第1の演算周期毎に各磁気センサ11,12の出力信号V1,V2を取り込み、取り込んだ出力信号V1,V2に基づいて、ロータ1の回転角θを演算する。回転角演算ユニット60は、出力信号補正部(信号補正手段)61および回転角演算部(回転角演算手段)62を含む。
出力信号補正部61は、両磁気センサ11,12の出力信号V1,V2に基づいて、出力信号V2を補正する。具体的には、出力信号補正部61は、出力信号V2を、出力信号V1に対する位相差が所定の目標位相差となる信号に補正する。目標位相差は電気角である。この実施形態では、目標位相差は、90°に設定されている。したがって、出力信号補正部41は、出力信号V2を、出力信号V1に対する位相差が90°となる信号V2’(=sin(θ+90°)=cosθ)に補正する。
出力信号V2(=sin(θ+φ))は、三角関数の加法定理により、次式(23)のように展開することができる。
V2=sin(θ+φ)=sinθ・cosφ+cosθ・sinφ…(23)
この式(23)を変形することにより、信号V2を信号V2’に補正するための式(24)が得られる。
Figure 0005333863
出力信号補正部61は、前記式(24)に基づいて、出力信号V2を、出力信号V1に対する位相差が90°となる信号V2’(=cosθ)に補正する。つまり、出力信号補正部61は、出力信号V1(=sinθ)と、出力信号V2(=sin(θ+φ))と、メモリに格納されている配置位相差φを用いて、信号V2を補正する。なお、メモリにsinφの値およびcosφの値が格納されている場合には、配置位相差φの代わりにこれらの値sinφ,cosφを用いて、出力信号V2が補正される。
回転角演算部62は、出力信号補正部61によって補正された信号V2’(=cosθ)と、他方の出力信号V1(=sinθ)とを用い、たとえば、次式(25)に基づいて、ロータ1の回転角θを演算する。
θ=tan−1(sinθ/cosθ)=tan−1(V1/V2’)…(25)
なお、回転角演算部62は、式(25)を用いる方法とは異なる方法で、信号V2’(=cosθ)および出力信号V1(=sinθ)から回転角θを求めるようにしてもよい。たとえば、特開2001-264114号公報参照に開示されている方法を用いて、信号V2’(=cosθ)および出力信号V1(=sinθ)から回転角θを求めるようにしてもよい。
センサ故障検出ユニット70は、各磁気センサ11,12の出力信号V1,V2に基づいて、磁気センサ11,12の故障を検出する。磁気センサ11,12が故障すると、その出力信号V1,V2は、零、上限値または下限値に固定される。そこで、各磁気センサ11,12の出力信号V1,V2を監視し、その出力信号が零、上限値または下限値に固定されていることを検出した場合(その出力信号が異常であると判定した場合)に、対応する磁気センサに故障が発生したと判定することができる。
センサ故障ユニット70は、第1のV1異常監視部71と、第1のV2異常監視部72と、第2のV1異常監視部73と、第2のV2異常監視部74とを含む。第1のV1異常監視部71は、第2の磁気センサ12の出力信号V2と、回転角演算ユニット60内の出力信号補正部61によって演算される信号V2’とに基づいて、第1の磁気センサ11の出力信号V1が零に固定されたか否かを判定するための処理を行なう。第1のV2異常監視部72は、第1の磁気センサ11の出力信号V1と、出力信号補正部61によって演算される信号V2’とに基づいて、第2の磁気センサ12の出力信号V2が零に固定されたか否かを判定するための処理を行なう。
第2のV1異常監視部73は、第2の磁気センサ12の出力信号V2と、出力信号補正部61によって演算される信号V2’とに基づいて、第1の磁気センサ11の出力信号V1が上限値(+1)または下限値(−1)に固定されたか否かを判定するための処理を行なう。第2のV2異常監視部74は、第1の磁気センサ11の出力信号V1と、出力信号補正部61によって演算される信号V2’とに基づいて、第2の磁気センサ12の出力信号V2が上限値(+1)または下限値(−1)に固定されたか否かを判定するための処理を行なう。
センサ故障検出ユニット70は、所定の第2の演算周期毎に第1の磁気センサ11の出力信号V1および第2の磁気センサ12の出力信号V2を取り込み、取り込んだ出力信号V1を第1のV2異常監視部72および第2のV2異常監視部74に与え、取り込んだ出力信号V2を第1のV1異常監視部71および第2のV1異常監視部73に与える。この実施形態では、第2の演算周期は、回転角演算ユニット60が回転角を演算する周期(第1演算周期)と等しいかまたはそれより長い周期に設定されている。
図8は、第1のV1異常監視部71の動作例を示すフローチャートである。図8の処理は、前記第2の演算周期毎に実行される。
図8の処理は、第1の磁気センサ11の出力信号V1(=sinθ)が零に固定されているか否かを判定するために行なわれる。第1の磁気センサ11の出力信号V1が零に固定された場合には、出力信号補正部61によって演算される信号V2’(cosθに相当する信号)は、前記式(24)にV1=0を代入することにより、V2’=V2/sinφとなる。したがって、出力信号補正部61によって演算される信号V2’が演算値(V2/sinφ)と等しいか否かを所定時間(第2の演算周期)毎に判別し、V2’=V2/sinφの状態が所定回数以上継続する場合には、第1の磁気センサ11に故障が発生したと判定することができる。
ただし、第1の磁気センサ11が正常であっても、回転角θがたとえば0°または180°である場合には、その出力信号V1(=sinθ)が0となる。そこで、第1の磁気センサ11が正常である場合に、その出力信号V1が零となるような回転角θにおいては、信号V2’が演算値(V2/sinφ)と等しいか否かの判定を行わないようにしている。
図8に戻り、第1のV1異常監視部71は、今演算周期で取り込まれた第2の磁気センサ12の出力信号V2が、sinφおよび−sinφのいずれの値にも一致しないか否かを判別する(ステップS1)。第2の磁気センサ12の出力信号V2が、sinφまたは−sinφの値と一致した場合には(ステップS1:NO)、第1のV1異常監視部71は、今演算周期での処理を終了する。
図12(a)は、第1の磁気センサ11および第2の磁気センサ12が正常である場合の、それらの出力信号V1,V2の波形を示している。出力信号V2の波形を表す正弦波曲線上において、出力信号V1(=sinθ)が0となる回転角θに対応する点は、点a1および点a2である。点a1に対応する出力信号V2の値は、sinφとなる。一方、点a2に対応する出力信号V2の値は、sin(180°+φ)=−sinφとなる。したがって、出力信号V2がsinφまたは−sinφに一致する場合には、cosθに相当する信号V2’が演算値(V2/sinφ)と等しいか否かの判定を行わないようにしている。
前記ステップS1において、第2の磁気センサ12の出力信号V2が、sinφおよび−sinφのいずれの値にも一致しないと判別された場合には(ステップS1:YES)、第1のV1異常監視部71は、V2/sinφを演算し、出力信号補正部61から与えられる信号V2’が演算値(V2/sinφ)と等しいか否かを判定する(ステップS2)。なお、出力信号補正部61から与えられる信号V2’は、今回の第2の演算周期においてセンサ故障検出ユニット70によって取り込まれた出力信号V1,V2と同じ信号V1,V2から演算された信号V2’である。
信号V2’が演算値(V2/sinφ)と等しくない場合には(ステップS2:NO)、第1のV1異常監視部71は、第1カウント値cnt1を1だけデクリメント(−1)する(ステップS3)。そして、ステップS5に進む。第1カウント値cnt1のデフォルト値は零である。また、第1カウント値cnt1は、零以上の整数であり、負の値とはならない。したがって、前記ステップS3で第1カウント値cnt1が1だけデクリメントされたとしても、第1カウント値cnt1が零より小さい値になることはない。
前記ステップS2において、信号V2’が演算値(V2/sinφ)と等しいと判別された場合には(ステップS2:YES)、第1のV1異常監視部71は、第1カウント値cnt1を1だけインクリメント(+1)する(ステップS4)。そして、ステップS5に進む。
ステップS5では、第1のV1異常監視部71は、第1カウント値cnt1が所定のしきい値A以上であるか否かを判別する。第1カウント値cnt1がしきい値A未満である場合には(ステップS5:NO)、第1のV1異常監視部71は、今演算周期での処理を終了する。一方、第1カウント値cnt1がしきい値A以上であると判別された場合には(ステップS5:YES)、第1のV1異常監視部71は、第1の磁気センサ11に故障が発生したことを検知し、図示しないブラシレスモータのモータ制御装置にモータ停止指令を出力する(ステップS6)。また、第1のV1異常監視部71は、全ての異常監視部71〜74の動作を停止させる(ステップS7)。モータ制御装置は、第1のV1異常監視部71からのモータ停止指令を受信すると、ブラシレスモータの駆動を停止させる。
図9は、第1のV2異常監視部72の動作例を示すフローチャートである。図9の処理は、第2の演算周期毎に実行される。
図9の処理は、第2の磁気センサ12の出力信号V2(=sin(θ+φ))が零に固定されているか否かを判定するために行なわれる。第2の磁気センサ12の出力信号V2が零に固定された場合には、出力信号補正部61によって演算される信号V2’(cosθに相当する信号)は、前記式(24)にV2=0を代入することにより、V2’=−V1・cosφ/sinφとなる。したがって、信号V2’が演算値(−V1・cosφ/sinφ)と等しいか否かを所定時間(第2の演算周期)毎に判別し、V2’=−V1・cosφ/sinφの状態が所定回数以上継続する場合には、第2の磁気センサ12に故障が発生したと判定することができる。
ただし、第2の磁気センサ12が正常であっても、図12(a)に示すように、回転角θがたとえば(180°−φ)または(360°−φ)である場合には、その出力信号V2(=sin(θ+φ))が0となる。そこで、第2の磁気センサ12が正常である場合に、その出力信号V2が零となるような回転角θにおいては、信号V2’が演算値(−V1・cosφ/sinφ)と等しいか否かの判定を行わないようにしている。
図9に戻り、第1のV2異常監視部72は、今演算周期で取り込まれた第1の磁気センサ11の出力信号V1が、sinφおよび−sinφのいずれの値にも一致しないか否かを判別する(ステップS11)。第1の磁気センサ11の出力信号V1が、sinφまたは−sinφの値と一致した場合には(ステップS11:NO)、第1のV2異常監視部72は、今演算周期での処理を終了する。
図12(a)を参照して、出力信号V1の波形を表す正弦波曲線上において、出力信号V2(=sin(θ+φ))が0となる回転角θに対応する点は、点b1および点b2である。点b1に対応する出力信号V1の値は、sin(180°−φ)=sinφとなる。一方、点b2に対応する出力信号V1の値は、sin(360°−φ)=−sinφとなる。したがって、出力信号V1がsinφまたは−sinφに一致する場合には、cosθに相当する信号V2’が演算値(−V1・cosφ/sinφ)と等しいか否かの判定を行わないようにしている。
前記ステップS11において、第1の磁気センサ11の出力信号V1が、sinφおよび−sinφのいずれの値にも一致しないと判別された場合には(ステップS11:YES)、第1のV2異常監視部72は、−V1・cosφ/sinφを演算し、出力信号補正部61から与えられる信号V2’が演算値(−V1・cosφ/sinφ)と等しいか否かを判定する(ステップS12)。なお、出力信号補正部61から与えられる信号V2’は、今回の第2の演算周期においてセンサ故障検出ユニット70によって取り込まれた出力信号V1,V2と同じ信号V1,V2から演算された信号V2’である。
信号V2’が演算値(−V1・cosφ/sinφ)と等しくない場合には(ステップS12:NO)、第1のV2異常監視部72は、第2カウント値cnt2を1だけデクリメント(−1)する(ステップS13)。そして、ステップS15に進む。第2カウント値cnt2のデフォルト値は零である。また、第2カウント値cnt2は、零以上の整数であり、負の値にはならない。したがって、前記ステップS13で第2カウント値cnt2が1だけデクリメントされたとしても、第2カウント値cnt2が零より小さい値になることはない。
前記ステップS12において、信号V2’が演算値(−V1・cosφ/sinφ)と等しいと判別された場合には(ステップS12:YES)、第1のV2異常監視部72は、第2カウント値cnt2を1だけインクリメント(+1)する(ステップS14)。そして、ステップS15に進む。
ステップS15では、第1のV2異常監視部72は、第2カウント値cnt2が所定のしきい値A以上であるか否かを判別する。第2カウント値cnt2がしきい値A未満である場合には(ステップS15:NO)、第1のV2異常監視部72は、今演算周期での処理を終了する。一方、第2カウント値cnt2がしきい値A以上であると判別された場合には(ステップS15:YES)、第1のV2異常監視部72は、第2の磁気センサ12に故障が発生したことを検知し、図示しないブラシレスモータのモータ制御装置にモータ停止指令を出力する(ステップS16)。また、第1のV2異常監視部72は、全ての異常監視部71〜74の動作を停止させる(ステップS17)。モータ制御装置は、第1のV2異常監視部72からのモータ停止指令を受信すると、ブラシレスモータの駆動を停止させる。
図10は、第2のV1異常監視部73の動作例を示すフローチャートである。図10の処理は、第2の演算周期毎に実行される。
図10の処理は、第1の磁気センサ11の出力信号V1(=sinθ)が1(上限値)または−1(下限値)に固定されているか否かを判定するために行なわれる。第1の磁気センサ11の出力信号V1が1に固定された場合には、出力信号補正部61によって演算される信号V2’(cosθに相当する信号)は、前記式(24)にV1=1を代入することにより、V2’=(V2−cosφ)/sinφとなる。また、第1の磁気センサ11の出力信号V1が−1に固定された場合には、出力信号補正部61によって演算される信号V2’(cosθに相当する信号)は、前記式(24)にV1=−1を代入することにより、V2’=(V2+cosφ)/sinφとなる。したがって、信号V2’が演算値{(V2−cosφ)/sinφ}または{(V2+cosφ)/sinφ}と等しいか否かを所定時間(第2の演算周期)毎に判別し、V2’=(V2−cosφ)/sinφまたはV2’=(V2+cosφ)/sinφの状態が所定回数以上継続する場合には、第1の磁気センサ11に故障が発生したと判定することができる。
ただし、第1の磁気センサ11が正常であっても、回転角θがたとえば90°であればその出力信号V1(=sinθ)は1となり、回転角θがたとえば270°であればその出力信号V1(=sinθ)は−1となる。そこで、第1の磁気センサ11が正常である場合に、その出力信号V1が1または−1となるような回転角θにおいては、信号V2’が演算値{(V2−cosφ)/sinφ}または{(V2+cosφ)/sinφ}と等しいか否かの判定を行わないようにしている。
図10に戻り、第2のV1異常監視部73は、今演算周期で取り込まれた第2の磁気センサ12の出力信号V2が、sin(90°+φ)および−sin(90°+φ)のいずれの値にも一致しないか否かを判別する(ステップS21)。第2の磁気センサ12の出力信号V2が、sin(90°+φ)または−sin(90°+φ)の値と一致した場合には(ステップS21:NO)、第2のV1異常監視部73は、今演算周期での処理を終了する。
図12(b)は、第1の磁気センサ11および第2の磁気センサ12が正常である場合の、それらの出力信号V1,V2の波形を示している。出力信号V2の波形を表す正弦波曲線上において、出力信号V1(=sinθ)が1または−1となる回転角θに対応する点は、点c1および点c2である。点c1に対応する出力信号V2の値は、sin(90°+φ)となる。一方、点c2に対応する出力信号V2の値は、sin(270°+φ)=−sin(90°+φ)となる。したがって、出力信号V2がsin(90°+φ)または−sin(90°+φ)に一致する場合には、cosθに相当する信号V2’が演算値{(V2−cosφ)/sinφ}または{(V2+cosφ)/sinφ}と等しいか否かの判定を行わないようにしている。
前記ステップS21において、第2の磁気センサ12の出力信号V2が、sin(90°+φ)および−sin(90°+φ)のいずれの値にも一致しないと判別された場合には(ステップS21:YES)、第2のV1異常監視部73は、(V2−cosφ)/sinφおよび(V2+cosφ)/sinφを演算し、出力信号補正部61から与えられる信号V2’が演算値{(V2−cosφ)/sinφ}または{(V2+cosφ)/sinφ}と等しいか否かを判定する(ステップS22)。なお、出力信号補正部61から与えられる信号V2’は、今回の第2の演算周期においてセンサ故障検出ユニット70によって取り込まれた出力信号V1,V2と同じ信号V1,V2から演算された信号V2’である。
信号V2’が演算値{(V2−cosφ)/sinφ}および{(V2+cosφ)/sinφ}のいずれの値とも等しくない場合には(ステップS22:NO)、第2のV1異常監視部73は、第3カウント値cnt3を1だけデクリメント(−1)する(ステップS23)。そして、ステップS25に進む。第3カウント値cnt3のデフォルト値は零である。また、第3カウント値cnt3は、零以上の整数であり、負の値にはならない。したがって、前記ステップS23で第3カウント値cnt3が1だけデクリメントされたとしても、第3カウント値cnt3が零より小さい値になることはない。
前記ステップS22において、信号V2’が演算値{(V2−cosφ)/sinφ}または{(V2+cosφ)/sinφ}と等しいと判別された場合には(ステップS22:YES)、第2のV1異常監視部73は、第3カウント値cnt3を1だけインクリメント(+1)する(ステップS24)。そして、ステップS25に進む。
ステップS25では、第2のV1異常監視部73は、第3カウント値cnt3が所定のしきい値A以上であるか否かを判別する。第3カウント値cnt3がしきい値A未満である場合には(ステップS25:NO)、第2のV1異常監視部73は、今演算周期での処理を終了する。一方、第3カウント値cnt3がしきい値A以上であると判別された場合には(ステップS25:YES)、第2のV1異常監視部73は、第1の磁気センサ11に故障が発生したことを検知し、図示しないブラシレスモータのモータ制御装置にモータ停止指令を出力する(ステップS26)。また、第2のV1異常監視部73は、全ての異常監視部71〜74の動作を停止させる(ステップS27)。モータ制御装置は、第2のV1異常監視部73からのモータ停止指令を受信すると、ブラシレスモータの駆動を停止させる。
図11は、第2のV2異常監視部74の動作例を示すフローチャートである。図11の処理は、第2の演算周期毎に実行される。
図11の処理は、第2の磁気センサ12の出力信号V1(=sin(θ+φ))が1(上限値)または−1(下限値)に固定されているか否かを判定するために行なわれる。第2の磁気センサ12の出力信号V2が1に固定された場合には、出力信号補正部61によって演算される信号V2’(cosθに相当する信号)は、前記式(24)にV2=1を代入することにより、V2’=−(V1・cosφ−1)/sinφとなる。また、第2の磁気センサ12の出力信号V2が−1に固定された場合には、出力信号補正部61によって演算される信号V2’(cosθに相当する信号)は、前記式(24)にV2=−1を代入することにより、V2’=−(V1・cosφ+1)/sinφとなる。したがって、信号V2’が演算値{−(V1・cosφ−1)/sinφ}または{−(V1・cosφ+1)/sinφ}と等しいか否かを所定時間(第2の演算周期)毎に判別し、V2’=−(V1・cosφ−1)/sinφまたはV2’=−(V1・cosφ+1)/sinφの状態が所定回数以上継続する場合には、第2の磁気センサ12に故障が発生したと判定することができる。
ただし、第2の磁気センサ12が正常であっても、図12(b)に示すように、回転角θがたとえば(90°−φ)であればその出力信号V2(=sin(θ+φ))は1となり、回転角θがたとえば(270°−φ)であればその出力信号V2(=sin(θ+φ))は−1となる。そこで、第2の磁気センサ12が正常である場合に、その出力信号V2が1または−1となるような回転角θにおいては、信号V2’が演算値{−(V1・cosφ−1)/sinφ}または{−(V1・cosφ+1)/sinφ}と等しいか否かの判定を行わないようにしている。
図11に戻り、第2のV2異常監視部74は、今演算周期で取り込まれた第1の磁気センサ11の出力信号V1が、sin(90°−φ)および−sin(90°−φ)のいずれの値にも一致しないか否かを判別する(ステップS31)。第1の磁気センサ11の出力信号V1が、sin(90°−φ)または−sin(90°−φ)の値と一致した場合には(ステップS31:NO)、第2のV2異常監視部74は、今演算周期での処理を終了する。
図12(b)を参照して、出力信号V1の波形を表す正弦波曲線上において、出力信号V2(=sin(θ+φ))が1または−1となる回転角θに対応する点は、点d1および点d2である。点d1に対応する出力信号V1の値は、sin(90°−φ)となる。一方、点d2に対応する出力信号V1の値は、sin(270°−φ)=−sin(90°−φ)となる。したがって、出力信号V1がsin(90°−φ)または−sin(90°−φ)に一致する場合には、cosθに相当する信号V2’が演算値{−(V1・cosφ−1)/sinφ}または{−(V1・cosφ+1)/sinφ}と等しいか否かの判定を行わないようにしている。
前記ステップS31において、第1の磁気センサ11の出力信号V1が、sin(90°−φ)および−sin(90°−φ)のいずれの値にも一致しないと判別された場合には(ステップS31:YES)、第2のV2異常監視部74は、−(V1・cosφ−1)/sinφおよび−(V1・cosφ+1)/sinφを演算し、出力信号補正部61から与えられる信号V2’が演算値{−(V1・cosφ−1)/sinφ}または{−(V1・cosφ+1)/sinφ}と等しいか否かを判定する(ステップS32)。なお、出力信号補正部61から与えられる信号V2’は、今回の第2の演算周期においてセンサ故障検出ユニット70によって取り込まれた出力信号V1,V2と同じ信号V1,V2から演算された信号V2’である。
信号V2’が演算値{−(V1・cosφ−1)/sinφ}および{−(V1・cosφ+1)/sinφ}のいずれの値とも等しくない場合には(ステップS32:NO)、第2のV2異常監視部74は、第4カウント値cnt4を1だけデクリメント(−1)する(ステップS33)。そして、ステップS35に進む。第4カウント値cnt4のデフォルト値は零である。また、第4カウント値cnt4は、零以上の整数であり、負の値にはならない。したがって、前記ステップS33で第4カウント値cnt4が1だけデクリメントされたとしても、第4カウント値cnt4が零より小さい値になることはない。
前記ステップS32において、信号V2’が演算値{−(V1・cosφ−1)/sinφ}または{−(V1・cosφ+1)/sinφ}と等しいと判別された場合には(ステップS32:YES)、第2のV2異常監視部74は、第4カウント値cnt4を1だけインクリメント(+1)する(ステップS34)。そして、ステップS35に進む。
ステップS35では、第2のV2異常監視部74は、第4カウント値cnt4が所定のしきい値A以上であるか否かを判別する。第4カウント値cnt4がしきい値A未満である場合には(ステップS35:NO)、第2のV2異常監視部74は、今演算周期での処理を終了する。一方、第4カウント値cnt4がしきい値A以上であると判別された場合には(ステップS35:YES)、第2のV2異常監視部74は、第2の磁気センサ12に故障が発生したことを検知し、図示しないブラシレスモータのモータ制御装置にモータ停止指令を出力する(ステップS36)。また、第2のV2異常監視部74は、全ての異常監視部71〜74の動作を停止させる(ステップS37)。モータ制御装置は、第2のV2異常監視部74からのモータ停止指令を受信すると、ブラシレスモータの駆動を停止させる。
第3の実施形態では、第1の磁気センサ11または第2の磁気センサ12のいずれかが故障した場合に、そのことを検知することができる。また、いずれの磁気センサが故障したかも特定することができる。
以上、この発明をブラシレスモータのロータの回転角を検出するための装置に適用した場合の実施形態について説明したが、ブラシレスモータのロータ以外の回転体の回転角を検出するための装置にもこの発明を適用することができる。
前記各実施形態では、検出用ロータ1の磁石は1組の磁極対を持っているが、検出用ロータ1の磁石は複数組の磁極対を持っていてもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1…ロータ、12,13…磁気センサ

Claims (5)

  1. 回転体の回転角を検出する回転角検出装置において、
    前記回転体の周囲である第1の位置に配置され、第1の正弦波信号を前記回転体の回転に応じて出力する、第1のセンサと、
    前記第1の位置とは角度間隔を持って前記回転体の周囲である第2の位置に配置され、前記第1の正弦波信号とは前記角度間隔に対応する配置位相差を有する第2の正弦波信号を前記回転体の回転に応じて出力する、第2のセンサと、
    前記第1の正弦波信号と前記第2の正弦波信号とに基づき前記回転角を演算する、回転角演算装置と、を備えた回転角検出装置であって、
    前記回転角演算装置は、
    前記第1の正弦波信号及び前記第2の正弦波信号のうちの一方の正弦波信号を、それらの信号間の位相差である前記配置位相差が、目標位相差となるように補正する、信号補正部と、
    前記信号補正部によって補正された一方の正弦波信号と、他方の正弦波信号とに基づいて前記回転角を演算する、回転角演算部と、
    前記信号補正部によって補正された一方の正弦波信号と、前記第2の正弦波信号とに基づいて、前記第1の正弦波信号が異常であるか否かを判定する第1の信号異常判定部と、
    前記信号補正部によって補正された一方の正弦波信号と、前記第1の正弦波信号とに基づいて、前記第2の正弦波信号が異常であるか否かを判定する第2の信号異常判定部と、
    を含む回転角検出装置。
  2. 前記目標位相差は、前記配置位相差とは異なる、請求項1に記載の回転角検出装置。
  3. 前記配置位相差には、前記第1のセンサと前記第2のセンサとの相対的な配置誤差に起因して発生する、前記二つの正弦波信号間の位相差誤差が重畳されており、
    前記回転角演算装置は、前記位相差誤差を演算する位相差誤差演算部を更に含み、
    前記信号補正部は、前記配置位相差及び前記位相差誤差に基づいて、前記一方の正弦波信号を補正する、請求項2に記載の回転角検出装置。
  4. 前記配置位相差は、前記目標位相差より小さい、請求項2または3に記載の回転角検出装置。
  5. 前記目標位相差は90度である、請求項1〜4のいずれか一項に記載の回転角検出装置。
JP2010094061A 2009-08-26 2010-04-15 回転角検出装置 Expired - Fee Related JP5333863B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010094061A JP5333863B2 (ja) 2009-08-26 2010-04-15 回転角検出装置
EP10811780.5A EP2472232B1 (en) 2009-08-26 2010-08-20 Rotation angle detection device
CN201080037553.4A CN102483335B (zh) 2009-08-26 2010-08-20 旋转角检测装置
US13/389,985 US8933692B2 (en) 2009-08-26 2010-08-20 Rotation angle detection device
PCT/JP2010/064102 WO2011024730A1 (ja) 2009-08-26 2010-08-20 回転角検出装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009195188 2009-08-26
JP2009195188 2009-08-26
JP2010094061A JP5333863B2 (ja) 2009-08-26 2010-04-15 回転角検出装置

Publications (2)

Publication Number Publication Date
JP2011069806A JP2011069806A (ja) 2011-04-07
JP5333863B2 true JP5333863B2 (ja) 2013-11-06

Family

ID=43627836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094061A Expired - Fee Related JP5333863B2 (ja) 2009-08-26 2010-04-15 回転角検出装置

Country Status (5)

Country Link
US (1) US8933692B2 (ja)
EP (1) EP2472232B1 (ja)
JP (1) JP5333863B2 (ja)
CN (1) CN102483335B (ja)
WO (1) WO2011024730A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375796B2 (ja) * 2010-11-05 2013-12-25 株式会社デンソー 回転角検出装置、および、これを用いた電動パワーステアリング装置
JP5660381B2 (ja) * 2011-03-09 2015-01-28 株式会社ジェイテクト 回転角検出装置
JP6106839B2 (ja) * 2012-02-10 2017-04-05 パナソニックIpマネジメント株式会社 エンコーダ
JP2013257231A (ja) * 2012-06-13 2013-12-26 Jtekt Corp 回転角センサ
JP6024970B2 (ja) * 2012-12-12 2016-11-16 株式会社ジェイテクト 回転角検出装置およびそれを備えた電動パワーステアリング装置
JP6015776B2 (ja) * 2013-01-10 2016-11-02 村田機械株式会社 変位センサ及び変位の検出方法
WO2015003283A1 (en) * 2013-07-11 2015-01-15 Sensima Technology Sa Angular orientation sensor and corresponding methods and devices
JP6318538B2 (ja) * 2013-10-21 2018-05-09 株式会社リコー 角度検出装置、角度検出方法
WO2016063324A1 (ja) * 2014-10-20 2016-04-28 三菱電機株式会社 回転角度検出装置、回転電機、及びエレベータ用巻上機
DE102015115686B4 (de) * 2015-09-17 2022-11-17 Bourns, Inc. Lenkwinkelsensor mit funktioneller Sicherheit
JP2017112148A (ja) * 2015-12-14 2017-06-22 デクセリアルズ株式会社 接続方法
JP6354961B2 (ja) * 2016-05-20 2018-07-11 Tdk株式会社 状態判別装置および方法、物理量情報生成装置ならびに角度センサ
US10836429B2 (en) * 2016-07-20 2020-11-17 Tdk Corporation Angle sensor and angle sensor system
GB2552385B (en) 2016-07-22 2021-09-15 Cmr Surgical Ltd Calibrating position sensor readings
JP6319601B1 (ja) * 2016-12-19 2018-05-09 Tdk株式会社 角度センサの補正装置および角度センサ
US10859406B2 (en) * 2017-01-31 2020-12-08 Analog Devices Global Magnetic sensor position measurement with phase compensation
JP6939049B2 (ja) * 2017-04-25 2021-09-22 日本精工株式会社 相対角度検出装置、トルクセンサ、電動パワーステアリング装置及び車両
KR102557609B1 (ko) 2017-12-19 2023-07-20 엘지이노텍 주식회사 센싱 장치 및 로터 및 센서의 이상 여부 판단 방법
JP7000263B2 (ja) * 2018-06-20 2022-01-19 株式会社東海理化電機製作所 初期設定方法及び初期設定装置
JP2020016556A (ja) * 2018-07-26 2020-01-30 日本電波工業株式会社 角度誤差検出装置
JP6818822B1 (ja) * 2019-07-25 2021-01-20 三菱電機株式会社 回転角検出装置、回転角推定装置および車載モータ制御システム
CN110446035A (zh) * 2019-09-18 2019-11-12 深圳飞马机器人科技有限公司 一种相机动态拍摄模糊度的测试***

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075452B2 (ja) * 1993-06-01 2000-08-14 株式会社ニコン 位置測定装置
DE59510243D1 (de) 1994-11-22 2002-07-18 Bosch Gmbh Robert Anordnung zur berührungslosen drehwinkelerfassung eines drehbaren elements
JP2003083823A (ja) 2001-09-14 2003-03-19 Koyo Seiko Co Ltd 回転角検出装置、トルク検出装置及び舵取装置
US20020124663A1 (en) * 1999-04-07 2002-09-12 Yoshitomo Tokumoto Rotational angle detecting device, torque detecting device and steering apparatus
JP2001264114A (ja) 2000-03-21 2001-09-26 Koyo Seiko Co Ltd 回転角度検出装置、ブラシレスモータ及び電動パワーステアリング装置
JP2002228488A (ja) * 2001-02-06 2002-08-14 Canon Inc エンコーダ出力信号の自動調整装置および自動調整方法
JP3827533B2 (ja) 2001-02-27 2006-09-27 株式会社ジェイテクト 回転角検出装置、トルク検出装置及び舵取装置
US7537388B2 (en) * 2003-10-22 2009-05-26 Ntn Corporation Bearing assembly with built-in absolute encoder
WO2007148461A1 (ja) * 2006-06-19 2007-12-27 Panasonic Corporation エンコーダ信号の位相補正回路
JP2008082739A (ja) * 2006-09-26 2008-04-10 Denso Corp 回転角度検出装置およびそれを用いた回転制御装置
JP4950824B2 (ja) * 2007-09-28 2012-06-13 株式会社東芝 回転機の制御装置、制御システムおよび制御方法
JP2009150795A (ja) * 2007-12-21 2009-07-09 Hitachi Ltd 非接触式回転角度検出センサ装置およびその出力補正方法
JP2009195188A (ja) 2008-02-22 2009-09-03 Yanmar Co Ltd 施肥ユニット
JP5286020B2 (ja) 2008-10-15 2013-09-11 八鹿鉄工株式会社 移植機

Also Published As

Publication number Publication date
EP2472232B1 (en) 2018-10-10
EP2472232A1 (en) 2012-07-04
JP2011069806A (ja) 2011-04-07
CN102483335B (zh) 2015-04-08
US8933692B2 (en) 2015-01-13
CN102483335A (zh) 2012-05-30
WO2011024730A1 (ja) 2011-03-03
US20120139532A1 (en) 2012-06-07
EP2472232A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5333863B2 (ja) 回転角検出装置
TWI650528B (zh) 旋轉角度檢測裝置及旋轉角度檢測方法
EP2477003B1 (en) Rotation angle detecting device
JP5725377B2 (ja) 回転角検出装置
JP5807770B2 (ja) 回転角検出装置
JP6359079B2 (ja) 外部磁界に対して鈍感なホールセンサ
US9013179B2 (en) Angle detecting device
KR102195533B1 (ko) 로터리 인코더 및 로터리 인코더의 각도 보정 방법
JP4923730B2 (ja) レゾルバ角度検出における補償方法及びこれを用いた角度検出装置
US10876862B2 (en) Rotary encoder
EP2477004B1 (en) Rotation angle detecting device
JP2005351849A (ja) 回転角度検出装置および回転角度検出方法
WO2011108421A1 (ja) 回転角検出装置
JP2012189377A (ja) 回転角検出装置
US10352728B2 (en) Angle sensor, correction method for use therewith, and angle sensor system
JP2012189376A (ja) 回転角検出装置およびトルク検出装置
KR20180032178A (ko) 로터리 인코더, 및 로터리 인코더의 절대 각도 위치 검출 방법
TW201727199A (zh) 編碼器
JP2013019802A (ja) 回転角検出装置
JP2017198515A (ja) 磁気センサこれを用いた回転検出装置
JP2014013209A (ja) 角度検出装置
JP2011047735A (ja) 回転角検出装置
JP2018132357A (ja) ロータリエンコーダ
JP2012137415A (ja) 回転角検出装置
JP6395062B2 (ja) 角度センサの補正装置および角度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5333863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees