WO2011108421A1 - 回転角検出装置 - Google Patents

回転角検出装置 Download PDF

Info

Publication number
WO2011108421A1
WO2011108421A1 PCT/JP2011/054002 JP2011054002W WO2011108421A1 WO 2011108421 A1 WO2011108421 A1 WO 2011108421A1 JP 2011054002 W JP2011054002 W JP 2011054002W WO 2011108421 A1 WO2011108421 A1 WO 2011108421A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic pole
rotation angle
rotor
pole
Prior art date
Application number
PCT/JP2011/054002
Other languages
English (en)
French (fr)
Inventor
武史 上田
逸人 小松
稔 千徳
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to CN201180012152.8A priority Critical patent/CN102782457B/zh
Priority to EP11750531.3A priority patent/EP2543975B1/en
Priority to US13/579,006 priority patent/US8957675B2/en
Priority to JP2012503084A priority patent/JP5674053B2/ja
Publication of WO2011108421A1 publication Critical patent/WO2011108421A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the present invention relates to a rotation angle detection device that detects the rotation angle of a rotating body such as a rotor of a brushless motor.
  • the detection rotor 101 (hereinafter referred to as “rotor 101”) has a cylindrical shape having a plurality of magnetic pole pairs corresponding to the magnetic pole pairs provided in the rotor of the brushless motor. A magnet 102 is provided.
  • two magnetic sensors 121 and 122 are arranged at a predetermined angular interval around the rotation center axis of the rotor 101.
  • Each magnetic sensor 121, 122 outputs a sine wave signal having a predetermined phase difference. Based on these two sine wave signals, the rotation angle of the rotor 101 (rotation angle of the brushless motor rotor) is detected.
  • the magnet 102 has five pairs of magnetic poles. That is, the magnet 102 has ten magnetic poles arranged at equiangular intervals. The magnetic poles are arranged at an angular interval of 36 ° (180 ° in electrical angle) about the rotation center axis of the rotor 101. The two magnetic sensors 121 and 122 are arranged at an angular interval of 18 ° (90 ° in electrical angle) with the rotation center axis of the rotor 101 as the center.
  • the direction indicated by the arrow in FIG. 10 is the positive rotation direction of the detection rotor 101.
  • the rotation angle of the rotor 101 is increased.
  • the rotation angle of the rotor 101 is decreased.
  • V1 and V2 are output.
  • the absolute rotation angle of the rotor 101 from a predetermined reference position is referred to as an absolute rotation angle (mechanical angle) ⁇ A of the rotor 101.
  • the angle range for one rotation of the rotor 101 is divided into five sections corresponding to the five magnetic pole pairs, and the angle of the rotor 101 is represented by setting the start position of each section to 0 ° and the end position to 360 °. It will be referred to a relative rotation angle theta R. In this case, since 10 pieces of angular width of the magnetic pole are equal, the relative rotation angle theta R of the rotor 101 coincides with the electric angle of the brushless motor rotor.
  • A1 and A2 are amplitudes.
  • the relative rotation angle theta R of the rotor 101, using both output signals V1, V2 can be determined based on the following equation (1) .
  • the absolute rotation angle ⁇ A of the rotor 101 can be obtained based on, for example, the following equation (2) using the relative angle ⁇ R.
  • the amplitudes of the output signals V1 and V2 of the magnetic sensors 121 and 122 vary from one magnetic pole to another due to variations in magnetic force among the magnetic poles. An error occurs in detection. Therefore, according to the absolute rotational angle (mechanical angle) theta A rotor 101, so that the amplitude of the output signal V1, V2 of the magnetic sensors 121 and 122 are equal, the output signal V1, V2 of the magnetic sensors 121 and 122 after correction (amplitude correction), and are calculated relative angle theta R of the rotor 101.
  • the gain to be corrected for each cycle or half cycle of the relative angle must be changed for the output signals V1, V2 of the magnetic sensors 121, 122.
  • the magnetic pole sensed by each of the magnetic sensors 121 and 122 can be specified, so the amplitude corresponding to the magnetic pole (magnetic pole pair) sensed by each of the magnetic sensors 121 and 122. Correction can be performed.
  • the magnetic poles sensed by the magnetic sensors 121 and 122 cannot be specified, so that the amplitude correction and phase correction corresponding to the magnetic poles sensed by the magnetic sensors 121 and 122 are performed. Can not do.
  • An object of the present invention is to provide a rotation angle detection device that can identify a magnetic pole sensed by a magnetic sensor at an early stage immediately after a rotating body starts rotating.
  • the rotation angle detection device includes a detection rotor (1, 1A, 1B) provided with a plurality of magnetic poles (M0 to M9) that rotates according to the rotation of the rotating body (10), and a detection rotor.
  • a rotation angle detection device that detects a rotation angle of the rotating body based on an output signal, wherein the detection rotor has an extreme value of each of the alternating signals for at least one of the plurality of magnetic poles.
  • the magnetic pole sensed by each magnetic sensor is specified based on the extreme value detected by the detection means and preset extreme value data, and each alternating signal is determined according to the specified magnetic pole.
  • the amplitude is corrected.
  • the rotation angle of the rotating body is calculated based on each alternating signal after amplitude correction.
  • the detection rotor has a magnetic pole characteristic in which the extreme value of each alternating signal with respect to at least one magnetic pole of the plurality of magnetic poles provided therein is distinguishable from any of the extreme values of the alternating signal with respect to other magnetic poles. have.
  • the rotating body rotates.
  • the extreme value corresponding to the reference magnetic pole is detected by the detecting means after the start, it is possible to identify the magnetic pole sensed by the magnetic sensor that outputs the extreme value.
  • the magnetic pole sensed by the other magnetic sensor can be specified by the arrangement and angular interval of both magnetic sensors, the configuration of the detection rotor, and the like. Accordingly, there is a high possibility that the magnetic pole sensed by each magnetic sensor can be specified after the rotating body starts rotating and before the detection rotor makes one rotation. That is, the magnetic pole sensed by each magnetic sensor can be identified at an early stage immediately after the rotating body starts rotating.
  • the detection rotor may have a magnetic pole characteristic such that an extreme value of each alternating signal for each magnetic pole provided on the detection rotor is distinguishable from any of the extreme values of the alternating signal for other magnetic poles.
  • the detection rotor may have a plurality of magnetic poles provided in the circumferential direction, and may have the magnetic pole characteristics by providing a magnetic pole area difference between the magnetic poles.
  • the detection rotor has a plurality of magnetic poles provided at equal angular intervals in the circumferential direction, and the magnetic pole is provided with a difference in the length in the rotation axis direction of the detection rotor between the magnetic poles. It may have characteristics.
  • the detection rotor has a plurality of magnetic poles provided at equal angular intervals in the circumferential direction and having the same length in the rotation axis direction of the detection rotor, and there is a difference in magnitude of magnetic force between the magnetic poles. By providing, it may have the magnetic pole characteristics.
  • the detection rotor has a plurality of magnetic poles provided in the circumferential direction, and has the magnetic pole characteristics by providing an angular width difference between the magnetic poles.
  • the rotation angle calculation means includes a phase correction means, and the phase correction means calculates a relative angle of the detection rotor from each alternating signal after amplitude correction, and the calculated relative angle is set to one predetermined magnetic field. Means for correcting the relative angle according to the angular width of the magnetic pole sensed by the sensor is included.
  • the relative angle of the detection rotor is calculated from each alternating signal after amplitude correction.
  • the calculated relative angle is corrected to a relative angle corresponding to the angle width of the magnetic pole sensed by one of the predetermined magnetic sensors.
  • FIG. 1 is a schematic diagram showing a configuration when the rotation angle detection device according to the first embodiment of the present invention is applied to a rotation angle detection device for detecting the rotation angle of a rotor of a brushless motor.
  • FIG. 2 is a schematic diagram illustrating the configuration of the detection rotor.
  • FIG. 3 is a schematic diagram showing an output signal waveform of the first magnetic sensor and an output signal waveform of the second magnetic sensor.
  • FIG. 4A is a schematic diagram showing the contents of the amplitude correction table corresponding to the first magnetic sensor
  • FIG. 4B is a schematic diagram showing the contents of the amplitude correction table corresponding to the second magnetic sensor.
  • FIG. 5 is a flowchart showing a procedure of rotation angle calculation processing by the rotation angle calculation device.
  • FIG. 5 is a flowchart showing a procedure of rotation angle calculation processing by the rotation angle calculation device.
  • FIG. 6 is a flowchart illustrating an example of the control end process.
  • FIG. 7 is a perspective view showing a detection rotor used in the rotation angle detection device according to the second embodiment of the present invention.
  • FIG. 8 is a plan view showing a detection rotor used in the rotation angle detection device according to the second embodiment of the present invention.
  • FIG. 9 is a view of the detection rotor used in the rotation angle detection device according to the third embodiment of the present invention as viewed from the end face side.
  • FIG. 10 is a schematic diagram for explaining a rotation angle detection method by a conventional rotation angle detection device.
  • FIG. 11 is a schematic diagram showing an output signal waveform of the first magnetic sensor and an output signal waveform of the second magnetic sensor.
  • FIG. 1 is a schematic diagram showing a configuration when the rotation angle detection device according to the first embodiment of the present invention is applied to a rotation angle detection device for detecting the rotation angle of a rotor of a brushless motor.
  • This rotation angle detection device has a detection rotor (hereinafter simply referred to as “rotor 1”) that rotates in accordance with the rotation of the brushless motor 10.
  • the rotor 1 includes a cylindrical magnet 2 having a plurality of magnetic pole pairs corresponding to the magnetic pole pairs provided in the rotor of the brushless motor 10.
  • the rotor 1 is provided with a plurality of magnetic poles arranged in the circumferential direction.
  • the magnet 2 includes five magnetic pole pairs (M0, M1), (M2, M3), (M4, M5), (M6, M7), (M8, M9). That is, the magnet 2 has ten magnetic poles M0 to M9.
  • the circumferential lengths of the magnetic poles provided on the rotor of the brushless motor 10 are all the same. That is, the angular widths of the magnetic poles provided on the rotor of the brushless motor 10 are all the same and are 36 °. Therefore, in this brushless motor 10, the angular width of one magnetic pole pair is 72 ° in mechanical angle, which corresponds to 360 ° in electrical angle.
  • the angular widths (a, c, e, g) of the magnetic poles M0, M2, M4, M6, M8 having N poles. , I) are different from each other. That is, the magnetized areas differ between the N poles.
  • the angular width (j) of the magnetic pole M9 is equal to the angular width (f) of the magnetic pole M5.
  • the angular widths of the magnetic poles M0 to M9 are as shown in Table 1.
  • the angle width is represented by a value obtained by multiplying the mechanical angle corresponding to the angle width by the number of magnetic pole pairs (“5” in this embodiment).
  • broken lines indicate regions when the rotor 1 is divided at intervals of 36 ° (180 ° in the electrical angle) in the circumferential direction.
  • two magnetic sensors 21 and 22 are arranged at an angular interval of a predetermined angle (18 ° (90 ° in the electrical angle)) around the rotation center axis of the rotor 1. .
  • These two magnetic sensors 21 and 22 may be referred to as a first magnetic sensor 21 and a second magnetic sensor 22, respectively.
  • a sensor provided with an element having a characteristic in which an electrical characteristic is changed by the action of a magnetic field such as a Hall element or a magnetoresistive element (MR element) can be used.
  • the direction indicated by the arrow in FIG. 2 is the positive rotation direction of the rotor 1.
  • the rotation angle of the rotor 1 is increased.
  • the rotation angle of the rotor 1 is decreased.
  • the magnetic sensors 21 and 22 output sinusoidal signals (hereinafter referred to as “sine wave signals”) V1 and V2 as the rotor 1 rotates.
  • the rotor angle [deg] on the horizontal axis in FIG. 3 represents an angle obtained by multiplying the mechanical angle by the number of magnetic pole pairs (“5” in this embodiment).
  • the magnetic pole regions a to j sensed by the first magnetic sensor 21 at that time are clearly specified in the vicinity of each peak value of the sine wave signal V1.
  • the absolute rotation angle of the rotor 1 from a predetermined reference position is referred to as an absolute rotation angle (mechanical angle) ⁇ A of the rotor 1.
  • the angle range for one rotation of the rotor 1 is divided into five sections (a + b, c + d, e + f, g + h, i + j) corresponding to the angular width of the five magnetic pole pairs, and the start position of each section is set to 0 ° and the end.
  • the angle at which the position is 360 ° and the angle corresponding to the absolute rotation angle ⁇ A is represented within the range of 0 to 360 ° is referred to as the relative rotation angle ⁇ R of the rotor 1.
  • the angular widths of these five sections are not constant.
  • the second magnetic sensor 22 outputs five magnetic pole pairs.
  • V1 and A2 each represent an amplitude.
  • the amplitude A1 is different for each magnetic pole.
  • the amplitude A2 is different for each magnetic pole.
  • theta R represents a relative rotation angle theta R in the corresponding section.
  • the relative angle ⁇ R of the rotor 1 in the corresponding section is obtained based on the following equation (3) using both the output signals V1 and V2. be able to.
  • the output signals V ⁇ b> 1 and V ⁇ b> 2 of the magnetic sensors 21 and 22 are input to the rotation angle calculation device 20.
  • Rotation angle calculation unit 20 based on the output signal V1, V2 of the magnetic sensors 21 and 22, to calculate the relative rotational angle theta R of the rotor 1.
  • the rotation angle computing device 20 calculates the absolute rotation angle (mechanical angle) ⁇ A of the rotor 1 based on the obtained relative rotation angle ⁇ R and the like, and obtains the absolute rotation angle ⁇ A of the obtained rotor 1. based on, for calculating the electrical angle theta E of a rotor of a brushless motor.
  • the rotation angle calculation device 20 is composed of, for example, a microcomputer, and includes a CPU (Central Processing Unit) and a memory (ROM, RAM, rewritable nonvolatile memory, etc.).
  • the electrical angle calculated by the rotation angle calculation device 20 is given to the motor controller 30.
  • the motor controller 30 controls the brushless motor 10 based on the electrical angle ⁇ E given from the rotation angle calculation device 20 and a given command value.
  • ⁇ E the electrical angle
  • a given command value the operation of the rotation angle calculation device 20 will be described.
  • an amplitude correction table is stored for each of the magnetic sensors 21 and 22.
  • FIG. 4A shows an example of the contents of an amplitude correction table (hereinafter also referred to as “first table”) corresponding to the first magnetic sensor 21.
  • the first table shows the peak value (maximum value or minimum value) of the output signal V1 of the first magnetic sensor 21 corresponding to each magnetic pole number 0 to 9 of each magnetic pole M0 to M9, and the angle of the magnetic pole.
  • the width [deg] and the correction gain G1 are stored.
  • the angular width is a value obtained by multiplying the mechanical angle corresponding to the angular width by the number of magnetic pole pairs (“5” in this embodiment).
  • the correction gain G1 is a gain for correcting variations in the amplitude of the first magnetic sensor 21 for each magnetic pole.
  • the amplitude correction gain G1 for an arbitrary magnetic pole is based on the following equation (4) using the peak value (maximum value or minimum value) of the output signal V1 of the first magnetic sensor 21 corresponding to the magnetic pole and the reference amplitude. Desired.
  • the reference amplitude is, for example, a value corresponding to the peak value (absolute value) of the output signal V1 of the first magnetic sensor 21 corresponding to a magnetic pole whose angular width (mechanical angle ⁇ number of magnetic pole pairs) is 180 °.
  • the reference amplitude is preset and is “500” in this example.
  • FIG. 4B shows an example of the contents of an amplitude correction table (hereinafter sometimes referred to as “second table”) corresponding to the second magnetic sensor 22.
  • the peak value (maximum value or minimum value) of the output signal V2 of the second magnetic sensor 22 corresponding to each magnetic pole number 0 to 9 of each magnetic pole M0 to M9, the angle of the magnetic pole The width [deg] and the correction gain G2 are stored.
  • the correction gain G2 is a gain for correcting variations in the amplitude of the second magnetic sensor 22 for each magnetic pole.
  • the peak value of the second magnetic sensor 22 with respect to each magnetic pole is the same value as the peak value of the first magnetic sensor 21 with respect to the corresponding magnetic pole, but is actually different from each other. There is also.
  • the correction gain G2 for an arbitrary magnetic pole is obtained based on the following equation (5) using the peak value (maximum value or minimum value) of the output signal V2 of the second magnetic sensor 22 corresponding to the magnetic pole and the reference amplitude. It is done.
  • the reference amplitude is, for example, a value corresponding to the peak value (absolute value) of the output signal V2 of the second magnetic sensor 221 corresponding to a magnetic pole whose angular width (mechanical angle ⁇ number of magnetic pole pairs) is 180 °.
  • the reference amplitude is preset and is “500” in this example.
  • the peak value and the correction gain may be stored in the amplitude correction table before the brushless motor 10 is shipped, or by detecting the peak value during motor control after the brushless motor 10 is shipped. May be.
  • the peak value and the correction gain stored in the amplitude correction table may be obtained from data for one period or may be obtained from an average value of data for a plurality of periods.
  • the rewritable nonvolatile memory in the rotation angle calculation device 20 has a second value when the first magnetic sensor 21 detects a peak value for each magnetic pole (each magnetic pole number).
  • the magnetic field specifying table (hereinafter, also referred to as “third table”) that stores data indicating the pole number of the magnetic pole sensed by the magnetic sensor 22 and the second magnetism for each magnetic pole (for each magnetic pole number).
  • a magnetic pole specifying table (hereinafter referred to as “fourth table”) that stores data indicating the pole number of the magnetic pole sensed by the first magnetic sensor 21 when the sensor 22 detects the peak value for the magnetic pole. Is stored).
  • the third table and the fourth table are created based on the arrangement and angular interval of both magnetic sensors 21 and 22 and the configuration of the rotor 1.
  • the rotation angle calculation device 20 detects the peak value from the output signals V1 and V2 of the first or second magnetic sensor 21, 22, the amplitude correction table (first table) corresponding to one of the magnetic sensors from which the peak value has been detected.
  • the pole number of the magnetic pole sensed by the magnetic sensor is specified based on the first table or the second table.
  • the magnet temperature coefficient (the coefficient that decreases as the temperature increases) is used for amplitude correction.
  • the table value may be corrected by multiplying the peak value of the table, and the pole number of the magnetic pole may be specified based on the detected peak value and the corrected table value.
  • the rotation angle calculation device 20 cannot specify the pole number of the magnetic pole sensed by the magnetic sensor. Therefore, when the peak value corresponding to the magnetic poles other than the magnetic poles M5 and M9 is detected by one of the magnetic sensors after the start of processing, the rotation angle calculation device 20 determines the pole number of the magnetic pole sensed by the magnetic sensor. Identify.
  • the rotation angle calculation device 20 specifies the pole number of the magnetic pole sensed by the other magnetic sensor based on the specified pole number and the third or fourth table (magnetic pole specifying table). For example, when the pole number of the magnetic pole sensed by the first magnetic sensor 21 is specified based on the first table, the second magnetic field is determined based on the specified pole number and the third table. The pole number of the magnetic pole sensed by the sensor 22 is specified. On the other hand, when the pole number of the magnetic pole sensed by the second magnetic sensor 22 is specified based on the second table, the first magnetic field is determined based on the specified pole number and the fourth table. The pole number of the magnetic pole sensed by the sensor 21 is specified.
  • the pole number of the magnetic pole sensed by each of the magnetic sensors 21 and 22 is specified, so that the rotation angle computing device 20 senses the output signals V1 and V2 of the respective magnetic sensors 21 and 22 by detecting them. Correction is performed using correction gains G1 and G2 corresponding to the magnetic poles. Then, the rotation angle calculation unit 20 based on the output signal after amplitude correction, calculates the relative rotation angle theta R of the rotor 1. Further, the rotation angle calculation device 20 calculates the absolute rotation angle ⁇ A based on the obtained relative rotation angle ⁇ R and the like. Then, the rotation angle calculation unit 20, the absolute rotation angle theta A obtained, calculates the electrical angle theta E of the brushless motor 10.
  • the rotation angle calculation device 20 calculates the relative rotation angle ⁇ R of the rotor 1, the absolute rotation angle ⁇ A , and the electrical angle ⁇ E of the brushless motor 10 in the same manner as described above.
  • FIG. 5 is a flowchart showing a procedure of rotation angle calculation processing by the rotation angle calculation device 20.
  • the rotation angle calculation device 20 reads the output signals (sensor values) V1 and V2 of the magnetic sensors 21 and 22 (step S1).
  • the memory for example, RAM
  • the rotation angle calculation device 20 stores sensor values for a plurality of times from the sensor value read a predetermined number of times to the sensor value read most recently. ing.
  • the rotation angle calculation device 20 determines whether or not a peak value (extreme value) has been detected for each of the sensor values V1 and V2 based on the sensor values stored in the memory (step S2).
  • the determination process in step S2 may be referred to as a peak value detection process.
  • the rotation angle calculation device 20 determines that a peak value (maximum value) has been detected and identifies the maximum value. In addition, when the sensor value changes from a downward trend to an upward trend, the rotation angle calculation device 20 determines that a peak value (minimum value) has been detected and identifies the minimum value.
  • step S2 when no peak value is detected (step S2: NO), the process proceeds to step S6.
  • step S2: YES when the peak value is detected in step S2 (step S2: YES), the rotation angle calculation device 20 is detected by each magnetic sensor by the pole number specifying process in step S4 described later after the controller is activated. It is determined whether or not the magnetic pole has already been specified (step S3).
  • step S4 When the magnetic pole sensed by each magnetic sensor is not specified (step S3: NO), the rotation angle calculation device 20 performs a pole number specifying process (step S4). That is, the rotation angle calculation device 20 specifies the magnetic poles that are detected by the magnetic sensors 21 and 22, respectively.
  • the rotation angle calculation device 20 firstly corrects the peak value (maximum value or minimum value) detected by the peak value detection process in step S2 and the amplitude correction corresponding to the magnetic sensor that has output the peak value. Based on the contents of the work table (first or second table), the magnetic pole sensed by the magnetic sensor is specified. That is, the rotation angle calculation device 20 assigns the pole number corresponding to the peak value closest to the peak value detected by the peak value detection process among the plurality of peak values stored in the amplitude correction table to the magnetic sensor. Is specified as the pole number of the magnetic pole sensed by.
  • the rotation angle calculation device 20 determines that the magnetic sensor is Does not identify the magnetic pole being sensed.
  • the rotation angle calculation device 20 determines the pole number of the magnetic pole sensed by the magnetic sensor and the third table or the fourth table (magnetic pole). The magnetic pole sensed by the other magnetic sensor is identified based on the identification table. As a result, the magnetic pole sensed by each of the magnetic sensors 21 and 22 is specified.
  • step S3 If it is determined in step S3 that the pole numbers of the magnetic poles detected by the sensors 21 and 22 have been specified by the pole number specifying process in step S4 performed after the controller is started (step S3: YES).
  • the rotation angle calculation device 20 performs pole number update processing (step S5). Specifically, the rotation angle calculation device 20 uses the rotation number of the rotor 1 based on the pole number already specified for the magnetic sensor whose peak value has been detected by the peak value detection processing in step S2. Update. More specifically, the rotation angle calculation device 20 changes the pole number already specified for the magnetic sensor to a pole number that is one more or a pole number that is one less depending on the rotation direction of the rotor 1. To do.
  • the already-specified pole number is updated to a pole number increased by 1, and the rotation direction of the rotor 1 is reversed. If it is, the already specified pole number is updated to a pole number that is less by one. However, the pole number that is smaller by 1 than the pole number of “0” is “9”. Further, a pole number that is 1 more than the pole number of “9” is “0”.
  • the process of step S5 ends, the process proceeds to step S6.
  • the rotation direction of the rotor 1 can be determined based on, for example, the phases of the output signals V1 and V2 of the magnetic sensors 21 and 22.
  • step S6 the rotation angle calculation device 20 performs amplitude correction on the sensor values V1 and V2 read in step S1. Specifically, the rotation angle calculation device 20 reads the amplitude correction gains G1 and G2 corresponding to the pole numbers currently specified for the magnetic sensors 21 and 22 from the first table and the second table, respectively. Then, the rotation angle calculation device 20 corrects the sensor values V1 and V2 read in step S1 using the gains G1 and G2 read from the first table and the second table, respectively. Assuming that the corrected sensor values are V1 'and V2', V1 'and V2' are expressed by the following equations (6) and (7), respectively.
  • V2 ′ V1 ⁇ G2 (7)
  • step S7 the process has shifted from step S4 to step S6, and the pole number of the magnetic pole sensed by both magnetic sensors 21 and 22 is not specified in the pole number specifying process of step S4, In step S6, the sensor values V1 and V2 are not corrected, and the process proceeds to step S7.
  • the rotation angle calculation device 20 specifies the magnetic pole sensed by the magnetic sensor 21 based on the pole number of the magnetic pole sensed by the magnetic sensor 21. Then, the angular width W corresponding to the specified magnetic pole is obtained. For example, when the magnetic pole sensed by the magnetic sensor 21 is the first magnetic pole M0 among the ten magnetic poles, the angular width W corresponding to the magnetic pole is 170 [deg].
  • the relative angle ⁇ R of the rotor 1 calculated in step S7 is an angle calculated assuming that the magnetic pole 21 has an angular width W detected by the magnetic sensor 21 of 180 °. Therefore, the rotation angle calculation device 20 uses the relative angle ⁇ R of the rotor 1 calculated in step S7 according to the angular width of the magnetic pole region sensed by the magnetic sensor 21 based on the following equation (9). The relative angle ⁇ R ′ is converted (phase correction).
  • 5 is the number of magnetic pole pairs.
  • ⁇ A ⁇ R '+ (angular width of the first magnetic pole M0) ⁇ / 5.
  • the angular width is a value obtained by multiplying the mechanical angle corresponding to the angular width by the number of magnetic pole pairs (“5” in this embodiment).
  • ⁇ A ⁇ R '+ (the sum of the angular widths of the first and second magnetic poles M0 and M1) ⁇ / 5 It becomes.
  • ⁇ A ⁇ R '+ (sum of angular widths M0 to M7 of the first to eighth magnetic poles) ⁇ / 5 Become.
  • ⁇ A ⁇ R '+ (sum of angular widths M0 to M8 of the first to ninth magnetic poles) ⁇ / 5 Become.
  • the rotation angle calculation device 20 calculates the electrical angle ⁇ E (step S9). Specifically, the numbers (1-5) of the magnetic pole pairs (M0, M1), (M2, M3), (M4, M5), (M6, M7), (M8, M9) sensed by the magnetic sensor 21 ) and When n, the rotation angle calculation unit 20, based on the following equation (10), to calculate the electrical angle theta E, gives the motor controller 30.
  • step S10 determines whether or not the motor control is finished. If the motor control has not ended (step S10: NO), the process returns to step S1. If the motor control has been completed (step S10: YES), the rotation angle calculation device 20 performs a control end process (step S11).
  • FIG. 6 is a flowchart illustrating an example of the control end process.
  • the rotation angle calculation device 20 determines whether or not the brushless motor 10 has sufficiently rotated during the current motor control period (step S21). Specifically, the rotation angle calculation device 20 determines whether or not the rotation speed of the motor 10 during the current motor control period is equal to or greater than a predetermined rotation speed.
  • step S21: YES the peak value corresponding to each pole number in the amplitude correction table (the first table and the second table) is represented by the pole number. Is updated to the latest detected peak value (step S22). Then, the control end process ends.
  • the angular width (f) of the magnetic pole M5 of the S pole is equal to the angular width (j) of the magnetic pole M9, but the angular width of each of the magnetic poles M1, M3, M5, M7, M9 of the S pole
  • the magnetic poles M0, M2, M4, M6, and M8 may be different from each other.
  • 7 and 8 show a detection rotor used in the rotation angle detection device according to the second embodiment of the present invention.
  • FIG. 7 is a perspective view of the detection rotor
  • FIG. 8 is a view of the detection rotor as viewed from the end face side.
  • the detection rotor 1A has a magnet 2A having a shape in which one end side of a cylindrical magnet is cut obliquely with respect to the axial direction. That is, one end side of the magnet 2A is a flat end surface (flat end surface), and the other end side is an inclined end surface (inclined end surface).
  • the magnet 2A is magnetized with ten magnetic poles M0 to M9 at equal angular intervals in the circumferential direction when viewed from the end face side.
  • the lengths of the rotor for detection 1A in the direction of the rotation axis in the magnetic poles M0 to M9 are different.
  • the magnetic poles M0 to M9 have different heights.
  • the two opposite sides of the inclined end surface of the rotor 1 ⁇ / b> A are opposed to the inclined end surface of the rotor 1 ⁇ / b> A in the direction opposite to the direction toward the flat end surface.
  • the magnetic sensors 21 and 22 are arranged at an angular interval of a predetermined angle (18 ° (90 ° in the electrical angle)) with the rotation center axis of the rotor 1A as the center.
  • the rotation angle calculation device 20 performs output signals of the magnetic sensors 21 and 22 by the same method as that of the first embodiment described above, that is, by performing substantially the same processing as that shown in FIG. Amplitude correction of V1 and V2 can be performed.
  • the magnetic sensors 21 and 22 may be disposed close to the side surface (outer peripheral surface) of the rotor 1A as indicated by a broken line. However, it is necessary to dispose the magnetic sensors 21 and 22 closer to the flat end surface of the rotor 1A than the position of the inclined end surface of the magnetic pole having the shortest length in the rotation axis direction of the rotor 1A.
  • the rotation angle calculation device 20 can correct the amplitude of the output signals V1 and V2 of the magnetic sensors 21 and 22 by the same method as in the first embodiment described above.
  • FIG. 9 shows a detection rotor used in the rotation angle detection device according to the third embodiment of the present invention.
  • the detection rotor 1B has a cylindrical magnet 2B.
  • the magnet 2B is magnetized with ten magnetic poles M0 to M9 at equal angular intervals in the circumferential direction when viewed from the end face side.
  • the magnitude of the magnetic force of each of the magnetic poles M0 to M9 is greatly different for each magnetic pole. That is, the magnitude of the magnetic force of each of the magnetic poles M0 to M9 is intentionally changed. Since the magnitude of the magnetic force of each of the magnetic poles M0 to M9 is greatly different for each magnetic pole, when the rotor 1B rotates, the peak value for each magnetic pole of the output signals V1 and V2 of the magnetic sensors 21 and 22 is different for each magnetic pole. Different. For this reason, the rotation angle calculation device 20 performs output signals of the magnetic sensors 21 and 22 by the same method as that of the first embodiment described above, that is, by performing substantially the same processing as that shown in FIG. Amplitude correction of V1 and V2 can be performed.
  • the magnetic poles M0 ⁇ M9 are provided at equal angular intervals, in step S7 in FIG. 5, the relative angle theta R calculated based on the equation (8), the electrical angle of the brushless motor 10 It coincides with the ⁇ E. Therefore, in this embodiment, it is not necessary to perform the processing of steps S8 and S9 in FIG.
  • a peak value corresponding to a magnetic pole other than the magnetic poles M5 and M9 is detected from the output signals V1 and V2 of any one of the magnetic sensors 21 and 22.
  • the magnetic pole sensed by each magnetic sensor can be specified.
  • the peak value of any magnetic pole is detected from the output signals V1, V2 of any one of the magnetic sensors 21, 22.
  • the magnetic pole sensed by each magnetic sensor can be specified. Therefore, the magnetic pole sensed by each of the magnetic sensors 21 and 22 can be specified at an early stage immediately after the brushless motor 10 is started.
  • the output signals V1 and V2 of the magnetic sensors 21 and 22 can be corrected (amplitude correction) according to the magnetic pole sensed by the magnetic sensor. it can.
  • the rotation angle can be detected with high accuracy from an early stage immediately after the brushless motor 10 is started.
  • the present invention can be implemented in other forms.
  • the rotors 1, 1 ⁇ / b> A, 1 ⁇ / b> B have magnetic pole characteristics such that the peak value for each magnetic pole is different from any of the peak values for magnetic poles other than the magnetic pole, but at least one magnetic pole It suffices if the magnetic pole characteristics have a peak value different from that of any of the other magnetic pole values.
  • the detection rotor has a magnetic pole characteristic in which the peak value for one magnetic pole (hereinafter referred to as “reference magnetic pole”) is different from any of the peak values for the other magnetic poles, the brushless motor is started.
  • the magnetic pole sensed by each of the magnetic sensors 21 and 22 can be specified. Accordingly, there is a high possibility that the magnetic pole sensed by each of the magnetic sensors 21 and 22 can be specified before the detection rotor makes one rotation after the brushless motor is started. That is, the magnetic pole sensed by each of the magnetic sensors 21 and 22 can be identified at an early stage immediately after the brushless motor is started.
  • the present invention can also be applied when detecting the rotation angle of a rotating body other than the rotor of a brushless motor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 回転角演算装置20は、第1または第2の磁気センサ21,22の出力信号V1,V2からピーク値を検出すると、ピーク値が検出された一方の磁気センサに対応する振幅補正用テーブルに基づいて、当該磁気センサが感知している磁極の極番号を特定する。そして、特定された極番号と、磁極特定用テーブルとに基づいて、他方の磁気センサが感知している磁極の極番号を特定する。これにより、各磁気センサ21,22が感知している磁極の極番号が特定されるので、回転角演算装置20は、各磁気センサ21,22の出力信号V1,V2を、それらが感知している磁極(磁極対)に対応する振幅補正ゲインG1,G2を用いて補正する。

Description

回転角検出装置
 この発明は、ブラシレスモータのロータ等の回転体の回転角を検出する回転角検出装置に関する。
 電動パワーステアリング装置などに使用されるブラシレスモータを制御するためには、ロータの回転角度に合わせてステータ巻線に電流を通電する必要がある。そこで、ブラシレスモータの回転に応じて回転する検出用ロータを用いて、ブラシレスモータのロータの回転角を検出する回転角検出装置が知られている。具体的には、図10に示すように、検出用ロータ101(以下、「ロータ101」という)は、ブラシレスモータのロータに設けられている磁極対に相当する複数の磁極対を有する円筒状の磁石102を備えている。ロータ101の周囲には、2つの磁気センサ121,122が、ロータ101の回転中心軸を中心として所定の角度間隔をおいて配置されている。各磁気センサ121,122からは、所定の位相差を有する正弦波信号が出力される。これらの2つの正弦波信号に基づいて、ロータ101の回転角(ブラシレスモータのロータの回転角)が検出される。
 この例では、磁石102は、5組の磁極対を有している。つまり、磁石102は、等角度間隔で配置された10個の磁極を有している。各磁極は、ロータ101の回転中心軸を中心として、36°(電気角では180°)の角度間隔で配置されている。また、2つの磁気センサ121,122は、ロータ101の回転中心軸を中心として18°(電気角では90°)の角度間隔をおいて配置されている。
 図10に矢印で示す方向を検出用ロータ101の正方向の回転方向とする。そして、ロータ101が正方向に回転されるとロータ101の回転角が大きくなり、ロータ101が逆方向に回転されると、ロータ101の回転角が小さくなるものとする。各磁気センサ121,122からは、図11に示すように、ロータ101が1磁極対分に相当する角度(72°(電気角では360°))を回転する期間を一周期とする正弦波信号V1,V2が出力される。
 所定の基準位置からのロータ101の絶対的な回転角を、ロータ101の絶対回転角(機械角)θということにする。ロータ101の1回転分の角度範囲を、5つの磁極対に対応して5つの区間に分け、各区間の開始位置を0°とし終了位置を360°として表したロータ101の角度を、ロータ101の相対回転角θということにする。この場合には、10個の磁極の角度幅は等しいので、ロータ101の相対回転角θは、ブラシレスモータのロータの電気角と一致する。
 ここでは、第1の磁気センサ121からは、V1=A1・sinθの出力信号が出力され、第2の磁気センサ122からは、V2=A2・cosθの出力信号が出力されるものとする。A1,A2は、振幅である。両出力信号V1,V2の振幅A1,A2が互いに等しいとみなすと、ロータ101の相対回転角θは、両出力信号V1,V2を用いて、次式(1)に基づいて求めることができる。
 θ=tan-1(sinθ/cosθ
   =tan-1(V1/V2)   …(1)
 このようにして、求められた相対角θを使って、ブラシレスモータを制御する。
 なお、ロータ101の絶対回転角θA は、相対角θを用いて、たとえば、次式(2)に基づいて求めることができる。
 θA ={θ+360×(n-1)}/5(ただし、n=1,2,…5)   …(2)
特開2003-32823号公報 特開2002-257649号公報
 前述したような従来の回転角検出装置においては、磁極ごとの磁力のばらつきなどにより、各磁気センサ121,122の出力信号V1,V2の振幅が磁極ごとに変動するため、ロータ101の回転角の検出に誤差が発生する。そこで、ロータ101の絶対回転角(機械角)θに応じて、各磁気センサ121,122の出力信号V1,V2の振幅が等しくなるように、各磁気センサ121,122の出力信号V1,V2を補正(振幅補正)した後、ロータ101の相対角θを演算している。
 磁極毎に磁力がばらつく場合には、各磁気センサ121,122の出力信号V1,V2に対して、相対角(電気角)の1周期または半周期ごとに補正するゲインを変更しなければならない。ロータ101が1回転した後においては、各磁気センサ121,122が感知している磁極を特定することができるので、各磁気センサ121,122が感知している磁極(磁極対)に応じた振幅補正を行うことができる。しかし、ブラシレスモータの起動直後には、各磁気センサ121,122が感知している磁極を特定することができないため、各磁気センサ121,122が感知している磁極に応じた振幅補正や位相補正を行うことができない。
 この発明の目的は、回転体が回転を開始した直後の早い段階で、磁気センサが感知している磁極を特定できるようになる回転角検出装置を提供することである。
 この発明の回転角検出装置は、回転体(10)の回転に応じて回転しかつ複数の磁極(M0~M9)が設けられた検出用ロータ(1,1A,1B)と、検出用ロータの回転に応じて、所定の位相差を有する第1および第2の交番信号(V1,V2)をそれぞれ出力する第1および第2の磁気センサ(21,22)とを含み、これらの磁気センサの出力信号に基づいて前記回転体の回転角を検出する回転角検出装置であって、前記検出用ロータは、前記複数の磁極のうち少なくとも一つの磁極に対する前記各交番信号の極値が、他の磁極に対する当該交番信号の極値のいずれとも識別可能に異なるような磁極特性を有しており、前記各交番信号の極値を検出する検出手段(20,S2)と、前記検出手段によって検出される極値と、予め設定された極値データとに基づいて、各磁気センサが感知している磁極を特定し、特定した磁極に応じて、前記各交番信号の振幅を補正する補正手段(20,S4~S6)と、振幅補正後の各交番信号に基づいて、前記回転体の回転角を演算する回転角演算手段(20,S7~S9)とを含む。なお、括弧内の英数字は、後述の実施形態における対応構成要素等を表す。しかし、このことは、この発明が当該実施形態に限定して解釈されるべきことを意図するものではない。
 上記構成では、検出手段によって検出された極値と予め設定された極値データとに基づいて、各磁気センサが感知している磁極が特定され、特定された磁極に応じて、各交番信号の振幅が補正される。そして、振幅補正後の各交番信号に基づいて、回転体の回転角が演算される。
 検出用ロータは、それに設けられている複数の磁極のうちの少なくとも一つの磁極に対する各交番信号の極値が、他の磁極に対する当該交番信号の極値のいずれとも識別可能に異なるような磁極特性を有している。たとえば、一つの磁極(以下「基準磁極」という)に対する各交番信号の極値が、他の磁極に対する当該交番信号の極値のいずれとも識別可能に異なっている場合には、回転体が回転を開始してから、前記基準磁極に対応する極値が検出手段によって検出された時点で、その極値を出力している方の磁気センサが感知している磁極を特定することが可能となる。また、両磁気センサの配置および角度間隔、検出用ロータの構成等により、他方の磁気センサが感知している磁極を特定することが可能となる。これにより、回転体が回転を開始した後、検出用ロータが1回転する前に、各磁気センサが感知している磁極を特定することができる可能性が高くなる。つまり、回転体が回転を開始した直後の早い段階で、各磁気センサが感知している磁極を特定することができるようになる。
 前記検出用ロータは、それに設けられている各磁極に対する各交番信号の極値が、他の磁極に対する当該交番信号の極値のいずれとも識別可能に異なるような磁極特性を有していてもよい。このような構成では、回転体が回転を開始してから、いずれかの磁極に対する極値が最初に検出された時点で、各磁気センサが感知している磁極を特定することが可能となる。このため、回転体が回転を開始した直後の早い段階で、各磁気センサが感知している磁極を特定することができるようになる。
 前記検出用ロータは、周方向に設けられた複数の磁極を有しており、磁極間に磁極面積差が設けられることにより、前記磁極特性を有しているものであってもよい。また、前記検出用ロータは、周方向に等角度間隔で設けられた複数の磁極を有しており、磁極間に前記検出用ロータの回転軸方向長さの差が設けられることにより、前記磁極特性を有しているものであってもよい。また、前記検出用ロータは、周方向に等角度間隔で設けられかつ前記検出用ロータの回転軸方向の長さが等しい複数の磁極を有しており、磁極間に磁力の大きさの差が設けられることにより、前記磁極特性を有しているものであってもよい。
 この発明の一実施形態では、前記検出用ロータは、周方向に設けられた複数の磁極を有しており、磁極間に角度幅差が設けられることにより、前記磁極特性を有しており、前記回転角演算手段は、位相補正手段を含み、位相補正手段は、振幅補正後の各交番信号から前記検出用ロータの相対角を算出し、算出した相対角を、予め定められた一方の磁気センサが感知している磁極の角度幅に応じた相対角に補正する手段を含む。
 この構成では、振幅補正後の各交番信号から検出用ロータの相対角が算出される。算出された相対角が、予め定められた一方の磁気センサが感知している磁極の角度幅に応じた相対角に補正される。これにより、磁極間に角度幅差が設けられている場合にも、回転体の回転角を演算することが可能となる。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、この発明の第1の実施形態に係る回転角検出装置を、ブラシレスモータのロータの回転角を検出するための回転角検出装置に適用した場合の構成を示す模式図である。 図2は、検出用ロータの構成を示す模式図である。 図3は、第1の磁気センサの出力信号波形および第2の磁気センサの出力信号波形を示す模式図である。 図4Aは、第1の磁気センサに対応する振幅補正用テーブルの内容を示す模式図であり、図4Bは、第2の磁気センサに対応する振幅補正用テーブルの内容を示す模式図である。 図5は、回転角演算装置による回転角演算処理の手順を示すフローチャートである。 図6は、制御終了処理の一例を示すフローチャートである。 図7は、この発明の第2の実施形態に係る回転角検出装置で用いられる検出用ロータを示す斜視図である。 図8は、この発明の第2の実施形態に係る回転角検出装置で用いられる検出用ロータを示す平面図である。 図9は、この発明の第3の実施形態に係る回転角検出装置で用いられる検出用ロータを端面側から見た図である。 図10は、従来の回転角検出装置による回転角検出方法を説明するための模式図である。 図11は、第1の磁気センサの出力信号波形および第2の磁気センサの出力信号波形を示す模式図である。
 以下では、この発明を、ブラシレスモータのロータの回転角を検出するための回転角検出装置に適用した場合の実施形態について、添付図面を参照して詳細に説明する。
 図1は、この発明の第1の実施形態に係る回転角検出装置を、ブラシレスモータのロータの回転角を検出するための回転角検出装置に適用した場合の構成を示す模式図である。
 この回転角検出装置は、ブラシレスモータ10の回転に応じて回転する検出用ロータ(以下、単に「ロータ1」という)を有している。図2に示すように、ロータ1は、ブラシレスモータ10のロータに設けられている磁極対に相当する複数の磁極対を有する円筒状の磁石2を含んでいる。つまり、ロータ1には、周方向に並んだ複数の磁極が設けられている。この例では、磁石2は、5組の磁極対(M0,M1),(M2,M3),(M4,M5),(M6,M7),(M8,M9)を有している。つまり、磁石2は、10個の磁極M0~M9を有している。
 ブラシレスモータ10のロータに設けられた各磁極の周方向の長さは、全て同じである。つまり、ブラシレスモータ10のロータに設けられた各磁極の角度幅は全て同じであり、36°である。したがって、このブラシレスモータ10では、1磁極対の角度幅は、機械角で72°であり、これが電気角の360°に相当する。これに対し、図2に示すように、ロータ1に設けられている各磁極M0~M9のうち、N極の磁極M0,M2,M4,M6,M8の角度幅(a,c,e,g,i)は、それぞれ異なっている。つまり、N極の磁極間では、その着磁面積が異なっている。S極の磁極M1,M3,M5,M7,M9のうち、磁極M9以外の4つの磁極M1,M3,M5,M7は、それぞれ異なっている。磁極M9の角度幅(j)は、磁極M5の角度幅(f)と等しい。
 この実施形態においては、各磁極M0~M9の角度幅は、表1に示すようになっている。ただし、表1では、角度幅は、その角度幅に対応する機械角に磁極対数(この実施形態では”5”)を乗算した値で表されている。なお、図2において、破線は、ロータ1を周方向に36°(前記電気角では180°)間隔で分割した場合の各領域を示している。
Figure JPOXMLDOC01-appb-T000001
 ロータ1の周囲には、2つの磁気センサ21,22が、ロータ1の回転中心軸を中心として、所定角度(18°(前記電気角では90°))の角度間隔をおいて配置されている。これら2つの磁気センサ21,22を、それぞれ第1の磁気センサ21および第2の磁気センサ22という場合がある。磁気センサとしては、たとえば、ホール素子、磁気抵抗素子(MR素子)等、磁界の作用により電気的特性が変化する特性を有する素子を備えたものを用いることができる。
 図2に矢印で示す方向をロータ1の正方向の回転方向とする。そして、ロータ1が正方向に回転されるとロータ1の回転角が大きくなり、ロータ1が逆方向に回転されると、ロータ1の回転角が小さくなるものとする。各磁気センサ21,22からは、図3に示すように、ロータ1の回転にともなって、正弦波状の信号(以下、「正弦波信号」という)V1,V2が出力される。なお、図3における横軸のロータ角度[deg]は、機械角に磁極対数(この実施形態では”5”)を乗算することにより得られた角度を表している。また、図3には、正弦波信号V1の各ピーク値付近に、その時点において第1の磁気センサ21が感知している磁極の領域a~jが明記されている。
 ロータ1が1つの磁極に相当する角度を回転すると、各磁気センサ21,22からは、半周期分の正弦波信号が出力される。ただし、この実施形態では、各磁極の角度幅は一定幅ではないため、1つのセンサから出力される正弦波信号における各磁極に対応する半周期は一定ではない。また、磁極M5および磁極M9を除いて、各磁気センサ21,22の出力信号V1,V2の磁極毎のピーク値は、磁極ごとに異なる。
 所定の基準位置からのロータ1の絶対的な回転角を、ロータ1の絶対回転角(機械角)θということにする。ロータ1の1回転分の角度範囲を、5つの磁極対の角度幅に対応して、5つの区間(a+b,c+d,e+f,g+h,i+j)に分け、各区間の開始位置を0°とし終了位置を360°として、絶対回転角θに対応する角度を0~360°の範囲内で表した角度を、ロータ1の相対回転角θということにする。なお、この実施形態では、これらの5つの区間の角度幅は、一定幅ではない。
 ここでは、第1の磁気センサ21からは、5つの磁極対に対応する区間毎に、V1=A1・sinθの出力信号が出力され、第2の磁気センサ22からは、5つの磁極対に対応する区間毎に、V2=A2・cosθの出力信号が出力されるものとする。A1,A2は、それぞれ振幅を表している。ただし、振幅A1は、磁極毎に異なる。同様に、振幅A2も磁極ごとに異なる。また、θは、対応する区間における相対回転角θを表している。
 両出力信号V1,V2の振幅A1,A2が互いに等しいとみなすと、対応する区間におけるロータ1の相対角θは、両出力信号V1,V2を用いて、次式(3)に基づいて求めることができる。
 θ=tan-1(sinθ/cosθ
   =tan-1(V1/V2)   …(3)
 図1に戻り、各磁気センサ21,22の出力信号V1,V2は、回転角演算装置20に入力される。回転角演算装置20は、各磁気センサ21,22の出力信号V1,V2に基づいて、ロータ1の相対回転角θを算出する。また、回転角演算装置20は、得られた相対回転角θ等に基いて、ロータ1の絶対回転角(機械角)θを算出し、得られたロータ1の絶対回転角θに基づいて、ブラシレスモータのロータの電気角θを演算する。回転角演算装置20は、たとえば、マイクロコンピュータから構成され、CPU(中央演算処理装置)およびメモリ(ROM,RAM,書き換え可能な不揮発性メモリ等)を含んでいる。
 回転角演算装置20によって演算された電気角は、モータコントローラ30に与えられる。モータコントローラ30は、回転角演算装置20から与えられた電気角θと、所与の指令値とに基づいて、ブラシレスモータ10を制御する。
 以下、回転角演算装置20の動作について説明する。回転角演算装置20内の書き換え可能な不揮発性メモリには、磁気センサ21,22毎に、振幅補正用テーブルが記憶されている。
 図4Aは、第1の磁気センサ21に対応する振幅補正用テーブル(以下、「第1テーブル」という場合がある)の内容例を示している。第1テーブルには、各磁極M0~M9の磁極番号0~9毎に、その磁極に対応する第1の磁気センサ21の出力信号V1のピーク値(極大値または極小値)、その磁極の角度幅[deg]および補正ゲインG1が記憶されている。ただし、角度幅は、表1で説明したように、その角度幅に対応する機械角に磁極対数(この実施形態では”5”)を乗算した値である。補正ゲインG1は、第1の磁気センサ21の振幅の磁極毎のばらつきを補正するためのゲインである。
 任意の磁極に対する振幅補正ゲインG1は、当該磁極に対応する第1の磁気センサ21の出力信号V1のピーク値(極大値または極小値)と基準振幅とを用い、次式(4)に基いて求められる。基準振幅は、たとえば、角度幅(機械角×磁極対数)が180°の磁極に対応する第1の磁気センサ21の出力信号V1のピーク値(絶対値)に相当する値である。基準振幅は、予め設定され、この例では“500”である。
 G1=基準振幅/|ピーク値|  …(4)
 図4Bは、第2の磁気センサ22に対応する振幅補正用テーブル(以下、「第2テーブル」という場合がある)の内容例を示している。第2テーブルには、各磁極M0~M9の磁極番号0~9毎に、その磁極に対応する第2の磁気センサ22の出力信号V2のピーク値(極大値または極小値)、その磁極の角度幅[deg]および補正ゲインG2が記憶されている。補正ゲインG2は、第2の磁気センサ22の振幅の磁極毎のばらつきを補正するためのゲインである。図4Bでは、説明の便宜上、各磁極に対する第2の磁気センサ22のピーク値は、対応する磁極に対する第1の磁気センサ21のピーク値と同じ値となっているが、実際には互いに異なる場合もある。
 任意の磁極に対する補正ゲインG2は、当該磁極に対応する第2の磁気センサ22の出力信号V2のピーク値(極大値または極小値)と基準振幅とを用い、次式(5)に基いて求められる。基準振幅は、たとえば、角度幅(機械角×磁極対数)が180°の磁極に対応する第2の磁気センサ221の出力信号V2のピーク値(絶対値)に相当する値である。基準振幅は、予め設定され、この例では“500”である。
 G2=基準振幅/|ピーク値|  …(5)
 前記振幅補正用テーブルへのピーク値および補正ゲインの記憶は、ブラシレスモータ10の出荷前に行ってもよいし、ブラシレスモータ10の出荷後において、モータ制御中にピーク値を検出することにより、行ってもよい。前記振幅補正用テーブルに記憶されるピーク値および補正ゲインは、1周期分のデータから求めてもよいし、複数周期分のデータの平均値から求めてもよい。
 また、回転角演算装置20内の書き換え可能な不揮発性メモリには、磁極毎(磁極番号毎)に、第1の磁気センサ21によってその磁極に対するピーク値が検出されているときに、第2の磁気センサ22が感知している磁極の極番号を示すデータを記憶した磁極特定用テーブル(以下、「第3テーブル」という場合がある)と、磁極毎(磁極番号毎)に、第2の磁気センサ22によってその磁極に対するピーク値が検出されているときに、第1の磁気センサ21が感知している磁極の極番号を示すデータを記憶した磁極特定用テーブル(以下、「第4テーブルという」という場合がある)とが記憶されている。第3テーブルおよび第4テーブルは、両磁気センサ21,22の配置および角度間隔ならびにロータ1の構成に基づいて作成される。
 回転角演算装置20は、第1または第2の磁気センサ21,22の出力信号V1,V2からピーク値を検出すると、ピーク値が検出された一方の磁気センサに対応する振幅補正用テーブル(第1テーブルまたは第2テーブル)に基づいて、当該磁気センサが感知している磁極の極番号を特定する。この際、センサ信号のピーク値は磁石の温度特性(磁石の温度が高くなるほどピーク値が小さくなる)に応じて変化するので、磁石の温度係数(温度が高くなるほど小さくなる係数)を振幅補正用テーブルのピーク値に乗算することによってテーブル値を補正し、検出されたピーク値と補正後のテーブル値とに基づいて、磁極の極番号を特定するようにしてもよい。
 なお、この実施形態では、磁極M5に対応するピーク値と磁極M9に対応するピーク値は同じであるので、磁極M5または磁極M9に対応するピーク値がいずれか一方の磁気センサによって検出されたとしても、回転角演算装置20は、当該磁気センサが感知している磁極の極番号を特定することはできない。そこで、回転角演算装置20は、処理開始後、磁極M5,M9以外の磁極に対応するピーク値が一方の磁気センサによって検出されたときに、当該磁気センサが感知している磁極の極番号を特定する。
 回転角演算装置20は、特定された極番号と、第3または第4テーブル(磁極特定用テーブル)とに基づいて、他方の磁気センサが感知している磁極の極番号を特定する。たとえば、第1テーブルに基いて、第1の磁気センサ21が感知している磁極の極番号が特定された場合には、特定された極番号と第3テーブルとに基いて、第2の磁気センサ22が感知している磁極の極番号が特定される。一方、第2テーブルに基いて、第2の磁気センサ22が感知している磁極の極番号が特定された場合には、特定された極番号と第4テーブルとに基いて、第1の磁気センサ21が感知している磁極の極番号が特定される。
 これにより、各磁気センサ21,22が感知している磁極の極番号が特定されるので、回転角演算装置20は、各磁気センサ21,22の出力信号V1,V2を、それらが感知している磁極に対応する補正ゲインG1,G2を用いて補正する。そして、回転角演算装置20は、振幅補正後の出力信号に基づいて、ロータ1の相対回転角θを演算する。また、回転角演算装置20は、得られた相対回転角θ等に基づいて絶対回転角θを演算する。そして、回転角演算装置20は、得られた絶対回転角θから、ブラシレスモータ10の電気角θを演算する。
 それ以後は、回転角演算装置20は、第1または第2の磁気センサ21,22の出力からピーク値が検出される毎に、ピーク値が検出された一方の磁気センサに対して既に特定されている極番号を更新し、当該磁気センサの出力信号を、更新後の極番号に対応する補正ゲインを用いて補正する。そして、回転角演算装置20は、上記と同様に、ロータ1の相対回転角θ、絶対回転角θ、ブラシレスモータ10の電気角θを演算する。
 図5は、回転角演算装置20による回転角演算処理の手順を示すフローチャートである。
 モータコントローラ30が起動されると、回転角演算装置20は、各磁気センサ21,22の出力信号(センサ値)V1,V2を読み込む(ステップS1)。なお、回転角演算装置20のメモリ(たとえば、RAM)には、所定回数前に読み込まれたセンサ値から最新に読み込まれたセンサ値までの、複数回数分のセンサ値が記憶されるようになっている。回転角演算装置20は、メモリに記憶されているセンサ値に基づいて、各センサ値V1,V2毎にピーク値(極値)を検出したか否かを判定する(ステップS2)。以下において、ステップS2の判定処理を、ピーク値検出処理という場合がある。具体的には、回転角演算装置20は、センサ値が上昇傾向から下降傾向に変化したときには、ピーク値(極大値)を検出したと判別するとともに、当該極大値を特定する。また、回転角演算装置20は、センサ値が下降傾向から上昇傾向に変化したときには、ピーク値(極小値)を検出したと判別するとともに、当該極小値を特定する。
 前記ステップS2において、ピーク値が検出されなかったときには(ステップS2:NO)、ステップS6に移行する。一方、前記ステップS2において、ピーク値が検出されたときには(ステップS2:YES)、回転角演算装置20は、コントローラ起動後において後述するステップS4の極番号特定処理によって各磁気センサが感知している磁極が既に特定されているか否かを判別する(ステップS3)。各磁気センサが感知している磁極が特定されていない場合には(ステップS3:NO)、回転角演算装置20は、極番号特定処理を行なう(ステップS4)。つまり、回転角演算装置20は、各磁気センサ21,22がそれぞれ感知している磁極を特定する。
 具体的には、回転角演算装置20は、まず、前記ステップS2のピーク値検出処理によって検出されたピーク値(極大値または極小値)と、当該ピーク値を出力した磁気センサに対応する振幅補正用テーブル(第1または第2テーブル)の内容とに基づいて、当該磁気センサが感知している磁極を特定する。つまり、回転角演算装置20は、振幅補正用テーブルに記憶されている複数のピーク値のうち、ピーク値検出処理によって検出されたピーク値に最も近いピーク値に対応する極番号を、当該磁気センサが感知している磁極の極番号として特定する。
 ただし、ピーク値検出処理によって検出されたピーク値に最も近いピーク値に対応する極番号が磁極M5または磁極M9に対応する極番号である場合には、回転角演算装置20は、当該磁気センサが感知している磁極を特定しない。
 前記磁気センサが感知している磁極の極番号を特定できた場合には、回転角演算装置20は、当該磁気センサが感知している磁極の極番号と、第3テーブルまたは第4テーブル(磁極特定用テーブル)とに基づいて、他方の磁気センサが感知している磁極を特定する。これにより、各磁気センサ21,22がそれぞれ感知している磁極が特定される。ステップS4の処理が終了すると、ステップS6に移行する。
 前記ステップS3において、コントローラ起動後に行なわれたステップS4の極番号特定処理によって、各センサ21,22が感知している磁極の極番号が特定されたと判別された場合には(ステップS3:YES)、回転角演算装置20は、極番号更新処理を行なう(ステップS5)。具体的には、回転角演算装置20は、前記ステップS2のピーク値検出処理によってピーク値が検出された方の磁気センサに対して既に特定されている極番号を、ロータ1の回転方向に基づいて更新する。より具体的には、回転角演算装置20は、当該磁気センサに対して既に特定されている極番号を、ロータ1の回転方向に応じて、1だけ多い極番号または1だけ少ない極番号に変更する。
 ロータ1の回転方向が正方向(図2に矢印で示す方向)である場合には、既に特定されている前記極番号を、1だけ多い極番号に更新し、ロータ1の回転方向が逆方向である場合には、既に特定されている前記極番号を、1だけ少ない極番号に更新する。ただし、”0”の極番号に対して、1だけ少ない極番号は、”9”となる。また、”9”の極番号に対して、1だけ多い極番号は、”0”となる。ステップS5の処理が終了すると、ステップS6に移行する。なお、ロータ1の回転方向は、たとえば、各磁気センサ21,22の出力信号V1,V2の位相に基いて判別することができる。具体的には、V2の位相がV1より進んでいる場合(同じ磁極に対するピーク値が、V2で検出されてからV1で検出される場合)には、ロータ1の回転方向が正方向であると判別する。一方、V1の位相がV2より進んでいる場合(同じ磁極に対するピーク値が、V1で検出されてからV2で検出される場合)には、ロータ1の回転方向が逆方向であると判別する。
 ステップS6では、回転角演算装置20は、前記ステップS1で読み込んだセンサ値V1,V2に対して振幅補正を行う。具体的には、回転角演算装置20は、各磁気センサ21,22に対して現在特定されている極番号に対応する振幅補正ゲインG1,G2を、第1テーブルおよび第2テーブルからそれぞれ読み込む。そして、回転角演算装置20は、前記ステップS1で読み込んだセンサ値V1,V2を、第1テーブルおよび第2テーブルから読み込んだゲインG1,G2を用いて、それぞれ補正する。補正後のセンサ値をV1’,V2’とすると、V1’,V2’は、それぞれ次式(6),(7)で表される。
 V1’=V1×G1  …(6)
 V2’=V1×G2  …(7)
 ただし、コントローラが起動されてからピーク値が検出されるまでにおいては、各磁気センサ21,22が感知している磁極は特定されないので、ステップS6では、センサ値V1,V2の補正は行われずに、ステップS7に移行する。また、ステップS4からステップS6に移行してきた場合であって、そのステップS4の極番号特定処理において、両磁気センサ21,22が感知している磁極の極番号が特定されなかった場合にも、ステップS6では、センサ値V1,V2の補正は行われずに、ステップS7に移行する。
 前記ステップS6の振幅補正が行われると、回転角演算装置20は、ロータ1の相対角θを算出する(ステップS7)。具体的には、回転角演算装置20は、次式(8)に基づいて、ロータ1の相対角θを算出する。
 θ=tan-1(V1’/V2’)   …(8)
 次に、回転角演算装置20は、ステップS7で算出されたロータ1の相対角θと、磁気センサ21が感知している磁極の極番号と、振幅補正テーブルの内容とに基づいて、ロータ1の絶対角(機械角)θを算出する(ステップS8)。具体的には、回転角演算装置20は、磁気センサ21が感知している磁極の極番号に基づいて、磁気センサ21が感知している磁極を特定する。そして、特定した磁極に対応する角度幅Wを求める。たとえば、磁気センサ21が感知している磁極が、10個の磁極のうち、1番目の磁極M0である場合には、その磁極に対応する角度幅Wは、170[deg]となる。
 前記ステップS7で算出されたロータ1の相対角θは、磁気センサ21が感知している磁極の角度幅Wが180°であるとして、算出された角度である。そこで、回転角演算装置20は、前記ステップS7で算出されたロータ1の相対角θを、次式(9)に基づいて、磁気センサ21が感知している磁極の領域の角度幅に応じた相対角θ’に変換(位相補正)する。
 θ’=θ×(W/180°) …(9)
 そして、回転角演算装置20は、磁気センサ21が感知している磁極と、変換後の相対角θ’とに基いて、ロータ1の絶対角(機械角)θを算出する。たとえば、磁気センサ21が感知している磁極が1番目の磁極M0である場合には、ロータ1の絶対角θは、変換後の相対角θ’と一致する。つまり、θ=θ’/5となる。ここで、5は、磁極対数である。
 磁気センサ21が感知している磁極が2番目の磁極M1である場合には、θ={θ’+(1番目の磁極M0の角度幅)}/5となる。ただし、角度幅は、表1で説明したように、その角度幅に対応する機械角に磁極対数(この実施形態では”5”)を乗算した値である。磁気センサ21が感知している磁極が3番目の磁極対M2である場合には、θ={θ’+(1番目および2番目の磁極M0,M1の角度幅の総和)}/5となる。磁気センサ21が感知している磁極が4番目の磁極M3である場合には、θ={θ’+(1番目~3番目の磁極M0~M2の角度幅の総和)}/5となる。磁気センサ21が感知している磁極が5番目の磁極M4である場合には、θ={θ’+(1番目~4番目の磁極M0~M3の角度幅の総和)}/5となる。
 磁気センサ21が感知している磁極が6番目の磁極M5である場合には、θ={θ’+(1番目~5番目の磁極M0~M4の角度幅の総和)}/5となる。磁気センサ21が感知している磁極対が7番目の磁極M6である場合には、θ={θ’+(1番目~6番目の磁極の角度幅M0~M5の総和)}/5となる。磁気センサ21が感知している磁極が8番目の磁極M7である場合には、θ={θ’+(1番目~7番目の磁極の角度幅M0~M6の総和)}/5となる。磁気センサ21が感知している磁極が9番目の磁極M8である場合には、θ={θ’+(1番目~8番目の磁極の角度幅M0~M7の総和)}/5となる。磁気センサ21が感知している磁極が10番目の磁極M9である場合には、θ={θ’+(1番目~9番目の磁極の角度幅M0~M8の総和)}/5となる。
 このようにしてロータ1の絶対角θが算出されると、回転角演算装置20は、電気角θを、算出する(ステップS9)。具体的には、磁気センサ21が感知している磁極対(M0,M1),(M2,M3),(M4,M5),(M6,M7),(M8,M9)の番号(1~5)をnとすると、回転角演算装置20は、次式(10)に基づいて、電気角θを算出して、モータコントローラ30に与える。
 θ=5θA -{360×(n-1)}   …(10)
 この後、回転角演算装置20は、モータ制御が終了したか否かを判別する(ステップS10)。モータ制御が終了していなければ(ステップS10:NO)、ステップS1に戻る。モータ制御が終了していれば(ステップS10:YES)、回転角演算装置20は、制御終了処理を行なう(ステップS11)。
 図6は、制御終了処理の一例を示すフローチャートである。
 制御終了処理においては、回転角演算装置20は、今回のモータ制御期間中において、ブラシレスモータ10が十分に回転したか否かを判定する(ステップS21)。具体的には、回転角演算装置20は、今回のモータ制御期間中におけるモータ10の回転数が、所定回転数以上であるか否かを判定する。ブラシレスモータ10が十分に回転したと判別された場合には(ステップS21:YES)、振幅補正用テーブル(第1テーブルおよび第2テーブル)内の各極番号に対応するピーク値を、その極番号に対応するピーク値として最新に検出されたピーク値に更新する(ステップS22)。そして、制御終了処理を終了する。
 なお、前記実施形態では、S極の磁極M5の角度幅(f)と磁極M9の角度幅(j)とは等しいが、S極の各磁極M1,M3,M5,M7,M9の角度幅も、N極の磁極M0,M2,M4,M6,M8と同様に、それぞれ異なっていてもよい。
 図7および図8は、この発明の第2の実施形態に係る回転角検出装置で用いられる検出用ロータを示している。図7は、検出用ロータの斜視図であり、図8は検出用ロータを端面側から見た図である。
 この検出用ロータ1Aは、円筒状の磁石の一端側を、軸方向に対して斜めに切断した形状の磁石2Aを有している。つまり、磁石2Aの一端側は平坦状の端面(平坦状端面)となっており、他端側は傾斜状の端面(傾斜状端面)となっている。磁石2Aには、端面側から見て、周方向に等角度間隔で、10個の磁極M0~M9が着磁されている。各磁極M0~M9における検出用ロータ1Aの回転軸方向の長さが異なっている。磁石2Aの平坦状端面を下側に配置した場合、各磁極M0~M9の高さが異なる。図7および図8に実線で示すように、ロータ1Aの傾斜状端面に対して平坦状端面に向かう方向と反対方向となる外方において、ロータ1Aの傾斜状端面に対向するように、2つの磁気センサ21,22が、ロータ1Aの回転中心軸を中心として、所定角度(18°(前記電気角では90°))の角度間隔をおいて配置されている。
 ロータ1Aが回転した場合、磁気センサ21,21とそれに対向する磁極M0~M9との距離が、磁極毎に異なるので、各磁気センサ21,22の出力信号V1,V2の磁極毎のピーク値は、磁極ごとに異なる。このため、回転角演算装置20は、前述した第1の実施形態と同様な方法で、つまり、図5に示した処理とほぼ同様な処理を行なうことによって、各磁気センサ21,22の出力信号V1,V2の振幅補正を行うことができる。
 この実施形態では、各磁極M0~M9は等角度間隔で設けられているので、図5のステップS7において、式(8)に基いて算出される相対角θR は、ブラシレスモータ10の電気角θと一致する。したがって、この実施形態では、図5のステップS8およびS9の処理を行なう必要がない。
 図7および図8に、破線で示すように、ロータ1Aの側面(外周面)に近接して磁気センサ21,22を配置してもよい。ただし、ロータ1Aの回転軸方向の長さが最も短い磁極の傾斜状端面の位置より、ロータ1Aの平坦状端面に近い位置側に、磁気センサ21,22を配置する必要がある。ロータ1Aが回転した場合、磁気センサ21,21が面している磁極の大きさが、磁極毎に異なるので、各磁気センサ21,22の出力信号V1,V2の磁極毎のピーク値は、磁極ごとに異なる。このため、回転角演算装置20は、前述した第1の実施形態と同様な方法で、各磁気センサ21,22の出力信号V1,V2の振幅補正を行うことができる。
 この場合にも、各磁極M0~M9は等角度間隔で設けられているので、図5のステップS7おいて、式(8)に基いて算出される相対角θR は、ブラシレスモータ10の電気角θと一致する。したがって、この実施形態では、図5のステップS8およびS9の処理を行なう必要がない
 図9は、この発明の第3の実施形態に係る回転角検出装置で用いられる検出用ロータを示している。
 この検出用ロータ1Bは、円筒状の磁石2Bを有している。磁石2Bには、端面側から見て、周方向に等角度間隔で、10個の磁極M0~M9が着磁されている。ただし、各磁極M0~M9の磁力の大きさが、磁極毎に大きく異なっている。つまり、意図的に、各磁極M0~M9の磁力の大きさが変えられている。
 各磁極M0~M9の磁力の大きさが磁極毎に大きく異なっているので、ロータ1Bが回転した場合、各磁気センサ21,22の出力信号V1,V2の磁極毎のピーク値は、磁極ごとに異なる。このため、回転角演算装置20は、前述した第1の実施形態と同様な方法で、つまり、図5に示した処理とほぼ同様な処理を行なうことによって、各磁気センサ21,22の出力信号V1,V2の振幅補正を行うことができる。
 この実施形態では、各磁極M0~M9は等角度間隔で設けられているので、図5のステップS7において、式(8)に基いて算出される相対角θR は、ブラシレスモータ10の電気角θと一致する。したがって、この実施形態では、図5のステップS8およびS9の処理を行なう必要がない。
 前記第1の実施形態では、ブラシレスモータ10が起動された後、磁極M5,M9以外の磁極に対応するピーク値が、いずれかの磁気センサ21,22の出力信号V1,V2から検出された時点で、各磁気センサが感知している磁極を特定することができる。また、前記第2および第3の実施形態では、ブラシレスモータ10が起動された後、いずれかの磁気センサ21,22の出力信号V1,V2から、いずれかの磁極のピーク値が検出された時点で、各磁気センサが感知している磁極を特定することができる。したがって、ブラシレスモータ10が起動された直後の早い段階で、各磁気センサ21,22が感知している磁極を特定することができるようになる。これにより、ブラシレスモータ10が起動された直後の早い段階で、各磁気センサ21,22の出力信号V1,V2を、その磁気センサが感知している磁極に応じて補正(振幅補正)することができる。この結果、ブラシレスモータ10が起動された直後の早い段階から、精度の高い回転角検出を行えるようになる。
 以上、この発明の第1~第3の実施形態について説明したが、この発明はさらに他の形態で実施することもできる。たとえば、前述の実施形態では、ロータ1,1A,1Bは、各磁極に対するピーク値が、その磁極以外の磁極に対するピーク値のいずれとも異なるような磁極特性を有しているが、少なくとも1つの磁極に対するピーク値が、他の磁極に対するピーク値のいずれとも異なるような磁極特性を有していればよい。たとえば、1つの磁極(以下、「基準磁極」という)に対するピーク値が、他の磁極に対するピーク値のいずれとも異なる磁極特性を、検出用ロータが有している場合には、ブラシレスモータが起動されてから、前記基準磁極に対応する極値が検出された時点で、各磁気センサ21,22が感知している磁極を特定することが可能となる。これにより、ブラシレスモータが起動されてから、検出用ロータが1回転する前に、各磁気センサ21,22が感知している磁極を特定することができる可能性が高くなる。つまり、ブラシレスモータが起動された直後の早い段階で、各磁気センサ21,22が感知している磁極を特定することができるようになる。
 また、この発明は、ブラシレスモータのロータ以外の回転体の回転角を検出する場合にも、適用することができる。
 本発明の実施形態について詳細に説明したが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
 この出願は、2010年3月3日に日本国特許庁に提出された特願2010-46719号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
 1,1A,1B…ロータ
 21,22…磁気センサ
 10…ブラシレスモータ
 M0~M9…磁極

Claims (5)

  1.  回転体の回転に応じて回転しかつ複数の磁極が設けられた検出用ロータと、検出用ロータの回転に応じて、所定の位相差を有する第1および第2の交番信号をそれぞれ出力する第1および第2の磁気センサとを含み、これらの磁気センサの出力信号に基づいて前記回転体の回転角を検出する回転角検出装置であって、
     前記検出用ロータは、前記複数の磁極のうち少なくとも一つの磁極に対する前記各交番信号の極値が、他の磁極に対する当該交番信号の極値のいずれとも識別可能に異なるような磁極特性を有しており、
     前記各交番信号の極値を検出する検出手段と、
     前記検出手段によって検出される極値と、予め設定された極値データとに基づいて、各磁気センサが感知している磁極を特定し、特定した磁極に応じて、前記各交番信号の振幅を補正する補正手段と、
     振幅補正後の各交番信号に基づいて、前記回転体の回転角を演算する回転角演算手段と、
     を含む回転角検出装置。
  2.  前記検出用ロータは、周方向に設けられた複数の磁極を有しており、磁極間に磁極面積差が設けられることにより、前記磁極特性を有している、請求項1に記載の回転角検出装置。
  3.  前記検出用ロータは、周方向に等角度間隔で設けられた複数の磁極を有しており、磁極間に前記検出用ロータの回転軸方向長さの差が設けられることにより、前記磁極特性を有している、請求項1に記載の回転角検出装置。
  4.  前記検出用ロータは、周方向に等角度間隔で設けられかつ前記検出用ロータの回転軸方向の長さが等しい複数の磁極を有しており、磁極間に磁力の大きさの差が設けられることにより、前記磁極特性を有している、請求項1に記載の回転角検出装置。
  5.  前記検出用ロータは、周方向に設けられた複数の磁極を有しており、磁極間に角度幅差が設けられることにより、前記磁極特性を有しており、
     前記回転角演算手段は、位相補正手段を含み、位相補正手段は、振幅補正後の各交番信号から前記検出用ロータの相対角を算出し、算出した相対角を、予め定められた一方の磁気センサが感知している磁極の角度幅に応じた相対角に補正する手段を含む、請求項1または2に記載の回転角検出装置。
PCT/JP2011/054002 2010-03-03 2011-02-23 回転角検出装置 WO2011108421A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180012152.8A CN102782457B (zh) 2010-03-03 2011-02-23 旋转角检测装置
EP11750531.3A EP2543975B1 (en) 2010-03-03 2011-02-23 Angle of rotation detetction device
US13/579,006 US8957675B2 (en) 2010-03-03 2011-02-23 Rotation angle detection device
JP2012503084A JP5674053B2 (ja) 2010-03-03 2011-02-23 回転角検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-046719 2010-03-03
JP2010046719 2010-03-03

Publications (1)

Publication Number Publication Date
WO2011108421A1 true WO2011108421A1 (ja) 2011-09-09

Family

ID=44542075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054002 WO2011108421A1 (ja) 2010-03-03 2011-02-23 回転角検出装置

Country Status (5)

Country Link
US (1) US8957675B2 (ja)
EP (1) EP2543975B1 (ja)
JP (1) JP5674053B2 (ja)
CN (1) CN102782457B (ja)
WO (1) WO2011108421A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115261A (ja) * 2012-12-12 2014-06-26 Jtekt Corp 回転角検出装置
JP2015505613A (ja) * 2012-02-01 2015-02-23 ヴァレオ システム デシュヤージュValeo Systemes D’Essuyage 電気モータのシャフトの角度位置を決定するための装置、および前記角度位置を決定するための装置を備えた風防ワイパーモータ
JP2015208121A (ja) * 2014-04-21 2015-11-19 株式会社リコー 信号増幅装置及びそれを備えた位相検出装置、並びにモータ駆動制御装置
WO2019150440A1 (ja) * 2018-01-30 2019-08-08 新電元工業株式会社 駆動制御システム、モータ、および、駆動制御システムの制御方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086205B2 (ja) 2012-12-12 2017-03-01 株式会社ジェイテクト 位相差検出装置およびそれを備えた回転角検出装置
JP2014219364A (ja) * 2013-05-10 2014-11-20 株式会社ジェイテクト 回転角検出装置
JP6024969B2 (ja) 2012-12-12 2016-11-16 株式会社ジェイテクト 回転角検出装置およびそれを備えた電動パワーステアリング装置
JP6024970B2 (ja) 2012-12-12 2016-11-16 株式会社ジェイテクト 回転角検出装置およびそれを備えた電動パワーステアリング装置
DE102013020578B4 (de) * 2013-12-13 2017-04-27 Tdk-Micronas Gmbh Messsystem
CN104748768B (zh) * 2015-03-12 2017-07-25 常州大学 转角位置检测装置的检测方法
DE102016202585A1 (de) * 2016-02-19 2017-08-24 Minimax Gmbh & Co. Kg Modularer Multisensor-Brand- und/oder Funkenmelder
JP6649419B2 (ja) * 2018-03-26 2020-02-19 ファナック株式会社 エンコーダの信号処理装置、及びエンコーダ
JP7056367B2 (ja) * 2018-05-17 2022-04-19 トヨタ自動車株式会社 認識エラー検出装置、電動ブレーキ制御装置
US10914609B2 (en) * 2018-06-19 2021-02-09 Nxp B.V. System and method for angle sensing using magnet having asymmetric magnetization configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323867A (ja) * 1993-05-14 1994-11-25 Kayaba Ind Co Ltd 位置検出装置
JP2002257649A (ja) 2001-02-27 2002-09-11 Koyo Seiko Co Ltd 回転角検出装置、トルク検出装置及び舵取装置
JP2003083823A (ja) * 2001-09-14 2003-03-19 Koyo Seiko Co Ltd 回転角検出装置、トルク検出装置及び舵取装置
JP2009503462A (ja) * 2005-07-26 2009-01-29 エーベーエム−パプスト ザンクト ゲオルゲン ゲーエムベーハー ウント コー.カーゲー 絶対値回転角センサを有する電気モータ、および回転角絶対値の形成方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461311A (en) * 1992-12-24 1995-10-24 Kayaba Kogyo Kabushiki Kaisha Rod axial position detector including plural scales wherein nonmagnetized portions have differing spacing and differing depths and means for calculating the absolute position are provided
US6029363A (en) * 1998-04-03 2000-02-29 Mitutoyo Corporation Self-calibrating position transducer system and method
US20020124663A1 (en) 1999-04-07 2002-09-12 Yoshitomo Tokumoto Rotational angle detecting device, torque detecting device and steering apparatus
US6653829B1 (en) * 1999-09-17 2003-11-25 Delphi Technologies, Inc. Low cost approach to measuring high resolution rotary position of electric machines
JP2001114116A (ja) * 1999-10-19 2001-04-24 Alps Electric Co Ltd 回転角検出装置
US6172499B1 (en) * 1999-10-29 2001-01-09 Ascension Technology Corporation Eddy current error-reduced AC magnetic position measurement system
US6305234B1 (en) 2000-01-27 2001-10-23 Edward L. Thies Absolute encoder
JP2005208028A (ja) * 2003-12-22 2005-08-04 Minebea Co Ltd バリアブルリラクタンスレゾルバ用角度演算方法とそのための角度演算装置
JP2006145220A (ja) 2004-11-16 2006-06-08 Shicoh Eng Co Ltd 磁気式位置検出装置
WO2007145296A1 (ja) * 2006-06-14 2007-12-21 The Furukawa Electric Co., Ltd. 回転角度検出装置
JP4858837B2 (ja) * 2006-10-26 2012-01-18 株式会社デンソー 回転角度検出装置
FR2909170B1 (fr) * 2006-11-28 2010-01-29 Moving Magnet Tech Mmt Capteur de position linaire ou rotatif a profil d'aimant variable preferentiellement de maniere quasi sinusoidal.
JP4330083B2 (ja) 2007-05-18 2009-09-09 株式会社日本自動車部品総合研究所 回転角度検出装置
JP5077717B2 (ja) 2010-04-12 2012-11-21 村田機械株式会社 磁極検出システム
WO2011129190A1 (ja) * 2010-04-16 2011-10-20 株式会社ジェイテクト 回転角検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323867A (ja) * 1993-05-14 1994-11-25 Kayaba Ind Co Ltd 位置検出装置
JP2002257649A (ja) 2001-02-27 2002-09-11 Koyo Seiko Co Ltd 回転角検出装置、トルク検出装置及び舵取装置
JP2003083823A (ja) * 2001-09-14 2003-03-19 Koyo Seiko Co Ltd 回転角検出装置、トルク検出装置及び舵取装置
JP2009503462A (ja) * 2005-07-26 2009-01-29 エーベーエム−パプスト ザンクト ゲオルゲン ゲーエムベーハー ウント コー.カーゲー 絶対値回転角センサを有する電気モータ、および回転角絶対値の形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2543975A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505613A (ja) * 2012-02-01 2015-02-23 ヴァレオ システム デシュヤージュValeo Systemes D’Essuyage 電気モータのシャフトの角度位置を決定するための装置、および前記角度位置を決定するための装置を備えた風防ワイパーモータ
US9912216B2 (en) 2012-02-01 2018-03-06 Valeo Systèmes d'Essuyage Arrangement for determining the angular position of a shaft of an electric motor, and windscreen wiper motor with an arrangement for determining the angular position
JP2014115261A (ja) * 2012-12-12 2014-06-26 Jtekt Corp 回転角検出装置
JP2015208121A (ja) * 2014-04-21 2015-11-19 株式会社リコー 信号増幅装置及びそれを備えた位相検出装置、並びにモータ駆動制御装置
WO2019150440A1 (ja) * 2018-01-30 2019-08-08 新電元工業株式会社 駆動制御システム、モータ、および、駆動制御システムの制御方法
JP6577145B1 (ja) * 2018-01-30 2019-09-18 新電元工業株式会社 駆動制御システム、モータ、および、駆動制御システムの制御方法

Also Published As

Publication number Publication date
EP2543975A4 (en) 2015-08-26
EP2543975A1 (en) 2013-01-09
JP5674053B2 (ja) 2015-02-25
CN102782457B (zh) 2015-11-25
EP2543975B1 (en) 2017-05-17
CN102782457A (zh) 2012-11-14
JPWO2011108421A1 (ja) 2013-06-27
US20120319680A1 (en) 2012-12-20
US8957675B2 (en) 2015-02-17

Similar Documents

Publication Publication Date Title
JP5674053B2 (ja) 回転角検出装置
JP5725377B2 (ja) 回転角検出装置
JP5776925B2 (ja) 回転角検出装置
JP5333863B2 (ja) 回転角検出装置
US8836326B2 (en) Rotation angle detection device
EP2477003B1 (en) Rotation angle detecting device
US8781777B2 (en) Rotation angle detection device and electric power steering system using the same
US20050275399A1 (en) Method and apparatus for sensing angle of rotation
JP6210284B2 (ja) 回転角検出装置
JP5660381B2 (ja) 回転角検出装置
US20120227514A1 (en) Rotation angle detection device and torque detection device
JPWO2019142875A1 (ja) 電動パワーステアリング装置、及び電動パワーステアリング装置用モータの回転角検出方法
WO2019167763A1 (ja) 位置推定方法、位置推定装置およびモータモジュール
US9625249B2 (en) Rotation angle detection device and electric power steering system including the same
JP2011047735A (ja) 回転角検出装置
JP5708986B2 (ja) 回転角検出装置
JP2022184555A (ja) 回転角度検出装置及び回転角度の導出方法
JP2006197684A (ja) ブラシレスモータ
JP2012237619A (ja) 回転角検出装置
WO2024143256A1 (ja) 角度検出装置
JP2004077133A (ja) 回転角度検出装置の初期設定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012152.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503084

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13579006

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011750531

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011750531

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE