JP5330910B2 - Resin composition and use thereof - Google Patents

Resin composition and use thereof Download PDF

Info

Publication number
JP5330910B2
JP5330910B2 JP2009158390A JP2009158390A JP5330910B2 JP 5330910 B2 JP5330910 B2 JP 5330910B2 JP 2009158390 A JP2009158390 A JP 2009158390A JP 2009158390 A JP2009158390 A JP 2009158390A JP 5330910 B2 JP5330910 B2 JP 5330910B2
Authority
JP
Japan
Prior art keywords
resin composition
inorganic filler
substrate material
substrate
coarse powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009158390A
Other languages
Japanese (ja)
Other versions
JP2011012193A (en
Inventor
建治 宮田
利貴 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009158390A priority Critical patent/JP5330910B2/en
Publication of JP2011012193A publication Critical patent/JP2011012193A/en
Application granted granted Critical
Publication of JP5330910B2 publication Critical patent/JP5330910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱伝導性に優れた樹脂組成物とそれを用いた成型体、基板材及び回路基板に関するものである。 The present invention relates to a resin composition excellent in thermal conductivity, a molded body using the same, a substrate material, and a circuit board.

放熱部材及び放熱部材の作製方法としては特許文献1がある。 There exists patent document 1 as a preparation method of a heat radiating member and a heat radiating member.

回路基板に使用される放熱用の組成物として、高熱伝導度で低誘電率な六方晶窒化ホウ素をエポキシ樹脂中に混練分散した組成物がある(特許文献2及び3)。 As a heat dissipation composition used for a circuit board, there is a composition in which hexagonal boron nitride having high thermal conductivity and low dielectric constant is kneaded and dispersed in an epoxy resin (Patent Documents 2 and 3).

特開2009−094110号公報JP 2009-094110 A 特開2008−280436号公報JP 2008-280436 A 特開2008−050526号公報JP 2008-050526 A

しかしながら、放熱用の樹脂組成物としてのエポキシ樹脂は、無機フィラーとしての六方晶窒化ホウ素の充填性を上げ、絶縁性及び成形性を向上させるという効果を得ることができなかった。無機フィラーの充填性を上げると樹脂組成物の放熱性及び耐熱性を大幅に向上させるという効果を得ることができる。 However, the epoxy resin as a heat-dissipating resin composition has not been able to obtain the effects of increasing the filling property of hexagonal boron nitride as an inorganic filler and improving the insulation and moldability. When the filling property of the inorganic filler is increased, the effect of greatly improving the heat dissipation and heat resistance of the resin composition can be obtained.

本発明は、エポキシ樹脂と、硬化剤と、無機フィラーを有する樹脂組成物であって、エポキシ樹脂がナフタレン構造を含有し、無機フィラーが平均粒子径10〜400μmの六方晶窒化ホウ素である粗粉と、平均粒子径0.5〜4.0μmの六方晶窒化ホウ素である微粉からなり、無機フィラー中の粗粉の配合比率が70%以上であり、かつ無機フィラーが樹脂組成物全体の50〜85体積%である樹脂組成物である。
The present invention relates to a resin composition having an epoxy resin, a curing agent, and an inorganic filler, wherein the epoxy resin contains a naphthalene structure , and the inorganic filler is hexagonal boron nitride having an average particle diameter of 10 to 400 μm. And a fine powder which is hexagonal boron nitride having an average particle diameter of 0.5 to 4.0 μm, the blending ratio of the coarse powder in the inorganic filler is 70% or more , and the inorganic filler is 50 to 50 % of the entire resin composition. It is a resin composition which is 85 volume%.

無機フィラーは、平均粒子径10〜400μmである粗粉と、平均粒子径0.5〜4.0μmである微粉とからなり、粗粉の配合比率が70%以上であるのが好ましい。 The inorganic filler is composed of coarse powder having an average particle diameter of 10 to 400 μm and fine powder having an average particle diameter of 0.5 to 4.0 μm, and the blending ratio of the coarse powder is preferably 70% or more.

粗粉は、六方晶窒化ホウ素であるのが好ましい。 The coarse powder is preferably hexagonal boron nitride.

粗粉としては、結晶化度特性を示すGI値1.5以下の六方晶窒化ホウ素で、粗粉の形状が単一の平板又は平板状粒子の凝集体で、粗粉の粒子のタップ密度が0.5g/cm以上であるのが好ましい。 The coarse powder is hexagonal boron nitride having a GI value of 1.5 or less indicating crystallinity characteristics, and the coarse powder is a single flat plate or aggregate of tabular grains, and the tap density of the coarse powder particles is It is preferably 0.5 g / cm 3 or more.

微粉は、六方晶窒化ホウ素又は球状の酸化アルミニウムであるのが好ましい。 The fine powder is preferably hexagonal boron nitride or spherical aluminum oxide.

他の発明は、上述の樹脂組成物を硬化させて成形した成型体である。 Another invention is a molded body formed by curing the above-described resin composition.

他の発明は、上述の樹脂組成物をシート状に形成し、加熱によりBステージ状態にした基板材である。この基板材は、複数枚積層するのが好ましい。 Another invention is a substrate material in which the above-described resin composition is formed into a sheet shape and brought into a B-stage state by heating. A plurality of the substrate materials are preferably laminated.

他の発明は、金属製の基板と、基板上に積層された請求項7又は8記載の基板材と、基板材の上に積層された金属箔とを有し、金属箔を局所的に切り欠いて回路を形成した回路基板である。 Another invention includes a metal substrate, the substrate material according to claim 7 or 8 laminated on the substrate, and a metal foil laminated on the substrate material, and the metal foil is locally cut. It is a circuit board on which a circuit is formed by lacking.

以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.

本発明は、エポキシ樹脂と、硬化剤と、無機フィラーを有する樹脂組成物であって、エポキシ樹脂と硬化剤のいずれか一方又は双方がナフタレン構造を含有し、無機フィラーが六方晶窒化ホウ素を含み、無機フィラーが樹脂組成物全体の50〜85体積%である樹脂組成物である。 The present invention is a resin composition having an epoxy resin, a curing agent, and an inorganic filler, wherein one or both of the epoxy resin and the curing agent contain a naphthalene structure, and the inorganic filler contains hexagonal boron nitride. A resin composition in which the inorganic filler is 50 to 85% by volume of the entire resin composition.

本発明に係るエポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ化合物であり、ナフタレン構造が六方晶窒化ホウ素との濡れ性において良好なことから、無機フィラーの充填性を上げる為に、ナフタレン構造骨格を含有するエポキシ樹脂が好ましい。エポキシ樹脂の配合量は、7.5質量部以上33.0質量部以下が好ましく、さらに好ましくは8.8質量部以上31.7質量部以下である。 The epoxy resin according to the present invention is an epoxy compound having two or more epoxy groups in one molecule, and the naphthalene structure is good in wettability with hexagonal boron nitride. In addition, an epoxy resin containing a naphthalene structure skeleton is preferable. The blending amount of the epoxy resin is preferably 7.5 parts by mass or more and 33.0 parts by mass or less, and more preferably 8.8 parts by mass or more and 31.7 parts by mass or less.

本発明に係る硬化剤は、エポキシ樹脂の硬化剤であり、具体的には、フェノールノボラック樹脂、酸無水物樹脂、アミノ樹脂、イミダゾール類がある。この硬化剤にあっても、無機フィラーの充填性を上げる為に、ナフタレン構造骨格を含有するものが好ましい。硬化剤の配合量は、0.5質量部以上8.0質量部以下が好ましく、さらに好ましくは0.9質量部以上6.55質量部以下である。 The curing agent according to the present invention is an epoxy resin curing agent, and specifically includes phenol novolac resins, acid anhydride resins, amino resins, and imidazoles. Even in this curing agent, one containing a naphthalene structure skeleton is preferable in order to increase the filling property of the inorganic filler. The blending amount of the curing agent is preferably 0.5 parts by mass or more and 8.0 parts by mass or less, and more preferably 0.9 parts by mass or more and 6.55 parts by mass or less.

本発明に係る無機フィラーは、熱伝導性を向上させるものであり、具体的には、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素があり、好ましくは、六方晶窒化ホウ素が良い。 The inorganic filler according to the present invention improves thermal conductivity, and specifically includes aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, and silicon carbide, preferably hexagonal boron nitride. Is good.

無機フィラーの含有率は、全体積中の50〜85体積%である。特に好ましい含有率は65〜83体積%である。熱伝導性フィラーの含有率が50体積%未満では成形体の熱伝導率が減少する傾向にあり、85体積%を越えると、成型時に空隙を生じ易くなり、絶縁性及び機械強度が低下する傾向にあるため、好ましくない。 The content of the inorganic filler is 50 to 85% by volume in the entire volume. A particularly preferable content is 65 to 83% by volume. If the content of the thermally conductive filler is less than 50% by volume, the thermal conductivity of the molded product tends to decrease. If it exceeds 85% by volume, voids are likely to occur during molding, and the insulation and mechanical strength tend to decrease. Therefore, it is not preferable.

無機フィラーは、平均粒子径10〜400μmである粗粉と、平均粒子径0.5〜4.0μmである微粉とからなるのが好ましい。無機フィラーを粗粉と微粉に分けて配合するのは、粗粉同士間に微粉を充填することによって無機フィラー全体の充填率を上げるためである。無機フィラーを粗粉と微粉で形成する場合、粗粉の配合比率は70%以上が好ましく、更に好ましくは75%以上である。粗粉比率が低くなると樹脂組成物の流動性が低下し、緻密に充填された成型体ができなくなる傾向にあるためである。 The inorganic filler is preferably composed of coarse powder having an average particle diameter of 10 to 400 μm and fine powder having an average particle diameter of 0.5 to 4.0 μm. The reason why the inorganic filler is blended into the coarse powder and the fine powder is to increase the filling rate of the whole inorganic filler by filling the fine powder between the coarse powders. When the inorganic filler is formed of coarse powder and fine powder, the blending ratio of the coarse powder is preferably 70% or more, and more preferably 75% or more. This is because when the ratio of the coarse powder is lowered, the fluidity of the resin composition is lowered, and there is a tendency that a densely packed molded body cannot be formed.

粗粉と微粉で形成する場合であっても、素材としては、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素があり、好ましくは、六方晶窒化ホウ素が良い。 Even in the case of forming with coarse powder and fine powder, the raw materials include aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, and silicon carbide, preferably hexagonal boron nitride.

粗粉は、GI(Graphitization Index:黒鉛化指数)値で1.5以下が好ましい。GI値は、X線回折において式(1)に示すように002回折線の面積〔Area(002)〕と、100回折線の面積〔Area(100)〕の比で表されるものである。GI値が低いほど結晶化が進んだものであり、結晶化度が低いものは、粒子が十分に成長せず熱伝導度が低くなるため、好ましくない。 The coarse powder preferably has a GI (Graphitization Index) value of 1.5 or less. The GI value is represented by the ratio of the area [Area (002)] of the 002 diffraction line and the area [Area (100)] of the 100 diffraction line as shown in the equation (1) in X-ray diffraction. The lower the GI value, the more the crystallization progresses, and the lower the crystallinity, the less the particles grow and the thermal conductivity becomes low, which is not preferable.

(式1)
GI= Area(100)/Area(002) ・・・(1)
(Formula 1)
GI = Area (100) / Area (002) (1)

無機フィラーうちの粗粉のタップ密度は、無機フィラーの充填性及び分散性を良好にするため、0.5g/cm以上であるのが好ましい。 The tap density of the coarse powder of the inorganic filler is preferably 0.5 g / cm 3 or more in order to improve the filling property and dispersibility of the inorganic filler.

タップ密度とは、フィラーの嵩密度を表すもので、JIS Z 2500(2045)に記載の通り、振動させた容器内の粉末の単位体積当たりの質量である。 The tap density represents the bulk density of the filler, and is the mass per unit volume of the powder in the vibrated container as described in JIS Z 2500 (2045).

無機フィラーうちの粗粉の形状は、単一の平板又は平板状粒子の凝集体であるのが好ましい。 The shape of the coarse powder of the inorganic filler is preferably a single flat plate or an aggregate of tabular grains.

無機フィラーの微粉としては、六方晶窒化ホウ素を用いれば、低誘電率で、高絶縁性で、高熱伝導性の樹脂硬化体が得られるので好ましい。また、球状アルミナも高絶縁性で高熱伝導率の樹脂硬化体を得ることができるので好ましい。 As the fine powder of the inorganic filler, it is preferable to use hexagonal boron nitride because a cured resin having a low dielectric constant, high insulation, and high thermal conductivity can be obtained. Spherical alumina is also preferable because a cured resin having high insulation and high thermal conductivity can be obtained.

他の発明である成型体は、上述の樹脂組成物を硬化させて成形した成型体である。 The molded body which is another invention is a molded body formed by curing the above-described resin composition.

成形にあっては、樹脂組成物の上下間より0.1kgf/cm以上の圧力をかけて硬化させる成形があり、この成型体は、高絶縁性であると共に高熱伝導性を有し、更にアルミニウム、銅、それらの合金等の金属との接着性にも優れる特徴を有する。この成型体は、混成集積回路用の基板、回路基板の絶縁層として好適である。成形にあっては、押出成型機、真空ホットプレス装置を用いることができる。 In the molding, there is a molding that is cured by applying a pressure of 0.1 kgf / cm 2 or more from the upper and lower sides of the resin composition, and this molded body has a high thermal conductivity as well as a high insulating property, It also has excellent characteristics of adhesion to metals such as aluminum, copper, and alloys thereof. This molded body is suitable as a substrate for a hybrid integrated circuit and an insulating layer of a circuit substrate. For molding, an extrusion molding machine or a vacuum hot press apparatus can be used.

他の発明は、上述の樹脂組成物をシート状に形成し、加熱によりBステージ状態にした基板材である。 Another invention is a substrate material in which the above-described resin composition is formed into a sheet shape and brought into a B-stage state by heating.

本発明におけるBステージ状態とは、樹脂組成物が室温で乾いた状態を示し、高温に加熱すると再び溶融する状態をいい、より厳密には、DSC(Differential scanning calorimetry:示差走査型熱量計)を用いて、硬化時に発生する熱量から計算した値で硬化度70%未満の状態を示す。絶縁層のCステージ状態とは、樹脂組成物の硬化がほぼ終了した状態で、高温に加熱しても再度溶融することはない状態をいい、硬化度70%以上の状態をいう。 The B-stage state in the present invention refers to a state in which the resin composition is dried at room temperature, and refers to a state in which the resin composition melts again when heated to a high temperature. Strictly speaking, DSC (Differential Scanning Calorimetry) is used. Used to indicate a state where the degree of cure is less than 70% as calculated from the amount of heat generated during curing. The C-stage state of the insulating layer refers to a state in which the resin composition is almost completely cured and does not melt again even when heated to a high temperature, and refers to a state where the curing degree is 70% or more.

この基板材は、Bステージ状態にしているため、高熱伝導性を得た基板材を得ることができる。 Since this substrate material is in a B-stage state, a substrate material having high thermal conductivity can be obtained.

他の発明は、上述の基板材を複数枚積層して厚さ方向に切断し、切断端面を平面とした基板材である。これにより、熱を逃がす方向を変えることができる。 Another invention is a substrate material in which a plurality of the above-mentioned substrate materials are stacked and cut in the thickness direction, and the cut end surface is a flat surface. Thereby, the direction in which heat is released can be changed.

他の発明は、基板材を構成する樹脂組成物に配合されている無機フィラーが、一定方向に配向されている基板材である。無機フィラーの配向の方向は、基板板の熱を逃がす方向に影響があるため、この構成により、基板板の放熱方向を制御できる。具体的には、押出成形をした場合、その押し出し方向に配向する。この配向した基板材を複数枚重ね、厚さ方向に切断し、切断面を平面とした基板材を作成すると、押し出し直後の基板材と配向が直交したものとなる。 Another invention is a substrate material in which an inorganic filler blended in a resin composition constituting the substrate material is oriented in a certain direction. Since the direction of the orientation of the inorganic filler has an influence on the direction of releasing the heat of the substrate plate, this configuration can control the heat dissipation direction of the substrate plate. Specifically, when extrusion molding is performed, it is oriented in the extrusion direction. When a plurality of such substrate materials are stacked, cut in the thickness direction, and a substrate material having a cut surface as a flat surface is created, the substrate material immediately after extrusion is perpendicular to the orientation.

他の発明は、金属製の基板と、基板上に積層された上述の基板材と、基板材の上に積層された金属箔とを有し、金属箔を局所的に切り欠いて回路を形成した回路基板である。 Another invention has a metal substrate, the above-described substrate material laminated on the substrate, and a metal foil laminated on the substrate material, and a circuit is formed by locally cutting the metal foil. Circuit board.

この回路基板は、この構成により低誘電率で、高絶縁性な効果を有する。 With this configuration, this circuit board has a low dielectric constant and a high insulating effect.

金属製の基板の材質は、銅、アルミニウム、ニッケル、鉄、錫、銀、チタニウム、金、マグネシウム、シリコン又はこれら金属の合金がある。基板の厚みは例えば35〜3000μmがある。 The material of the metal substrate is copper, aluminum, nickel, iron, tin, silver, titanium, gold, magnesium, silicon, or an alloy of these metals. The thickness of the substrate is, for example, 35 to 3000 μm.

金属箔の材質は、銅、アルミニウム、ニッケル、鉄、錫、銀、チタニウム、金、マグネシウム、シリコン又はこれら金属の合金がある。この材質にニッケルメッキ、ニッケルと金の合金によるメッキを施すこともできる。金属箔の厚みは、例えば4〜300μmがある。 The material of the metal foil includes copper, aluminum, nickel, iron, tin, silver, titanium, gold, magnesium, silicon, or an alloy of these metals. This material can be plated with nickel or with an alloy of nickel and gold. The thickness of the metal foil is, for example, 4 to 300 μm.

回路基板の製造方法は、例えば、金属製の基板の上に上述の樹脂組成物を積層し、樹脂組成物を硬化させた後、金属箔を積層し、これら全体を加熱ホットプレスにて一括接合され、さらに、金属箔をエッチングなどによって切り欠いて回路を形成することがある。 The circuit board manufacturing method is, for example, laminating the above resin composition on a metal substrate, curing the resin composition, laminating metal foils, and collectively bonding them all with a hot hot press. Further, the circuit may be formed by cutting out the metal foil by etching or the like.

本発明を、実施例、比較例を用いて、表1、表2と図面を参照しつつ、詳細に説明する。 The present invention will be described in detail using Examples and Comparative Examples with reference to Tables 1 and 2 and the drawings.

Figure 0005330910
Figure 0005330910

(実施例1)
実施例1の樹脂組成物は、表1に示す配合比の樹脂組成物である。本実施例にあっては、エポキシ樹脂はナフタレン構造を含有するナフタレン型エポキシ樹脂(DIC社製、HP4032)、硬化剤としてイミダゾール類(四国化成社製、2E4MZ−CN)、カップリング剤としてシランカップリング剤(東レダウコーニング社製、Z−0640N)を用いた。無機フィラーにあっては、六方晶窒化ホウ素(表1ではBNと記載した。)を採用した。
Example 1
The resin composition of Example 1 is a resin composition having a blending ratio shown in Table 1. In this example, the epoxy resin is a naphthalene type epoxy resin containing a naphthalene structure (manufactured by DIC, HP4032), an imidazole as a curing agent (manufactured by Shikoku Kasei Co., Ltd., 2E4MZ-CN), and a silane cup as a coupling agent. A ring agent (manufactured by Toray Dow Corning, Z-0640N) was used. As the inorganic filler, hexagonal boron nitride (described as BN in Table 1) was adopted.

無機フィラーにおける平均粒子径は、島津製作所製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。試料は、ガラスビーカーに50ccの純水と測定する熱伝導性粉末を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性材料の粉末の溶液をスポイドで装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。吸光度が安定になった時点で測定を行った。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じて、相対粒子量の合計(100%)で割って求めた。平均粒子径は粒子の平均直径である。 The average particle diameter in the inorganic filler was measured using “Laser diffraction particle size distribution analyzer SALD-200” manufactured by Shimadzu Corporation. As a sample, 5 g of 50 cc pure water and a heat conductive powder to be measured were added to a glass beaker and stirred using a spatula, and then subjected to a dispersion treatment for 10 minutes with an ultrasonic cleaner. The solution of the thermally conductive material powder that had been subjected to the dispersion treatment was added dropwise to the sampler portion of the apparatus with a dropper and waited until the absorbance became measurable. Measurements were taken when the absorbance was stable. In the laser diffraction particle size distribution analyzer, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size was determined by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle diameter is the average diameter of the particles.

効果の測定にあっては、樹脂組成物をシート状に成形して行った。 In measuring the effect, the resin composition was molded into a sheet shape.

実施例1の樹脂組成物を押出成型装置を用いて1.0mm厚の薄板状に成形して成型体とした後、1.0kgf/cmの圧力で上下面間を押し付けた状態で、120℃で15分間の加熱により半硬化させ、半硬化の状態の樹脂組成物シートを50枚積層し、半硬化と同様の加熱処理をして一体化させ、さらに厚さ方向に切断してその切断面を平面とする基板材を得た。 The resin composition of Example 1 was molded into a 1.0 mm-thick thin plate using an extrusion molding device to form a molded body, and then pressed between the upper and lower surfaces with a pressure of 1.0 kgf / cm 2. Semi-cured by heating for 15 minutes at 50 ° C., 50 sheets of semi-cured resin composition sheet are laminated, integrated by heat treatment similar to semi-cured, and further cut in the thickness direction and cut A substrate material having a flat surface was obtained.

上述の製造方法によって得た基板材の評価を、表1に示した。以下、各評価について、説明する。 Table 1 shows the evaluation of the substrate material obtained by the above manufacturing method. Hereinafter, each evaluation will be described.

本発明の効果である熱伝導性は、耐熱性及び熱伝導率で評価した。本発明の他の効果である絶縁信頼性は、初期耐電圧で評価した。 The thermal conductivity as an effect of the present invention was evaluated by heat resistance and thermal conductivity. The insulation reliability which is another effect of the present invention was evaluated by the initial withstand voltage.

(耐熱性)
実施例の樹脂組成物20mgを白金製の容器に入れ、10℃/minの昇温速度にて25℃から1000℃までの熱重量減少を測定し、重量減少率5wt%時の温度を求めた。測定装置は、TG−DTA(リガク社製 ThermoPlus Evo TG8120)を用いた。耐熱性は、350℃以上が必要である。
(Heat-resistant)
20 mg of the resin composition of the example was placed in a platinum container, and the thermal weight loss from 25 ° C. to 1000 ° C. was measured at a rate of temperature increase of 10 ° C./min, and the temperature at a weight reduction rate of 5 wt% was determined. . TG-DTA (ThermoPlus ThermoPlus Evo TG8120) was used for the measuring apparatus. The heat resistance needs to be 350 ° C. or higher.

(熱伝導率)
<厚さ方向の熱伝導率>
厚さ方向の熱伝導率は、実施例の樹脂粗生物の熱拡散率、比重、比熱を全て乗じて算出した。熱拡散率は、試料を幅10mm×10mm×厚み1mmに加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(NETZSCH社製 LFA447 NanoFlash)を用いた。比重はアルキメデス法を用いて求めた。比熱は、DSC(リガク社製 ThermoPlus Evo DSC8230)を用いて求めた。厚さ方向の熱伝導率は、2.0(W/mK)以上が必要である。
(Thermal conductivity)
<Thermal conductivity in the thickness direction>
The thermal conductivity in the thickness direction was calculated by multiplying all the thermal diffusivity, specific gravity, and specific heat of the crude resin product of the example. The thermal diffusivity was determined by a laser flash method after processing the sample into a width of 10 mm × 10 mm × thickness of 1 mm. The measuring device used was a xenon flash analyzer (LFA447 NanoFlash manufactured by NETZSCH). Specific gravity was determined using the Archimedes method. Specific heat was determined using DSC (ThermoPlus Evo DSC8230, manufactured by Rigaku Corporation). The thermal conductivity in the thickness direction needs to be 2.0 (W / mK) or more.

<面内方向の熱伝導率>
面内方向の熱伝導率は、前記同様に熱拡散率と試料の比重、比熱容量の積から、算出した。求める熱拡散率は、試料を幅5mm×30mm×厚み0.4mmに加工し、光交流法により求めた。測定装置は光交流法熱拡散率測定装置(アルバック理工株式会社製 LaserPit)を用いた。比重及び比熱容量は前記厚さ方向の熱伝導率測定で求めた値を用いた。面内方向の熱伝導率は、2.0(W/mK)以上が必要である。
<In-plane thermal conductivity>
The thermal conductivity in the in-plane direction was calculated from the product of the thermal diffusivity, the specific gravity of the sample, and the specific heat capacity as described above. The required thermal diffusivity was obtained by processing the sample into a width of 5 mm × 30 mm × thickness of 0.4 mm and using an optical alternating current method. As the measuring device, an optical AC thermal diffusivity measuring device (LaserPit manufactured by ULVAC-RIKO Inc.) was used. As the specific gravity and specific heat capacity, values obtained by measuring the thermal conductivity in the thickness direction were used. The thermal conductivity in the in-plane direction needs to be 2.0 (W / mK) or more.

(絶縁信頼性)
<初期耐電圧>
厚さ1.5mmのアルミニウム板上に厚さ0.5mmの基板材を積層し、基板材に厚さ0.1mmの銅箔を積層した。積層後、150℃で2.0時間の環境に置いて硬化を完了させ、基板を作製した。この基板の銅箔の周囲をエッチングし、直径20mmの円形部分を残した後、絶縁油中に浸漬し、室温で交流電圧を銅箔とアルミニウム板間に印加させ、JIS C2110に基づき、初期耐電圧測定した。測定器には、菊水電子工業株式会社製TOS−8700を用いた。初期耐電圧は、20(kV/mm)以上が必要である。
(Insulation reliability)
<Initial breakdown voltage>
A substrate material having a thickness of 0.5 mm was laminated on an aluminum plate having a thickness of 1.5 mm, and a copper foil having a thickness of 0.1 mm was laminated on the substrate material. After the lamination, curing was completed by placing it in an environment at 150 ° C. for 2.0 hours to produce a substrate. The periphery of the copper foil of this substrate is etched to leave a circular portion having a diameter of 20 mm, and then immersed in an insulating oil. An AC voltage is applied between the copper foil and the aluminum plate at room temperature, and the initial resistance is determined according to JIS C2110. The voltage was measured. TOS-8700 manufactured by Kikusui Electronics Co., Ltd. was used as the measuring instrument. The initial withstand voltage is required to be 20 (kV / mm) or more.

(実施例2乃至11)
実施例2乃至11は、表1に示す変更以外は実施例1と同様のものである。
(Examples 2 to 11)
Examples 2 to 11 are the same as Example 1 except for the changes shown in Table 1.

表1記載の組成物は次のものを採用した。
実施例7でのAl:球状の酸化アルミニウム(電気化学工業社製、ASFP−20)であり、粒子径3.0μm以下のものを90体積%含有し、平均粒子径は0.5μmである。
実施例8、9にある無機フィラーの粗粉で「凝集」とあるBN:モメンティブ・パフォーマンス・マテリアルズ社製、PT670。平均粒子径300μm、タップ密度1.0g/cm、GI値1.1
実施例10にある硬化樹脂としてのナフタレンテトラカルボン酸二無水物:JFEケミカル株式会社製NTCDA
実施例11にある硬化樹脂としてのナフト−ルアラルキル型フェノ−ル樹脂:東都化成株式会社製SN−485
The compositions listed in Table 1 were as follows.
Al 2 0 3 in Example 7: spherical aluminum oxide (ASFP-20, manufactured by Denki Kagaku Kogyo Co., Ltd.), containing 90% by volume of particles having a particle size of 3.0 μm or less, and an average particle size of 0.5 μm It is.
BN with coarse particles of the inorganic filler in Examples 8 and 9 and “aggregation”: PT670, manufactured by Momentive Performance Materials. Average particle size 300 μm, tap density 1.0 g / cm 3 , GI value 1.1
Naphthalene tetracarboxylic dianhydride as a cured resin in Example 10: NTCDA manufactured by JFE Chemical Co., Ltd.
Naphthol aralkyl type phenolic resin as a cured resin in Example 11: SN-485 manufactured by Toto Kasei Co., Ltd.

(実施例12乃至15)
実施例12乃至15は、実施例1の樹脂組成物を押出成型装置により薄板状に成形した基板積層材料(d)をそのまま使用したこと以外は実施例1〜4と同様の配合量、操作で樹脂硬化体、更に成型体、基板積層材料、回路基板を作製し、評価した。
実施例12乃至15は、基板材中の無機粒子の配向度を求めた所、何れも0.01以下と面内方向に粒子が良く配向していることが確認された。この結果、面内方向への熱伝導率が高く、これにより実施例1より基板全体の温度が均一になった。温度が均一になると基板を用いた電子装置全体の温度も均一になり、その動作が安定した。
(Examples 12 to 15)
Examples 12 to 15 are the same blending amounts and operations as in Examples 1 to 4 except that the substrate laminate material (d) obtained by forming the resin composition of Example 1 into a thin plate shape using an extrusion molding apparatus was used as it was. A cured resin body, a molded body, a substrate laminate material, and a circuit board were prepared and evaluated.
In Examples 12 to 15, when the orientation degree of the inorganic particles in the substrate material was determined, it was confirmed that the particles were well oriented in the in-plane direction of 0.01 or less. As a result, the thermal conductivity in the in-plane direction was high, which made the temperature of the entire substrate more uniform than in Example 1. When the temperature became uniform, the temperature of the entire electronic device using the substrate became uniform, and the operation became stable.

Figure 0005330910
Figure 0005330910

参考例16)
参考例16は、無機フィラーの粗粉としての平板状の六方晶窒化ホウ素として、水島鉄工所株式会社製HP−P4(平均粒子径5μm、タップ密度0.2g/cm、GI値1.55)を採用した以外は、実施例1と同じである。
( Reference Example 16)
Reference Example 16 is a plate-shaped hexagonal boron nitride as a coarse powder of an inorganic filler, manufactured by Mizushima Iron Works, Ltd. HP-P4 (average particle diameter 5 μm, tap density 0.2 g / cm 3 , GI value 1.55). ) Is the same as in Example 1.

参考例17)
参考例17は、無機フィラーの粗粉と微粉の配合比率を表2に示す通りに変えたこと以外は実施例1と同様である。
( Reference Example 17)
Reference Example 17 is the same as Example 1 except that the blending ratio of the coarse powder and fine powder of the inorganic filler is changed as shown in Table 2.

(比較例1乃至4)
比較例1乃至4は、表2に示す変更以外は実施例1と同様のものである。
表1記載の組成物は次のものを採用した。
エポキシ樹脂としての脂環式ビスA型:東都化成株式会社製ST−3000
エポキシ樹脂としてのビフェニル型:ジャパンエポキシレジン株式会社製YX4000H
エポキシ樹脂のうちのトリエポキシ樹脂トリアジン型:日産化学工業株式会社製TEPIC−PAS
(Comparative Examples 1 to 4)
Comparative Examples 1 to 4 are the same as Example 1 except for the changes shown in Table 2.
The compositions listed in Table 1 were as follows.
Alicyclic bis type A as an epoxy resin: ST-3000 manufactured by Tohto Kasei Co., Ltd.
Biphenyl type as epoxy resin: YX4000H manufactured by Japan Epoxy Resin Co., Ltd.
Triepoxy resin triazine type of epoxy resin: TEPIC-PAS manufactured by Nissan Chemical Industries, Ltd.

(比較例5)
比較例5は、無機フィラーの粗粉としての球状の酸化アルミニウムとして、電気化学工業社製DAW10(平均粒子径が10μm)を使用し表2記載の変更部分以外は、実施例1と同じである。
(Comparative Example 5)
Comparative Example 5 is the same as Example 1 except that DAW10 (average particle size is 10 μm) manufactured by Denki Kagaku Kogyo Co., Ltd. is used as the spherical aluminum oxide as the coarse powder of the inorganic filler, except for the changed part described in Table 2. .

いずれの比較例も、本発明の範囲を逸脱すると、耐熱性、熱伝導率又は初期耐電圧の少なくとも一つが悪い結果であった。 In any of the comparative examples, if it deviated from the scope of the present invention, at least one of heat resistance, thermal conductivity and initial withstand voltage was a bad result.

Claims (9)

エポキシ樹脂と、硬化剤と、無機フィラーを有する樹脂組成物であって、エポキシ樹脂がナフタレン構造を含有し、無機フィラーが平均粒子径10〜400μmの六方晶窒化ホウ素である粗粉と、平均粒子径0.5〜4.0μmの六方晶窒化ホウ素である微粉からなり、無機フィラー中の粗粉の配合比率が70%以上であり、かつ無機フィラーが樹脂組成物全体の50〜85体積%である樹脂組成物。 A resin composition having an epoxy resin, a curing agent, and an inorganic filler, wherein the epoxy resin contains a naphthalene structure , the inorganic filler is hexagonal boron nitride having an average particle diameter of 10 to 400 μm, and an average particle It consists of fine powder which is hexagonal boron nitride having a diameter of 0.5 to 4.0 μm, the blending ratio of the coarse powder in the inorganic filler is 70% or more , and the inorganic filler is 50 to 85 volume% of the entire resin composition A resin composition. 粗粉の平均粒子径が、23〜300μmである請求項1記載の樹脂組成物。The resin composition according to claim 1, wherein the average particle diameter of the coarse powder is 23 to 300 μm. 硬化剤がナフタレン構造を含有する請求項1又は2記載の樹脂組成物 The resin composition according to claim 1 or 2, wherein the curing agent contains a naphthalene structure . 粗粉がGI(Graphitization Index:黒鉛化指数)値1.5以下の六方晶窒化ホウ素で、粗粉の形状が単一の平板又は平板状粒子の凝集体であり、粗粉の粒子のタップ密度が0.5g/cm以上であることを特徴とする請求項1乃至3のいずれか1項に記載の樹脂組成物。 The coarse powder is hexagonal boron nitride having a GI (Graphitization Index) value of 1.5 or less, and the coarse powder is a single flat plate or aggregate of tabular grains, and the tap density of the coarse powder particles The resin composition according to any one of claims 1 to 3 , wherein the resin composition is 0.5 g / cm 3 or more. 請求項1乃至のいずれか1項に記載の樹脂組成物を硬化させて成形した成型体。 The molded object which hardened and shape | molded the resin composition of any one of Claims 1 thru | or 4 . 請求項1乃至のいずれか1項に記載の樹脂組成物をシート状に形成し、加熱によりBステージ状態にした基板材。 The board | substrate material which formed the resin composition of any one of Claims 1 thru | or 4 in the sheet form, and was made into the B-stage state by heating. 請求項記載の基板材を複数枚積層して厚さ方向に切断し、切断端面を平面とした基板材。 A substrate material, wherein a plurality of the substrate materials according to claim 6 are laminated and cut in the thickness direction, and the cut end surface is a flat surface. 基板材を構成する樹脂組成物に配合されている無機フィラーが、一定方向に配向されている請求項又はのいずれか1項に記載の基板材。 The board | substrate material of any one of Claim 6 or 7 with which the inorganic filler mix | blended with the resin composition which comprises a board | substrate material is orientated in the fixed direction. 金属製の基板と、基板上に積層された請求項乃至記載のいずれか1項に記載の基板材と、基板材の上に積層された金属箔とを有し、金属箔を局所的に切り欠いて回路を形成した回路基板。
A metal substrate, a substrate material according to any one of claims 6 to 8 laminated on the substrate, and a metal foil laminated on the substrate material, wherein the metal foil is locally A circuit board with a circuit cut out.
JP2009158390A 2009-07-03 2009-07-03 Resin composition and use thereof Active JP5330910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158390A JP5330910B2 (en) 2009-07-03 2009-07-03 Resin composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158390A JP5330910B2 (en) 2009-07-03 2009-07-03 Resin composition and use thereof

Publications (2)

Publication Number Publication Date
JP2011012193A JP2011012193A (en) 2011-01-20
JP5330910B2 true JP5330910B2 (en) 2013-10-30

Family

ID=43591401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158390A Active JP5330910B2 (en) 2009-07-03 2009-07-03 Resin composition and use thereof

Country Status (1)

Country Link
JP (1) JP5330910B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5513840B2 (en) * 2009-10-22 2014-06-04 電気化学工業株式会社 Insulating sheet, circuit board, and insulating sheet manufacturing method
TWI492972B (en) * 2010-01-29 2015-07-21 Nitto Denko Corp Thermal conductive sheet
TW201139641A (en) * 2010-01-29 2011-11-16 Nitto Denko Corp Heat dissipation structure
JP2012039063A (en) * 2010-01-29 2012-02-23 Nitto Denko Corp Heat-conductive sheet
US20110259564A1 (en) * 2010-01-29 2011-10-27 Nitto Denko Corporation Thermal conductive sheet
WO2012121224A1 (en) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet containing same
JP2012244006A (en) * 2011-05-20 2012-12-10 Toyota Industries Corp Circuit board, and electronic device
JP5647945B2 (en) * 2011-05-31 2015-01-07 日本発條株式会社 Insulating resin composition for circuit board, insulating sheet for circuit board, laminated board for circuit board, and metal base circuit board
JP2012253167A (en) * 2011-06-02 2012-12-20 Denki Kagaku Kogyo Kk Thermally conductive insulation sheet, metal base substrate and circuit board
JP5536723B2 (en) * 2011-07-21 2014-07-02 電気化学工業株式会社 Epoxy resin composition, molded body and sheet material
WO2013065159A1 (en) * 2011-11-02 2013-05-10 日立化成株式会社 Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed circuit board using same
KR101958506B1 (en) * 2011-11-02 2019-03-14 히타치가세이가부시끼가이샤 Resin composition, and resin sheet, prepreg, laminate, metal substrate, printed circuit board and power semiconductor device using same
WO2014021427A1 (en) * 2012-08-02 2014-02-06 学校法人早稲田大学 Metal base printed wiring board
US8946333B2 (en) * 2012-09-19 2015-02-03 Momentive Performance Materials Inc. Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
JP2015193504A (en) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 Boron nitride particle, resin composition and heat-conductive sheet
JP6375140B2 (en) * 2014-04-30 2018-08-15 日東電工株式会社 Thermally conductive polymer composition and thermally conductive molded body
KR102172295B1 (en) * 2014-06-18 2020-10-30 엘지이노텍 주식회사 Epoxy resin composite and printed curcuit board comprising insulating layer using the same
JP2017036190A (en) * 2015-08-12 2017-02-16 三菱化学株式会社 Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
JP6132041B2 (en) * 2016-02-18 2017-05-24 日立化成株式会社 Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed wiring board using the same
JP6945241B2 (en) * 2016-07-05 2021-10-06 ナミックス株式会社 Resin composition for film, film, film with base material, metal / resin laminate, cured resin, semiconductor device, and film manufacturing method
JP6814384B2 (en) * 2016-08-03 2021-01-20 三菱瓦斯化学株式会社 Method of manufacturing heat conductive sheet
JP2018041803A (en) * 2016-09-06 2018-03-15 日本メクトロン株式会社 Flexible printed board and method for manufacturing flexible printed board
CN106751526B (en) * 2016-12-29 2018-12-14 华中科技大学 A kind of thermally conductive composite material of epoxy resin and its preparation and application
JP6811670B2 (en) * 2017-03-31 2021-01-13 太平洋セメント株式会社 Magnesium oxide powder and composites
JP7129554B2 (en) * 2019-03-26 2022-09-01 富士フイルム株式会社 Laminate manufacturing method and functional sheet manufacturing method
JP6987941B1 (en) * 2020-09-11 2022-01-05 デクセリアルズ株式会社 Method for manufacturing a heat conductive sheet and a heat conductive sheet
JP6989675B1 (en) * 2020-10-21 2022-01-05 デクセリアルズ株式会社 Method for manufacturing a heat conductive sheet and a heat conductive sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084362A (en) * 1983-10-15 1985-05-13 Matsushita Electric Works Ltd Resin composition
JP3721272B2 (en) * 1998-10-05 2005-11-30 電気化学工業株式会社 Method for producing thermally conductive resin molding
JP3844455B2 (en) * 2002-06-28 2006-11-15 電気化学工業株式会社 Hexagonal boron nitride powder, method for producing the same, application
GB2444010B (en) * 2005-09-15 2010-12-08 Sekisui Chemical Co Ltd Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
JP4735492B2 (en) * 2006-01-27 2011-07-27 新神戸電機株式会社 Prepress and laminate for heat and pressure molding
JP2008050526A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Resin composition, prepreg and laminated board using the same
JP4889110B2 (en) * 2007-02-05 2012-03-07 日東電工株式会社 Thermally conductive resin composition, thermal conductive sheet and method for producing the same

Also Published As

Publication number Publication date
JP2011012193A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5330910B2 (en) Resin composition and use thereof
JP5513840B2 (en) Insulating sheet, circuit board, and insulating sheet manufacturing method
KR101784196B1 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
JP6313766B2 (en) Boron nitride-resin composite circuit board, boron nitride-resin composite heat sink integrated circuit board
WO2018181606A1 (en) Heat-conducting member and heat-dissipating structure including said heat-conducting member
JP5038007B2 (en) Composition, metal-based circuit board using the composition
JP2012253167A (en) Thermally conductive insulation sheet, metal base substrate and circuit board
JP6627303B2 (en) Thermal conductive resin composition, laminate for circuit board, circuit board and semiconductor device
WO2018235920A1 (en) Resin material, method for producing resin material, and laminate
WO2013061981A1 (en) Laminate and method for producing component for power semiconductor modules
WO2006132185A1 (en) Insulative and thermally conductive resin composition and formed article, and method for production thereof
JP2013098217A (en) Method for manufacturing component for power semiconductor module
JP5888584B2 (en) Resin composition, resin sheet, prepreg sheet, cured resin sheet, structure, and semiconductor device for power or light source
JP2014189701A (en) High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition
JPWO2017122350A1 (en) Epoxy resin composition, heat conductive material precursor, B stage sheet, prepreg, heat dissipation material, laminated board, metal substrate and printed wiring board
JP2013094988A (en) Laminate
WO2022255450A1 (en) Resin sheet, laminate, and semiconductor device
JP2023107225A (en) Laminate and semiconductor device
JP2021031600A (en) Resin composition, resin sheet, and resin sheet cured product
CN115190899A (en) Thermosetting resin composition, resin sheet, and metal base substrate
TW201725236A (en) Epoxy resin composition, thermally-conductive material precursor, B stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R151 Written notification of patent or utility model registration

Ref document number: 5330910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250