TW201139641A - Heat dissipation structure - Google Patents

Heat dissipation structure Download PDF

Info

Publication number
TW201139641A
TW201139641A TW100103570A TW100103570A TW201139641A TW 201139641 A TW201139641 A TW 201139641A TW 100103570 A TW100103570 A TW 100103570A TW 100103570 A TW100103570 A TW 100103570A TW 201139641 A TW201139641 A TW 201139641A
Authority
TW
Taiwan
Prior art keywords
conductive layer
heat
sheet
substrate
adhesive
Prior art date
Application number
TW100103570A
Other languages
Chinese (zh)
Inventor
Seiji Izutani
Kazutaka Hara
Takahiro Fukuoka
Hisae Uchiyama
Hitotsugu Hirano
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of TW201139641A publication Critical patent/TW201139641A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20454Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff with a conformable or flexible structure compensating for irregularities, e.g. cushion bags, thermal paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heat dissipation structure includes a substrate, an electronic component mounted on the substrate, a heat dissipation member for dissipating heat generated from the electronic component, and a thermal conductive adhesive sheet provided on the substrate so as to cover the electronic component. The thermal conductive adhesive sheet includes a thermal conductive layer containing a plate-like boron nitride particle. The thermal conductive layer has a thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive layer of 4 W/mK or more, and the thermal conductive adhesive sheet is in contact with the heat dissipation member.

Description

201139641 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種放熱構造體。 【先前技術】 近年來’記憶體等電子零件隨著大容量化而於動作時所 產生之發熱量增大,由此有電子零件劣化之虞,因此,對 於包含電子零件及安裝有電子零件之基板之構造體要求較 高之放熱性(高熱傳導性)。 例如,提出有於安裝於基板上之複數個記憶體之上表面 載置包含鋁之平板狀記憶體用散熱片,以夾具夾住基板、 各。己憶體及S己憶體用散熱片之構造體(例如,記憶體用散 熱片、網際網路(參照URL: http://wwwainexjp/pr〇ducts/ hm-02.htm))。 於上述δ己憶體用散熱片、網際網路之構造體中,藉由使 記憶體用散熱片接觸記憶體之上表面,而使自記憶體產生 之熱藉由記憶體用散熱片放出。 【發明内容】 然而,於上述記憶體用散熱片、網際網路中,記憶體之 側面並不接觸平板狀之記憶體用散熱片,並且於各記憶體 之厚度不同之情形時,會於厚度較薄之記憶體之上表面與 記憶體用散熱片之間產生㈣。因此,存在無法使自記憶 體產生之熱充分地放出之不良情況。 本發明之目的在於提供一種放熱性優異之放熱構造體。 本發明之放熱構造體之特徵在於:其具備基板、安裝於 153633.doc 201139641 上述基板上之電子零件、用以使自上述電子零件產生之敌 放出之放熱性構件、以覆蓋上述電子零件之方式設置於上、 述基板上之熱傳導性接著片#,且上述熱傳導性接著片材 具備含有板狀氮化硼粒子之熱傳導性層,上述 之相對於上述熱傳導性層之厚度方向正交之方向上之熱傳 導率為4 W/m.KM,上述熱傳導性接著片材接觸上述放 熱性構件。 +又,於本發明之放熱構造體中,較佳為上述熱傳導性接 著片材具備積層於上述熱傳導性層之至少一面上之接著劑 層或黏著劑層,上述接著劑層或上述黏著劑層與上述基板 接著或黏著。 从於本發明之放熱構造體中,由於電子零件由熱傳導性接 著片材覆蓋,因此可使自電子零件產生之熱從電子零件之 上表面及側面熱傳導至熱傳導性接著片材。並且,可使該 熱自熱傳導性接著片材熱傳導至放熱構件,於放熱構件中 放出至外部。 因此,可使自電子零件產生之熱藉由熱傳導性接著片材 及放熱構件有效地放出。 【實施方式】 圖1表示本發明之放熱構造體之一實施形態之剖面圖, 圖2表示用以說明熱傳導性層之製造方法之步驟圖,圖3表 示熱傳導性層之立體圖,圖4表示熱傳導性接著片材之剖 面圖,圖5表示用以製作圖丨之放熱構造體之步驟圖。 於圖1中’該放熱構造體1具備:基板2、安裝於基板2上 I53633.doc201139641 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an exothermic structure. [Prior Art] In recent years, the amount of heat generated by an electronic component such as a memory during operation increases with an increase in capacity, and thus electronic components are deteriorated. Therefore, electronic components and electronic components are mounted. The structure of the substrate requires a high heat release property (high thermal conductivity). For example, it is proposed that a flat-panel-shaped memory heat sink including aluminum is placed on a surface of a plurality of memories mounted on a substrate, and the substrate is sandwiched by a jig. A structure in which a heat sink is used for a memory and a memory (for example, a heat sink for a memory, an Internet (refer to the URL: http://wwwainexjp/pr〇ducts/hm-02.htm)). In the structure for the above-mentioned δ-remembrane heat sink and the Internet, the heat generated from the memory is released by the memory heat sink by bringing the memory heat sink to the upper surface of the memory. SUMMARY OF THE INVENTION However, in the above-mentioned memory heat sink and the Internet, the side surface of the memory does not contact the flat-shaped memory heat sink, and when the thickness of each memory is different, the thickness is The upper surface of the thinner memory and the heat sink for the memory are generated (4). Therefore, there is a problem that the heat generated from the memory cannot be sufficiently released. An object of the present invention is to provide an exothermic structure excellent in heat dissipation. An exothermic structure according to the present invention includes a substrate, an electronic component mounted on the substrate of 153633.doc 201139641, and a heat releasing member for releasing an enemy generated from the electronic component to cover the electronic component. a thermally conductive adhesive sheet provided on the substrate, wherein the thermally conductive adhesive sheet has a thermally conductive layer containing plate-like boron nitride particles, and the direction is orthogonal to a thickness direction of the thermally conductive layer. The thermal conductivity is 4 W/m.KM, and the thermal conductivity is followed by the sheet contacting the exothermic member. Further, in the heat dissipation structure of the present invention, it is preferable that the heat conductive adhesive sheet has an adhesive layer or an adhesive layer laminated on at least one surface of the heat conductive layer, the adhesive layer or the adhesive layer Adjacent or adhering to the above substrate. In the heat radiating structure of the present invention, since the electronic component is covered by the thermally conductive connecting sheet, the heat generated from the electronic component can be thermally transferred from the upper surface and the side surface of the electronic component to the thermally conductive subsequent sheet. Further, the heat self-heating conductivity can be thermally conducted to the sheet to be thermally radiated to the outside of the heat releasing member. Therefore, the heat generated from the electronic component can be efficiently released by the thermal conductivity following the sheet and the heat releasing member. [Embodiment] Fig. 1 is a cross-sectional view showing an embodiment of a heat radiating structure of the present invention, Fig. 2 is a view showing a step of explaining a method of manufacturing a thermally conductive layer, Fig. 3 is a perspective view showing a thermally conductive layer, and Fig. 4 is a view showing heat conduction. A cross-sectional view of the sheet followed by the sheet, and FIG. 5 is a step view showing the heat generating structure for forming the sheet. In Fig. 1, the heat releasing structure 1 includes a substrate 2 and is mounted on a substrate 2. I53633.doc

D 201139641 之電子零件3、作為用以使自電子零件3產生之熱放出(熱 輸送、熱傳導)之放熱性構件之框架4、設置於基板2上之 熱傳導性接著片材5。 基板2大致形成為平板狀’係由例如氮化鋁、氧化鋁等 陶瓷例如玻璃•環氧樹脂、例如聚醢亞胺、聚醯胺醯亞 胺丙稀樹脂、聚謎腈、聚趟硬、聚對苯二曱酸乙二 酯、聚萘二甲酸乙二酯、聚氣乙烯等合成樹脂等形成。 電子零件3例如包含1(:(積體電路)晶片2〇、電容器2ι、 線圈22及/或電阻器23。再者,電子零件3例如控制未滿5 V之電壓及/或未滿i Α之電流。電子零件3安裝於基板2之 上表面,相互隔開間隔而配置於面方向(基板2之面方向、 圖1之左右方向及縱深方向)上。電子零件3之厚度例如為1 μηι~1 cm左右。 框架4由收容基板2之殼體(圖4未圖示)支持,於基板2 之外方(側方)隔開間隔而配置,平面觀察時,大致形成為 包圍基板2之框狀。X,框架4於剖面觀察時大致形成為: 下方向較長之矩形。框牟4々丨 等金屬等形成。㈣例如係由銘、不鏽鋼、銅、鐵 熱傳導性接著片材5以覆蓋電子零件3之方式設置於 1 之上。X,熱傳導性接著片材5以一端部( 接觸電子零件3之矣^ ^ p (表面及側面)、他端部中〇 4部)接觸框架4之内面(右側面)之方式配置。之左 祥細而言’熱傳導性接著片材5於放熱構造體^伟 下方式配置:剖面大致形成L字狀,中央(左右方向中; 153633.doc 201139641 部及一端部於基板2之上表面於面方向上延伸;自央部 起,他端側部分自基板2之一端邊緣(左端邊緣)朝上方彎 曲,並且熱傳導性接著片材5之他端部以於框架4之右側面 (内面)向上方延伸之方式配置。 該熱傳導性接著片材5如參照圖4所示,具備熱傳導性層 6、及積層於熱傳導性層6之背面(下表面)之接著劑層7或黏 著劑層7(以下,有時將該等總稱為「接著•黏著層7」)。 熱傳導性層6形成為片材狀,含有氮化蝴粒子。 具體而言,熱傳導性層6含有氮化硼(BN)粒子作為必需 成分’進而例如含有樹脂成分。 氮化硼粒子形成為板狀(或者鱗片狀),以配向於特定方 向(後述)之形態分散於熱傳導性層6中。 氮化硼粒子之長邊方向長度(相對於板之厚度方向正交 之方向上之最大長度)平均為例如1〜1〇〇 pm,較佳為3〜叩 μ®。又,氮化硼粒子之長邊方向長度平均為5 以上, 較佳為10 μηι以上,進而較佳為2〇 μηι以上,特佳為3〇 以上,最佳為40 μιη以上,通常例如為1〇〇 μιη#下較佳 為90 μηι以下。 又,氮化硼粒子之厚度(板之厚度方向長度、即粒子戈 短邊方向長度)平均為例如〇 〇1〜2〇 ,較佳為〇H μηι。 又,氮化硼粒子之縱橫比(長邊方向長度/厚度)例如為 2〜10000,較佳為1〇〜5〇〇〇。 並且,氮化硼粒子藉由光散射法所測定之平均粒徑例如 153633.doc 201139641 為5 μηι以上,較佳為1〇 上進而較佳為卜爪以上, 特佳為30 μηι以上,最佳為4〇 μιη以上,通常為丨⑽以 下。 再者,藉由光散射法所測定之平均粒徑係利用動態光散 射式粒度分佈測定裝置所測定之體積平均粒徑。 若氮化硼粒子藉由光散射法所測定之平均粒徑未滿上述 範圍,則存在熱傳導性層6變脆,操作性下降之情況。 又,氮化硼粒子之鬆密度(JIS κ 51〇1、視密度)例如為 〇·3〜1·5 g/cm3,較佳為 on 〇 g/cm3。 又,氮化硼粒子可使用市售品或將其加工而成之加工 品。作為氮化硼粒子之市售品,例如可舉出M〇mentive Performance Materials japan公司製造之「ρτ」系列(例 如’「PT-iio」等)、昭和電工公司製造之「sh〇bn υΗρ」 系列(例如,「SHOBN UHP-1」等)等。 樹脂成分係能夠分散氮化硼粒子者,即分散氮化硼粒子 之分散介質(基質),例如,可舉出熱硬化性樹脂成分、熱 塑性樹脂成分等樹脂成分。 作為熱硬化性樹脂成分,例如可舉出:環氧樹脂、熱硬 化性聚醯亞胺、酚樹脂、脲樹脂、三聚氰胺樹脂、不飽和 聚酯樹脂、鄰苯二甲酸二烯丙酯樹脂、聚矽氧樹脂、熱硬 化性胺酯樹脂等。 作為熱塑性樹脂成分,例如可舉出:聚烯烴(例如,聚 乙烯、聚丙烯、乙烯-丙烯共聚物等)、丙烯酸樹脂(例如, 聚曱基丙稀酸曱醋等)、聚乙酸乙烯酯、乙烯_乙酸乙烯酿 153633.doc 201139641 共聚物、聚氣乙烯、聚苯乙烯、聚丙烯腈、聚醯胺、聚碳 酸酿、聚縮醛、聚對苯二甲酸乙二酯、聚苯醚、聚笨硫 醚、聚砜、聚醚砜、聚醚醚酮、聚烯丙基颯、熱塑性聚醯 亞胺、熱塑性胺酯樹脂、聚胺基雙馬來醯亞胺、聚醯胺醯 亞胺、聚醚醯亞胺、雙馬來醯亞胺三畊樹脂、聚甲基戊 烯、氟化樹脂、液晶聚合物、烯烴_乙烯醇共聚物、離子 聚合物、聚芳酯、丙烯腈-乙烯_苯乙烯共聚物、丙烯腈_丁 二烯-苯乙烯共聚物、丙烯腈_笨乙烯共聚物等。 該等樹脂成分可單獨使用或併用2種以上。 樹脂成分中’較佳為舉出環氧樹脂。 環氧樹脂於常溫下為液狀、半固體狀及固體狀之任意形 態。 ’ 具體而言,作為環氧樹脂,可舉出:例如雙酚型環氧樹 脂(例如,雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚8型 環氧樹脂、氫化雙酚A型環氧樹脂、二聚酸改性雙酚型環 氧樹脂等)、_清漆型環氧樹脂(例如,苯㈣酸清漆型 環氧樹脂、甲齡㈣清漆型環氧樹脂、聯苯型環氧樹脂 等)、萘型環氧樹脂、苐型環氧樹脂(例如,雙芳基苐型環 氧樹脂等)、三苯基曱烷型環氧樹脂(例如,三羥基苯基甲 烷型環氧樹脂等)等芳香族系環氧樹脂;例如異三聚氰酸 三環氧丙醋(異三聚氛酸三縮水甘油醋)、乙内醯脲環氧樹 月曰等含氮環環氧樹脂;例如脂肪族型環氧樹脂丨例如脂 族型環氧樹脂(例如,二環環型環氧樹脂等);例如縮水甘 油醚型環氧樹脂;例如縮水甘油胺型環氧樹脂等/ 153633.doc 201139641 該等環氧樹脂可單獨使用或併用2種以上。 人較佳為舉出液狀之環氧樹脂及固體狀之環氧樹脂之組 :進而較佳為舉出液狀之芳香族系環氧樹脂及固體狀之 芳香族系環氧樹脂之組合等。作為此種組合,具體而言, 可舉=液狀之雙紛型環氧樹脂及固體狀之三苯基曱烧型環 氧秘月日之Μ合、液狀之雙盼型環氧樹脂及固體狀之雙盼型 %氧樹脂之組合。 又,作為環氧樹脂,較佳為舉出單獨使用半固體狀之環 氧树月曰,進而較佳為舉出單獨使用半固體狀之芳香族系環 氧樹月曰。作為此種環氧樹脂,具體可舉出半固體狀之苐型 環氧樹脂》 一要為液狀之環氧樹脂及固體狀之環氧樹脂之組合、半 固體狀之環氧樹脂’則可提高熱傳導性層6之階差追隨性 (後述)。 又’ %氧樹脂之環氧當量例如為丨00 —丨〇〇〇 g/eqiv,較佳 為160〜700 g/eqiv,軟化溫度(環球法)例如為8〇它以下(具 體而言為20〜80°C ),較佳為70°C以下(具體而言為 25〜70〇C)。 又’環氧樹脂於8(TC下之熔融黏度例如為1〇〜20,000 mPa’s ’較佳為5〇〜15,〇〇〇 mPa.s。於併用2種以上之環氧樹 脂之情形時’該等之混合物之熔融黏度設定於上述範圍 内。 又’並用常溫下為固體狀之環氧樹脂與常溫下為液狀之 環氧樹脂之情形時,係將軟化溫度例如為未滿45°C、較佳 153633.doc 201139641 為C 乂下之第1環氧樹脂與軟化溫度例如為45°C以上、 較佳為55 C以上之第2環氧樹脂併用。藉此,可將樹脂成 刀(混0物)之動力黏度(依據JIS K 7233,後述)設定於所期 望之範圍内,又,可提高熱傳導性層6之階差追隨性。 使環氧W & t含有例如硬化劑及硬化促進劑,可製 成環氧樹脂組合物。 硬化劑係藉由加埶可佶班 …、j使%氧樹脂硬化之潛在性硬化劑 (環氧樹脂硬化劑),例如 J舉出.Π米。坐化合物、胺化合 物、酸gf化合物、酿胺化人你 妝化〇物、醯肼化合物、咪唑啉化合 物等。又’除上述以外, 了舉出:驗化合物、腺化合 物、多硫化物化合物等。 口坐 等 作為咪唑化合物’例如可舉出: 、2-乙基-4-甲基咪唑、2苯基 2-笨基咪唑、2-甲基咪 -甲基-5-羥基甲基咪唑 =伸乙 一胺基 順丁烯 4_曱基- 作為胺化合物,可舉出:例如乙二胺、丙二胺 三胺、三伸乙四胺等脂肪族聚胺,例如間苯二胺 -笨基甲炫、二胺基二笨基碼等芳香族聚胺等。 作為酸酐化合物,例如可舉出:鄰笨二甲酸針 一酸酐、四氫鄰苯二甲酸‘ 上 以虱鄰笨二甲酸酐 ,、氫鄰苯二甲酸酐、甲基耐 襁置 T也S夂酐、均苯四曱酸酐、十· 烯基丁二酸酐、二氣丁二酸 _# - 酸酐等 —本甲酿I四曱酸酐、氣| 等 作為酿胺化合物’例如可舉出二氪基二醯胺、聚酿, 153633.doc 201139641 作為酿肼化合物,例如可舉出己二酸二酿肼等。 作為咪唑啉化合物,如H Μ 初例如可舉出:甲基咪唑啉、2乙 基-4-甲基咪唑啉、乙基味 坐啉異丙基咪唑啉、2 4-二甲 基咪唑啉、苯基咪唑啉、 ,, ’ 也”使 十―烷基咪°坐琳、十七烷基咪唑 啉、2-苯基-4-f基咪唑啉等。 T生 該等硬化劑可單獨使用或併用2種以上。 作為硬化劑,較佳為舉出咪唑化合物。 作為硬化促進劑,可舉出··例如三伸乙二胺、三·246 二甲基胺基F基苯酚等:^ ’, 寺-級胺化合物,例如三笨基膦、四 本基鱗四苯基顯鹽、四正丁基鱗_。〜 鹽等磷化合物,例如四纺怂豳#人& 四級銨鹽化合物、有機金屬鹽化合 用?、及㈣之衍生物等。該等硬化促進劑可單獨使用或併 用2種以上。 環氧樹脂組合物中之硬化劑之調配比例相對於環氧樹脂 _質量份例如為〇·5〜5〇質量份,較佳為H〇質量份,硬 化促進劑之調配比例例如為〇1〜1〇質量份,較佳為〇.2〜5質 量份。 上述硬化劑及/或硬化促進劑視需要可製備成藉由溶劑 而溶解及/或分散之溶劑溶液及/或㈣分散液來使用。 作為/合劑,可舉出:例如丙酮、曱基乙基酮(ΜΕΚ)等酮 類:例如乙酸乙酉旨等酿類’例如Ν,Ν•二甲基甲醯胺等酿胺 類等有機溶劑等。又,作為溶劑’亦可舉出:例如水,例 曱醇6醇、丙醇、異丙醇等醇類等水系溶劑。作為溶 劑’較佳為舉出有機溶劑,進而較佳為舉出賴、醯胺 153633.doc 201139641 類。 又,樹脂成分藉由依據JIS K 7233(氣泡黏度計法)之動 力黏度試驗(溫度:25°C±0.5°C、溶劑:丁基卡必醇、樹脂 成分(固形物成分)濃度:40質量%)所測定之動力黏度例如 為 0.22X10·4〜2·00χ10·4 m2/s,較佳為 0.3χ 1〇*4〜ι .9χ 1〇_4 1112/3,進而較佳為0.4\1〇-4〜1.8><1〇-41112/3»又,亦可將上 述動力黏度設定為例如0.22x10·4〜1·0〇χ1 〇·4 m2/s,較佳為 〇.3><1〇4~〇.9><1〇41112/8’進而較佳為〇.4\1〇-4〜〇.8><1〇-4 m2/s 〇 於樹脂成分之動力黏度超過上述範圍之情形時,有時無 法賦予熱傳導性層6優異之柔軟性及階差追隨性(後述)^另 一方面’於樹脂成分之動力黏度未滿上述範圍之情形時, 有時無法使氮化硼粒子配向於特定方向。 再者’於依據JIS K 7233(氣泡黏度計法)之動力黏度試 驗中,將樹脂成分樣本中之氣泡之上升速度與標準樣本 (已知動力黏度)中之氣泡之上升速度加以比較,判定上升 速度一致之標準樣本之動力黏度為樹脂成分之動力黏度, 藉此測定樹脂成分之動力黏度。 並且,於熱傳導性層6中,氮化硼粒子之體積基準之含 有比例(固形物成分’即氮化硼粒子相對於樹脂成分及氮 化硼粒子之總體積之體積百分率)例如為35體積%以上,較 佳為60體積。以上,較佳為65體積❶/。以上,通常例如為% 體積%以下,較佳為90體積%以下。 於氮化棚粒子之體積基準之含有比例未滿上述範圍之情 153633.doc 12 ⑧ 201139641 形時’有時無法使氮化硼粒子於熱傳導性層6中配向於特 疋方向。另一方面’於氮化硼粒子之體積基準之含有比例 超過上述範圍之情形時,有時熱傳導性層6會變脆,操作 性下降。 又’氮化蝴粒子相對於形成熱傳導性層6之各成分(氮化 ’粒子及樹脂成分)之總量(固形物成分總量〇〇質量份的 質量基準之調配比例例如為4〇〜95質量份,較佳為65〜9〇質 量份’樹脂成分相對於形成熱傳導性層6之各成分之總量 100質量份的質量基準之調配比例例如為5〜6〇質量份,較 佳為10〜3 5質量份。再者,氮化硼粒子相對於樹脂成分丨〇〇 質量份之質量基準之調配比例例如為6〇〜19〇〇質量份,較 佳為185〜900質量份。 又,於並用2種環氧樹脂(第丨環氧樹脂及第2環氧樹脂) 之情形時,第1環氧樹脂相對於第2環氧樹脂之質量比例 (第1環氧樹脂之質量/第2環氧樹脂之質量)可根據各環氧樹 脂(第1環氧樹脂及第2環氧樹脂)之軟化溫度等適當地設 疋,例如為1/99〜99/1,較佳為1〇/9〇〜9〇/1〇β 再者,於樹脂成分中,除上述各成分(聚合物)以外例 如亦含有聚合物前驅物(例如,含有寡聚物之低分子量聚 合物等)及/或單體。 Α 其次,就形成熱傳導性層6之方法加以說明。 於此方法中,首先以上述調配比例調配上述各成分,並 攪拌混合,藉此製備混合物。 於授拌混合中,為高效率地混合各成分,例如可將溶劑 153633.doc -13- 201139641 與上述各成分一併調配,或者例如可藉由加熱而使樹脂成 分(較佳為熱塑性樹脂成分)熔融。 作為溶劑,可舉出與上述同樣之有機溶劑。又,於將上 述硬化劑及/或硬化促進劑製備成溶劑溶液及/或溶劑分散 液之清形時,可於授拌混合時不追加溶劑,而直接以用以 攪拌混合之混合溶劑之形式供給溶劑溶液及/或溶劑分散 液之溶劑。或者,亦可於攪拌混合時以混合溶劑之形式進 而追加溶劑。 於使用溶劑進行攪拌混合之情形時,於攪拌混合之後去 除溶劑。 為去除溶劑’例如於室溫下放置卜48小時,例如於 40〜l〇〇°C加熱0.5〜3小時,或者例如於0·001〜50 kpa之減壓 環境下於20~60°C加熱0.5〜3小時。 於藉由加熱使樹脂成分炫融之情形時,加熱溫度例如為 树月曰成为之軟化溫度附近或超過其之溢度,具體而t為 40〜150°C,較佳為 70〜140°C » 其次’於此方法中熱壓所獲得之混合物。 具體而言’如圖2(a)所示,將混合物例如視需要經由2片 脫模膜12而熱壓,藉此獲得壓製片材6A。關於熱壓之條 件’溫度例如為50〜150°C,較佳為60〜140。(:,壓力例如為 1〜100 MPa,較佳為5〜50 MPa,時間例如為(uqoo分鐘, 較佳為1~30分鐘。 進而較佳為真空熱壓混合物。真空熱壓時之真空度例如 為1〜100 Pa,較佳為5〜50 Pa,溫度' 壓力及時間與上述熱 153633.doc ⑧ 201139641 壓之條件相同。 熱壓時之溫度、壓力及/或時間於上述範圍外之情形 時,有時無法將熱傳導性層ό之空隙率p(後述)調整為所期 望之值。 / 藉由熱壓所獲得之壓製片材6Α之厚度例如為50〜10⑼ μιη ’ 較佳為 1〇〇〜800 μπι。 其次,於此方法中,如圖2(b)所示,將壓製片材6α分割 成複數個(例如,4個),獲得分割片材6Β(分割步驟)。於分 割壓製片材6Α時,以投影至厚度方向上時分割成複數個之 方式將壓製片材6Α沿其厚度方向切斷。再者’將壓製片材 6Α以各分割片材佔投影至厚度方向上時成為相同形狀之 方式切斷。 其次,於此方法中,如圖2(c)所示,將各分割片材沾於 厚度方向上積層,獲得積層片材6C(積層步驟)。 其後,於此方法中,如圖2⑷所示,熱壓積層片材6c(較 佳為真空熱壓)(熱壓步驟)。熱壓之條件與上述混合物之熱 壓條件相同。 ^ 熱壓後之積層片材6C之厚度例如為! mm以下,較佳為 0.8 mm以下,通常例如為〇〇5咖以上,較佳為〇」随以 上。 其後,如參照圖3所示,為使氮化棚粒子8於熱傳導性層 6中於樹脂成分9中有效地配向於特定方向而反覆實施上 述分割步驟(圖2(b))、制步驟(圖2(c))及熱壓步驟(圖 2(a))之纟列步驟。重複次數並無特別限定,可根據氮化 153633.doc -15· 201139641 硼粒子之填充狀態而適當地設定,例如為丨〜1〇次較佳為 2〜7次。 再者,於上述熱壓步驟(圖2(a))中,例如亦可藉由複數 個軋輥等壓延混合物及積層片材6C。 藉此,可形成圖3及圖4所示之熱傳導性層石。 所形成之熱傳導性層6之厚度例如為丨mm以下,較佳為 0.8 mm以下,通常例如為〇.〇5 mm以上,較佳為〇1 mm以 上。 又’熱傳導性層6中之氮化硼粒子8之體積基準之含有比 例(固形物成分,即氮化硼粒子8相對於樹脂成分9及氮化 硼粒子8之總體積之體積百分率)如上所述例如為35體積% 以上(較佳為60體積%以上,進而較佳為75體積%以上), 通常為95體積%以下(較佳為90體積。/。以下)。 於氮化硼粒子8之含有比例未滿上述範圍之情形時,有 時無法使氮化硼粒子8於熱傳導性層6中配向於特定方向。 又,於樹脂成分9為熱硬化性樹脂成分之情形時,例如 於未硬化狀態下反覆實施上述分割步驟(圖2(b))、積層步 驟(圖2(c))及熱壓步驟(圖2(a))之一系列步驟,直接獲得未 硬化狀態之熱傳導性層6。再者,使未硬化狀態之熱傳導 性層6於接著熱傳導性接著片材5之電子零件3及基板2時熱 硬化。 並且,於如此形成之熱傳導性層6中,如圖3及其部分擴 大模式圖所示,氮化硼粒子8之長邊方向LD沿著交又於熱 傳導性層6之厚度方向TD(正交)之面方向8]〇配向。 153633.doc •16· 201139641 又,氮化硼粒子8之長邊方向ld與熱傳導性層6之面方 向SD所成之角度之算術平均(氮化硼粒子8相對於熱傳導性 層6之配向角度α)例如為25度以下,較佳為2〇度以下,通 常為0度以上。 再者,氮化硼粒子8相對於熱傳導性層6之配向角度α係 藉由以下方法异出.沿厚度方向利用截面拋光儀對熱 傳導性層6進行切斷加工,以能夠觀察到2〇〇個以上之氮化 硼粒子8之視野倍率利用掃描型電子顯微鏡(SEM)拍攝由此 所顯現出之剖面,自所獲得之SEM照片,取得氮化硼粒子 8之長邊方向LD相對於熱傳導性層6之面方向SD(相對於厚 度方向TD正交之方向)之傾斜角,算出其平均值。 藉此,熱傳導性層6之面方向SD之熱傳導率為4 w/m.K 以上,較佳為5 W/m.K以上,更佳為10 w/m.K以上,進而 較佳為15 W/m.K以上,特佳為25 w/m.K以上,通常為2〇〇 W/m*K以下。 再者,熱傳導性層6之面方向SD之熱傳導率於樹脂成分 9為熱硬化性樹脂成分之情形時,於熱硬化前後實質上相 同。 若熱傳導性層6之面方向SD之熱傳導率未滿上述範圍, 則面方向SD之熱傳導性不充分,因此有時無法用於要求上 述面方向SD之熱傳導性之放熱用途。 再者,熱傳導性層6之面方向SD之熱傳導率藉由脈衝加 熱法測定。脈衝加熱法中係使用氙燈閃光法導熱分析儀 「LFA-447型」(NETZSCH公司製造)。 153633.doc 17 201139641 又’熱傳導性層6之厚度方向TD之熱傳導率例如為 0‘5〜15 W/m.K,較佳為 1〜1〇 w/m.K。 再者’熱傳導性層6之厚度方向TD之熱傳導率藉由脈衝 加熱法、雷射閃光法或TWA(Temperature Wave Analysis, 溫度波分析)法測定。脈衝加熱法中係使用與上述相同 者’雷射閃光法中係使用r TC_9〇〇〇」(ULVA(:理工公司製 ) TWA法中係使用「ai_phase mobile」(ai-Phase公司製 造)。 藉此,熱傳導性層6之面方向SD之熱傳導率相對於熱傳 導性層6之厚度方向td之熱傳導率的比(面方向sd之熱傳 導率/厚度方向TD之熱傳導率)例如為丨.5以上,較佳為3以 上’進而較佳為4以上,通常為2〇以下。 又,圖3中雖未圖示,但熱傳導性層6中例如形成有空隙 (間隙)。 熱傳導性層6中之空隙之比例、即空隙率p可藉由氮化硼 粒子8之含有比例(體積基準)、進而可藉由氮化硼粒子8及 樹脂成分9之混合物之熱壓(圖2(a))之溫度、壓力及/或時間 而進行調整,具體而言,可藉由將上述熱壓(圖2(a))之溫 度、壓力及/或時間設定於上述範圍内而進行調整。 熱傳導性層6中之空隙率p例如為3〇體積%以下,較佳為 10體積%以下。 上述空隙率p例如藉由如下方法測定:首先,利用截面 拋光儀(CP)沿厚度方向對熱傳導性層6進行切斷加工,利 用掃描型電子顯微鏡(SEM)以200倍觀察由此顯現出之剖 153633.doc 201139641 面’獲得圖像,自所獲得之圖像,對空隙部分與其以外之 部分進行二值化處理,其次,算出空隙部分相對於熱傳導 性層6整體之剖面積的面積比。 再者’於熱傳導性層6中’硬化後之空隙率P2相對於硬 化前之空隙率P1例如未滿100% ’具體而言較佳為5〇%以 下。 於空隙率P(P 1)之測定中,於樹脂成分9為熱硬化性樹脂 成分之情形時’係使用熱硬化前之熱傳導性層6。 只要熱傳導性層6之空隙率P於上述範圍内,則可提高熱 傳導性層6之階差追隨性(後述)。 又’關於熱傳導性層6,於依據JIS K 5600-5-1之圓筒形 心轴法之耐彎曲性試驗中,以下述試驗條件進行評價時, 較佳為未觀察到斷裂。 試驗條件 試驗裝置:I型 心軸:直徑1 〇 mm 彎曲角度:90度以上 熱傳導性層6之厚度:〇.3 mm 再者,將I型試驗裝置之立體圖示於圖1〇及圖u,以下 說明I型試驗裝置。 於圖10及圖11中,;[型試驗裝置90具備:第丨平板91、與 第1平板9i並列配置之第2平板92、為使第i平板及第 板92相對旋動而設置之心軸(旋轉軸)93。 ’第1平板91之一 第1平板91大致形成為矩形平板狀。又 153633.doc •19· 201139641 端部(活動端部)上設置有止動部94。止動部94係以沿著第2 平板92之一端部延伸之方式形成於第2平板92之表面上。 第2平板92大致形成為矩形平板狀,係以其}邊與第1平 板91之1邊(與設置有止動部94之一端部相反之側之他端部 (基端部)之1邊)相鄰接之方式配置。 心軸93係以沿著相鄰接之第}平板91及第2平板“之J邊 延伸之方式形成。 如圖10所示,此ί型試驗裝置9〇於開始耐彎曲性試驗之 前,使第1平板91之表面與第2平板92之表面成為一個平 面。 並且,為實施耐彎曲性試驗,而將熱傳導性層6載置於 第1平板91之表面與第2平板92之表面。再者,將熱傳導性 層6以其1邊抵接於止動部94之方式載置。 其次,如圖11所示,使第i平板91及第2平板92相對地旋 動。具體而言,以心轴93為中心,使第】平板刃之活動端 部與第2平板92之活動端部旋動特定之角度。詳細而言, 使第1平板91及第2平板92以彼等之活動端部之表面接近 (對向)之方式旋動。 藉此,使熱傳導性層6—面追隨第j平板91及第2平板% 之旋動,一面以心轴93為中心彎曲。 進而較佳為熱傳導性層6於上述試驗條件中,即便將彎 曲角度设定為180度,亦未觀察到斷裂。 再者’於接m成分9為熱硬化性樹脂成分之情形時,供 f曲性試驗之熱傳導性層6為半硬化⑽段狀態)之熱傳導 153633.doc -20- ⑤ 201139641 性層6。 於上述彎曲角度之耐t曲性試驗中,當熱傳導性層6觀 察到斷裂之情形時,有時無法賦予熱傳導性層6優異之 軟性。 、系 又,該熱傳導性層6於依據JIS κ 7171(2〇〇8年)之三點彎 ' _試驗中,以下述試驗條件進行評價時,例如未觀察到斷 裂。 試驗條件 試驗片:尺寸20mmxl5mm 支點間距離:5 mm 試驗速度:20mm/min(壓子之下壓速度) 彎曲角度:120度 評價方法:目視觀察以上述試驗條件進行試驗時試驗片 之中央部有無裂痕等斷裂。 再者,於三點f曲試驗中樹脂成分3為熱硬化性樹脂成 分之情形時,係使用熱硬化前之熱傳導性層6。 因此,該熱傳導性層6於上述三點彎曲試驗中未觀察到 斷裂,因此階差追隨性優異。再者,所謂階差追隨性,係 指將熱傳導性層6設置於有階差之設置對象(例如,上述基 板2等)上時,以沿著該階差(例如,藉由上述電子零件3形 成之階差)密接之方式追隨之特性。 又,熱傳導性層6上例如可附著文字、記號等標記。 即,熱傳導性層6之標記附著性優異。所謂標記附著性, 係指使上述標記可靠地附著於熱傳導性層6之特性。 153633.doc -21 - 201139641 具體而s ’標記可藉由印刷或刻印等附著於熱傳導性層 6上(塗佈、定著或固著)。 作為印刷,例如可舉出喷墨印刷、凸版印刷、凹版印 刷、雷射印刷等。 再者藉由喷墨印刷、凸版印刷或凹版印刷而印刷標記 之情形時,例如可將用以提高標記之定著性之油墨定著層 設置於熱傳導性層6之表面(印刷側表面、上表面、與接著 •黏著劑層7相反之側之表面)。 又,於藉由雷射印刷而印刷標記之情形時,例如可將用 以提高標記之定著性之色劑定著層設置於熱傳導性層6之 表面(印刷側表面、上表面、與接著•黏著劑層7相反之側 之表面)。 作為刻印’例如可舉出雷射刻印、打刻等。 又’熱傳導性層6具有絕緣性及黏著性(微黏性)。 具體而言’熱傳導性層6之體積電阻(JIS K 6271)例如為 ΐχΐ〇α n.cm以上,較佳為丨><1〇丨2 n.cm以上,通常為 1 X 1020 Q’cm以下。 熱傳導性層6之體積電阻R係依據jis κ 6911(熱硬化性塑 膠一般試驗方法、2006年版)而測定。 於熱傳導性層6之體積電阻R未滿上述範圍之情形時,有 時無法防止後述電子元件間之短路》 再者’於熱傳導性層6中,當樹脂成分9為熱硬化性樹脂 成分之情形時,體積電阻R為硬化後之熱傳導性層6之值。 又,熱傳導性層6於以下之初始接著力試驗(丨)中,例如 -22· 153633.doc ⑤ 201139641 不自被黏接體脫落 即,保持熱傳導性層6與被黏接體之 暫時固定狀態。 、,初始接著力4驗⑴:將熱傳導性層6加熱澄接於沿著水 平方向之被黏接體之上而暫時固定,並放置1〇分鐘後,使 被黏接體上下反轉。 作為被黏接體’例如可舉有上料子零件之基板 2等。壓接例如係—面對於熱傳導性層6按壓包含聚矽氧樹 脂等樹脂之海綿輥,一面於熱傳導性層6之表面上滾動。 又,加熱壓接之溫度於樹脂成分9為熱硬化性樹脂成分 (例如環氧樹脂)之情形時為8〇°c。 另一方面,加熱壓接之溫度於樹脂成分9為熱塑性樹脂 成分(例如聚乙稀)之情形時,例如為於熱塑性樹脂成分之 軟化點或熔點上加10〜3(TC之溫度,較佳為於熱塑性樹脂 成分之軟化點或熔點上加15〜25t之溫度,進而較佳為於 熱塑性樹脂成分之軟化點或熔點上加2〇<1:之溫度,具體而 言為120。(:(即,熱塑性樹脂成分之軟化點或熔點為 10 0 C,於該10 0 °C上加2 〇 °c之溫度)。 /傳導性層6於上述初始接著力試驗⑴中自被黏接體脫 落之情形,即未保持熱傳導性層6與被黏接體之暫時固定 狀態之情形時,有時無法將熱傳導性層6可靠地暫時固定 於被黏接體上。 再者,於樹脂成分9為熱硬化性樹脂成分之情形時,供 初始接著力試驗(1)及初始接著力試驗(2)(後述)之熱傳導性 層6為未硬化之熱傳導性層6,藉由初始接著力試驗及初 153633.doc •23· 201139641 始接著力試驗(2)中之加熱壓接而使熱傳導性層6成為B階 段狀態。 又,於樹脂成分9為熱塑性樹脂成分之情形時,供初始 接著力試驗(1)及初始接著力試驗(2)(後述)之熱傳導性層6 為固體狀之熱傳導性層6,藉由初始接著力試驗(1)及初始 接著力試驗(2)中之加熱壓接而使熱傳導性層6成為軟化狀 態。 較佳為熱傳導性層6於上述初始接著力試驗(1)及以下之 初始接著力試驗(2)兩者中不自被黏接體脫落。即,保持熱 傳導性層6與被黏接體之暫時固定狀態。 初始接著力試驗(2):將熱傳導性層6加熱壓接於沿著水 平方向之被黏接體之上而暫時固定,並放置1〇分鐘後,以 沿著垂直方向(上下方向)之方式配置被黏接體。 初始接著力試驗(2)之加熱壓接下之溫度與上述初始接 著力試驗(1)之加熱壓接下之溫度相同。 如圖4所示,接著•黏著層7形成於熱傳導性層6之背面。 詳細而言,如圖1所示,接著•黏著層7形成於與自電子零 件3露出之基板2對向之熱傳導性層6之下表面。 接著·黏著層7於常溫環境及加熱環境下具有柔軟性及接 著性或黏著性(黏性),包含藉由加熱或加熱後之冷卻可表 現接著作用之接著劑、或者可表現黏著作用(黏著之作 用’即感壓接著之作用)之黏著劑。 作為接著劑,例如可舉出熱硬㈣接著劑、㈣型 劑等。 臓.doc ,24. ⑧ 201139641 熱硬化型接著劑藉由加熱而熱硬化並固化,藉此接著於 基板2。作為熱硬化型接著劑,例如可舉出環氧系熱硬化 型接著劑、胺酯系熱硬化型接著劑、丙稀酸系熱硬化型接 著劑等。較佳為舉出環氧系熱硬化型接著劑。 熱硬化型接著劑之硬化溫度例如為1 〇〇〜2〇〇〇c。 熱熔型接著劑藉由加熱而熔融或軟化,熱融著於基板 2,藉由此後之冷卻而固化,藉此接著於基板2。作為熱熔 型接著劑’例如可舉出橡膠系熱熔型接著劑、聚酯系熱熔 型接著劑、稀烴系舰型接著劑等。較佳為舉出橡膠系、熱 熔型接著劑。 熱熔型接著劑之軟化溫度(環球法)例如為1〇〇〜2〇〇1。 又’熱溶型接著劑之熔融點度為18(rc,例如為1〇〇〜 30,000 mPa-s 〇 又’上述接著劑視需要例如亦可含有熱傳導性粒子。 作為熱傳導性粒子,例如可舉出熱傳導性無機粒子、轨 傳導性有機粒子等,較佳為舉出熱傳導性無機粒子。 作為熱傳導性無機粒子,可舉出:例如氮化侧粒子、氮 化銘粒子、氮化石夕粒子、氮化鎵粒子等氮化物粒子,例如 氫氧化銘粒子、氫氧化鎮粒子等氫氧化物粒子,例如氧化 石夕粒子、氧化紹粒子、氧化鈦粒子、氧化鋅粒子、氧化錫 粒子、氧化銅粒子、氧化鎳粒子等氧化物粒子,例如碳化 石夕粒子等碳化物粒子’例如碳酸舞粒子等碳酸鹽粒子,例 如鈦酸鋇粒子、鈦酸卸粒子等欽酸鹽粒子等金屬酸鹽粒 子’例如,銅粒子、銀粒子、金粒子、錄粒子、链粒子、 153633.doc -25- 201139641 在白粒子等金屬粒子等β 該等熱傳導性粒子可單獨使用或併用2種以上。 作為熱傳導性粒子之形狀,例如可舉出:塊狀、針狀、 板狀、層狀、片狀等。熱傳導性性粒子之平均粒徑(最大 長度)例如為0.1〜1〇〇〇 。 又,熱傳導性粒子例如具有各向異性熱傳導性或各向同 14熱傳導性。較佳為具有各向同性熱傳導性。 熱傳導性粒子之熱傳導率例如為1 w/m.K以上,較佳為 2 W/m K以上,進而較佳為3 w/m.K以上通常為刚〇 W/m*K以下。 熱傳導性粒子之調配比例相對於接著劑之樹脂成分100 質量份’例如為19〇質量份以下,較佳為_f量份以下。 ’’’、傳導性粒子之體積基準之調配比例為95體積%以 下,較佳為90體積%以下。 W艰岈,將熱傳導 將熱傳導性粒子調配於接著劑,〜……叮,财撕 粒子以上述調配比例添加至接著劑中,並攪拌混合 藉此,將接著劑製備成熱傳導性接著劑。 熱傳導性接著劑之熱傳導率例如為ggi w/m.K以上, 常為100 W/m.K以下。 作為點著劑’例如可自丙稀酸系黏著劑、聚梦氧系黏 劑、橡膠系㈣劑、乙烯基貌基㈣㈣劑、聚醋系黏 劑、聚酿胺系黏著劑、胺醋系斑基制 妝Q曰糸黏考劑、苯乙烯-二烯嵌 共聚物系黏著劑等公知之黏著劑中 置l m』 猫者齊!中適當地選擇。黏著劑 早獨使用或組合使用2種以上。 1下马黏者劑,較佳舉出 I53633.doc ⑤ -26- 201139641 烯酸系黏著劑、聚矽氧系黏著劑、橡膠系黏著劑,進而較 佳為舉出丙烯酸系黏著劑、聚矽氧系黏著劑。又亦可使 黏著劑中以與上述相同之比例含有上述熱傳導性粒子,將 黏著劑製備成熱傳導性點著劑。熱傳導性黏著劑之熱傳導 率與上述相同。 接著·黏著層7之厚度T例如為50 以下,較佳為25 μιη 以下,進而較佳為15 μιη以下,通常為i μιη以上。於接著· 黏著層7之厚度τ超過上述範圍之情形時,有時無法使自電 子零件3產生之熱從熱傳導性層6經由接著•黏著層7而熱傳 導至框架4。 並且,為獲得熱傳導性接著片材5,如參照圖4所示,首 先準備上述熱傳導性層6,其次將接著•黏著層了積層於熱 傳導性層6之背面》 具體而言,藉由使上述溶劑調配溶 熱硬化型接著劑)或黏著劑中而製備清漆,將該 ;刀隔片之表面,其後藉由常壓乾燥或真空(減壓)乾燥使 清漆之有機溶劑顧去。再者,清漆之固形物成分濃度例如 為10〜90質量%。 其後’將接著•黏著層7貼合於熱傳導性層6。於貼合接 著·黏著層7與熱傳導性層6時,視需要進行麼接或熱麼 接。 、、使用圖5對製作放熱構造體1之方法進行說明。 、先於此方法中,如圖5所示,於支持框架4之殼體 (未圖示)上固定安裝有雷早费从 電子零件3之基板2,並且準備熱傳 353633.doc -27- 201139641 導性接著片材5。 再者卩 導性接著片材5進行外开,h β *之方式對熱傳 著片材5切斷加工為中:: 而言,將熱傳導性接 不與基板2重疊之二及一端部與基板2重疊、他端部 其次,於此方法中,如圖5所示 熱厂堅接於電子零件3及基板2與框架4/’、傳㈣接者片材5 熱傳導性接著片材5之中央部及-_ :電子零件3及基板2,將熱傳導性接著片材$之他端 部熱麼接於框架4。 端 詳細而言’首先如圖5之假想線所示,將 =:;2:接著,著層7之+央部及-端部與丄 ^曲對向之方式配置,並且使熱傳導性接著片材化他端部 其次’如參照圖5之箭頭所示,使熱傳導性接著片材5之 中央部及-端部接觸電子零件3及基板2,並且使熱傳導性 接著片材5之他端料觸,接著—面加㈣傳導性接 著片材5, 一面將熱傳導性接著片材5之中央部及一端部朝 向基板2壓接(按愿,即熱磨接),並且將熱傳導性接著片材 5之他端部朝向框架4壓接(按壓,即熱壓接)。 壓接例如係一面對於熱傳導性接著片材5按壓包含聚矽 氧樹脂等樹脂之海綿輥,—面使其於熱傳導性接著片材$ 之表面(熱傳導性層6之上表面)上滾動。 加熱溫度例如為40〜120。(:。 153633.doc ⑧ •28· 201139641 於此熱壓接中,由於接著 參照圖1所示,自其板2=黏者層7之柔軟性提高,故如 之雷4 土板之表面(上表面)突出至表側(上側) 零件3刺破接著·黏著層7,電子零件3之表面(上表 面)接觸熱傳導性層6之背 (表)。又,電子零件3之周 /成之間_彳如,電阻器23與基板2 接著·黏著層7填充。推而^ m _ Π ^)14^ _ ' ,;用以連接電子零件3(具體而 ^為K:晶片20及電阻器23)與基板2之未圖示之端子及/或 電線15上纏繞覆蓋接著•黏著層7。 詳、,·田而5,電子零件3之上表面及側面之上 性層6覆蓋。 另:方面+,電子零件3之側面之下部由被電子零件3刺破 之接著•黏著層7覆蓋(接著或黏著)。 更具體而言’於熱I接中,當樹脂成分9為熱硬化性樹 脂成分之情形時,由於樹脂成分9為3階段狀態,故埶傳導 性層6黏著於自電子零件3露出之基板2之表面(上表面)。進 而’於電子零件3之厚度厚於接著.黏著層7之厚度之情形 時,電子零件3之上部自熱傳導性層6之背面朝向内部進入 熱傳導性層6。 又’於接著劑為㈣型接著劑之㈣時,接著•黏著層7 由於上述熱壓接而㈣或軟化,接著•黏著層?之中央部及 一端部熱融著於基板2之表面及電子零件3之側面,並且接 著·黏著層7之他端部熱融著於框架*之内面。 於接著劑為熱硬化型接著劑之情形時,接著•黏著層7利 用上述熱壓接而成為B階段狀態,接著•黏著層了之中央部 153633.doc •29- 201139641 及一端部暫時固定於基板2之上表面及電子零件3之側面, 並且接著.黏著層7之他端部暫時固定於框架4之内面。 其後’於樹脂成分9為熱硬化性樹脂成分之情形時,使 熱傳導性層6熱硬化,並且於接著劑為熱硬化型接著劑之 情形時’使接著·黏著層7熱硬化。 為使熱傳導性層6及接著•黏著層7熱硬化,例如將暫時 固定有熱傳導性接著片材5之框架4、基板2及電子零件3投 入乾燥機中。熱硬化之條件為’加熱溫.度例如為 100〜250 C ’較佳為120〜200°C ’加熱時間例如為1〇〜2〇〇分 鐘’較佳為60〜150分鐘。 藉此,熱傳導性接著片#5之中央部及一端部接著於電 子零件3及基板2’並且熱傳導性接著片材5之他端部接著 於框架4。 並且’於上述放熱構造體4,由於電子零们由熱傳導 性接著片材5被覆’故可使自電子零件3產生之熱自電子零 件3之上表面及側面熱傳導至熱傳導性接著片材5。並且, 可使該熱自熱傳導性接著片材5熱傳導至至框架4 4中放出至外部。 、& 因此,可使自電子零件3產生之熱藉由熱傳導性 材5及框架4有效地放出。 又,藉由將熱傳導性接著片材5以覆蓋電子零们 设置於基板2上之簡易且優異之作業性, 工 產生之熱放出。 7使自電子零件3 圖6表示本發明之放熱構造體之其他實施形態(熱傳導性 153633.doc -30· 201139641 接著片材包含熱傳導性層之態樣)之刳面圖,圖7表示用以 製作圖6之放熱構造體之步驟圖,圖8表示本發明之放熱構 造體之其他實施形態(熱傳導性帛著片#之他端部接觸殼 體之態樣)之剖面圖,圖9表示本發明之放熱構造體之其他 實施形態(接著•黏著層接觸電子零件之上表面之態樣)之剖 面圖。 再者’於以下之各圖式中,對與上述各部對應之構件標 記相同之參照符號,省略其詳細說明。 於上述說明中,熱傳導性接著片材5上設置有接著•黏著 層7,例如亦可如圖6所*,並不設置接著•黏著層7,而由 熱傳導性層6形成熱傳導性接著片材5。 於圖6中,電子零件3之側面與熱傳導性層6相接觸。詳 細而言’自電子零件3露出之基板2之上表面及電子零件3 之側面之全部與熱傳導性層6相接觸。 為獲得該放熱構造體i,如圖7所示,於支持框架4之殼 體(未圖示)上固定安裝有電子零件3之基板2,並且準備熱 導t接著片材5。熱傳導性接著片材5包含熱傳導性層 、人⑯圖7之假想線所示,使熱傳導性接著片材$彎 二接著參照圖7之箭頭’將熱傳導性接著片材5之中央部 ^部熱壓接於電子零件3及基板2,並且將熱傳導性接 材5之他端部熱壓接於框架4。 化2傳導性接著片材5之熱壓接中,當樹脂成分9為熱硬 樹脂成分之情形時,由於樹脂成分9為B階段狀態,故 153633.doc -31 · 201139641 電子零件3之周圍所形成之間隙14由熱傳導性層6填充。 藉此,熱傳導性接著片材5暫時固定於基板2與框架4 上。 其後,於樹脂成分9為熱硬化性樹脂成分之情形時,使 熱傳導性層6熱硬化。 藉此,熱傳導性層6之中央部及一端部接著於電子零件3 之上表面及側面、與自電子零件3露出之基板2之上表面, 並且熱傳導性層6之他端部接著於框架4之右側面。 於該放熱構造體1中,熱傳導性層6直接接觸電子零件3 之表面與框架4之右側面。因此,圖6之放熱構造體丨與圖i 之放熱構造體1相比,可更有效地使自電子零件3產生之熱 經由熱傳導性層6放出。 另一方面,於圖1之放熱構造體丨中,由於熱傳導性層6 藉由接著·黏著層7而接著於基板2及框架4,故與圖6之放 熱構造體1相比,可更加可靠地接著熱傳導性接著片材5, 而長期表現出優異之放熱性。 又,於上述圖1及圖ό之說明中,作為本發明中之放熱性 構件而例示框架4 ’但放熱性構件並不限定於此,例如亦 可例示殼體10(圖8)、散熱片(未圖示)、加強樑(未圖示) 等。 於圖8中’殼體10形成上側開放之有底箱狀,一體性地 具備底壁13及自其周端部向上方延伸之側壁11。側壁丨丨配 置於基板2之周圍’底壁13配置於基板2之下側。殼體1〇例 如係由鋁、不鑛鋼、銅、鐵等金屬形成。 153633.doc •32· ⑤ 201139641 又,自熱傳導性接著片材5之中央部起,他端側部分自 基板2之一端邊緣向下方彎曲,熱傳導性接著片材5之他端 部於框架4之右側面(内面)以向下方延伸之方式配置。熱^ 導性接著片#5之他端部接觸框架4之右側面之下部(具體 而言,側壁11及底壁13之連接部之附近)。 又於上述說明中,將接著·黏著層7積層於熱傳導性層 6之單面(背面),例如,亦可如圖丨之假想線及圖斗之假想線 所示,形成熱傳導性接著片材5之兩面(表面及背面卜。、 #又,於上述圖丨之說明中,係以電子零件3刺破接著•黏 著層7之方式實施熱壓接,例如,亦可如參照圖9所示,以 接著·黏著層7並未被電子零件3刺破,而覆蓋電子零件3之 上表面之方式實施。 接著·黏著層7接觸電子零件3之上表面,另一方面,並 不接觸自電子零件3露出之基板2之上表面,與基板2之上 表面隔開間隔(間隙)而配置。 該放熱構造體1亦可使自電子零件3產生之熱經由接著· 黏著層7而傳導至熱傳導性層6,進而熱傳導性層6可將該 熱輸送至放熱性構件4。 實施例 以下揭示製備例、實施例及製作例,更加具體地說明本 發明’但本發明絲毫不受實施例限定。 (熱傳導性層之製備) 製備例1 調配ΡΤ-11 〇(商品名、板狀之氮化硼粒子、平均粒徑(光 153633.doc -33- 201139641 政射法)45 μιη、Momentive Performance Materials Japan公 司製造)13.42§、圯11828(商品名、雙酚八型環氧樹脂、第1 環氧樹脂、液狀、環氧當量184〜194 g/eqiv.、軟化溫度(環 球法)未滿25°C、熔融黏度(8〇。〇70 mPa.s、日本環氧樹脂 公司製造)1.0 g、及ΕΡΡΝ_501ΗΥ(商品名、三苯基曱烷型 %氧樹脂、第2環氧樹脂、固體狀、環氧當量ι63〜175 g/eqiv.、軟化溫度(環球法)57〜63。(:、曰本化藥公司製 造)2.0 g、硬化劑(Curez〇1 2p4MHz_pw(商品名、四國化成 公司製造)之5質量%曱基乙基酮分散液)3 g(固形物成分 〇·15 g)(相對於作為環氧樹脂之jER828及ΕρρΝ_5〇1Ηγ之總 量為5質量%)並加以攪拌,於室溫(23它)下放置丨晚,使甲 基乙基酮(硬化劑之分散介質)揮發,而製備半固體狀之混 合物。 再者,於上述調配中,氮化硼粒子相對於硬化劑除外之 固形物成分(即,氮化硼粒子與環氧樹脂之固形物成分)之 總體積之體積百分率(體積❶/。)為70體積%。 其次,以經聚矽氧處理之2片脫模膜夾住所獲得之混合 物,利用真空熱壓機,於8(rc、1〇 pa之環境(真空環境) 下,以5噸之荷重(20 MPa)對該等熱壓2分鐘,獲得厚度 mm之壓製片材(參照圖2(a))。 其後’以投影至Μ製片材之厚度方向上時分割成複數個 之方式切斷所獲得之壓製片#,藉此獲得分割片材(參照 圖2(b)) ’接著將分割片材於厚度方向上積層而獲得積層片 材(參照圖2(c))。 153633.doc ·34· ⑧ 201139641 接者,藉由與上述相同之真空熱壓機,利用與上述相同 条件對所獲得之積層片材進行熱壓(參照圖2(句)。 其-入,反覆進行4次上述切斷、積層及熱壓之一系列操 作(參照圖2),獲得厚度為〇·3 mm之熱傳導性層(未硬化狀 態)(參照圖3)。 製備例2〜16 .依據表1〜表3之調配比例及製造條件,與製備例ι同樣地 進行處理,藉此獲得熱傳導性層(製備例2〜16)(參照圖3)。 (熱傳導性接著片材之製作) 製作例1 以乾燥時之厚度成為1〇 μιη之方式將丙烯酸系黏著劑之 清漆(溶劑:ΜΕΚ、固形物成分濃度:5〇質量%、無填充 型)塗佈於分隔片之表面。其次,藉由利用真空乾燥餾去 ΜΕΚ而形成黏著劑層。 其次’使製備例1之黏著劑層壓接於熱傳導性層上,藉 此製作熱傳導性接著片材(參照圖4)。 製作例2〜16 除分別使用製備例2〜16之熱傳導性層以外,與製作例ι 同樣地進行處理,分別獲得熱傳導性接著片材(製作例 2〜16)(參照圖4)。 (放熱構造體之製作) 實施例1 準備平板狀之包含聚醯亞胺之基板、安裝於其上之電子 零件(厚度2 mm之1C晶片、1 mm之電容器、4 mm之線圈及 153633.doc -35- 201139641 0.5 mm之電阻器)、及框架(參照圖5)。 其次’將製作例!之熱傳導性接著片材切割成中央部及 一端部與基板重疊、他端部不與基板重疊之尺寸。 其次’以黏著劑層之中央部及—端部與電子零件對向之 f式配置熱料性接著片材與基板,接著,使熱傳導性接 著片材之他端部向上方彎曲,其後,使用包含聚石夕氧樹脂 之海綿輥使熱傳導性接著片材朝向電子零件及框架磨接 (暫時固定)(參照圖9)。 藉此,熱傳導性接著片材之令央部及一端部接著於電子 零件之上表面,並且熱傳導性接著片材之他端部接著於框 架。 再者’於熱傳導性接著片材之中央部及—端部與自電子 零件露出之基板之間形成間隙(參照圖9)。 實施例2〜16 除分別使用表4中記載之製作例㈣之熱傳導性接著片 材代替製作例1之熱傳導性接著片材以外,以與實施例】相 同之方式分別形成放熱構造體(實施例2〜i 6)。 實施例1 7 除於熱傳導性接著片材之製作中未設置黏著劑層以外, 、與實施例1相同之方式製作放熱構造體(參照圖6)。 實施例18〜3 2 除於熱傳導性接著片材之製作中未設置黏著劑層以外, 乂與實施例2〜16相同之方式分別製作放熱構造體(實施例 18〜32)(參照圖6)。 153633.doc ⑤ •36- 201139641 (評價) 1.熱傳導率 對製備例1〜16之熱傳導性層測定熱傳導率。 即,藉由利用氙燈閃光法導熱分析儀「LFA-447型」 (NETZSCH公司製造)之脈衝加熱法測定面方向(SD)上之熱 傳導率。 將其結果不於表1〜表3。 2.空隙率(P) 藉由下述方法測定製備例l〜i6之熱硬化前之熱傳導性層 之空隙率(P1)。 戴面拋光儀(CP)沿厚度 ,利用掃描型電子顯微 空隙率之測定方法:首先,藉由 方向對熱傳導性片材進行切斷加工 鏡(SEM)以200倍觀察由此顯現出之剖面,獲㈣像。自所 獲得之圖像,對空隙部分與其以外之部分進行二值化處 理,其次,算出空隙部分相對 处 積的面積比。 ‘,、料&片材整體之剖面 肘兵、结呆示於表 3.階差追隨性(三點彎曲試驗) 針對製備例1〜16之熱硬化前之熱傳導性層,依細 7^(20^)年)實施τ述試驗條件下之三 下述評價基準評價階差追隨性。將其結果^表^ 試驗條件 丁於表丨〜表3。 試驗片:尺寸20 mmx 15 mm 支點間距離:5 mm 153633.doc •37- 201139641 試驗速渡:20mm/min(壓子之下壓速度) 彎曲角度:120度 (評價基準) ◎:完全未觀察到破裂。 〇:幾乎未觀察到破裂。 x :明確觀察到破裂。 4.印刷標記視認性(印刷標記附著性··喷墨印刷或雷射印刷 之標記附著性) 藉由噴墨印刷及雷射印刷於製備例1〜16之熱傳導性層上 印刷標記,觀察該標記。 其結果’製備例1 ~ 16之熱傳導性層均可良好地辨認由喷 墨印刷及雷射印刷兩者印刷之標記,確認印刷標記附著性 良好。 5·體積電阻 測定製備例1〜16之熱傳導性層之體積電阻(R)。 即’熱傳導性層之體積電阻(R)係依據JIS K 6911(熱硬 化性塑膠一般試驗方法、2006年版)進行測定。 將其結果示於表1〜表3。 6.初始接著力試驗 ό 1.對筆§己型電腦用安裝基板之初始接著力之試驗 針對製備例1〜16之未硬化之熱傳導性層,實施對安裝有 複數個電子零件之筆記型電腦用安裝基板之初始接著力之 试驗(1)及(2)。 即,使用包含聚矽氧樹脂之海綿輥,以8〇。匸(製備例i〜9 153633.doc _ • 3〇 - ⑤ 201139641 及製備例11〜16)或12(TC (製備例1〇)將熱傳導性層加熱壓接 並暫時固定於沿水平方向之筆記型電腦用安裝基板之表面 (安裝電子零件之侧),放置1〇分鐘後,以沿著上下方向之 方式設置筆記型電腦用安裝基板(初始接著力試驗⑺)。 接著,以熱傳導性層指向下側之方式(即,自剛暫時固 疋後之狀態上下反轉之方式)設置筆記型電腦用安裝基板 (初始接著力試驗(1))。 並且,於上述初始接著力試驗(1)及初始接著力試驗(2) 中,依據下述基準評價熱傳導性層。將其結果示於表丨〜表 3。 <基準> 〇·確認熱傳導性層未自筆記型電腦用安裝基板脫落。 X.確認熱傳導性層自筆記型電腦用安裝基板脫落。 6-2.對不鏽鋼基板之初始接著力之試驗 針對製備例1〜16之未硬化之熱傳導性層,與上述同樣地 實施對不鏽鋼基板(SUS304製造)之初始接著力之試驗(1)及 (2)。 並且’於上述初始接著力試驗⑴及初始接著力試驗⑺ 中,依據下述基準評價熱熱傳導性層。將其結果示於表卜 表3 〇 <基準> 〇:確認熱傳導性層未自不鏽鋼基板脫落。 x :確認熱傳導性層自不鏽鋼基板脫落。 7.體積電阻 153633.doc •39· 201139641 測定製備例1〜16之未(R)。 硬化之熱傳導性層 之體積電阻 即,熱傳導性層之體積電阻(R)係 仆岵砲_ A 队髁JIS K 0911(熱硬 化性塑膠一般試驗方法、2006年版)進行測定。 將其結果不於表1〜表3。 8.放熱性 使實施例1〜32之放熱構造體中之電子零件動作,經過丄 小時。利用紅外線相機測定動作中中之熱傳導性接著片材 之表面溫度’結果為70。(:,確認溫度上升得到抑制。 另一方面,對不使用熱傳導性接著片材之基板(比較例1 之放熱構造體中之基板)同樣進行評價,結果電子零件上 方之溫度為13(TC。 因此,確認實施例1〜32之放熱構造體之放熱性優異。 153633.doc -40- ⑤ 201139641 [表i] 表1 製備例 平均粒徑 (μπι) 製備例 1 製備例 2 製備例 3 製備例 4 製備例 5 製備例 6 各成 分之 調配 配方 氮化 硼粒子 /g,A /[趙積%]·8 /[體積%]^ ΡΤ-ΙΙΟ*1 45 13.42 po] [69] 3.83 [40] [38.8] 5.75 [50] [48.8] 12.22 [68] [66.9] 23 [80] 79.2 - UHP-1*2 9 - - - - - 12.22 [68] [66.9] 聚合物 熱硬 化性 樹脂 環氧 樹脂 组合 物 環氧樹脂A»*3 (半固體狀) - 3 3 3 3 3 環氧樹脂Βκ4 (液狀) 1 - - - - - 環氧樹脂C1"5 (固體狀) - - - - - - 環氧樹脂D**6 (固體狀) 2 - - - - - 硬化劑κ7 (因形物成分g數) - 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) 硬化劑11(8 (園形物成分g數) 3 (0.15) - - - - - 熱塑 性樹 脂 聚乙烯 - - - - - - 製造 條件 熱壓 溫度(°c) 80 80 80 80 80 80 次數(次Γ 5 5 5 5 5 5 荷重(MPa)/(噸) 20/5 20/5 20/5 20/5 20/5 20/5 評價 熱傳導性層 熱傳導率 (W/m.K) 面方向(SD) 30 4.5 6.0 30.0 32.5 17.0 厚度汝向(TD) 2.0 1.3 3.3 5.0 5.5 5.8 比(SD/TD) 15.0 3.5 1.8 6.0 5.9 2.9 空隙率(趙積%) 4 0 0 5 12 6 階差追隨性/3點彆曲試驗 JISK 7171(2008) ◎ 〇 〇 〇 〇 〇 體積電阻(Qcm) JISK 6911(2006) 2xlOu 5.5xl0u 3.4χ1014 2.1M014 1.3^1014 1.7M014 初始 接著力試驗 VS筆記型 電腦用 安裝基板 試驗(1) 〇 〇 〇 〇 〇 〇 試驗(2) 〇 〇 〇 〇 〇 〇 VS不鏽鋼 基板 試驗(1) 〇 〇 〇 〇 〇 〇 試驗(2) 〇 〇 〇 〇 〇 〇 氮化硼粒子 配向角度⑻(度) 12 18 18 15 13 20 g*A:調配質量 [體積%]0 :熱傳導片材(硬化劑除外)相對於總體積之百分率 [體積%]^:熱傳導片材相對於總體積之百分率 次數*D:積層片材之熱壓之次數 -41 - 153633.doc 201139641 [表2] 表2 製備例 7 製備例 8 製備例 9 製備例 10 製備例 11 製備例 平均粒徑 (μηι) 氮化 硼粒子 /gA /[體積%]^ /[«積 %re ΡΤ-ΠΟ®1 45 12.22 [68] [66.9] 12.22 [68] [66.9] 12.22 [68] [66.9] 3.83 [60] [60] 13.42 P〇] [69] UHP-I 嵌2 9 - - - - 環氧樹脂AM (半固Λ狀) - - - - - 各成 環氧樹脂B@4 (液狀) 1.5 3 - - - 分之 調配 配方 熱硬化 環氧 環氧樹脂C% (固體狀) 1.5 - 3 - - 聚合物 性樹脂 樹他 組合物 環氧榭脂D®6 (固Λ狀) - - - 3 硬化劑*7 (固形物成分g數) 3 (0.15) 3 (0.15) 3 (0.15) • 3 (0.15) 硬化剤細 (固形物成分g數) - - - - 熱塑性 樹脂 聚乙烯 - - - 1 - 製造 條件 溫度CC) 80 80 80 120 80 熱壓 次數(次/D 5 5 5 5 5 荷重(MPa)/(噸) 20/5 20/5 20/5 4/1 20/5 面方向(SD) 30.0 30.0 30.0 20 24.5 热得译毕 iW/miO 厚度方向(TD) 5.0 5.0 5.0 2.0 2.1 比(SD/TD) 6.0 6.0 6.0 10.0 11.7 空隙率(《積%) 6 6 5 8 5 階差追隨性/3點噼曲試驗 JISK 7171(2008) 〇 〇 X X X 評價 熱傳導性層 體積電阻(Ω cm) JISK 6911(2006) 2.2χ1014 2.4x10m Ι.ΙχΙΟ'4 4.1xlOu 1.3χ1014 VS筆記型 電腦用 安裝基板 試驗⑴ 〇 〇 〇 〇 〇 初始 試驗(2) 〇 〇 〇 〇 〇 接著力試驗 VS不鏽鋼 試驗⑴ 〇 〇 〇 〇 〇 基板 試驗(2) 〇 〇 〇 〇 〇 氮化硼粒子 配向角度⑻(度) 15 16 16 15 16 g·* :調配質量 [«積:熱傳導片材(硬化劑除外)相對於總«積之百分率 [«積"/yw:熱傳導片材相對於總體積之百分率 次數π:積層片材之熱*之次數 153633.doc -42- ⑤ 201139641 [表3] 表3 製備例 平均粒徑 (μιη) 製備例12 製備例13 製備例14 製備例15 製備例16 各成 分之 調配 配方 氮化 硼粒子 /gA /[體積 /[體積%]% ΡΤ-110钔 45 3.83 [40] [37.7】 13.42 po] [69] 13.42 [70] [69] 13.42 P〇] [69] 13.42 170] [69] UHP-1®2 9 • - - - - 聚合物 熱硬化 性樹脂 環氧 樹脂 组合物 環氡樹脂 (半固體狀) 3 3 3 3 3 環氧樹脂妒4 (液狀) - - - - - 環氧樹脂C545 (固體狀) - - - - - 環氧樹脂DM (固體狀) - - - - - 硬化劑即 (固形物成分g數) 6 (0-3) 3 (0-15) 3 (0.15) 3 (0.15) 3 (015) 硬化费严8 (固形物成分g數) - - - - - 熱塑性 樹脂 聚乙烯紗 - - - - - 製造 條件 熱壓 溫度(°c) 80 60 70 80 80 次數(次)’D 5 5 5 5 5 荷重(MPa)/(噸) 20/5 20/5 20/5 20/5 40/10 評價 熱傳導性層 熱傳導率 (W/mK) 面方向(SD) 4.1 10.5 11.2 32.5 50.7 厚度方向(TD) 1.1 2.2 3.0 5.5 7.3 比(SD/TD) 3.7 4.8 3.7 5.9 6.9 空隙率(體積%) 0 29 26 8 3 階差追隨性/3點蛩曲試驗 JISK 7171(2008) ◎ ◎ ◎ ◎ 〇 體積電阻(Ω·αη) JISK 6911(2006) 6.4xlOu 0.6xl0u Ο.δχίΟ14 2.5χ10'4 5.3>-1014 初始 接著力試驗 VS笨記型 電腦用 安裝基板 試驗 ⑴ 〇 〇 〇 〇 〇 試驗 (2) 〇 〇 〇 〇 〇 VS不鏽鋼 基板 试驗 ⑴ 〇 〇 〇 〇 〇 試驗 (2) 〇 〇 〇 〇 〇 氮化硼粒子 配向角度⑹(度) 20 17 15 15 13 g*A :調配質量 [想積%1·8 :熱傳導片材(硬化劑除外)相對於總體積之百分率 [體積%]^:熱傳導片材相對於總體積之百分率 次數*D :積層片材之熱壓之次數 43- 153633.doc 201139641 [表4] 表4 放熱構造體 熱傳導性接著片材 熱傳導性層 黏著層 實施例1 製作例1 製備例1 實施例2 製作例2 製備例2 實施例3 製作例3 製備例3 實施例4 製作例4 製備例4 實施例5 製作例5 製備例5 實施例6 製作例6 製備例6 實施例7 製作例7 製備例7 實施例8 製作例8 製備例8 有 實施例9 製作例9 製備例9 實施例10 製作例10 製備例10 實施例11 製作例11 製備例11 實施例12 製作例12 製備例12 實施例13 製作例13 製備例13 實施例14 製作例14 製備例14 實施例15 製作例15 製備例15 實施例16 製作例16 製備例16 實施例17 製作例17 製備例1 實施例18 製作例18 製備例2 實施例19 製作例19 製備例3 實施例20 製作例20 製備例4 實施例21 製作例21 製備例5 實施例22 製作例22 製備例6 實施例23 製作例23 製備例7 實施例24 製作例24 製備例8 無 實施例25 製作例25 製備例9 實施例26 製作例26 製備例10 實施例27 製作例27 製備例11 實施例28 製作例28 製備例12 實施例29 製作例29 製備例13 實施例30 製作例30 製備例14 實施例31 製作例31 製備例15 實施例32 製作例32 製備例16 153633.doc •44- ⑧ 201139641 表1〜表3中之各成分中之數值於無特別記載之情形時表 不g數。 再者’於表1〜表3之氮化硼粒子之欄中,上段之數值為 氮化侧粒子之調配質量(g),中段之數值為熱傳導性片材中 氮化爛粒子相對於硬化劑除外之固形物成分(即,氮化硼 粒子與環氧樹脂或聚乙烯之固形物成分)之總體積之體積 百分率(體積%),下段之數值表示氮化硼粒子相對於熱傳 導性片材之固形物成分(即,氮化硼粒子與環氧樹脂及硬 化劑之固形物成分)之總體積之體積百分率(體積。/〇)。 又’關於表1〜表3之各成分中標記※符號之成分,以下 記載其詳細内容。 PT·lio* ·商品名、板狀之氮化蝴粒子、平均粒徑(光散射 法)45 μηι、Momentive Performance Materials Japan公司製造 UHP-1*2 :商品名:Sh〇BN UHP_1、板狀之氮化硼粒子、 平均粒徑、(光散射法)9 μηι、昭和電工公司製造 環氧樹脂八※3 : OGSOL EG(商品名)、雙芳基苐型環氧樹 脂、半固體狀、環氧當量294 g/eqiv.、軟化溫度(環球 法)47°C、熔融黏度(80。〇1360 mPa.s、大阪瓦斯化學公司 製造 環氧樹脂B*4 : JER828(商品名)、雙酚A型環氧樹脂、液 狀、環氧當量184〜194 g/eqiv.、軟化溫度(環球法)未滿 25°C、溶融黏度(80°C)7〇 mPa’s、日本環氧樹脂公司製造 環氧樹脂C·5 : JER1002(商品名)、雙酚A型環氧樹脂、固 體狀、環氧當量600〜700 g/eqiv·、軟化溫度(環球 153633.doc -45· 201139641 法)78°C、熔融黏度(80°C)10000 mPa.s以上(測定極限以 上)、曰本環氧樹脂公司製造 環氧樹脂1)^6 : EPPN-501HY(商品名)、三苯基曱烷型環氧 樹脂、固體狀、環氧當量163〜175 g/eqiv.、軟化溫度(環球 法)57〜63°C、日本化藥公司製造 硬化劑※7 : Curezol 2PZ(商品名、四國化成公司製造)之5 質量%曱基乙基酮溶液 硬化劑※8 : Curezol 2P4MHZ-PW(商品名、四國化成公司 製造)之5質量%甲基乙基酮分散液 聚乙稀X9:低密度聚乙烯、重量平均分子量(Mw)4000、數 量平均分子量(Mw)1700、Aldrich公司製造 再者,上述說明係以本發明之例示之實施形態之方式提 供,但其僅為例示,並不作限定性之解釋。對該技術領域 之從業者而言清楚之本發明之變形例包含於後述申請專利 範圍中。 【圖式簡單說明】 圖1表示本發明之放熱構造體之一實施形態之剖面圖。 圖2為用以說明熱傳導性層之製造方法之步驟圖。 圖2(a)表示對混合物或積層片材進行熱壓之步驟。 圖2(b)表示將壓製片材分割成複數個之步驟。 圖2(c)表示將分割片材積層之步驟。 圖3表示熱傳導性層之立體圖。 圖4表示熱傳導性接著片材之剖面圖。 ,表示於支持 圖5為用以製作圓1之放熱構造體之步驟圖 153633.doc ⑧ -46 - 201139641 框架之威體上固定安裝有電子零件之基板,並且準備熱傳 導性接著片材之步驟。 圖6表不本發明之放熱構造體之其他實施形態(熱傳導性 接著片材包含熱傳導性層之態樣)之剖面圖。 圖7為用以製作圖6之放熱構造體之步驟圖,表示於支持 框架之殼體上固^安裝有電子零件之基板,並且準備執傳 導性接著片材之步^ 辱 ,8表不本發明之放熱構造體之其他實施形態(熱傳導性 接著片材之他端部接觸殼體之態樣)之剖面圖。 “圖9表示本發明之放熱構造體之其他實施形態(接 者層接觸電子零件之上表面之態樣)之剖面圖。 ’ 圖1〇表示耐彎曲性試驗之1型試驗裝置(耐彎曲性試驗前) 置(耐彎曲性試.驗中 圖11表示耐彎曲性試驗之I型試驗裝 途)之立體圖。 【主要元件符號說明】 1 放熱構造體 2 基板 3 電子零件 4 框架 5 熱傳導性接著片材 6 熱傳導性層 6A 壓製片材 6B 分割片材 153633.doc •47 積層片材 接著·黏著層 氮化删粒子 樹脂成分 殼體 側壁 脫模膜 底壁 間隙 電線 1C(積體電路)晶片 電容器 線圈 電阻器 試驗裝置 第1平板 第2平板 心軸(旋轉軸) 止動部 長邊方向 厚度 厚度方向 面方向 配向角度 ⑧ -48-The electronic component 3 of D201139641, the frame 4 which is a heat releasing member for discharging heat (heat transfer and heat conduction) generated from the electronic component 3, and the heat conductive adhesive sheet 5 which is provided on the substrate 2. The substrate 2 is formed substantially in a flat shape, such as a ceramic such as aluminum nitride or aluminum oxide, such as glass epoxy resin, for example, polyimine, polyamidene acryl resin, polyacrylonitrile, polyether, It is formed of a synthetic resin such as polyethylene terephthalate, polyethylene naphthalate or polyethylene gas. The electronic component 3 includes, for example, a 1 (: (integrated circuit) wafer 2 〇, a capacitor 2 ι, a coil 22, and/or a resistor 23. Further, the electronic component 3 controls, for example, a voltage of less than 5 V and/or less than Α The electronic component 3 is mounted on the upper surface of the substrate 2, and is disposed at intervals in the plane direction (the surface direction of the substrate 2, the horizontal direction and the depth direction of FIG. 1). The thickness of the electronic component 3 is, for example, 1 μηι. The frame 4 is supported by a casing (not shown in FIG. 4) in which the substrate 2 is housed, and is disposed outside the substrate 2 (side), and is formed to surround the substrate 2 in plan view. In the cross-sectional view, the frame 4 is formed substantially in the shape of a rectangle having a long direction in the downward direction, and is formed of a metal such as a frame 牟4々丨. (4) For example, it is made of a heat conductive sheet 5 of stainless steel, copper, and iron. The method of covering the electronic component 3 is set on 1. X, thermal conductivity is followed by the sheet 5 contacting the frame 4 at one end (contacting the electronic component 3 (the surface and the side surface) and the middle portion of the end portion 4) The inner surface (right side) is arranged in a way. The sheet 5 is disposed in the form of a heat-releasing structure: the cross section is substantially L-shaped, and the center (in the left-right direction; 153633.doc 201139641 and one end portion extend in the plane direction on the upper surface of the substrate 2; The end portion is bent upward from one end edge (left end edge) of the substrate 2, and the thermal conductivity is then disposed at the other end portion of the sheet 5 so as to extend upward on the right side surface (inner surface) of the frame 4. As shown in FIG. 4, the adhesive sheet 5 includes a heat conductive layer 6 and an adhesive layer 7 or an adhesive layer 7 laminated on the back surface (lower surface) of the heat conductive layer 6 (hereinafter, the general name is sometimes referred to as The heat conductive layer 6 is formed into a sheet shape and contains nitriding butterfly particles. Specifically, the heat conductive layer 6 contains boron nitride (BN) particles as an essential component and further contains, for example, a resin. The boron nitride particles are formed into a plate shape (or a scaly shape) and are dispersed in the heat conductive layer 6 in a specific direction (described later). The length of the boron nitride particles in the longitudinal direction (relative to the thickness direction of the plate) Orthogonal The maximum length in the direction is, for example, 1 to 1 μm, preferably 3 to 叩μ®. Further, the length of the long-side direction of the boron nitride particles is 5 or more, preferably 10 μη or more, and further It is preferably 2 〇μηι or more, particularly preferably 3 Å or more, and most preferably 40 μm or more, and is usually, for example, 1 〇〇μιη#, preferably 90 μηι or less. Further, the thickness of the boron nitride particles (thickness of the plate) The length of the direction, that is, the length of the short side of the particle, is, for example, 〇〇1 to 2 〇, preferably 〇H μηι. Further, the aspect ratio (length/thickness in the longitudinal direction) of the boron nitride particles is, for example, 2 to 10,000. Preferably, the boron nitride particles have an average particle diameter determined by a light scattering method, for example, 153633.doc 201139641, which is 5 μηι or more, preferably 1 〇, and more preferably 卜. Above the claw, it is particularly preferably 30 μηι or more, and most preferably 4 μm or more, usually 丨(10) or less. Further, the average particle diameter measured by the light scattering method is a volume average particle diameter measured by a dynamic light-scattering type particle size distribution measuring apparatus. When the average particle diameter of the boron nitride particles measured by the light scattering method is less than the above range, the thermally conductive layer 6 becomes brittle and the workability is lowered. Further, the bulk density (JIS κ 51 〇 1, apparent density) of the boron nitride particles is, for example, 〇·3 to 1·5 g/cm 3 , preferably on 〇 g/cm 3 . Further, as the boron nitride particles, commercially available products or processed products obtained by processing them can be used. For example, the "ρτ" series (for example, "PT-iio") manufactured by M〇mentive Performance Materials japan, and the "sh〇bn υΗρ" series manufactured by Showa Denko Co., Ltd. are mentioned as a commercial product of the boron nitride particles. (for example, "SHOBN UHP-1", etc.). The resin component is a dispersion medium (matrix) in which boron nitride particles are dispersed, and examples thereof include a resin component such as a thermosetting resin component and a thermoplastic resin component. Examples of the thermosetting resin component include an epoxy resin, a thermosetting polyimide, a phenol resin, a urea resin, a melamine resin, an unsaturated polyester resin, a diallyl phthalate resin, and a poly A silicone resin, a thermosetting amine resin, or the like. Examples of the thermoplastic resin component include polyolefin (for example, polyethylene, polypropylene, ethylene-propylene copolymer, etc.), acrylic resin (for example, polydecyl acrylate vinegar, etc.), polyvinyl acetate, and Ethylene-vinyl acetate 153633.doc 201139641 Copolymer, polyethylene, polystyrene, polyacrylonitrile, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polyphenylene ether, poly Stupid thioether, polysulfone, polyether sulfone, polyetheretherketone, polyallyl fluorene, thermoplastic polyimide, thermoplastic amine ester resin, polyamine bismaleimide, polyamidimide, Polyether quinone imine, bismaleimide tri-farming resin, polymethylpentene, fluorinated resin, liquid crystal polymer, olefin_vinyl alcohol copolymer, ionic polymer, polyarylate, acrylonitrile-ethylene A styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, an acrylonitrile-stuppyrene copolymer, and the like. These resin components may be used alone or in combination of two or more. Among the resin components, 'preferably, an epoxy resin is used. The epoxy resin is in any form of liquid, semi-solid or solid at normal temperature. Specifically, examples of the epoxy resin include a bisphenol type epoxy resin (for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol type 8 epoxy resin, and a hydrogenation double). Phenolic A type epoxy resin, dimer acid modified bisphenol type epoxy resin, etc.), varnish type epoxy resin (for example, benzene (tetra) acid varnish type epoxy resin, age-old (four) varnish type epoxy resin, biphenyl Type epoxy resin, etc., naphthalene type epoxy resin, fluorene type epoxy resin (for example, bisaryl fluorene type epoxy resin, etc.), triphenyl decane type epoxy resin (for example, trishydroxyphenylmethane type) An aromatic epoxy resin such as an epoxy resin; for example, a heterocyclic cyanuric acid triglycidyl vinegar (isotrimer acid triglycidyl vinegar), a beta-urea urea epoxide, and a nitrogen-containing ring An oxygen resin; for example, an aliphatic epoxy resin such as an aliphatic epoxy resin (for example, a bicyclic ring type epoxy resin); for example, a glycidyl ether type epoxy resin; for example, a glycidylamine type epoxy resin, etc. / 153633.doc 201139641 These epoxy resins may be used alone or in combination of two or more. Preferably, a liquid epoxy resin and a solid epoxy resin are used. Further, a combination of a liquid aromatic epoxy resin and a solid aromatic epoxy resin is preferably used. . Specific examples of such a combination include a liquid double-epoxy type epoxy resin and a solid triphenylsulfonium-based epoxy-based epoxy resin, a liquid double-anti-epoxy resin and A combination of solid, double-anticipated, % oxygen resin. Further, as the epoxy resin, it is preferred to use a semi-solid oxyarene, and it is more preferable to use a semi-solid aromatic hydroxy tree. Specific examples of such an epoxy resin include a semi-solid epoxy resin, a combination of a liquid epoxy resin and a solid epoxy resin, and a semi-solid epoxy resin. The step followability of the heat conductive layer 6 is increased (described later). Further, the epoxy equivalent of the '% oxygen resin is, for example, 丨00-丨〇〇〇g/eqiv, preferably 160 to 700 g/eqiv, and the softening temperature (ring and ball method) is, for example, 8 Å or less (specifically 20) 〜80 ° C), preferably 70 ° C or less (specifically, 25 to 70 ° C). Further, the epoxy resin is 8 (the melt viscosity at TC is, for example, 1 〇 to 20,000 mPa's', preferably 5 〇 15 15 , 〇〇〇 mPa.s. When two or more kinds of epoxy resins are used together, The melt viscosity of the mixture is set within the above range. When the epoxy resin which is solid at normal temperature and the epoxy resin which is liquid at normal temperature are used, the softening temperature is, for example, less than 45 ° C, Preferably, 153633.doc 201139641 is a first epoxy resin which is under C and a second epoxy resin having a softening temperature of, for example, 45° C. or higher, preferably 55 C or higher. Thereby, the resin can be formed into a knife (mixed). The dynamic viscosity of the material (in accordance with JIS K 7233, described later) is set within a desired range, and the step followability of the thermally conductive layer 6 can be improved. The epoxy W & t contains, for example, a hardener and hardening promotion. The agent can be made into an epoxy resin composition. The hardener is a latent hardener (epoxy resin hardener) which is made of a hardening agent, for example, J. Sitting compound, amine compound, acid gf compound, brewing aminating person, makeup, sputum A compound, an imidazoline compound, etc., in addition to the above, a test compound, a gland compound, a polysulfide compound, etc., etc., as an imidazole compound, for example, 2-ethyl-4-methyl Imidazole, 2-phenyl 2-styl imidazole, 2-methylimi-methyl-5-hydroxymethylimidazole=ethylene-5-aminobutenyl 4-hydrazino group - as the amine compound, for example, ethylene An aliphatic polyamine such as an amine, a propylenediamine triamine or a triethylenetetramine, for example, an aromatic polyamine such as m-phenylenediamine-peptidylmethyl, diaminodiphenyl or the like. For example: o-stanoic acid needle-acid anhydride, tetrahydrophthalic acid' on the phthalate anhydride, hydrogen phthalic anhydride, methyl toluene, T also S phthalic anhydride, benzene Anhydride, decaenyl succinic anhydride, di-succinic succinic acid _# - acid anhydride, etc. - the saponin I, tetrahydroanhydride, gas, etc., as a brewing amine compound, for example, dimercaptodiamine, polystyrene 153633.doc 201139641 As the brewing compound, for example, adipic acid, bismuth, etc. may be mentioned. As an imidazoline compound, such as H Μ For example, methyl imidazoline, 2 ethyl-4-methyl imidazoline, ethyl benzoyl isopropyl imidazoline, 2 4- dimethyl imidazoline, phenyl imidazoline, , ' "Ten-alkyl-alkyl-pyrene, heptadecyl imidazoline, 2-phenyl-4-f-imidazoline, etc.. These hardeners may be used alone or in combination of two or more. As a hardener, The imidazole compound is preferably exemplified. Examples of the hardening accelerator include, for example, triamethylenediamine, tris-246 dimethylamino F-based phenol, and the like: ^ ', a temple-grade amine compound, for example, a three-stirty a phosphine, a tetrabasic scale tetraphenyl salt, a tetra-n-butyl scale _. ~ Phosphorus compounds such as salt, such as Sifang怂豳#人& quaternary ammonium salt compound, organic metal salt combination? And (4) derivatives, etc. These hardening accelerators may be used alone or in combination of two or more. The blending ratio of the hardener in the epoxy resin composition is, for example, 〇·5 to 5 〇 by mass, preferably H 〇 by mass, and the blending ratio of the hardening accelerator is, for example, 〇1~ 1 part by mass, preferably 〇. 2 to 5 parts by mass. The above-mentioned curing agent and/or curing accelerator may be prepared by using a solvent solution and/or (4) dispersion which is dissolved and/or dispersed by a solvent, if necessary. The ketones such as acetone and mercaptoethyl ketone (such as acetone) can be exemplified by, for example, an acetic acid such as acetamidine, an organic solvent such as hydrazine, hydrazine, dimethylformamide or the like. . Further, as the solvent, for example, water, an aqueous solvent such as an alcohol such as sterol 6 alcohol, propanol or isopropanol may be mentioned. The solvent ' is preferably an organic solvent, and more preferably lysine or guanamine 153633.doc 201139641. Further, the resin component was subjected to a dynamic viscosity test in accordance with JIS K 7233 (bubble viscosity meter method) (temperature: 25 ° C ± 0.5 ° C, solvent: butyl carbitol, resin component (solid content) concentration: 40 mass %) The measured dynamic viscosity is, for example, 0.22×10·4 to 2·00χ10·4 m 2 /s, preferably 0.3χ 1〇*4 to i.9χ 1〇_4 1112/3, and further preferably 0.4\ 1〇-4~1.8><1〇-41112/3» Further, the above dynamic viscosity may be set to, for example, 0.22x10·4 to 1·0〇χ1 〇·4 m2/s, preferably 〇.3><1〇4~〇.9><1〇41112/8' is further preferably 〇.4\1〇-4~〇.8><1〇-4 m2/s When the dynamic viscosity of the resin component exceeds the above range, the thermal conductivity layer 6 may not be provided with excellent flexibility and step followability (described later). When the dynamic viscosity of the component is less than the above range, the boron nitride particles may not be aligned in a specific direction. In addition, in the dynamic viscosity test according to JIS K 7233 (bubble viscometer method), the rising speed of the bubble in the resin component sample is compared with the rising speed of the bubble in the standard sample (known dynamic viscosity), and the rise is judged. The dynamic viscosity of the standard sample of the same speed is the dynamic viscosity of the resin component, thereby determining the dynamic viscosity of the resin component. Further, in the thermally conductive layer 6, the volume ratio of the boron nitride particles is based on the solid content component, that is, the volume fraction of the boron nitride particles relative to the total volume of the resin component and the boron nitride particles, for example, 35% by volume. Above, it is preferably 60 volumes. Above, it is preferably 65 ❶/. The above is usually, for example, % by volume or less, preferably 90% by volume or less. The content ratio of the volume reference of the nitriding shed particles is less than the above range. 153633.doc 12 8 201139641 When the shape is formed, the boron nitride particles may not be aligned in the thermal conductive layer 6 in the special direction. On the other hand, when the content ratio of the volume basis of the boron nitride particles exceeds the above range, the thermally conductive layer 6 may become brittle and the workability may deteriorate. Further, the total amount of the nitriding butterfly particles with respect to the respective components (nitride 'particles and resin components) forming the thermally conductive layer 6 (the total ratio of the solid content component to the mass basis of the mass fraction is, for example, 4 〇 to 95 The blending ratio of the mass fraction, preferably 65 to 9 Å by mass, based on the mass basis of 100 parts by mass of the total amount of the components of the thermally conductive layer 6 is, for example, 5 to 6 parts by mass, preferably 10 parts by mass. Further, the blending ratio of the boron nitride particles to the mass basis of the resin component is, for example, 6 〇 to 19 〇〇 parts by mass, preferably 185 to 900 parts by mass. When two types of epoxy resins (the second epoxy resin and the second epoxy resin) are used in combination, the mass ratio of the first epoxy resin to the second epoxy resin (the mass of the first epoxy resin / the second The mass of the epoxy resin can be appropriately set according to the softening temperature of each epoxy resin (the first epoxy resin and the second epoxy resin), and is, for example, 1/99 to 99/1, preferably 1 〇/ 9〇~9〇/1〇β Further, in addition to the above components (polymer), the resin component If it also contains a polymer precursor (for example, a low molecular weight polymer containing an oligomer, etc.) and/or a monomer. Α Next, a method of forming the thermal conductive layer 6 will be described. In this method, the above formulation is first performed. The above components are blended in proportion and stirred to prepare a mixture. In the mixing and mixing, the components are mixed with high efficiency, for example, the solvent 153633.doc -13 - 201139641 may be blended together with the above components, or for example The resin component (preferably a thermoplastic resin component) can be melted by heating. Examples of the solvent include the same organic solvents as described above. Further, the above-mentioned curing agent and/or curing accelerator are prepared as a solvent solution and/or Or when the solvent dispersion is used for the clearing, the solvent may be supplied to the solvent solution and/or the solvent dispersion directly in the form of a mixed solvent for stirring and mixing, without adding a solvent, or may be stirred and mixed. When the solvent is mixed and stirred, the solvent is removed after stirring and mixing. For example, it is placed at room temperature for 48 hours, for example, at 40 to 10 ° C for 0.5 to 3 hours, or for example, at a temperature of 0 to 001 ° C to 50 kPa, at a temperature of 0 to 60 ° C for 0.5 to 3 In the case where the resin component is melted by heating, the heating temperature is, for example, near or above the softening temperature of the tree, and specifically, t is 40 to 150 ° C, preferably 70 to 140. °C » Next, the mixture obtained by hot pressing in this method. Specifically, as shown in FIG. 2(a), the mixture is hot-pressed, for example, via two release films 12, thereby obtaining a pressed tablet. The material 6A. The temperature for the hot pressing is, for example, 50 to 150 ° C, preferably 60 to 140. (: The pressure is, for example, 1 to 100 MPa, preferably 5 to 50 MPa, and the time is, for example, (uqoo minutes). , preferably 1 to 30 minutes. Further preferably, it is a vacuum hot press mixture. The degree of vacuum during vacuum hot pressing is, for example, 1 to 100 Pa, preferably 5 to 50 Pa, and the temperature 'pressure and time are the same as those of the above-mentioned heat 153633.doc 8 201139641. When the temperature, pressure, and/or time at the time of hot pressing are outside the above range, the void ratio p (described later) of the thermally conductive layer may not be adjusted to a desired value. The thickness of the pressed sheet 6 obtained by hot pressing is, for example, 50 to 10 (9) μηη', preferably 1 to 800 μm. Next, in this method, as shown in Fig. 2(b), the pressed sheet 6α is divided into a plurality of (for example, four) sheets to obtain a divided sheet 6 (dividing step). When the pressed sheet 6 is cut, the pressed sheet 6Α is cut in the thickness direction thereof so as to be divided into a plurality of pieces when projected in the thickness direction. Further, the pressed sheet 6 is cut so that each of the divided sheets has the same shape when projected in the thickness direction. Next, in this method, as shown in Fig. 2(c), each of the divided sheets is laminated in the thickness direction to obtain a laminated sheet 6C (layering step). Thereafter, in this method, as shown in Fig. 2 (4), the laminated sheet 6c is hot-rolled (preferably vacuum hot pressing) (hot pressing step). The conditions of hot pressing are the same as those of the above mixture. ^ The thickness of the laminated sheet 6C after hot pressing is, for example,! Below mm, it is preferably 0.8 mm or less, and is usually, for example, 〇〇5 or more, preferably 〇". Then, as shown in FIG. 3, the above-described dividing step (Fig. 2(b)) and the manufacturing steps are repeatedly performed in order to effectively align the nitrided permeable particles 8 in the heat conductive layer 6 in the resin component 9 in a specific direction. (Fig. 2(c)) and the step of hot pressing (Fig. 2(a)). The number of repetitions is not particularly limited, and may be appropriately set according to the filling state of the boron particles of 153633.doc -15·201139641, and is, for example, 丨1 to 1〇, preferably 2 to 7 times. Further, in the hot pressing step (Fig. 2 (a)), for example, the mixture and the laminated sheet 6C may be rolled by a plurality of rolls or the like. Thereby, the thermally conductive layered stone shown in FIGS. 3 and 4 can be formed. The thickness of the thermally conductive layer 6 to be formed is, for example, 丨mm or less, preferably 0.8 mm or less, and is usually, for example, 〇.〇5 mm or more, preferably 〇1 mm or more. Further, the content ratio of the volume of the boron nitride particles 8 in the heat conductive layer 6 (the solid content component, that is, the volume fraction of the total volume of the boron nitride particles 8 with respect to the resin component 9 and the boron nitride particles 8) is as described above. For example, it is 35 volume% or more (preferably 60 volume% or more, further preferably 75 volume% or more), and is usually 95% by volume or less (preferably 90% by volume or less). When the content ratio of the boron nitride particles 8 is less than the above range, the boron nitride particles 8 may not be aligned in a specific direction in the thermally conductive layer 6 in some cases. Further, when the resin component 9 is a thermosetting resin component, the above-described dividing step (Fig. 2(b)), the laminating step (Fig. 2(c)), and the hot pressing step (Fig. 2) are repeatedly performed in an uncured state. A series of steps of 2(a)) directly obtains the thermally conductive layer 6 in an uncured state. Further, the thermally conductive layer 6 in an uncured state is thermally cured while being thermally conductive to the electronic component 3 and the substrate 2 of the sheet 5. Further, in the heat conductive layer 6 thus formed, as shown in FIG. 3 and a partial enlarged mode diagram thereof, the longitudinal direction LD of the boron nitride particles 8 is along the thickness direction TD of the thermally conductive layer 6 (orthogonal ) The direction of the face 8] 〇 alignment. 153633.doc •16·201139641 The arithmetic mean of the angle formed by the longitudinal direction ld of the boron nitride particles 8 and the surface direction SD of the thermally conductive layer 6 (the alignment angle of the boron nitride particles 8 with respect to the thermally conductive layer 6) α) is, for example, 25 degrees or less, preferably 2 degrees or less, and usually 0 degrees or more. Further, the alignment angle α of the boron nitride particles 8 with respect to the thermally conductive layer 6 is different by the following method. The thermally conductive layer 6 is cut by a cross-section polisher in the thickness direction so that 2〇〇 can be observed. The cross-sectional magnification of the boron nitride particles 8 or more is imaged by a scanning electron microscope (SEM), and the long-side direction LD of the boron nitride particles 8 is obtained from the SEM photograph obtained with respect to thermal conductivity. The inclination angle of the plane direction SD of the layer 6 (the direction orthogonal to the thickness direction TD) is calculated as an average value. Thereby, the thermal conductivity of the thermal conductive layer 6 in the plane direction SD is 4 w/mK or more, preferably 5 W/mK or more, more preferably 10 w/mK or more, and still more preferably 15 W/mK or more. Preferably, it is 25 w/mK or more, and is usually 2 〇〇W/m*K or less. Further, when the thermal conductivity of the surface direction SD of the thermally conductive layer 6 is a thermosetting resin component, the resin component 9 is substantially the same before and after the thermosetting. When the thermal conductivity of the surface direction SD of the thermally conductive layer 6 is less than the above range, the thermal conductivity in the plane direction SD is insufficient, and thus it may not be used for a heat release application requiring thermal conductivity in the surface direction SD. Further, the thermal conductivity of the surface direction SD of the thermally conductive layer 6 is measured by a pulse heating method. In the pulse heating method, a xenon flash thermal conductivity analyzer "LFA-447 type" (manufactured by NETZSCH Co., Ltd.) was used. 153633.doc 17 201139641 Further, the thermal conductivity of the thickness direction TD of the thermally conductive layer 6 is, for example, 0 '5 to 15 W/m.K, preferably 1 to 1 〇 w/m.K. Further, the thermal conductivity of the thickness direction TD of the thermal conductive layer 6 is measured by a pulse heating method, a laser flash method or a TWA (Temperature Wave Analysis) method. In the pulse heating method, the same method as the above is used. In the laser flash method, r TC_9 〇〇〇 is used. (ULVA (manufactured by Polytechnic Co., Ltd.) TWA method uses "ai_phase mobile" (manufactured by ai-Phase Co., Ltd.). Here, the ratio of the thermal conductivity of the thermal conductive layer 6 in the surface direction SD to the thermal conductivity of the thermal conductive layer 6 in the thickness direction td (thermal conductivity in the plane direction sd / thermal conductivity in the thickness direction TD) is, for example, 丨.5 or more. It is preferably 3 or more and further preferably 4 or more, and usually 2 or less. Further, although not shown in Fig. 3, voids (gap) are formed in the thermally conductive layer 6, for example, voids in the thermally conductive layer 6. The ratio, that is, the void ratio p, can be obtained by the ratio of the boron nitride particles 8 (volume basis), and further by the hot pressing of the mixture of the boron nitride particles 8 and the resin component 9 (Fig. 2(a)). The pressure, and/or the time are adjusted. Specifically, the temperature, pressure, and/or time of the hot pressing (Fig. 2(a)) can be adjusted within the above range. The void ratio p is, for example, 3 vol% or less, preferably 10 The void ratio p is measured by, for example, the following method: First, the heat conductive layer 6 is cut in the thickness direction by a cross-section polisher (CP), and observed by a scanning electron microscope (SEM) at 200 times. The obtained section 153633.doc 201139641 surface 'obtains an image, binarizes the void portion and the other portions from the obtained image, and secondly, calculates the sectional area of the void portion with respect to the entire thermal conductive layer 6 In addition, in the heat conductive layer 6, the void ratio P2 after hardening is, for example, less than 100% with respect to the void ratio P1 before curing. Specifically, it is preferably 5% or less. In the void ratio P (P) In the case of the measurement, in the case where the resin component 9 is a thermosetting resin component, the thermal conductivity layer 6 before thermal curing is used. When the porosity P of the thermal conductive layer 6 is within the above range, thermal conductivity can be improved. The step followability of the layer 6 (described later). In the case of the thermal conductivity layer 6, in the bending resistance test according to the cylindrical mandrel method according to JIS K 5600-5-1, when evaluated under the following test conditions, Preferred Fracture was observed. Test conditions Test apparatus: Type I mandrel: Diameter 1 〇 mm Bending angle: 90 degrees or more Thermal Conductive Layer 6 Thickness: 〇.3 mm Further, a three-dimensional diagram of the Type I test device is shown in Figure 1. In the following, a type I test apparatus will be described. In Fig. 10 and Fig. 11, the [type test apparatus 90 includes a second flat plate 91 and a second flat plate 92 arranged in parallel with the first flat plate 9i. A mandrel (rotating shaft) 93 provided with the flat plate and the second plate 92 relatively rotated. 'One of the first flat plates 91 is formed in a rectangular flat plate shape. The other end is 153633.doc •19·201139641 End (active end) A stop portion 94 is provided on the portion). The stopper portion 94 is formed on the surface of the second flat plate 92 so as to extend along one end portion of the second flat plate 92. The second flat plate 92 is formed in a substantially rectangular flat shape, and has one side of the first flat plate 91 and one side of the first flat plate 91 (one end portion (base end portion) on the side opposite to the end portion on which one end of the stopper portion 94 is provided). ) Adjacent connection configuration. The mandrel 93 is formed to extend along the J side of the adjacent first plate 91 and the second plate. As shown in Fig. 10, the test device 9 is placed before the start of the bending resistance test. The surface of the first flat plate 91 and the surface of the second flat plate 92 are formed into a single plane. Further, in order to carry out the bending resistance test, the thermally conductive layer 6 is placed on the surface of the first flat plate 91 and the surface of the second flat plate 92. The heat conductive layer 6 is placed such that one side thereof abuts against the stopper portion 94. Next, as shown in Fig. 11, the i-th plate 91 and the second plate 92 are relatively rotated. The movable end of the first flat blade and the movable end of the second flat plate 92 are rotated at a specific angle around the mandrel 93. Specifically, the first flat plate 91 and the second flat plate 92 are moved by each other. The surface of the end portion is rotated in the manner of approaching (opposing). Thereby, the surface of the thermally conductive layer 6 follows the rotation of the j-th plate 91 and the second plate %, and is bent around the mandrel 93. Further preferably In the above test conditions for the thermally conductive layer 6, even if the bending angle was set to 180 degrees, no fracture was observed. In the case where the m component 9 is a thermosetting resin component, the heat conductive layer 6 for the f-flexibility test is a semi-hardened (10) segment heat transfer 153633.doc -20- 5 201139641 layer 6. In the resistance test in the angle resistance, when the thermal conductive layer 6 is observed to be broken, the thermal conductive layer 6 may not be provided with excellent softness. Further, the thermal conductive layer 6 is in accordance with JIS κ 7171 (2〇). 〇8 years) In the three-point bend ' _ test, when the evaluation is performed under the following test conditions, for example, no fracture is observed. Test conditions Test piece: size 20 mm x 15 mm Distance between fulcrums: 5 mm Test speed: 20 mm / min (pressure Pressing speed) Bending angle: 120 degrees Evaluation method: Visually observing the crack at the center of the test piece at the time of the test under the above test conditions, etc. Further, the resin component 3 is a thermosetting resin component in the three-point f-curve test. In this case, the thermal conductive layer 6 before thermal curing is used. Therefore, the thermal conductive layer 6 is not observed to be broken in the three-point bending test described above, and therefore has excellent step followability. By the way, when the thermal conductive layer 6 is placed on a stepped object (for example, the substrate 2 or the like), it is closely adhered along the step (for example, a step formed by the electronic component 3). In addition, the thermal conductive layer 6 can be attached with a mark such as a character or a mark. The thermal conductive layer 6 has excellent mark adhesion. The mark adhesion means that the mark is reliably adhered to the heat conductive layer. Characteristics of 6. 153633.doc -21 - 201139641 Specifically, the s 'mark can be attached to the thermally conductive layer 6 by printing or engraving (coating, fixing or fixing). Examples of the printing include ink jet printing, letterpress printing, gravure printing, and laser printing. Further, when printing a mark by inkjet printing, letterpress printing or gravure printing, for example, an ink fixing layer for improving the fixing property of the marking can be provided on the surface of the thermal conductive layer 6 (printing side surface, upper surface) The surface, the surface opposite to the side of the adhesive layer 7). Further, in the case of printing a mark by laser printing, for example, a toner fixing layer for improving the fixing property of the mark can be provided on the surface of the heat conductive layer 6 (printing side surface, upper surface, and subsequent • the surface on the opposite side of the adhesive layer 7). As the engraving, for example, laser marking, engraving, and the like can be cited. Further, the thermally conductive layer 6 has insulating properties and adhesion (micro-adhesiveness). Specifically, the volume resistance (JIS K 6271) of the thermal conductive layer 6 is, for example, ΐχΐ〇α n.cm or more, preferably 丨><1〇丨2 n.cm or more, usually 1 X 1020 Q'cm or less. The volume resistance R of the thermally conductive layer 6 was measured in accordance with jis κ 6911 (General Test Method for Thermosetting Plastics, 2006 Edition). When the volume resistance R of the thermally conductive layer 6 is less than the above range, the short circuit between the electronic components described below may not be prevented. Further, in the case where the resin component 9 is a thermosetting resin component in the thermally conductive layer 6 The volume resistance R is the value of the thermally conductive layer 6 after hardening. Further, in the initial adhesion test (丨) of the thermal conductive layer 6, for example, -22·153633.doc 5 201139641 does not fall off from the adherend, that is, maintains the temporarily fixed state of the thermally conductive layer 6 and the adhered body. . Initial initial force test (1): The heat conductive layer 6 is heated and fixed to the bonded body along the horizontal direction to be temporarily fixed, and after being left for 1 minute, the adherend is inverted upside down. As the adherend, for example, a substrate 2 of an upper material component or the like can be mentioned. The pressure contact, for example, the surface of the heat conductive layer 6 is pressed against the surface of the thermally conductive layer 6 by pressing a sponge roll containing a resin such as a polyoxygen resin. Further, the temperature at the time of thermocompression bonding is 8 〇 ° C when the resin component 9 is a thermosetting resin component (for example, an epoxy resin). On the other hand, when the temperature of the heat-bonding is such that the resin component 9 is a thermoplastic resin component (for example, polyethylene), for example, a temperature of 10 to 3 (TC) is preferably added to the softening point or melting point of the thermoplastic resin component. In order to add a temperature of 15 to 25 t to the softening point or melting point of the thermoplastic resin component, it is further preferred to add 2 to the softening point or melting point of the thermoplastic resin component. <1: The temperature, specifically 120. (: (ie, the softening point or melting point of the thermoplastic resin component is 10 0 C, and the temperature of 2 〇 ° C is added to the 100 ° C.) / Conductive layer 6 is self-adhered in the above initial adhesion test (1) When the contact is detached, that is, when the thermally conductive layer 6 and the adherend are temporarily held, the thermally conductive layer 6 may not be reliably temporarily fixed to the adherend. When the component 9 is a thermosetting resin component, the thermal conductive layer 6 for the initial adhesion test (1) and the initial adhesion test (2) (described later) is the uncured heat conductive layer 6 by the initial adhesion force. Test and initial 153633.doc •23·201139641 The thermal conductive layer 6 is in the B-stage state by the heating and pressure bonding in the adhesion test (2). When the resin component 9 is a thermoplastic resin component, it is initially provided. The heat conductive layer 6 of the force test (1) and the initial adhesion test (2) (described later) is a solid heat conductive layer 6, which is heated by the initial adhesion test (1) and the initial adhesion test (2). The heat conductive layer 6 is softened by pressure bonding. The preferred thermal conductive layer 6 does not fall off from the adherend in both the initial adhesion test (1) and the initial adhesion test (2). That is, the heat conductive layer 6 and the adherend are temporarily held. Fixed state. Initial adhesion test (2): heat-bonding the thermal conductive layer 6 to the bonded body in the horizontal direction and temporarily fixing it, and placing it for 1 minute, in the vertical direction (up and down direction) The adhesive body is disposed in the manner of the initial adhesion test (2) under the heating and pressure bonding, and the temperature under the heating and pressure bonding of the above initial adhesion test (1) is the same as shown in Fig. 4. The layer 7 is formed on the back surface of the thermally conductive layer 6. Specifically, as shown in Fig. 1, the adhesive layer 7 is formed on the lower surface of the thermally conductive layer 6 opposed to the substrate 2 exposed from the electronic component 3. The adhesive layer 7 has flexibility and adhesion or adhesion (viscosity) in a normal temperature environment and a heating environment, and may include an adhesive for bonding by heating or heating, or may exhibit a sticky effect (adhesive effect). 'that is, the pressure is then Examples of the adhesive include a thermosetting (tetra) adhesive, a (four) type agent, etc. 臓.doc , 24.8 201139641 The thermosetting adhesive is thermally cured and cured by heating, thereby being followed by In the substrate 2, examples of the thermosetting adhesive include an epoxy-based thermosetting adhesive, an amine-based thermosetting adhesive, and an acrylic-based thermosetting adhesive. Oxygen-based thermosetting adhesive. The curing temperature of the thermosetting adhesive is, for example, 1 〇〇 to 2 〇〇〇 c. The hot-melt adhesive is melted or softened by heating, and is thermally fused to the substrate 2 by Thereafter, it is cooled and solidified, and then adhered to the substrate 2. Examples of the hot-melt type adhesives include a rubber-based hot-melt type adhesive, a polyester-based hot-melt type adhesive, and a rare hydrocarbon type ship-type adhesive. Preferably, a rubber-based or hot-melt type adhesive is used. The softening temperature (ring and ball method) of the hot-melt type adhesive is, for example, 1 〇〇 to 2 〇〇1. Further, the melting point of the 'hot-melt type adhesive' is 18 (rc, for example, 1 〇〇 to 30,000 mPa-s 〇 and the above-mentioned adhesive may contain thermally conductive particles as needed. For example, the thermally conductive particles may be mentioned. The thermally conductive inorganic particles and the like are preferably thermally conductive inorganic particles. Examples of the thermally conductive inorganic particles include nitride side particles, nitride particles, nitride particles, and nitrogen. Nitride particles such as gallium particles, for example, hydroxide particles such as hydroxide particles or hydroxide particles, such as oxidized oxide particles, oxidized particles, titanium oxide particles, zinc oxide particles, tin oxide particles, copper oxide particles, For example, oxide particles such as nickel oxide particles, for example, carbide particles such as carbonaceous particles, such as carbonate particles such as carbonated particles, and metallate particles such as titanate particles such as barium titanate particles and titanate particles, for example, Copper particles, silver particles, gold particles, recorded particles, chain particles, 153633.doc -25- 201139641 In the case of metal particles such as white particles, etc., such thermally conductive particles can be single The shape of the thermally conductive particles may be, for example, a block shape, a needle shape, a plate shape, a layer shape, a sheet shape, etc. The average particle diameter (maximum length) of the heat conductive particles is, for example, Further, the thermally conductive particles have, for example, anisotropic thermal conductivity or isothermal thermal conductivity, and preferably have isotropic thermal conductivity. The thermal conductivity of the thermally conductive particles is, for example, 1 w/mK or more. It is preferably 2 W/m K or more, more preferably 3 w/mK or more, and is usually just 〇W/m*K or less. The proportion of the thermally conductive particles is 100 parts by mass relative to the resin component of the adhesive agent. 19 parts by mass or less, preferably _f parts or less. ''', the volume ratio of the conductive particles is 95% by volume or less, preferably 90% by volume or less. W is difficult, heat conduction is heat conduction The thermal particles are formulated into a thermal conductive adhesive by, for example, preparing a thermal conductive adhesive for the thermal conductive adhesive, for example, by adding the adhesive to the adhesive in the above-mentioned blending ratio, and stirring and mixing. Ggi w/mK or more, often less than 100 W/mK. As a point of application 'for example, it can be used from acrylic adhesives, polyoxymethylene adhesives, rubber (four) agents, vinyl bases (four) (four) agents, polyester Adhesives, polyamine-based adhesives, amine vinegar-based plaque-based makeup Q 曰糸 adhesives, styrene-diene-based copolymer adhesives, and other known adhesives are placed in the lm" cats! Appropriately selected. Adhesives may be used alone or in combination of two or more. 1 Dismounting agent, preferably I53633.doc 5 -26- 201139641 Acrylic adhesive, polyoxygenated adhesive, rubber adhesive Further, the agent is preferably an acrylic pressure-sensitive adhesive or a polyoxygen-based pressure-sensitive adhesive. The heat conductive particles may be contained in the same ratio as described above in the adhesive, and the adhesive may be prepared as a thermal conductive dot. The thermal conductivity of the thermally conductive adhesive is the same as described above. Next, the thickness T of the adhesive layer 7 is, for example, 50 or less, preferably 25 μm or less, more preferably 15 μm or less, and usually i μm or more. When the thickness τ of the adhesive layer 7 exceeds the above range, the heat generated from the electronic component 3 may not be thermally transferred from the thermal conductive layer 6 to the frame 4 via the adhesive layer 7. Further, in order to obtain the thermal conductive adhesive sheet 5, as described above with reference to Fig. 4, the thermal conductive layer 6 is first prepared, and then the adhesive layer is laminated on the back surface of the thermally conductive layer 6. Specifically, by making the above A varnish is prepared by dissolving the solvent in a lyotropic hardening adhesive or an adhesive, and the surface of the blade is then dried by atmospheric drying or vacuum (reduced pressure) to remove the organic solvent of the varnish. Further, the solid content of the varnish is, for example, 10 to 90% by mass. Thereafter, the adhesive layer 7 is bonded to the thermally conductive layer 6. When the adhesive layer 7 and the thermally conductive layer 6 are bonded to each other, they are connected or thermally connected as needed. A method of manufacturing the heat radiating structure 1 will be described with reference to Fig. 5 . First, in this method, as shown in FIG. 5, the substrate 2 of the electronic component 3 is fixedly mounted on the casing (not shown) of the support frame 4, and the heat transfer is prepared 353633.doc -27- 201139641 Conductive followed by sheet 5. Further, the conductive sheet 5 is opened outward, and the heat-transferred sheet 5 is cut into a medium by h β *: the thermal conductivity is not overlapped with the substrate 2 and the one end portion is The substrate 2 is overlapped and the other end is second. In this method, as shown in FIG. 5, the thermal plant is connected to the electronic component 3 and the substrate 2 and the frame 4/', and the (4) connector sheet 5 is thermally conductive and then the sheet 5 is The central portion and -_: the electronic component 3 and the substrate 2 thermally connect the thermal conductivity to the other end of the sheet $ to the frame 4. In detail, in the first place, as shown by the imaginary line in Fig. 5, =:; 2: Next, the central portion and the - end portion of the layer 7 are arranged opposite to each other, and the thermal conductive film is placed. The other end of the material is as follows. As shown by the arrow with reference to FIG. 5, the central portion and the end portion of the thermal conductive adhesive sheet 5 are brought into contact with the electronic component 3 and the substrate 2, and the thermal conductivity is followed by the other end of the sheet 5. Then, the surface is bonded to the substrate 5, and the central portion and the one end portion of the thermal conductive adhesive sheet 5 are pressed against the substrate 2 (as desired, that is, thermally ground), and the thermal conductivity is continued to the sheet. The other end of the 5 is crimped toward the frame 4 (pressing, that is, thermocompression bonding). The pressure bonding is performed, for example, by pressing a sponge roll containing a resin such as polyoxymethylene resin to the heat conductive adhesive sheet 5, and rolling the surface on the surface of the heat conductive adhesive sheet $ (the upper surface of the heat conductive layer 6). The heating temperature is, for example, 40 to 120. (: 153633.doc 8 •28· 201139641 In this thermocompression bonding, since the softness of the adhesive layer 7 is improved from the plate 2 = as shown in Fig. 1, the surface of the earth plate is as follows ( The upper surface is protruded to the front side (upper side). The part 3 is pierced and the adhesive layer 7 is adhered, and the surface (upper surface) of the electronic component 3 contacts the back (table) of the thermally conductive layer 6. Further, between the circumference/form of the electronic component 3 For example, the resistor 23 and the substrate 2 are then filled with the adhesive layer 7. Push and ^m _ Π ^) 14^ _ ', for connecting the electronic component 3 (specifically, K: the wafer 20 and the resistor 23) The adhesive layer 7 is wound around the terminal and/or the electric wire 15 (not shown) of the substrate 2. In detail, Tian Tian 5, the upper surface of the electronic component 3 and the upper layer 6 are covered. Another: aspect +, the lower part of the side of the electronic component 3 is covered by the electronic component 3 and then covered (adhesive layer 7). More specifically, in the case of the thermal I connection, when the resin component 9 is a thermosetting resin component, since the resin component 9 is in a three-stage state, the crucible conductive layer 6 is adhered to the substrate 2 exposed from the electronic component 3 Surface (upper surface). Further, when the thickness of the electronic component 3 is thicker than the thickness of the adhesive layer 7, the upper portion of the electronic component 3 enters the thermally conductive layer 6 from the back surface of the thermal conductive layer 6 toward the inside. Further, when the adhesive is (4) type (4), then the adhesive layer 7 is (4) softened by the above-mentioned thermocompression bonding, and then the adhesive layer is bonded. The central portion and the one end portion are thermally fused on the surface of the substrate 2 and the side surface of the electronic component 3, and the other end portion of the adhesive layer 7 is thermally fused to the inner surface of the frame *. In the case where the adhesive is a thermosetting adhesive, the adhesive layer 7 is in a B-stage state by the above-described thermocompression bonding, and then the central portion of the adhesive layer is 153633.doc • 29-201139641 and one end portion is temporarily fixed to The upper surface of the substrate 2 and the side of the electronic component 3, and then the other end of the adhesive layer 7 is temporarily fixed to the inner surface of the frame 4. In the case where the resin component 9 is a thermosetting resin component, the thermally conductive layer 6 is thermally cured, and when the adhesive is a thermosetting adhesive, the adhesive layer 7 is thermally cured. In order to thermally cure the thermally conductive layer 6 and the adhesive layer 7, for example, the frame 4, the substrate 2, and the electronic component 3, to which the heat conductive adhesive sheet 5 is temporarily fixed, are placed in a dryer. The heat curing condition is such that the heating temperature is, for example, 100 to 250 C', preferably 120 to 200 ° C. The heating time is, for example, 1 Torr to 2 Torr minutes, preferably 60 to 150 minutes. Thereby, the central portion and one end portion of the thermally conductive adhesive sheet #5 are attached to the electronic component 3 and the substrate 2', and the other end portion of the thermal conductive subsequent sheet 5 is followed by the frame 4. Further, in the heat radiating structure 4, since the electrons are covered by the heat conductive adhesive sheet 5, the heat generated from the electronic component 3 can be thermally conducted from the upper surface and the side surface of the electronic component 3 to the heat conductive adhesive sheet 5. Further, the heat self-heating conductivity of the sheet 5 can be thermally conducted to the frame 44 and discharged to the outside. Therefore, the heat generated from the electronic component 3 can be efficiently released by the heat conductive material 5 and the frame 4. Further, by providing the heat conductive adhesive sheet 5 with the simple and excellent workability of covering the electrons on the substrate 2, the heat generated by the work is released. 7 Self-Electrical Parts 3 FIG. 6 is a side view showing another embodiment of the heat radiating structure of the present invention (thermal conductivity 153633.doc -30·201139641, and then the sheet includes a thermally conductive layer), and FIG. 7 shows FIG. 8 is a cross-sectional view showing another embodiment of the heat radiating structure of the present invention (the end portion of the thermally conductive squeezing sheet # is in contact with the casing), and FIG. 9 is a view showing the steps of the heat radiating structure of FIG. A cross-sectional view of another embodiment of the exothermic structure of the invention (following the state in which the adhesive layer contacts the upper surface of the electronic component). In the following drawings, the same reference numerals are given to the components corresponding to the above-described respective portions, and the detailed description thereof will be omitted. In the above description, the thermal conductive adhesive sheet 5 is provided with an adhesive layer 7, for example, as shown in Fig. 6, and the adhesive layer 7 is not provided, and the thermal conductive layer 6 is formed to form a thermal conductive adhesive sheet. 5. In FIG. 6, the side of the electronic component 3 is in contact with the thermally conductive layer 6. More specifically, all of the upper surface of the substrate 2 exposed from the electronic component 3 and the side surface of the electronic component 3 are in contact with the thermally conductive layer 6. In order to obtain the heat radiating structure i, as shown in Fig. 7, the substrate 2 on which the electronic component 3 is mounted is fixed to a casing (not shown) of the support frame 4, and a thermal guide t is prepared to follow the sheet 5. The heat conductive adhesive sheet 5 includes a thermally conductive layer, and the imaginary line of the human 16 is shown in Fig. 7. The thermal conductivity is continued by the sheet $bending. Next, referring to the arrow 'of Fig. 7, the thermal conductivity is followed by the central portion of the sheet 5. The electronic component 3 and the substrate 2 are crimped, and the other end of the thermally conductive material 5 is thermocompression-bonded to the frame 4. In the case of the thermocompression bonding of the sheet 5, when the resin component 9 is a thermosetting resin component, since the resin component 9 is in the B-stage state, the surrounding area of the electronic component 3 is 153633.doc -31 · 201139641 The gap 14 formed is filled by the thermally conductive layer 6. Thereby, the thermal conductivity subsequent sheet 5 is temporarily fixed to the substrate 2 and the frame 4. Thereafter, when the resin component 9 is a thermosetting resin component, the thermally conductive layer 6 is thermally cured. Thereby, the central portion and one end portion of the thermal conductive layer 6 are followed by the upper surface and the side surface of the electronic component 3, and the upper surface of the substrate 2 exposed from the electronic component 3, and the other end of the thermal conductive layer 6 is followed by the frame 4. On the right side. In the heat radiation structure 1, the heat conductive layer 6 directly contacts the surface of the electronic component 3 and the right side surface of the frame 4. Therefore, the heat radiating structure 图 of Fig. 6 can more effectively release the heat generated from the electronic component 3 through the heat conductive layer 6 than the heat radiating structure 1 of Fig. i. On the other hand, in the heat radiating structure body of Fig. 1, since the heat conductive layer 6 is adhered to the substrate 2 and the frame 4 by the adhesion layer 7, it is more reliable than the heat releasing structure 1 of Fig. 6 The ground subsequently follows the thermal conductivity of the sheet 5, and exhibits excellent exothermicity for a long period of time. In the above description of Fig. 1 and Fig. 2, the frame 4' is exemplified as the heat radiating member in the present invention, but the heat radiating member is not limited thereto. For example, the case 10 (Fig. 8) and the heat sink may be exemplified. (not shown), reinforcing beam (not shown), etc. In Fig. 8, the casing 10 is formed in a bottomed box shape in which the upper side is open, and integrally includes a bottom wall 13 and a side wall 11 extending upward from the peripheral end portion thereof. The side wall 丨丨 is disposed around the substrate 2, and the bottom wall 13 is disposed on the lower side of the substrate 2. The case 1 is formed of a metal such as aluminum, non-mineral steel, copper or iron. 153633.doc •32· 5 201139641 Further, from the central portion of the thermal conductivity-conducting sheet 5, the end portion thereof is bent downward from one end edge of the substrate 2, and the thermal conductivity is followed by the other end of the sheet 5 at the frame 4. The right side (inner side) is arranged to extend downward. The other end of the heat-conductive adhesive sheet #5 contacts the lower surface of the right side surface of the frame 4 (specifically, the vicinity of the connection portion between the side wall 11 and the bottom wall 13). Further, in the above description, the adhesive layer 7 is laminated on one surface (back surface) of the thermally conductive layer 6, and for example, a thermally conductive subsequent sheet may be formed as shown by the imaginary line of the imaginary line and the imaginary line of the drawing. On both sides of the surface (the surface and the back surface, and #, in the above description, the electronic component 3 is pierced and then the adhesive layer 7 is applied, for example, as shown in FIG. Then, the adhesive layer 7 is not pierced by the electronic component 3 and covers the upper surface of the electronic component 3. Then, the adhesive layer 7 contacts the upper surface of the electronic component 3, and on the other hand, does not contact the self-electronics. The upper surface of the substrate 2 exposed by the component 3 is disposed at a distance (gap) from the upper surface of the substrate 2. The heat radiating structure 1 can also conduct heat generated from the electronic component 3 to the heat conduction via the adhesive layer 7. The heat transfer layer 6 and the heat conductive layer 6 can transport the heat to the heat radiating member 4. EXAMPLES Hereinafter, the present invention will be described more specifically by way of Preparation Examples, Examples and Production Examples, but the present invention is not limited by the examples. (thermal conductivity layer Preparation Example 1 Preparation of ΡΤ-11 〇 (trade name, plate-shaped boron nitride particles, average particle diameter (light 153633.doc -33-201139641 political injection method) 45 μιη, manufactured by Momentive Performance Materials Japan Co., Ltd.) 13.42§圯11828 (trade name, bisphenol eight type epoxy resin, first epoxy resin, liquid, epoxy equivalent 184~194 g/eqiv., softening temperature (ring and ball method) less than 25 ° C, melt viscosity ( 8〇.〇70 mPa.s, manufactured by Nippon Epoxy Co., Ltd.) 1.0 g, and ΕΡΡΝ_501ΗΥ (trade name, triphenylnonane type oxygen resin, second epoxy resin, solid, epoxy equivalent ι63~175 g/eqiv., softening temperature (global method) 57 to 63. (:, manufactured by Sakamoto Chemical Co., Ltd.) 2.0 g, hardener (Curez〇1 2p4MHz_pw (trade name, manufactured by Shikoku Chemicals Co., Ltd.) 5 mass%曱Base ethyl ketone dispersion) 3 g (solid content 〇·15 g) (relative to the total amount of jER828 and ΕρρΝ_5〇1Ηγ as epoxy resin is 5% by mass) and stirred at room temperature (23 it) Placed in the evening to volatilize methyl ethyl ketone (the dispersing medium of the hardener) to prepare a semi-solid a mixture of bulks. Further, in the above formulation, the volume fraction (volume) of the total volume of the boron nitride particles relative to the solid content of the hardener (ie, the solid content of the boron nitride particles and the epoxy resin) ❶/.) is 70% by volume. Secondly, the obtained mixture is sandwiched by two release films treated with polyfluorene, and a vacuum hot press is used in an environment of 8 (rc, 1 〇pa (vacuum environment)). The hot pressing was carried out for 2 minutes at a load of 5 tons (20 MPa) to obtain a pressed sheet having a thickness of mm (refer to Fig. 2 (a)). Then, the obtained pressed sheet # is cut so as to be divided into a plurality of pieces when projected in the thickness direction of the tantalum sheet, thereby obtaining a divided sheet (refer to FIG. 2(b)). A laminated sheet is obtained by laminating in the thickness direction (see Fig. 2(c)). 153633.doc ·34· 8 201139641 The obtained laminated sheet was hot-pressed by the same vacuum heat press as above (see Fig. 2 (sentence). Four times of the above-described cutting, laminating, and hot pressing operations (see FIG. 2) were carried out to obtain a thermally conductive layer (unhardened state) having a thickness of 〇·3 mm (see FIG. 3). Preparation Examples 2 to 16. The mixing ratio and the production conditions of Tables 1 to 3 were treated in the same manner as in Preparation Example ι to obtain a thermally conductive layer (Preparation Examples 2 to 16) (see Fig. 3). (Production of Thermal Conductivity Next Sheet) Example 1 A varnish of acrylic adhesive (solvent: ΜΕΚ, solid content concentration: 5% by mass, no-fill type) was applied to the surface of the separator in such a manner that the thickness at the time of drying became 1 〇 μηη. The adhesive layer was formed by distilling off the crucible by vacuum drying. Next, the adhesive of Preparation Example 1 was laminated on the thermally conductive layer to prepare a thermally conductive adhesive sheet (see Fig. 4). Production Examples 2 to 16 In addition to the heat of Preparation Examples 2 to 16, respectively In the same manner as in the production example, the heat conductive adhesive sheet (Production Examples 2 to 16) was obtained in the same manner as in the production example (see FIG. 4). (Preparation of the heat radiation structure) Example 1 Preparation of a flat-shaped inclusion polymer Substrate substrate, electronic components mounted on it (1C wafer with a thickness of 2 mm, a capacitor of 1 mm, a coil of 4 mm, and a resistor of 153633.doc -35-201139641 0.5 mm), and a frame (see figure) 5) Next, 'The thermal conductivity of the production example is then cut into a central portion and the one end portion overlaps the substrate, and the other end portion does not overlap the substrate. Next, 'the central portion and the end portion of the adhesive layer are The electronic component is disposed opposite to the sheet and the substrate, and then the thermal conductivity is followed by the other end of the sheet being bent upward, and thereafter, the thermal conductivity is performed using a sponge roll containing polysulfide resin. The sheet is grounded (temporarily fixed) toward the electronic component and the frame (refer to FIG. 9). Thereby, the thermal conductivity is followed by the central portion and the one end portion of the sheet are attached to the upper surface of the electronic component, and the thermal conductivity is followed by the sheet material. End In addition, a gap is formed between the central portion and the end portion of the thermal conductive subsequent sheet and the substrate from which the electronic component is exposed (see FIG. 9). Examples 2 to 16 Except for the production examples described in Table 4, respectively. (4) Thermal Conductivity Next, a heat-dissipating structure was formed in the same manner as in Example except that the sheet was replaced with the heat-conductive sheet of Production Example 1 (Examples 2 to 6). Example 1 7 In addition to thermal conductivity An exothermic structure was produced in the same manner as in Example 1 except that the adhesive layer was not provided in the production of the sheet (see Fig. 6). Examples 18 to 3 2 No adhesive was provided in the production of the heat conductive adhesive sheet. In addition to the layers, heat-producing structures (Examples 18 to 32) were produced in the same manner as in Examples 2 to 16 (see Fig. 6). 153633.doc 5 •36-201139641 (Evaluation) 1. Thermal conductivity The thermal conductivity of the thermally conductive layers of Preparation Examples 1 to 16 was measured. Namely, the thermal conductivity in the plane direction (SD) was measured by a pulse heating method using a xenon flash thermal conductivity analyzer "LFA-447 type" (manufactured by NETZSCH Co., Ltd.). The results are not in Tables 1 to 3. 2. Void ratio (P) The void ratio (P1) of the thermally conductive layer before the heat curing of Preparation Examples 1 to i6 was measured by the following method. A face-to-face polisher (CP) is used to measure the thickness of the scanning electron microvoids along the thickness: first, the profile of the thermally conductive sheet is observed by a SEM at 200 times. , get (four) like. From the obtained image, the gap portion and the other portions are subjected to binarization processing, and secondly, the area ratio of the gap portion relative to the area is calculated. ', material & sheet overall section of the elbow, the knot is shown in Table 3. Step followability (three-point bending test) For the thermal conductivity layer before the heat hardening of Preparation Examples 1 to 16, according to the fine 7^ (20^) years) The following evaluation criteria were used to evaluate the step followability of the test conditions under the test conditions. The results are shown in the table ^ test conditions 丁 in Table 丨 ~ Table 3. Test piece: size 20 mmx 15 mm Distance between fulcrums: 5 mm 153633.doc •37- 201139641 Test speed: 20 mm/min (pressure speed under the pressure) Bending angle: 120 degrees (evaluation basis) ◎: completely unobserved To the rupture. 〇: Little rupture was observed. x : A crack is clearly observed. 4. Print mark visibility (print mark adhesion, mark adhesion of inkjet printing or laser printing). Printing marks were printed on the thermally conductive layers of Preparation Examples 1 to 16 by inkjet printing and laser printing, and observed. mark. As a result, the heat conductive layers of Preparation Examples 1 to 16 were able to recognize well the marks printed by both the ink jet printing and the laser printing, and confirmed that the printed mark adhesion was good. 5. Volume resistance The volume resistance (R) of the thermally conductive layers of Preparation Examples 1 to 16 was measured. Namely, the volume resistivity (R) of the 'thermal conductive layer' was measured in accordance with JIS K 6911 (General Test Method for Thermosetting Plastics, 2006 Edition). The results are shown in Tables 1 to 3. 6. Initial adhesion test ό 1. Test for the initial adhesion force of the SET-type computer mounting substrate For the uncured heat conductive layers of Preparation Examples 1 to 16, a notebook computer having a plurality of electronic components mounted thereon was implemented. Tests (1) and (2) of the initial adhesion force of the mounting substrate were used. That is, a sponge roll containing a polyoxyxylene resin was used at 8 Torr.匸 (Preparation Examples i to 9 153633.doc _ • 3〇- 5 201139641 and Preparation Examples 11 to 16) or 12 (TC (Preparation Example 1)) heat-bonding the heat conductive layer and temporarily fixing it to the horizontal direction of the note The surface of the mounting base for the computer (on the side where the electronic components are mounted) is placed for 1 minute, and the mounting base for the notebook computer is set up in the up and down direction (initial adhesion test (7)). Next, the thermal conductive layer is pointed The mounting method for the notebook computer (initial adhesion test (1)) is provided in the lower side (that is, the method of inverting from the state immediately after the temporary solidification). Furthermore, the initial adhesion test (1) and In the initial adhesion test (2), the thermally conductive layer was evaluated in accordance with the following criteria. The results are shown in Tables to Table 3. <Base> 〇·Check that the thermal conductive layer has not come off from the mounting substrate for the notebook computer. X. Confirm that the thermal conductive layer is detached from the mounting substrate for the notebook computer. 6-2. Test of Initial Adhesion Force of Stainless Steel Substrate For the uncured heat conductive layers of Preparation Examples 1 to 16, the initial adhesion force tests (1) and (for the stainless steel substrate (manufactured by SUS304)) were carried out in the same manner as above. 2). Further, in the above initial adhesion test (1) and initial adhesion test (7), the thermal conductivity layer was evaluated in accordance with the following criteria. The results are shown in the table. Table 3 〇 <Base> 〇: It was confirmed that the thermally conductive layer did not fall off from the stainless steel substrate. x : Confirm that the thermally conductive layer is detached from the stainless steel substrate. 7. Volume resistance 153633.doc • 39·201139641 The preparations 1 to 16 were not (R). The volume resistance of the hardened thermal conductive layer, that is, the volume resistivity (R) of the thermally conductive layer was measured by 岵 岵 _ 髁 髁 髁 JIS K 0911 (General Test Method for Thermosetting Plastics, 2006 Edition). The results are not in Tables 1 to 3. 8. Heat release property The electronic components in the heat release structures of Examples 1 to 32 were operated and passed for several hours. The thermal conductivity in the operation was measured by an infrared camera and the surface temperature of the sheet was 70. (: It was confirmed that the temperature rise was suppressed. On the other hand, the substrate (the substrate in the heat release structure of Comparative Example 1) which did not use the heat conductive adhesive sheet was evaluated in the same manner, and as a result, the temperature above the electronic component was 13 (TC). Therefore, it was confirmed that the exothermic structures of Examples 1 to 32 were excellent in heat dissipation property. 153633.doc -40- 5 201139641 [Table i] Table 1 Preparation Example Average particle diameter (μπι) Preparation Example 1 Preparation Example 2 Preparation Example 3 Preparation Example 4 Preparation Example 5 Preparation Example 6 Formulation of each component Boron nitride particles / g, A / [Zhao product %] · 8 / [% by volume] ^ ΡΤ - ΙΙΟ * 1 45 13.42 po] [69] 3.83 [40] [38.8] 5.75 [50] [48.8] 12.22 [68] [66.9] 23 [80] 79.2 - UHP-1*2 9 - - - - - 12.22 [68] [66.9] Polymer thermosetting resin epoxy resin Composition Epoxy resin A»*3 (semi-solid) - 3 3 3 3 3 Epoxy resin Βκ4 (liquid) 1 - - - - - Epoxy resin C1"5 (solid) - - - - - - Epoxy resin D**6 (solid) 2 - - - - - Hardener κ7 (g-shaped component) - 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) Hardening Agent 11 (8 (round shape) G number) 3 (0.15) - - - - - Thermoplastic resin polyethylene - - - - - - Manufacturing conditions Hot pressing temperature (°c) 80 80 80 80 80 80 times (times 5 5 5 5 5 5 load ( MPa)/(ton) 20/5 20/5 20/5 20/5 20/5 20/5 Evaluation of thermal conductivity layer thermal conductivity (W/mK) Surface orientation (SD) 30 4.5 6.0 30.0 32.5 17.0 Thickness ( ( TD) 2.0 1.3 3.3 5.0 5.5 5.8 Ratio (SD/TD) 15.0 3.5 1.8 6.0 5.9 2.9 Void ratio (Zhao product%) 4 0 0 5 12 6 Step follower/3 point curve test JISK 7171 (2008) ◎ 〇 〇〇〇〇Volume resistance (Qcm) JISK 6911 (2006) 2xlOu 5.5xl0u 3.4χ1014 2.1M014 1.3^1014 1.7M014 Initial adhesion test VS notebook computer mounting substrate test (1) 〇〇〇〇〇〇 test (2 〇〇〇〇〇〇VS stainless steel substrate test (1) 〇〇〇〇〇〇 test (2) 〇〇〇〇〇〇 boron nitride particle alignment angle (8) (degrees) 12 18 18 15 13 20 g*A: Blending quality [% by volume]0: Percentage of heat conductive sheet (excluding hardener) relative to total volume [% by volume]^: Number of times of heat conductive sheet relative to total volume *D: product The number of hot pressing of the sheet - 41 - 153633.doc 201139641 [Table 2] Table 2 Preparation Example 7 Preparation Example 8 Preparation Example 9 Preparation Example 10 Preparation Example 11 Preparation Example Average Particle Diameter (μηι) Boron Nitride Particles/gA / [% by volume]^ /[«Product%re ΡΤ-ΠΟ®1 45 12.22 [68] [66.9] 12.22 [68] [66.9] 12.22 [68] [66.9] 3.83 [60] [60] 13.42 P〇] [ 69] UHP-I inlay 2 9 - - - - Epoxy AM (semi-solid) - - - - - Each epoxy resin B@4 (liquid) 1.5 3 - - - Formulated for thermal hardening Epoxy Resin C% (Solid) 1.5 - 3 - - Polymer Resin Tree Composition Epoxy Resin D®6 (Solid) - - - 3 Hardener*7 (solid content g) 3 (0.15) 3 (0.15) 3 (0.15) • 3 (0.15) Hardened 剤 fine (g content of solid content) - - - - Thermoplastic resin polyethylene - - - 1 - Manufacturing condition temperature CC) 80 80 80 120 80 Number of hot presses (times / D 5 5 5 5 5 load (MPa) / (tons) 20/5 20/5 20/5 4/1 20/5 Face orientation (SD) 30.0 30.0 30.0 20 24.5 Heat translated iW /miO Thickness direction (TD) 5.0 5.0 5.0 2.0 2.1 Ratio (SD/T D) 6.0 6.0 6.0 10.0 11.7 Void ratio ("%" 6 6 5 8 5 Step follower / 3-point distortion test JISK 7171 (2008) 〇〇 XXX Evaluation of thermal conductivity layer volume resistance (Ω cm) JISK 6911 ( 2006) 2.2χ1014 2.4x10m Ι.ΙχΙΟ'4 4.1xlOu 1.3χ1014 VS notebook computer mounting substrate test (1) 〇〇〇〇〇 initial test (2) 〇〇〇〇〇 adhesion test VS stainless steel test (1) 〇〇〇〇 〇 Substrate test (2) 配 boron nitride particle alignment angle (8) (degrees) 15 16 16 15 16 g·* : blending quality [« product: heat conductive sheet (except hardener) relative to total «product Percentage [«product "/yw: number of times of heat-conducting sheet relative to total volume π: number of heat of laminated sheets* 153633.doc -42- 5 201139641 [Table 3] Table 3 Average particle size of preparation example (μιη Preparation Example 12 Preparation Example 13 Preparation Example 14 Preparation Example 15 Preparation Example 16 Formulation of each component Boron nitride particles / gA / [volume / [% by volume] % ΡΤ -110 钔 45 3.83 [40] [37.7] 13.42 po ] [69] 13.42 [70] [69] 13.42 P〇] [69] 13.42 170] [69] UH P-1®2 9 • - - - - Polymer thermosetting resin Epoxy resin composition Cyclic resin (semi-solid) 3 3 3 3 3 Epoxy resin 妒4 (liquid) - - - - - Ring Oxygen resin C545 (solid) - - - - - Epoxy resin DM (solid) - - - - - Hardener (g solid content g) 6 (0-3) 3 (0-15) 3 (0.15 ) 3 (0.15) 3 (015) Hardening 8 (solid content g) - - - - - Thermoplastic resin polyethylene yarn - - - - - Manufacturing conditions Hot pressing temperature (°c) 80 60 70 80 80 (times) 'D 5 5 5 5 5 load (MPa) / (ton) 20/5 20/5 20/5 20/5 40/10 Evaluation of thermal conductivity layer thermal conductivity (W / mK) plane direction (SD) 4.1 10.5 11.2 32.5 50.7 Thickness direction (TD) 1.1 2.2 3.0 5.5 7.3 Ratio (SD/TD) 3.7 4.8 3.7 5.9 6.9 Void ratio (% by volume) 0 29 26 8 3 Step follower/3-point distortion test JISK 7171 (2008 ◎ ◎ ◎ ◎ 〇 Volume resistance (Ω·αη) JISK 6911(2006) 6.4xlOu 0.6xl0u Ο.δχίΟ14 2.5χ10'4 5.3>-1014 Initial adhesion test VS Stupid computer mounting substrate test (1) 〇〇 〇〇〇 test (2) 〇〇〇〇 VS stainless steel substrate test (1) 〇〇〇〇〇 test (2) 〇〇〇〇〇 boron nitride particle alignment angle (6) (degrees) 20 17 15 15 13 g*A : blending quality [sense product %1·8: heat conduction Percentage of sheet (excluding hardener) relative to total volume [% by volume]^: number of times of heat-conductive sheet relative to total volume*D: number of hot-pressed sheets of laminated sheets 43-153633.doc 201139641 [Table 4] Table 4 Heat-Producing Structure Thermal Conductivity Next Sheet Thermal Conductive Layer Adhesive Layer Example 1 Production Example 1 Preparation Example 1 Example 2 Preparation Example 2 Production Example 2 Example 3 Production Example 3 Preparation Example 3 Example 4 Production Example 4 Preparation Example 4 Example 5 Production Example 5 Preparation Example 5 Example 6 Preparation Example 6 Preparation Example 6 Example 7 Production Example 7 Preparation Example 7 Example 8 Production Example 8 Preparation Example 8 Example 9 Production Example 9 Preparation Example 9 Example 10 Production Example 10 Preparation Example 10 Example 11 Production Example 11 Preparation Example 11 Example 12 Production Example 12 Preparation Example 12 Example 13 Production Example 13 Preparation Example 13 Example 14 Production Example 14 Preparation Example 14 Example 15 Production Example 15 Preparation Example 15 Example 16 Example 16 Preparation Example 16 Example 17 Preparation Example 17 Preparation Example 1 Example 18 Production Example 18 Preparation Example 2 Example 19 Production Example 19 Preparation Example 3 Example 20 Production Example 20 Preparation Example 4 Example 21 Production Example 21 Preparation Example 5 Example 22 Preparation Example 22 Preparation Example 6 Example 23 Production Example 23 Preparation Example 7 Example 24 Production Example 24 Preparation Example 8 None Example 25 Production Example 25 Preparation Example 9 Example 26 Production Example 26 Preparation Example 10 Example 27 Production Example 27 Preparation Example 11 Example 28 Production Example 28 Preparation Example 12 Example 29 Production Example 29 Preparation Example 13 Example 30 Production Example 30 Preparation Example 14 Example 31 Production Example 31 Preparation Example 15 Example 32 Production Example 32 Preparation Example 16 153633.doc •44- 8 201139641 The values in the respective components in Tables 1 to 3 are not counted in the case of no particular description. Furthermore, in the column of boron nitride particles in Tables 1 to 3, the value of the upper stage is the mass of the nitriding side particles (g), and the value of the middle stage is the nitriding granules of the heat conductive sheet relative to the hardener. The volume fraction (% by volume) of the total volume of the solid component (ie, the solid content of the boron nitride particles and the epoxy resin or polyethylene), and the value of the lower segment indicates that the boron nitride particles are relative to the thermally conductive sheet. The volume fraction (volume./〇) of the total volume of the solid component (i.e., the solid content of the boron nitride particles and the epoxy resin and the hardener). Further, the components of the symbols * in the respective components of Tables 1 to 3 are described below. PT·lio* ·trade name, plate-shaped nitrided butterfly particles, average particle size (light scattering method) 45 μηι, manufactured by Momentive Performance Materials Japan Co., Ltd. UHP-1*2 : trade name: Sh〇BN UHP_1, plate-like Boron nitride particles, average particle size, (light scattering method) 9 μηι, manufactured by Showa Denko Co., Ltd. 8*3 : OGSOL EG (trade name), bisaryl fluorene epoxy resin, semi-solid, epoxy Equivalent 294 g/eqiv., softening temperature (ring and ball method) 47 ° C, melt viscosity (80. 〇1360 mPa.s, epoxy resin B*4 manufactured by Osaka Gas Chemical Co., Ltd.: JER828 (trade name), bisphenol A type Epoxy resin, liquid, epoxy equivalent 184~194 g/eqiv., softening temperature (ring and ball method) less than 25 ° C, melt viscosity (80 ° C) 7〇mPa's, epoxy resin manufactured by Japan Epoxy Co., Ltd. C·5 : JER1002 (trade name), bisphenol A epoxy resin, solid, epoxy equivalent 600~700 g/eqiv·, softening temperature (Universal 153633.doc -45·201139641 method) 78°C, melting Viscosity (80 ° C) 10000 mPa.s or more (above the measurement limit), Epoxy Epoxy resin company to manufacture epoxy resin 1)^6 : EPPN-501HY (trade name), triphenyldecane type epoxy resin, solid, epoxy equivalent 163~175 g/eqiv., softening temperature (ring and ball method) 57~63°C, Japan Chemicals company to manufacture hardeners*7 : Curezol 2PZ (trade name, manufactured by Shikoku Chemicals Co., Ltd.) 5 mass% mercapto ethyl ketone solution hardener ※8 : Curezol 2P4MHZ-PW (trade name, manufactured by Shikoku Kasei Co., Ltd.) 5 mass% methyl ethyl ketone dispersion polyethylene X9: low density polyethylene, weight average molecular weight (Mw) 4000, number average molecular weight (Mw) 1700, manufactured by Aldrich, the above description is based on the present invention The exemplified embodiments are provided by way of example only, and are not to be construed as limiting. Modifications of the invention that are apparent to those skilled in the art are included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an embodiment of an exothermic structure of the present invention. Fig. 2 is a view showing the steps of a method of manufacturing a thermally conductive layer. Figure 2 (a) shows the step of hot pressing a mixture or a laminated sheet. Fig. 2(b) shows the step of dividing the pressed sheet into a plurality of pieces. Fig. 2(c) shows the step of laminating the divided sheets. Figure 3 shows a perspective view of a thermally conductive layer. Fig. 4 is a cross-sectional view showing a heat conductive adhesive sheet. Fig. 5 shows a step of preparing a heat-dissipating structure for a circle 1. Fig. 153633.doc 8 - 46 - 201139641 A step of mounting a substrate on which an electronic component is mounted on a core body, and preparing a heat-conductive adhesive sheet. Fig. 6 is a cross-sectional view showing another embodiment of the heat radiating structure of the present invention (thermal conductivity, then the sheet includes a thermally conductive layer). Fig. 7 is a view showing a step of fabricating the heat releasing structure of Fig. 6, showing a substrate on which an electronic component is mounted on a housing of the supporting frame, and preparing for conducting the conductivity and then the sheet is insulted, 8 is not A cross-sectional view of another embodiment of the heat radiating structure of the invention (thermal conductivity followed by a state in which the other end of the sheet contacts the casing). Fig. 9 is a cross-sectional view showing another embodiment of the heat radiating structure of the present invention (the contact layer contacts the surface of the electronic component). Fig. 1A shows a type 1 test device for bending resistance test (bending resistance) Before the test) (The bending resistance test. Figure 11 shows the perspective of the type I test installation for the bending resistance test.) [Explanation of main component symbols] 1 Exothermic structure 2 Substrate 3 Electronic components 4 Frame 5 Thermal conductivity Sheet 6 Thermal Conductive Layer 6A Pressed Sheet 6B Segmented Sheet 153633.doc • 47 Laminate Sheet Next · Adhesive Layer Nitrile Deletion Particle Resin Component Housing Side Wall Release Film Bottom Wall Clearance Wire 1C (Integrated Circuit) Wafer Capacitor Coil resistor test device 1st plate 2nd plate mandrel (rotary axis) Stopping direction side thickness thickness direction direction direction direction angle 8 -48-

Claims (1)

201139641 七、申請專利範圍: 1. 一種放熱構造體,其特徵在於:具備 基板、 女裝於上述基板上之電子零件 生之熱放出之玫熱性構 用以使自上述電子零件產 件、及 以覆蓋上述電子零件之方式設置於上述基板上之 導性接著片材,且 …、得 上述熱傳導性接著片材具備含有板狀氮化侧粒子之轨 傳導性層, … 上述熱傳導性層之相對於上述熱傳導性層之厚度方向 正交之方向上之熱傳導率為4w/m.K以上, 上述熱傳導性接著片材接觸上述放熱性構件。 2.如明求項1之放熱構造體,其中上述熱傳導性接著片材 具備積層於上述熱傳導性層之至少一面上之接著劑層或 黏著劑層, 上述接著劑層或上述黏著劑層與上述基板接著或黏 著0 153633.doc201139641 VII. Patent application scope: 1. An exothermic structure, characterized in that: the heat-generating structure of the electronic components having the substrate and the women's clothing on the substrate is used to make the components of the electronic components and a conductive adhesive sheet provided on the substrate so as to cover the electronic component, wherein the thermal conductive adhesive sheet has a rail conductive layer containing plate-like nitride side particles, and the thermal conductive layer is opposite to the conductive layer The thermal conductivity of the thermally conductive layer in the direction orthogonal to the thickness direction is 4 w/mK or more, and the thermal conductivity is followed by the sheet contacting the exothermic member. 2. The exothermic structure according to claim 1, wherein the thermally conductive adhesive sheet has an adhesive layer or an adhesive layer laminated on at least one surface of the thermal conductive layer, the adhesive layer or the adhesive layer and the above The substrate is then adhered or adhered to 0 153633.doc
TW100103570A 2010-01-29 2011-01-28 Heat dissipation structure TW201139641A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010018256 2010-01-29
JP2010090908 2010-04-09
JP2010161850 2010-07-16
JP2010161845 2010-07-16
JP2010172325 2010-07-30

Publications (1)

Publication Number Publication Date
TW201139641A true TW201139641A (en) 2011-11-16

Family

ID=44490952

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103570A TW201139641A (en) 2010-01-29 2011-01-28 Heat dissipation structure

Country Status (5)

Country Link
US (1) US20110259565A1 (en)
JP (1) JP2012049496A (en)
KR (1) KR20110089103A (en)
CN (2) CN102169856B (en)
TW (1) TW201139641A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749978B2 (en) 2010-01-29 2014-06-10 Nitto Denko Corporation Power module
TW201214809A (en) 2010-01-29 2012-04-01 Nitto Denko Corp Light-emitting diode device
DE102011109594A1 (en) * 2011-08-05 2013-02-07 Connaught Electronics Ltd. Device with a housing, at least two printed circuit boards and at least one heat dissipation element
JP2013177563A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Thermal conductive sheet
CN104302474B (en) * 2012-05-16 2016-09-21 荒川化学工业株式会社 Retractility fin and the article being pasted with this retractility fin
US9859484B2 (en) 2012-10-24 2018-01-02 Sharp Kabushiki Kaisha Light emitting apparatus
JP5766335B2 (en) * 2013-07-01 2015-08-19 デクセリアルズ株式会社 Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP5752299B2 (en) * 2013-07-01 2015-07-22 デクセリアルズ株式会社 Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP2015030238A (en) * 2013-08-06 2015-02-16 Dic株式会社 Laminate substrate, adhesive sheet and electronic apparatus
WO2015109453A1 (en) * 2014-01-22 2015-07-30 浙江三元电子科技有限公司 Hot melt adhesive composition and preparation method therefor, and hot melt adhesive heat-conducting sheet and preparation method therefor
US10111363B2 (en) * 2014-12-04 2018-10-23 Microsoft Technology Licensing, Llc System for effectively transfering heat from electronic devices and method for forming the same
CN107093591B (en) * 2016-02-17 2022-07-29 株式会社有泽制作所 Heat radiation plate
WO2017145954A1 (en) * 2016-02-25 2017-08-31 日本ゼオン株式会社 Thermally conductive sheet, production method therefor, and heat dissipation device
CN110234712B (en) * 2017-01-30 2022-07-26 积水化学工业株式会社 Resin material and laminate
CN106907696A (en) * 2017-02-27 2017-06-30 苏州科斯曼照明工程有限公司 A kind of fin for underground lamp
KR102463282B1 (en) 2017-05-10 2022-11-07 세키스이가가쿠 고교가부시키가이샤 Insulating Sheets and Laminates
KR102541460B1 (en) * 2018-03-27 2023-06-09 엘지이노텍 주식회사 Heat dissipation sheet for radio wave transmission and communication module comprising the same
CN113302781B (en) * 2019-02-07 2024-06-07 信越聚合物株式会社 Heat radiation structure and battery with the same
WO2020194868A1 (en) * 2019-03-27 2020-10-01 富士フイルム株式会社 Method for manufacturing heat dissipation sheet
CN113416389B (en) * 2021-07-28 2022-05-13 四川大学 Ultrahigh isotropic heat conduction material of epoxy two-dimensional sheet metal nano filler and preparation method thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162849A (en) * 1999-01-11 2000-12-19 Ferro Corporation Thermally conductive thermoplastic
JP2004506318A (en) * 2000-08-03 2004-02-26 ハミルトン・サンドストランド・コーポレイション Adhesion of printed circuit board to heat sink
JP5015366B2 (en) * 2000-09-12 2012-08-29 ポリマテック株式会社 Thermally conductive molded body and method for producing the same
JP4714371B2 (en) * 2001-06-06 2011-06-29 ポリマテック株式会社 Thermally conductive molded body and method for producing the same
US6919504B2 (en) * 2002-12-19 2005-07-19 3M Innovative Properties Company Flexible heat sink
CN1307858C (en) * 2003-05-21 2007-03-28 广达电脑股份有限公司 Functional module and producing method thereof
JP2005057088A (en) * 2003-08-05 2005-03-03 Agilent Technol Inc Heat-conductive member of multilayer structure and electronic apparatus using it
JP4089636B2 (en) * 2004-02-19 2008-05-28 三菱電機株式会社 Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP4225945B2 (en) * 2004-05-17 2009-02-18 富士高分子工業株式会社 Thermally conductive sheet
JP4046120B2 (en) * 2005-01-27 2008-02-13 三菱電機株式会社 Insulating sheet manufacturing method and power module manufacturing method
US20070259211A1 (en) * 2006-05-06 2007-11-08 Ning Wang Heat spread sheet with anisotropic thermal conductivity
JP4916764B2 (en) * 2006-05-10 2012-04-18 電気化学工業株式会社 Anisotropic heat conduction laminated heat dissipation member
JP2007324016A (en) * 2006-06-02 2007-12-13 Matsushita Electric Ind Co Ltd Induction heating apparatus
JP5407120B2 (en) * 2007-04-11 2014-02-05 日立化成株式会社 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME
US20080271832A1 (en) * 2007-05-04 2008-11-06 Tyco Electronics Corporation Thermo-conductive, heat-shrinkable, dual-wall tubing
JP5525682B2 (en) * 2007-05-15 2014-06-18 出光ライオンコンポジット株式会社 Polyarylene sulfide resin composition and molded article comprising the same
JP2008305937A (en) * 2007-06-07 2008-12-18 Panasonic Corp Electronic component built-in module, and manufacturing method thereof
JP5391530B2 (en) * 2007-06-14 2014-01-15 三菱電機株式会社 Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
KR20100137475A (en) * 2008-03-18 2010-12-30 가부시키가이샤 가네카 Highly thermal conductive resin molded product
US7906373B1 (en) * 2008-03-26 2011-03-15 Pawel Czubarow Thermally enhanced electrically insulative adhesive paste
CN101588707A (en) * 2008-05-19 2009-11-25 华为技术有限公司 Heat abstractor and electric device using same
JP2009280650A (en) * 2008-05-20 2009-12-03 Shin Kobe Electric Mach Co Ltd Thermoplastic resin composition and thermoplastic resin molded article
JP5330910B2 (en) * 2009-07-03 2013-10-30 電気化学工業株式会社 Resin composition and use thereof
JP5513840B2 (en) * 2009-10-22 2014-06-04 電気化学工業株式会社 Insulating sheet, circuit board, and insulating sheet manufacturing method

Also Published As

Publication number Publication date
CN102169856A (en) 2011-08-31
KR20110089103A (en) 2011-08-04
JP2012049496A (en) 2012-03-08
CN104658994A (en) 2015-05-27
CN102169856B (en) 2015-06-24
US20110259565A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
TW201139641A (en) Heat dissipation structure
TWI492972B (en) Thermal conductive sheet
US8749978B2 (en) Power module
TW201131716A (en) Thermal conductive sheet, light-emitting diode mounting substrate, and thermal conductive adhesive sheet
JP5698932B2 (en) Thermally conductive sheet
TW201219211A (en) Multilayered resin sheet and method for producing the same, resin sheet laminate and method for producing the same, harded resin sheet, multilayered resin sheet with metal foil, and semiconductor device
US20110259566A1 (en) Thermal conductive sheet
US20130065987A1 (en) Thermal conductive sheet and producing method thereof
TW201139642A (en) Thermal conductive sheet
TW201214809A (en) Light-emitting diode device
KR20110089105A (en) Thermally conductive sheet
JP2009024126A (en) Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module
JP2012049493A (en) Imaging part
TW201137010A (en) Thermal conductive sheet
JP5587220B2 (en) Thermally conductive adhesive sheet
JP2012039064A (en) Heat-conductive sheet
JP2012039066A (en) Heat-conductive sheet
JP2017149909A (en) Heat-conductive adhesive composition, heat-conductive adhesive sheet, and method for producing laminate
JP2012036365A (en) Thermally conductive sheet
JP2012039063A (en) Heat-conductive sheet
JP2011178008A (en) Heat conductive sheet, method for manufacturing the same, and heat radiator using the same
JP2017204572A (en) Adhesive heat-conducting sheet, method for manufacturing adhesive heat-conducting sheet, and heat radiator