JP5309769B2 - Aromatic polyamide film - Google Patents

Aromatic polyamide film Download PDF

Info

Publication number
JP5309769B2
JP5309769B2 JP2008197806A JP2008197806A JP5309769B2 JP 5309769 B2 JP5309769 B2 JP 5309769B2 JP 2008197806 A JP2008197806 A JP 2008197806A JP 2008197806 A JP2008197806 A JP 2008197806A JP 5309769 B2 JP5309769 B2 JP 5309769B2
Authority
JP
Japan
Prior art keywords
aromatic polyamide
film
polymer
polyamide film
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008197806A
Other languages
Japanese (ja)
Other versions
JP2009079210A (en
Inventor
英樹 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008197806A priority Critical patent/JP5309769B2/en
Publication of JP2009079210A publication Critical patent/JP2009079210A/en
Application granted granted Critical
Publication of JP5309769B2 publication Critical patent/JP5309769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は芳香族ポリアミドおよび芳香族ポリアミドフィルムに関する。   The present invention relates to an aromatic polyamide and an aromatic polyamide film.

芳香族ポリアミドはその高い耐熱性、機械強度から工業材料として有用なポリマーである。特に、ポリパラフェニレンテレフタルアミド(以下PPTAと記すことがある)に代表されるようなパラ配向性芳香核からなる芳香族ポリアミドはその剛直性から上記特性に加え強度、弾性率に優れた成形体を与えるのでその利用価値は高い。しかしながらPPTAのごときパラ配向性芳香族ポリアミドは溶媒に対する溶解性が低く、硫酸等極めて限定された溶媒にしか溶解しないためにプロセス上の制約が大きく、また、その溶液も光学異方性を与えるため繊維を得る場合には大きな問題はないがフィルムなど2次元以上の成形体とするには、特許文献1に記載された特殊な成形法による必要があり、その改善が求められている。   Aromatic polyamide is a useful polymer as an industrial material because of its high heat resistance and mechanical strength. In particular, aromatic polyamides composed of para-oriented aromatic nuclei as typified by polyparaphenylene terephthalamide (hereinafter sometimes referred to as PPTA) are molded products having excellent strength and elastic modulus in addition to the above properties due to their rigidity. The utility value is high. However, para-oriented aromatic polyamides such as PPTA have low solubility in solvents and are only limited in very limited solvents such as sulfuric acid, so there are significant process restrictions, and the solution also gives optical anisotropy. When obtaining fibers, there is no major problem, but in order to obtain a two-dimensional or higher shaped article such as a film, it is necessary to use a special molding method described in Patent Document 1, and an improvement is required.

溶解性を改善する手段として、酸素あるいはメチレン基等のブリッジを有する構造単位の導入が、特許文献2で知られているが、一般に、かかる構造単位の導入はパラ配向性芳香族ポリアミド本来のヤング率、強度等の優れた機械特性を損ねることとなる。また、別な手段として特許文献3には芳香核に塩素原子を導入した芳香族ポリアミドが提案されているが、塩素の導入は、環境への負荷が増大するという懸念がある。   As a means for improving the solubility, the introduction of a structural unit having a bridge such as oxygen or a methylene group is known in Patent Document 2, but generally the introduction of such a structural unit is the original Young of para-oriented aromatic polyamide. Excellent mechanical properties such as rate and strength are impaired. As another means, Patent Document 3 proposes an aromatic polyamide in which a chlorine atom is introduced into an aromatic nucleus, but the introduction of chlorine has a concern that the burden on the environment increases.

一方で、芳香族ポリアミドの光学用フィルムへの適用について、芳香族ポリアミドフィルムは高い耐熱性と機械強度を持ち、位相差フィルムや保護フィルム等の光学フィルムに求められる耐熱性や機械強度は十分に満足する。しかしながらPPTAのごときパラ配向性芳香族ポリアミドは黄色に着色しており、光学用途への展開は困難であった。たとえば、耐熱性透明導電フィルムが特許文献4に開示されているが、このフィルムは実施例においても600nmの波長での透過率が71%と低く、低波長側の透過率はさらに低いため実用的ではなかった。また、特許文献5には特定構造を含む芳香族ポリアミドフィルムの開示があるが、該特定構造のモル分率が低い等の理由により透明度の高いフィルムは得られていない。   On the other hand, regarding the application of aromatic polyamide to optical films, aromatic polyamide films have high heat resistance and mechanical strength, and sufficient heat resistance and mechanical strength are required for optical films such as retardation films and protective films. Satisfied. However, para-oriented aromatic polyamides such as PPTA are colored yellow, making it difficult to develop optical applications. For example, although a heat-resistant transparent conductive film is disclosed in Patent Document 4, this film also has practically low transmittance at a wavelength of 600 nm of 71% and lower transmittance on the low wavelength side in the examples. It wasn't. Further, Patent Document 5 discloses an aromatic polyamide film containing a specific structure, but a film with high transparency has not been obtained due to a low molar fraction of the specific structure.

本発明者らは、2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニルを原料として特異的に無色透明な芳香族ポリアミドを得ることに成功し、特許文献6に開示した。当該文献に開示の芳香族ポリアミドは極めて優れた物性を有するが、その多くはやはり溶解性を向上する目的で塩素原子や、屈曲成分の導入が必要であった。特異的に2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニルとテレフタル酸ジクロライドを原料として得る芳香族ポリアミドは無色透明で溶媒への溶解性が良く、かつ屈曲成分、塩素を含有しないが、フィルム物性向上のために固有粘度を大きくすると、溶解性が不十分となり、乾湿式のフィルム製膜工程で白濁したり、重合工程で不溶物が析出する問題があることが分かった。   The present inventors have succeeded in obtaining a specifically colorless and transparent aromatic polyamide using 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl as a raw material, and disclosed in Patent Document 6. Although the aromatic polyamide disclosed in this document has extremely excellent physical properties, many of them require introduction of chlorine atoms and bending components for the purpose of improving solubility. Aromatic polyamide obtained from 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl and terephthalic acid dichloride specifically as a raw material is colorless and transparent, has good solubility in solvents, and does not contain bending components or chlorine However, when the intrinsic viscosity is increased to improve the film physical properties, the solubility becomes insufficient, and it has been found that there is a problem that the film becomes cloudy in the dry / wet film forming process or insoluble matters are precipitated in the polymerization process.

さらに特許文献7には2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニルと置換基を有するビフェニルジカルボン酸クロライドを原料にして得た芳香族ポリアミドの開示がある。しかし、特殊な置換基を有するビフェニルジカルボン酸クロライドを用いるため原料が高価になる問題があった。
特開昭62−39634号公報 特開昭52−98795号公報 特開昭54−106564号公報 特公平7−89452号公報 特公平7−149892号公報 再公表特許WO2004/039863号公報 米国特許5580950号公報
Further, Patent Document 7 discloses an aromatic polyamide obtained using 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl and a substituted biphenyldicarboxylic acid chloride as raw materials. However, since biphenyl dicarboxylic acid chloride having a special substituent is used, there is a problem that the raw material becomes expensive.
JP-A 62-39634 JP-A-52-98795 JP-A-54-106564 Japanese Patent Publication No. 7-89452 Japanese Examined Patent Publication No. 7-149892 Republished patent WO2004 / 039863 US Pat. No. 5,580,950

本発明は、上述した従来技術における問題点の解決を課題として検討した結果達成されたものである。すなわち、本発明の目的は溶解助剤を含むかまたは含まない非プロトン性極性溶媒可溶で、塩素原子および臭素原子をポリマー構造に含まず、ヤング率が高い芳香族ポリアミドフィルムを得ることにある。 The present invention has been achieved as a result of studying the solution of the problems in the prior art described above as an issue. That is, in an aprotic polar solvent soluble purpose with or without solubilizing agents of the present invention, a chlorine atom and a bromine atom not contained in the polymer structure, to Young's modulus to obtain a high aromatic polyamide film is there.

上記目的を達成するための本発明は、450nmから700nmまでの全ての波長の光の光線透過率が80%以上でかつ、化学式(I)および(II)で示される構造単位を含む芳香族ポリアミドフィルムであることを特徴とする。 To achieve the above object, the present invention provides an aromatic polyamide having a light transmittance of light of all wavelengths from 450 nm to 700 nm of 80% or more and containing a structural unit represented by chemical formulas (I) and (II) It is a film .

Figure 0005309769
Figure 0005309769

Figure 0005309769
Figure 0005309769

本願発明によれば、塩素、臭素などを含有せず、かつ、透明性、溶解性に優れた高ヤング率な芳香族ポリアミドフィルムを提供できる。

According to the present invention, chlorine, does not contain bromine, and can provide transparency, high Young's modulus of Kaoru aromatic polyamide film which is excellent in solubility.

本発明における芳香族ポリアミドは、450nmから700nmまでの全ての波長の光の光線透過率が80%以上でかつ、化学式(I)および(II)で示される構造単位を含む芳香族ポリアミドである。   The aromatic polyamide in the present invention is an aromatic polyamide containing a structural unit represented by chemical formulas (I) and (II) having a light transmittance of light of all wavelengths from 450 nm to 700 nm of 80% or more.

Figure 0005309769
Figure 0005309769

Figure 0005309769
Figure 0005309769

上記化学式(I)および(II)において、化学式(I)は例えば2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニルとテレフタル酸ジクロライドを原料として得られる無色透明な芳香族ポリアミドである。この芳香族ポリアミドは溶解性が良く、機械特性、光学特性および熱特性に優れ、かつ塩素を含有しない。しかし、フィルム物性向上のために固有粘度を4.0(dl/g)以上に大きくすると、溶解性が不十分となり、乾湿式のフィルム製膜工程で白濁したり、重合工程で不溶物が析出する問題があることが分かった。   In the chemical formulas (I) and (II), the chemical formula (I) is a colorless and transparent aromatic polyamide obtained by using, for example, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl and terephthalic acid dichloride as raw materials. . This aromatic polyamide has good solubility, excellent mechanical properties, optical properties, and thermal properties, and does not contain chlorine. However, if the intrinsic viscosity is increased to 4.0 (dl / g) or more in order to improve the film properties, the solubility becomes insufficient, and the film becomes cloudy in the dry and wet film forming process, or the insoluble material is precipitated in the polymerization process. It turns out that there is a problem to do.

同一構造のポリマーにおいて、固有粘度は分子量と相関があり、固有粘度が大きいと分子量も大きい。分子量が小さいポリマーは脆かったり、破断伸度が小さいことがある。このため分子量、即ち固有粘度を大きくすることが求められる。   In the polymer having the same structure, the intrinsic viscosity has a correlation with the molecular weight, and when the intrinsic viscosity is large, the molecular weight is also large. Low molecular weight polymers may be brittle or have low elongation at break. For this reason, it is required to increase the molecular weight, that is, the intrinsic viscosity.

固有粘度を大きくする方法として、たとえばジアミンとカルボン酸ジクロライドを原料とする低温重合法では原料の純度を向上する、ジアミンとカルボン酸ジクロライドの比率を100:100(mol%)に近づける、重合時に副反応が起こらないように低温で攪拌を十分に行う、等が挙げられる。   As a method of increasing the intrinsic viscosity, for example, in a low temperature polymerization method using diamine and carboxylic acid dichloride as raw materials, the purity of the raw material is improved, and the ratio of diamine and carboxylic acid dichloride is brought close to 100: 100 (mol%). Stirring is sufficiently performed at a low temperature so that the reaction does not occur.

固有粘度を大きくしても溶解性を維持する方法としては、屈曲成分を導入する、塩素を導入する等が挙げられる。しかしながら、メタ結合やエーテル結合などの屈曲成分を導入した場合、溶解性の向上と共にヤング率の低下や、熱膨張係数の増大(悪化)という問題がある。また、塩素の導入は、環境への負荷が増大するという懸念がある。   Examples of methods for maintaining solubility even when the intrinsic viscosity is increased include introducing a bending component and introducing chlorine. However, when a bending component such as a meta bond or an ether bond is introduced, there are problems that the solubility is improved and the Young's modulus is decreased and the thermal expansion coefficient is increased (deteriorated). Moreover, there is a concern that the introduction of chlorine increases the environmental load.

本発明において、化学式(II)で示される構造単位を特定のモル分率で含むことが好ましい。化学式(II)で示される構造単位は全てがパラ結合した剛直な構造であるため、大きな機械特性を得る一方で、化学式(I)で表される構造単位との共重合に於いては構造単位長の違いがパッキングを阻害し、さらにビフェニルカルボン酸残基が若干の自由度を有することにより溶解性向上に寄与する。   In the present invention, the structural unit represented by the chemical formula (II) is preferably contained in a specific molar fraction. The structural unit represented by the chemical formula (II) is a rigid structure in which all are para-bonded, so that a large mechanical property is obtained, while in the copolymerization with the structural unit represented by the chemical formula (I), the structural unit. The difference in length inhibits packing, and the biphenylcarboxylic acid residue has a certain degree of freedom, thereby contributing to improved solubility.

共重合比は化学式(I)、(II)で表される構造単位のモル分率をそれぞれa,bとし、a+b=100のとき、aおよびbが次式(1)および(2)を満足することが好ましい。   The copolymerization ratios are expressed as follows. The molar fractions of the structural units represented by the chemical formulas (I) and (II) are a and b, respectively. When a + b = 100, a and b satisfy the following formulas (1) and (2) It is preferable to do.

0 <a≦70 ・・・(1)
30≦b<100 ・・・(2)
aが70を超える場合、すなわちbが30未満の場合では臭化リチウムを5質量%含むN−メチル−2−ピロリドン溶液に4質量%以上溶解せしめることが困難となる。ポリマーの濃度は大きければ大きいほど製膜工程で除去する溶媒が少なくてよく、回収する溶媒量も少なくなるため生産性が良くなる。
0 <a ≦ 70 (1)
30 ≦ b <100 (2)
When a exceeds 70, that is, when b is less than 30, it is difficult to dissolve 4% by mass or more in an N-methyl-2-pyrrolidone solution containing 5% by mass of lithium bromide. The higher the concentration of the polymer, the less solvent may be removed in the film-forming step, and the lower the amount of solvent recovered, the better the productivity.

aは、より好ましくは10以上60以下、さらに好ましくは20以上50以下である。bはこれに対応し、より好ましくは40以上90以下、さらに好ましくは50以上80以下である。   a is more preferably 10 or more and 60 or less, and still more preferably 20 or more and 50 or less. b corresponds to this, more preferably from 40 to 90, and even more preferably from 50 to 80.

本発明の芳香族ポリアミドの固有粘度は4.0(dl/g)以上であることが好ましい。固有粘度が低くなれば、溶解性も向上するが、得られるフィルムは脆く、伸度の低いものとなってしまう。本発明の芳香族ポリアミドは特定の分子構造を繰り返し単位として有するため、固有粘度を4.0以上としても溶解性があり、高伸度のフィルムを得ることが可能である。この効果は、当該繰り返し単位を上記した特定のモル分率にて含んでいることによりさらに高まる。固有粘度はより好ましくは4.5(dl/g)以上、さらに好ましくは5.0(dl/g)以上である。固有粘度の上限はないが、10(dl/g)以下が好ましく、より好ましくは8(dl/g)以下、さらに好ましくは7(dl/g)以下である。   The intrinsic viscosity of the aromatic polyamide of the present invention is preferably 4.0 (dl / g) or more. If the intrinsic viscosity is lowered, the solubility is improved, but the resulting film is brittle and has a low elongation. Since the aromatic polyamide of the present invention has a specific molecular structure as a repeating unit, it is soluble even when the intrinsic viscosity is 4.0 or more, and a high elongation film can be obtained. This effect is further enhanced by including the repeating unit at the specific mole fraction described above. The intrinsic viscosity is more preferably 4.5 (dl / g) or more, and further preferably 5.0 (dl / g) or more. Although there is no upper limit of the intrinsic viscosity, it is preferably 10 (dl / g) or less, more preferably 8 (dl / g) or less, and still more preferably 7 (dl / g) or less.

本発明の芳香族ポリアミドは、臭化リチウムを5質量%含むN−メチル−2−ピロリドン溶液に4質量%以上溶解可能であることが好ましいが、ここで「臭化リチウムを5質量%含むN−メチル−2−ピロリドン溶液に4質量%以上溶解可能である」ということ(以下「溶解性が「○」」ということがある)は臭化リチウム5質量%以下含有のN−メチル−2−ピロリドンにポリマーを4質量%以上溶解し、その後25℃で2週間放置後も流動性を保つことをいう。なお、臭化リチウム5質量%未満で溶解性が「○」であった場合は臭化リチウム5質量%においても「○」である。また、ポリマーを4質量%を超えて溶解せしめて溶解性が「○」の場合は4質量%においても溶解性が「○」である。   The aromatic polyamide of the present invention is preferably soluble in 4% by mass or more in an N-methyl-2-pyrrolidone solution containing 5% by mass of lithium bromide. Here, “N containing 5% by mass of lithium bromide” is used. “-Methyl-2-pyrrolidone solution is soluble in 4% by mass or more” (hereinafter, the solubility is sometimes referred to as “◯”) means that N-methyl-2-containing 5% by mass or less of lithium bromide. It means that the polymer is dissolved in pyrrolidone in an amount of 4% by mass or more, and the fluidity is maintained after being left at 25 ° C. for 2 weeks. In addition, when the solubility is “◯” at less than 5% by mass of lithium bromide, “◯” is also indicated at 5% by mass of lithium bromide. Further, when the polymer is dissolved in excess of 4% by mass and the solubility is “◯”, the solubility is “O” even at 4% by mass.

なお、「流動性を保つ」とは、25℃において100mlのビーカーにポリマー溶液を100ml入れて90°傾けたとき、1時間以内に50ml以上が流れ出る状態をいう。   “Maintaining fluidity” means a state in which 50 ml or more flows out within one hour when 100 ml of a polymer solution is placed in a 100 ml beaker at 25 ° C. and tilted 90 °.

また、上記した本発明の芳香族ポリアミドを50質量%以上含むコポリマーも好ましい。他のポリマー成分としては、例えば芳香族ポリアミド、ポリイミド、ポリベンゾオキサゾール、ポリカーボネート、環状ポリオレフィン、ポリスチレンなどが挙げられ、このコポリマーは、本発明の芳香族ポリアミドと他のポリマー成分、両ポリマーの特徴を併せ持ち、たとえば位相差板、保護膜、基板などの用途に好適に用いることができる。   A copolymer containing 50% by mass or more of the aromatic polyamide of the present invention described above is also preferable. Other polymer components include, for example, aromatic polyamides, polyimides, polybenzoxazoles, polycarbonates, cyclic polyolefins, polystyrenes, etc. This copolymer has the characteristics of the aromatic polyamide of the present invention and other polymer components, both polymers. For example, it can be suitably used for applications such as retardation plates, protective films, and substrates.

本発明の芳香族ポリアミドおよびそのコポリマーはフィルム、積層体、成形体、繊維などに好適に利用される。   The aromatic polyamide and copolymer thereof of the present invention are suitably used for films, laminates, molded articles, fibers and the like.

ここで、本発明の芳香族ポリアミドフィルムは、JIS K7197−1991に準拠して測定した平均熱膨張係数が著しく小さいという特徴を有する。一般に平均熱膨張係数は加熱による物質の膨張に起因するため正の値を有する。しかしながら本発明の芳香族ポリアミドフィルムは、(1)剛直な直鎖構造を主成分とするため加熱による膨張が小さく、かつ、(2)エーテル結合やメチレン結合といった自由度の大きい、すなわち熱膨張の大きい結合を持たず、(3)負の平均熱膨張係数を有すると推定されるアミド基を有する、という特徴のあるポリマーを用いて、当該ポリマーが有機溶媒に可溶であるため溶液製膜法という分子が密にパッキングするのに有利な製膜方法が利用できるために達成できたものと考えられる。   Here, the aromatic polyamide film of the present invention has a characteristic that the average thermal expansion coefficient measured in accordance with JIS K7197-1991 is remarkably small. In general, the average coefficient of thermal expansion has a positive value because it is caused by expansion of a substance by heating. However, the aromatic polyamide film of the present invention (1) has a rigid straight chain structure as a main component, so that the expansion due to heating is small, and (2) it has a high degree of freedom such as an ether bond and a methylene bond, that is, it has a thermal expansion. Using a polymer characterized by not having a large bond and (3) having an amide group presumed to have a negative average thermal expansion coefficient, the polymer is soluble in an organic solvent, so that the solution casting method This is considered to be achieved because a film forming method advantageous for dense packing of the molecules can be used.

例えば同じく剛直な芳香族ポリアミドであるPPTAは、ポリマーとしては上記(1)〜(3)の特徴は有するが、有機溶媒に不溶であるためパッキングが粗となり、正の平均熱膨張係数を持つ。また液晶性ポリマーは一方向に分子が揃っているため、1方向は負の平均熱膨張係数を持つことがあるが、これと直交する方向の平均熱膨張係数は正の値となる。   For example, PPTA, which is also a rigid aromatic polyamide, has the characteristics (1) to (3) as a polymer, but is insoluble in an organic solvent, so that the packing becomes rough and has a positive average thermal expansion coefficient. In addition, since the liquid crystalline polymer has molecules aligned in one direction, one direction may have a negative average coefficient of thermal expansion, but the average coefficient of thermal expansion in a direction perpendicular to this direction has a positive value.

本発明の芳香族ポリアミドフィルムの平均熱膨張係数は、フィルム面内の1方向およびこれと直交する方向のいずれの方向についても、100℃〜200℃の平均熱膨張係数が−30ppm/℃以上0ppm/℃以下である方向の組が少なくとも1組存在することが好ましい。より好ましくは両方向共に、100℃〜200℃の平均熱膨張係数が−10ppm/℃以上0ppm/℃以下である方向の組が少なくとも1組存在することである。最も好ましくは両方向共に、100℃〜200℃の平均熱膨張係数が−5ppm/℃以上0ppm/℃以下である方向の組が少なくとも1組存在することである。   The average coefficient of thermal expansion of the aromatic polyamide film of the present invention is such that the average coefficient of thermal expansion of 100 ° C. to 200 ° C. is −30 ppm / ° C. or more and 0 ppm in any one direction in the film plane and the direction orthogonal thereto. It is preferable that there is at least one set having a direction of less than / ° C. More preferably, in both directions, there is at least one set having a direction in which an average coefficient of thermal expansion of 100 ° C. to 200 ° C. is −10 ppm / ° C. or more and 0 ppm / ° C. or less. Most preferably, there are at least one set of directions having an average coefficient of thermal expansion of -5 ppm / ° C to 0 ppm / ° C in both directions.

上記した100℃〜200℃の平均熱膨張係数が−30ppm/℃以上0ppm/℃以下である方向の組が少なくとも1組存在することにより、例えば、他素材とアロイ、積層あるいは複合して使用する時に全体の平均熱膨張係数を低減することが可能となったり、熱によって寸法変化を生じない、すなわち平均熱膨張係数=0の素材を本発明の芳香族ポリアミドフィルム単独または他素材とアロイ、積層あるいは複合によって作ることが可能となる。   The presence of at least one set in the direction in which the average coefficient of thermal expansion from 100 ° C. to 200 ° C. is −30 ppm / ° C. or more and 0 ppm / ° C. or less is used, for example, in combination with other materials. Sometimes it is possible to reduce the overall average thermal expansion coefficient or to cause no dimensional change by heat, that is, a material having an average thermal expansion coefficient of 0 is laminated with an aromatic polyamide film of the present invention alone or with other materials. Or it can be made by compounding.

なお、フィルムとしては、単独で利用される形態の他、何らかの支持体上に膜状に形成されたものを含む。単独で利用されるフィルムとした場合、厚みが1μmから100μmであることが好ましい。厚みが1μm未満の場合、製膜時や使用時の張力によって、破れることがある。また、100μmを超えると溶媒や溶解助剤の除去が困難になることがある。厚みは好ましくは1μm以上80μm以下、より好ましくは2μm以上60μm以下、最も好ましくは5μm以上30μm以下である。   In addition, as a film, what was formed in the film form on a certain support body other than the form utilized independently is included. When the film is used alone, the thickness is preferably 1 μm to 100 μm. When the thickness is less than 1 μm, it may be broken by the tension during film formation or use. Moreover, when it exceeds 100 micrometers, removal of a solvent or a solubilizing agent may become difficult. The thickness is preferably 1 μm to 80 μm, more preferably 2 μm to 60 μm, and most preferably 5 μm to 30 μm.

何らかの支持体上に膜状に形成されたフィルムを「膜」と呼ぶことにすると、膜としては厚み10μm以下が好ましい。膜の場合は片側からの溶媒除去となるため10μmを超えると溶媒除去が困難となることがある。膜の厚みに特に下限は存在しないが、0.0001μmの厚みで均一に塗布するためには蒸着重合法などの特殊な方法を用いることが好ましく、このような方法を用いることにより極めて薄い膜を形成することが可能となる。また、ポリマー用液を塗布、乾燥して膜を得る場合は0.01μm以上10μm以下が好ましく、さらに好ましくは0.1μm以上5μm以下、最も好ましくは0.5μm以上3μm以下である。   When a film formed in a film form on some support is called a “film”, the film preferably has a thickness of 10 μm or less. In the case of a film, since the solvent is removed from one side, if it exceeds 10 μm, it may be difficult to remove the solvent. Although there is no particular lower limit to the thickness of the film, it is preferable to use a special method such as a vapor deposition polymerization method in order to apply uniformly with a thickness of 0.0001 μm. By using such a method, an extremely thin film can be formed. It becomes possible to form. Moreover, when apply | coating and drying a polymer solution and obtaining a film | membrane, 0.01 micrometer or more and 10 micrometers or less are preferable, More preferably, they are 0.1 micrometer or more and 5 micrometers or less, Most preferably, they are 0.5 micrometer or more and 3 micrometers or less.

膜は平坦化膜のように、片面もしくは両面が凹凸形状をしていてもよい。また、上述した本発明の芳香族ポリアミドやコポリマーを含む層を少なくとも1層含む積層体とすることも好ましい。この場合、芳香族ポリアミドやコポリマーを含む層以外の層としては、例えば銅箔、ステンレス箔などの金属箔、ガラス、シリコンなどが挙げられる。また、上述した本発明の芳香族ポリアミドやコポリマーを含む成形体とすることも好ましい。この場合、成形体としてはマイクロレンズアレイ、プリズムシートなどが挙げられる。   The film may have a concavo-convex shape on one side or both sides like a planarizing film. In addition, a laminate including at least one layer containing the above-described aromatic polyamide or copolymer of the present invention is also preferable. In this case, examples of the layer other than the layer containing aromatic polyamide or copolymer include metal foils such as copper foil and stainless steel foil, glass, and silicon. Moreover, it is also preferable to set it as the molded object containing the aromatic polyamide and copolymer of this invention mentioned above. In this case, examples of the molded body include a microlens array and a prism sheet.

マイクロレンズアレイやプリズムシートとして利用する場合においても本発明の芳香族ポリアミドは、上記した100℃〜200℃の平均熱膨張係数が−30ppm/℃以上0ppm/℃以下である方向の組が少なくとも1組存在するため、本発明の芳香族ポリアミドフィルム単独または他の素材とアロイ、積層あるいは複合して平均熱膨張係数=0を達成することができ、レンズやプリズムの熱による誤差を生じることが無く、好ましい。   Even when the aromatic polyamide of the present invention is used as a microlens array or a prism sheet, the aromatic polyamide of the present invention has at least one set in the direction in which the average thermal expansion coefficient at 100 ° C. to 200 ° C. is −30 ppm / ° C. to 0 ppm / ° C. Therefore, the average thermal expansion coefficient = 0 can be achieved by alloying, laminating or combining the aromatic polyamide film of the present invention alone or with other materials without causing errors due to the heat of the lens or prism. ,preferable.

以下に本発明の芳香族ポリアミド組成物の製造方法やフィルムを製造する例を説明するが、本発明はこれに限定されるものではない。   Although the manufacturing method of the aromatic polyamide composition of this invention and the example which manufactures a film are demonstrated below, this invention is not limited to this.

芳香族ポリアミドを得る方法は種々の方法が利用可能であり、例えば、低温溶液重合法、界面重合法、溶融重合法、固相重合法などを用いることができる。低温溶液重合法つまり酸ジクロライドとジアミンから得る場合には、非プロトン性有機極性溶媒中で合成される。ポリマー溶液は、単量体として酸ジクロライドとジアミンを使用すると塩化水素が副生するが、これを中和する場合には水酸化カルシウム、炭酸カルシウム、炭酸リチウムなどの無機の中和剤、またエチレンオキサイド、プロピレンオキサイド、アンモニア、トリエチルアミン、トリエタノールアミン、ジエタノールアミンなどの有機の中和剤が使用される。また、イソシアネートとカルボン酸との反応は、非プロトン性有機極性溶媒中、触媒の存在下で行なわれる。   Various methods can be used for obtaining the aromatic polyamide. For example, a low temperature solution polymerization method, an interfacial polymerization method, a melt polymerization method, a solid phase polymerization method, and the like can be used. When it is obtained from a low temperature solution polymerization method, that is, from acid dichloride and diamine, it is synthesized in an aprotic organic polar solvent. When acid dichloride and diamine are used as monomers in the polymer solution, hydrogen chloride is produced as a by-product. Organic neutralizers such as oxide, propylene oxide, ammonia, triethylamine, triethanolamine, diethanolamine are used. The reaction between isocyanate and carboxylic acid is carried out in an aprotic organic polar solvent in the presence of a catalyst.

2種類以上のジアミンを用いて重合を行う場合、ジアミンは1種類ずつ添加し、該ジアミンに対し10〜99モル%の酸ジクロライドを添加して反応させ、この後に他のジアミンを添加して、さらに酸ジクロライドを添加して反応させる段階的な反応方法、およびすべてのジアミンを混合して添加し、この後に酸ジクロライドを添加して反応させる方法などが利用可能である。また、2種類以上の酸ジクロライドを利用する場合も同様に段階的な方法、同時に添加する方法などが利用できる。いずれの場合においても全ジアミンと全酸ジクロライドのモル比は95〜105:105〜95が好ましく、この値を外れた場合、成形に適したポリマー溶液を得ることが困難となる。   When performing polymerization using two or more kinds of diamines, diamines are added one by one, 10 to 99 mol% of acid dichloride is added to the diamine and reacted, and then another diamine is added, Further, a stepwise reaction method in which acid dichloride is added and reacted, a method in which all diamines are mixed and added, and then acid dichloride is added and reacted can be used. Similarly, when two or more kinds of acid dichlorides are used, a stepwise method, a method of simultaneously adding them, and the like can be used. In any case, the molar ratio of the total diamine to the total acid dichloride is preferably 95 to 105: 105 to 95, and if it is outside this value, it is difficult to obtain a polymer solution suitable for molding.

本発明の芳香族ポリアミドの製造において、使用する非プロトン性極性溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドなどのホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドンなどのピロリドン系溶媒、フェノール、o−、m−またはp−クレゾール、キシレノール、ハロゲン化フェノール、カテコールなどのフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ−ブチロラクトンなどを挙げることができ、これらを単独又は混合物として用いるのが望ましいが、更にはキシレン、トルエンのような芳香族炭化水素の使用も可能である。さらにはポリマーの溶解を促進する目的で溶媒には50質量%以下のアルカリ金属、またはアルカリ土類金属の塩を溶解助剤として添加することができる。この溶解助剤としては臭化リチウム、塩化リチウムなどが例示できる。   Examples of the aprotic polar solvent used in the production of the aromatic polyamide of the present invention include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, and formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide. Solvents, acetamide solvents such as N, N-dimethylacetamide, N, N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, phenol, o-, m- or Phenolic solvents such as p-cresol, xylenol, halogenated phenol, and catechol, or hexamethylphosphoramide, γ-butyrolactone, and the like can be used. These are preferably used alone or as a mixture, but more preferably xylene, toluene The use of aromatic hydrocarbons such as are possible. Furthermore, for the purpose of accelerating the dissolution of the polymer, 50% by mass or less of an alkali metal or alkaline earth metal salt can be added to the solvent as a dissolution aid. Examples of the dissolution aid include lithium bromide and lithium chloride.

ここで、上記したポリマー溶液を調製する際の「溶解」とはゲル状物を生じることなく流動性を保ったポリマーが溶媒に分散している状態が25℃で24時間以上継続することをいう。なお、このポリマーの溶解工程においては100℃以下の温度で加熱撹拌することが可能である。   Here, “dissolution” in preparing the polymer solution described above means that a state in which a polymer that maintains fluidity without producing a gel is dispersed in a solvent continues at 25 ° C. for 24 hours or more. . In this polymer dissolution step, it is possible to heat and stir at a temperature of 100 ° C. or lower.

本発明の芳香族ポリアミドには、表面形成、加工性改善などを目的として10質量%以下の無機質または有機質の添加物を含有させてもよい。表面形成を目的とした添加剤としては例えば、無機粒子ではSiO、TiO、Al、CaSO、BaSO、CaCO、カーボンブラック、カーボンナノチューブ、フラーレン、ゼオライト、その他の金属微粉末等が挙げられる。また、好ましい有機粒子としては、例えば、架橋ポリビニルベンゼン、架橋アクリル、架橋ポリスチレン、ポリエステル粒子、ポリイミド粒子、ポリアミド粒子、フッ素樹脂粒子等の有機高分子からなる粒子、あるいは、表面に上記有機高分子で被覆等の処理を施した無機粒子が挙げられる。 The aromatic polyamide of the present invention may contain 10% by mass or less of an inorganic or organic additive for the purpose of surface formation and processability improvement. Examples of additives for surface formation include inorganic particles such as SiO 2 , TiO 2 , Al 2 O 3 , CaSO 4 , BaSO 4 , CaCO 3 , carbon black, carbon nanotubes, fullerene, zeolite, and other metal fine powders. Etc. Preferred organic particles include, for example, particles made of an organic polymer such as crosslinked polyvinylbenzene, crosslinked acrylic, crosslinked polystyrene, polyester particles, polyimide particles, polyamide particles, and fluororesin particles, or the above organic polymer on the surface. Inorganic particles that have been subjected to treatment such as coating may be mentioned.

次にフィルム化について説明する。本発明の芳香族ポリアミドは有機溶媒に可溶であるため、PPTAのように濃硫酸を用いた特殊な製膜方法は必ずしも必要としない。上記のように調製された製膜原液は、いわゆる溶液製膜法によりフィルム化が行なわれる。溶液製膜法には乾湿式法、乾式法、湿式法などがありいずれの方法で製膜されても差し支えないが、本発明の芳香族ポリアミドは溶解性に優れるため、製膜工程の制御が容易な乾湿式法での製膜が可能である。ここでは乾湿式法を例にとって説明する。   Next, film formation will be described. Since the aromatic polyamide of the present invention is soluble in an organic solvent, a special film forming method using concentrated sulfuric acid like PPTA is not necessarily required. The film-forming stock solution prepared as described above is formed into a film by a so-called solution casting method. The solution casting method includes a dry-wet method, a dry method, a wet method, and any method may be used. However, the aromatic polyamide of the present invention is excellent in solubility, so that the film-forming process can be controlled. It is possible to form a film by an easy dry-wet method. Here, a dry and wet method will be described as an example.

乾湿式法で製膜する場合は該原液を口金からドラム、エンドレスベルト、フィルム等の支持体上に押し出して薄膜とし、次いでかかる薄膜層が自己保持性をもつまで乾燥する。乾燥条件は例えば、室温〜220℃、60分以内の範囲で行うことができる。仮に溶解度の不十分なポリマー用液を用いると、この工程で白濁してしまう。またこの乾燥工程で用いられるドラム、エンドレスベルト、フィルムの表面はなるだけ平滑であれば表面の平滑なフィルムが得られる。乾式工程を終えたフィルムは支持体から剥離されて湿式工程に導入され、脱塩、脱溶媒などが行なわれ、さらに延伸、乾燥、熱処理が行なわれてフィルムとなる。   In the case of forming a film by a dry-wet method, the stock solution is extruded from a die onto a support such as a drum, an endless belt, or a film to form a thin film, and then dried until the thin film layer has a self-holding property. Drying conditions can be performed in the range of room temperature to 220 ° C. and within 60 minutes, for example. If a polymer solution with insufficient solubility is used, it becomes cloudy in this step. Moreover, if the surface of the drum, endless belt, and film used in this drying step is as smooth as possible, a film having a smooth surface can be obtained. The film after the dry process is peeled off from the support and introduced into the wet process, desalted, desolvated, etc., and further stretched, dried and heat treated to form a film.

延伸は延伸倍率として面倍率で0.8〜8(面倍率とは延伸後のフィルム面積を延伸前のフィルムの面積で除した値で定義する。1以下はリラックスを意味する。)の範囲内にあることが好ましく、より好ましくは1.3〜8である。また、熱処理としては200℃〜500℃、好ましくは250℃〜400℃の温度で数秒から数分間熱処理が好ましく実施される。さらに、延伸あるいは熱処理後のフィルムを徐冷することは有効であり、50℃/秒以下の速度で冷却することが有効である。   Stretching is in the range of 0.8 to 8 (drawing ratio is defined by dividing the film area after stretching by the area of the film before stretching. 1 or less means relaxation) as the stretching ratio. It is preferable that it is in 1.3, More preferably, it is 1.3-8. The heat treatment is preferably carried out at a temperature of 200 ° C. to 500 ° C., preferably 250 ° C. to 400 ° C. for several seconds to several minutes. Furthermore, it is effective to gradually cool the film after stretching or heat treatment, and it is effective to cool at a rate of 50 ° C./second or less.

本発明の芳香族ポリアミドから得られるフィルム(芳香族ポリアミドフィルム)は単層フィルムでも、積層フィルムであってもよい。また、本発明の芳香族ポリアミドフィルムは、フレキシブルプリント基板、光電複合回路基板、光導波路基板、半導体実装用基板、多層積層回路基板、コンデンサー、プリンターリボン、音響振動板、太陽電池、磁気記録媒体のベースフィルム等種々の用途に好ましく用いられる。   The film (aromatic polyamide film) obtained from the aromatic polyamide of the present invention may be a single layer film or a laminated film. The aromatic polyamide film of the present invention is a flexible printed circuit board, a photoelectric composite circuit board, an optical waveguide board, a semiconductor mounting board, a multilayer laminated circuit board, a capacitor, a printer ribbon, an acoustic diaphragm, a solar cell, and a magnetic recording medium. It is preferably used for various applications such as a base film.

本発明の芳香族ポリアミドフィルムは少なくとも一方向の引張りヤング率が6GPa以上であることが好ましい。ヤング率が高いことにより、巻き取り時の高張力、張力変動に対抗することができ、巻き姿がより良好となる。また、本発明の芳香族ポリアミドフィルムの少なくとも一方向のヤング率はより好ましくは7GPa以上であることが好ましい。また、全ての方向のヤング率が6GPa以上であることが好ましい。   The aromatic polyamide film of the present invention preferably has a tensile Young's modulus in at least one direction of 6 GPa or more. By having a high Young's modulus, it is possible to counter high tension and tension fluctuation during winding, and the winding shape becomes better. The Young's modulus in at least one direction of the aromatic polyamide film of the present invention is more preferably 7 GPa or more. In addition, the Young's modulus in all directions is preferably 6 GPa or more.

芳香族ポリアミドの構造は、その原料であるジアミンとカルボン酸ジクロライドによって決定される。原料が不明である場合は芳香族ポリアミド組成物から構造分析を行うが、この手法としては、質量分析、核磁気共鳴法による分析、分光分析などを用いることができる。   The structure of the aromatic polyamide is determined by the raw material diamine and carboxylic acid dichloride. When the raw material is unknown, structural analysis is performed from the aromatic polyamide composition. As this method, mass analysis, analysis by nuclear magnetic resonance method, spectroscopic analysis, or the like can be used.

以下に実施例を挙げて、本発明をさらに具体的に説明する。   The present invention will be described more specifically with reference to the following examples.

本発明における物性の測定方法、効果の評価方法は次の方法に従って行った。   The measurement method of physical properties and the evaluation method of effects in the present invention were performed according to the following methods.

(1)ヤング率、引張強度、破断伸度
ロボットテンシロンRTA(オリエンテック社製)を用いて、温度23℃、相対湿度65%において測定した。試験片は製膜方向またはバーコーターの移動方向をMD方向、これと直交する方向をTD方向として、MD方向またはTD方向について幅10mmで長さ50mmの試料とした。引張速度は300mm/分である。但し、試験を開始してから荷重が1Nを通過した点を伸びの原点とした。
(1) Young's modulus, tensile strength, elongation at break Using a Robot Tensilon RTA (manufactured by Orientec Co., Ltd.), measurement was performed at a temperature of 23 ° C. and a relative humidity of 65%. The test piece was a sample having a width of 10 mm and a length of 50 mm in the MD direction or the TD direction, where the film forming direction or the moving direction of the bar coater was the MD direction, and the direction orthogonal thereto was the TD direction. The tensile speed is 300 mm / min. However, the point where the load passed 1 N after the start of the test was taken as the origin of elongation.

(2)吸湿率
フィルムを約0.5g採取し、脱湿のため120℃で3時間の加熱を行った後、窒素気流下で25℃まで降温し、その降温後の質量を0.1mg単位まで正確に秤量する(この時の質量をW0とする)。次いで、25℃で75RH%の雰囲気下に48時間静置し、その後の質量を測定し、これをW1として、以下の式を用いて吸湿率を求めた。
(2) Moisture absorption About 0.5 g of the film was sampled and heated for 3 hours at 120 ° C. for dehumidification, then the temperature was lowered to 25 ° C. under a nitrogen stream, and the mass after the temperature reduction was measured in units of 0.1 mg. (Weight is defined as W0). Subsequently, it was left to stand in an atmosphere of 75 RH% at 25 ° C. for 48 hours, and the subsequent mass was measured. This was defined as W1, and the moisture absorption rate was determined using the following equation.

吸湿率(%)=((W1−W0)/W0)×100
(3)固有粘度
ウベローデ型粘度計を用い、臭化リチウム2.5質量%を含有するN−メチル−2−ピロリドン(NMP)100ml中にサンプル0.5gを溶解し、温度30℃にて下記式より計算した。
Moisture absorption rate (%) = ((W1-W0) / W0) × 100
(3) Intrinsic viscosity Using an Ubbelohde viscometer, 0.5 g of sample was dissolved in 100 ml of N-methyl-2-pyrrolidone (NMP) containing 2.5% by mass of lithium bromide, and the following was performed at 30 ° C. Calculated from the formula.

固有粘度=ln(t/t0)/0.5 (dl/g)
t0:臭化リチウム5質量%含有のNMPの流下時間(秒)
t:サンプルを溶解した溶液の流下時間(秒)
(4)透明性(光線透過率)
下記装置を用いて測定し、各波長の光に対応する透過率を求め、450nmから700nmまでの全ての波長の光の光線透過率が80%以上のものを「○」、80%を超えないものを「×」と評価した。なお、ポリマーの場合は厚み10μmのフィルムに成形して評価する。厚み10μmのフィルムが得られない場合、10μmを超える少なくとも一つの厚みで450nmから700nmまでの全ての波長の光の光線透過率を測定し、その値が80%以上の場合、「○」とする。
Intrinsic viscosity = ln (t / t0) /0.5 (dl / g)
t0: Flowing time of NMP containing 5% by mass of lithium bromide (seconds)
t: Flowing time of the solution in which the sample is dissolved (seconds)
(4) Transparency (light transmittance)
Measured using the following equipment, the transmittance corresponding to the light of each wavelength is obtained, and the light transmittance of light of all wavelengths from 450 nm to 700 nm is 80% or more, “◯”, does not exceed 80% Things were rated as “x”. In the case of a polymer, it is evaluated by forming into a film having a thickness of 10 μm. When a film having a thickness of 10 μm cannot be obtained, the light transmittance of light of all wavelengths from 450 nm to 700 nm is measured with at least one thickness exceeding 10 μm. If the value is 80% or more, “◯” is given. .

透過率(%)=T1/T0×100
ただしT1は試料を通過した光の強度、T0は試料を通過しない以外は同一の距離の空気中を通過した光の強度である。
Transmittance (%) = T1 / T0 × 100
However, T1 is the intensity | strength of the light which passed the sample, and T0 is the intensity | strength of the light which passed the air of the same distance except not passing a sample.

装置:UV測定器U−3410(日立計測社製)
波長範囲:300nm〜800nm(うち、450〜700nmの値を利用)
測定速度:120nm/分
測定モード:透過
(5)ハロゲン元素含有の有無
分子構造から有無を判断した。
Apparatus: UV measuring instrument U-3410 (manufactured by Hitachi Instruments)
Wavelength range: 300 nm to 800 nm (of which 450 to 700 nm is used)
Measurement speed: 120 nm / min Measurement mode: Transmission (5) Presence or absence of halogen element The presence or absence was judged from the molecular structure.

(6)溶解性
臭化リチウム5質量%含有のN−メチル−2−ピロリドンにポリマーを4質量%溶解し、25℃で2週間放置後も流動性を保つものを溶解性「○」と評価した。
(6) Solubility 4% by mass of a polymer dissolved in 5% by mass of lithium bromide in N-methyl-2-pyrrolidone, and the one that maintains fluidity after being allowed to stand at 25 ° C. for 2 weeks, was evaluated as “Solid”. did.

なお、「流動性を保つ」とは、25℃において100mlのビーカーにポリマー溶液を100ml入れて90°傾けたとき、1時間以内に50ml以上が流れ出る状態をいう。   “Maintaining fluidity” means a state in which 50 ml or more flows out within one hour when 100 ml of a polymer solution is placed in a 100 ml beaker at 25 ° C. and tilted 90 °.

(7)平均熱膨張係数
平均熱膨張係数はJIS K7197−1991に準拠して250℃まで昇温した後の降温過程に於いて測定した。25℃、75RH%における初期試料長をL0、温度T1の時の試料長をL1、温度T2の時の試料長をL2とするとT1からT2の平均熱膨張係数を以下の式で求めた。なお、T2=100(℃)、T1=200(℃)である。
(7) Average thermal expansion coefficient The average thermal expansion coefficient was measured in the temperature lowering process after the temperature was raised to 250 ° C in accordance with JIS K7197-1991. When the initial sample length at 25 ° C. and 75 RH% is L0, the sample length at the temperature T1 is L1, and the sample length at the temperature T2 is L2, the average thermal expansion coefficient from T1 to T2 was obtained by the following equation. Note that T2 = 100 (° C.) and T1 = 200 (° C.).

熱膨張係数(ppm/℃)=(((L2−L1)/L0)/(T2−T1))×10
昇温、降温速度:5℃/min
試料幅:4mm
荷重:フィルム厚み10μmの時44.5mN。フィルム厚みに比例して荷重は変更する。
Thermal expansion coefficient (ppm / ° C.) = (((L2-L1) / L0) / (T2-T1)) × 10 6
Temperature rise / fall rate: 5 ° C / min
Sample width: 4mm
Load: 44.5 mN when the film thickness is 10 μm. The load changes in proportion to the film thickness.

(実施例1)
攪拌機を備えた200ml3つ口フラスコ中に2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル(和歌山精化株式会社製「TFMB」)6.40g、N−メチル−2−ピロリドン119mlを入れ窒素雰囲気下、0℃に冷却、攪拌しながら30分かけてテレフタル酸ジクロライド(東京化成社製)2.84g、4,4’−ビフェニルジカルボニルクロライド(東京化成社製)1.67gを5回に分けて添加した。ポリマーが析出したためさらにN−メチル−2−ピロリドン100ml、臭化リチウム5gを追加したところ、ポリマーは溶解した。1時間攪拌した後、反応で発生した塩化水素を炭酸リチウムで中和してポリマー溶液を得た。また、このポリマー溶液は2週間放置後も流動性を保っていた。
Example 1
In a 200 ml three-necked flask equipped with a stirrer, 6.40 g of 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl (“TFMB” manufactured by Wakayama Seika Co., Ltd.) and 119 ml of N-methyl-2-pyrrolidone were added. In a nitrogen atmosphere, cooled to 0 ° C., stirred for 30 minutes with 2.84 g of terephthalic acid dichloride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 5.67 g of 4,4′-biphenyldicarbonyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.). Added in batches. Since the polymer was precipitated, 100 ml of N-methyl-2-pyrrolidone and 5 g of lithium bromide were further added to dissolve the polymer. After stirring for 1 hour, hydrogen chloride generated by the reaction was neutralized with lithium carbonate to obtain a polymer solution. Moreover, this polymer solution maintained fluidity after being left for 2 weeks.

得られたポリマー溶液の一部をガラス板上に取り、バーコーターを用いて均一な膜を形成せしめた。これを120℃で7分間加熱し、自己保持性のフィルムを得た。得られたフィルムをガラス板から剥がして金枠に固定して、流水中10分間水洗し、さらに280℃1分で熱処理を行い芳香族ポリアミドフィルムを得た(乾湿式製膜)。得られたポリマー、フィルムの物性を測定し、表1に示した。   A part of the obtained polymer solution was taken on a glass plate, and a uniform film was formed using a bar coater. This was heated at 120 ° C. for 7 minutes to obtain a self-holding film. The obtained film was peeled off from the glass plate, fixed to a metal frame, washed with running water for 10 minutes, and further subjected to heat treatment at 280 ° C. for 1 minute to obtain an aromatic polyamide film (dry and wet film formation). The physical properties of the obtained polymer and film were measured and are shown in Table 1.

(実施例2)
攪拌機を備えた200ml3つ口フラスコ中に2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル(和歌山精化株式会社製「TFMB」)6.40g、N−メチル−2−ピロリドン83mlを入れ窒素雰囲気下、0℃に冷却、攪拌しながら30分かけてテレフタル酸ジクロライド(東京化成社製)2.03g、4,4’−ビフェニルジカルボニルクロライド(東京化成社製)2.79gを5回に分けて添加した。ポリマーが析出したためさらにN−メチル−2−ピロリドン70ml、臭化リチウム5gを追加したところ、ポリマーは溶解した。さらに1時間攪拌した後、反応で発生した塩化水素を炭酸リチウムで中和してポリマー溶液を得た。また、このポリマー溶液は2週間放置後も流動性を保っていた。
(Example 2)
In a 200 ml three-necked flask equipped with a stirrer, 6.40 g of 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl (“TFMB” manufactured by Wakayama Seika Co., Ltd.) and 83 ml of N-methyl-2-pyrrolidone were added. In a nitrogen atmosphere, cooled to 0 ° C. and stirred for 30 minutes, 2.03 g of terephthalic acid dichloride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2.79 g of 4,4′-biphenyldicarbonyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) Added in batches. Since the polymer was precipitated, 70 ml of N-methyl-2-pyrrolidone and 5 g of lithium bromide were further added, and the polymer was dissolved. After further stirring for 1 hour, hydrogen chloride generated by the reaction was neutralized with lithium carbonate to obtain a polymer solution. Moreover, this polymer solution maintained fluidity after being left for 2 weeks.

得られたポリマー溶液の一部をガラス板上に取り、バーコーターを用いて均一な膜を形成せしめた。これを120℃で7分間加熱し、自己保持性のフィルムを得た。得られたフィルムをガラス板から剥がして金枠に固定して、流水中10分間水洗し、さらに280℃1分で熱処理を行い芳香族ポリアミドフィルムを得た(乾湿式製膜)。得られたポリマー、フィルムの物性を測定し、表1に示した。   A part of the obtained polymer solution was taken on a glass plate, and a uniform film was formed using a bar coater. This was heated at 120 ° C. for 7 minutes to obtain a self-holding film. The obtained film was peeled off from the glass plate, fixed to a metal frame, washed with running water for 10 minutes, and further subjected to heat treatment at 280 ° C. for 1 minute to obtain an aromatic polyamide film (dry and wet film formation). The physical properties of the obtained polymer and film were measured and are shown in Table 1.

(実施例3)
攪拌機を備えた200ml3つ口フラスコ中に塩化リチウム6.98gを入れ、窒素気流下マントルヒーターで加熱して乾燥した。60℃まで冷却後2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル(和歌山精化株式会社製「TFMB」)9.61g、N−メチル−2−ピロリドン118mlを入れ窒素雰囲気下、0℃に冷却、攪拌しながら30分かけてテレフタル酸ジクロライド(東京化成社製)4.87g、4,4’−ビフェニルジカルボニルクロライド(東京化成社製)1.67gを5回に分けて添加した。さらに1時間攪拌した後、反応で発生した塩化水素を炭酸リチウムで中和してポリマー溶液を得た。このポリマー溶液は2週間放置後も流動性を保っていた。
(Example 3)
In a 200 ml three-necked flask equipped with a stirrer, 6.98 g of lithium chloride was placed and heated with a mantle heater under a nitrogen stream to dry. After cooling to 60 ° C., 9.61 g of 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl (“TFMB” manufactured by Wakayama Seika Co., Ltd.) and 118 ml of N-methyl-2-pyrrolidone were placed under a nitrogen atmosphere. Cooling to 0 ° C., adding 4.87 g of terephthalic acid dichloride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1.67 g of 4,4′-biphenyldicarbonyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) in 30 portions with stirring for 30 minutes. did. After further stirring for 1 hour, hydrogen chloride generated by the reaction was neutralized with lithium carbonate to obtain a polymer solution. This polymer solution maintained fluidity after being left for 2 weeks.

得られたポリマー溶液の一部をガラス板上に取り、バーコーターを用いて均一な膜を形成せしめた。これを120℃で7分間加熱し、自己保持性のフィルムを得た。得られたフィルムをガラス板から剥がして金枠に固定して、流水中10分間水洗し、さらに280℃1分で熱処理を行い芳香族ポリアミドフィルムを得た(乾湿式製膜)。得られたポリマー、フィルムの物性を測定し、表1に示した。   A part of the obtained polymer solution was taken on a glass plate, and a uniform film was formed using a bar coater. This was heated at 120 ° C. for 7 minutes to obtain a self-holding film. The obtained film was peeled off from the glass plate, fixed to a metal frame, washed with running water for 10 minutes, and further subjected to heat treatment at 280 ° C. for 1 minute to obtain an aromatic polyamide film (dry and wet film formation). The physical properties of the obtained polymer and film were measured and are shown in Table 1.

(比較例1)
攪拌機を備えた200ml3つ口フラスコ中に2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル(和歌山精化株式会社製「TFMB」)9.61g、N−メチル−2−ピロリドン121mlを入れ窒素雰囲気下、0℃に冷却、攪拌しながら30分かけてテレフタル酸ジクロライド(東京化成社製)4.87g、4,4’−ビフェニルジカルボニルクロライド(東京化成社製)1.67gを5回に分けて添加した。ポリマーが析出したためさらにN−メチル−2−ピロリドン120ml、臭化リチウム5gを追加したところ、ポリマーは大部分が溶解した。さらに1時間攪拌した後、反応で発生した塩化水素を炭酸リチウムで中和してゲル状のポリマー溶液を得た。この溶液は流動性が無く、フィルムへの成形は不可能であった。
(Comparative Example 1)
In a 200 ml three-necked flask equipped with a stirrer, 9.61 g of 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl (“TFMB” manufactured by Wakayama Seika Co., Ltd.) and 121 ml of N-methyl-2-pyrrolidone were added. In a nitrogen atmosphere, cool to 0 ° C. and stir for 30 minutes with 4.87 g of terephthalic acid dichloride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 5.67 g of 4,4′-biphenyldicarbonyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.). Added in batches. Since the polymer precipitated, 120 ml of N-methyl-2-pyrrolidone and 5 g of lithium bromide were further added, and most of the polymer was dissolved. After further stirring for 1 hour, hydrogen chloride generated by the reaction was neutralized with lithium carbonate to obtain a gel polymer solution. This solution was not fluid and could not be formed into a film.

(比較例2)
攪拌機を備えた200ml3つ口フラスコ中に2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル(和歌山精化株式会社製「TFMB」)6.40g、N−メチル−2−ピロリドン125ml、臭化リチウム5gを入れ窒素雰囲気下、0℃に冷却、攪拌しながら30分かけてテレフタル酸ジクロライド(東京化成社製)3.86gを5回に分けて添加した。さらに1時間攪拌した後、反応で発生した塩化水素を炭酸リチウムで中和してポリマー溶液を得た。また、このポリマー溶液は2週間放置後も流動性を保っていた。このポリマー溶液は乾湿式製膜では白濁した。
(Comparative Example 2)
In a 200 ml three-necked flask equipped with a stirrer, 6.40 g of 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl (“TFMB” manufactured by Wakayama Seika Co., Ltd.), 125 ml of N-methyl-2-pyrrolidone, 5. 5 g of lithium bromide was added, cooled to 0 ° C. in a nitrogen atmosphere, and 3.86 g of terephthalic acid dichloride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added in 5 portions over 30 minutes with stirring. After further stirring for 1 hour, hydrogen chloride generated by the reaction was neutralized with lithium carbonate to obtain a polymer solution. Moreover, this polymer solution maintained fluidity after being left for 2 weeks. This polymer solution became cloudy in dry and wet film formation.

得られたポリマー溶液の一部をガラス板上に取り、バーコーターを用いて均一な膜を形成せしめた。これを流水中10分間水洗固化し、自己保持性のフィルムを得た。得られたフィルムをガラス板から剥がして金枠に固定して、さらに280℃1分で熱処理を行い芳香族ポリアミドフィルムを得た(湿式製膜)。得られたポリマー、フィルムの物性を測定し、表1に示した。   A part of the obtained polymer solution was taken on a glass plate, and a uniform film was formed using a bar coater. This was washed and solidified for 10 minutes under running water to obtain a self-holding film. The obtained film was peeled off from the glass plate and fixed to a metal frame, and further subjected to heat treatment at 280 ° C. for 1 minute to obtain an aromatic polyamide film (wet film formation). The physical properties of the obtained polymer and film were measured and are shown in Table 1.

(比較例3)
攪拌機を備えた200ml3つ口フラスコ中に真空乾燥した2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル(和歌山精化株式会社製「TFMB」)6.40g、N−メチル−2−ピロリドン125ml、臭化リチウム5gを入れ窒素雰囲気下、0℃に冷却、攪拌しながら30分かけてテレフタル酸ジクロライド(東京化成社製)4.06gを10回に分けて添加した。ポリマーが析出したためN−メチル−2−ピロリドン100mlを添加したが、ポリマーは溶解しなかった。
(Comparative Example 3)
6.40 g of 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl (“TFMB” manufactured by Wakayama Seika Co., Ltd.), vacuum-dried in a 200 ml three-necked flask equipped with a stirrer, N-methyl-2- Pyrrolidone (125 ml) and lithium bromide (5 g) were added, and cooled to 0 ° C. in a nitrogen atmosphere, 4.06 g of terephthalic acid dichloride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added in 10 portions over 30 minutes with stirring. Since the polymer was precipitated, 100 ml of N-methyl-2-pyrrolidone was added, but the polymer did not dissolve.

Figure 0005309769
Figure 0005309769

Claims (7)

450nmから700nmまでの全ての波長の光の光線透過率が80%以上でかつ、化学式(I)および(II)で示される構造単位を含む芳香族ポリアミドを含む芳香族ポリアミドフィルム。
Figure 0005309769
Figure 0005309769
An aromatic polyamide film containing an aromatic polyamide having a light transmittance of light of all wavelengths from 450 nm to 700 nm of 80% or more and containing a structural unit represented by chemical formulas (I) and (II).
Figure 0005309769
Figure 0005309769
芳香族ポリアミドが、化学式(I)で表される構造単位のモル分率をaとし、化学式(II)で表される構造単位のモル分率をbとし、a+b=100としたとき、aおよびbが次式(1)および(2)を満足する、請求項1に記載の芳香族ポリアミドフィルム。
0 <a≦70 ・・・(1)
30≦b<100 ・・・(2)
When the aromatic polyamide has a molar fraction of the structural unit represented by the chemical formula (I) as a, a molar fraction of the structural unit represented by the chemical formula (II) as b, and a + b = 100, a and The aromatic polyamide film according to claim 1, wherein b satisfies the following formulas (1) and (2).
0 <a ≦ 70 (1)
30 ≦ b <100 (2)
芳香族ポリアミドが、臭化リチウムを5質量%含むN−メチル−2−ピロリドン溶液に4質量%以上溶解可能である、請求項1または2に記載の芳香族ポリアミドフィルム。 The aromatic polyamide film according to claim 1 or 2, wherein the aromatic polyamide is soluble in 4% by mass or more in an N-methyl-2-pyrrolidone solution containing 5% by mass of lithium bromide. 芳香族ポリアミドの固有粘度が4.0(dl/g)以上である、請求項1〜3のいずれかに記載の芳香族ポリアミドフィルム。 The aromatic polyamide film according to any one of claims 1 to 3, wherein the intrinsic viscosity of the aromatic polyamide is 4.0 (dl / g) or more. フィルム面内の1方向およびこれと直交する方向のいずれの方向についても、100℃〜200℃の平均熱膨張係数が−30ppm/℃以上0ppm/℃以下である方向の組が少なくとも1組存在する、請求項1〜4のいずれかに記載の芳香族ポリアミドフィルム。 There is at least one set of directions in which the average coefficient of thermal expansion from 100 ° C. to 200 ° C. is −30 ppm / ° C. or more and 0 ppm / ° C. or less for any one direction in the film plane and the direction orthogonal thereto. The aromatic polyamide film according to any one of claims 1 to 4. 450nmから700nmまでの全ての波長の光の光線透過率が80%以上であり、かつ、厚みが100μm以下である、請求項1〜5のいずれかに記載の芳香族ポリアミドフィルム。 The aromatic polyamide film according to any one of claims 1 to 5, wherein the light transmittance of light having all wavelengths from 450 nm to 700 nm is 80% or more and the thickness is 100 µm or less. 請求項1〜6のいずれかに記載の芳香族ポリアミドフィルムを少なくとも1層含む積層体
A laminate comprising at least one layer of the aromatic polyamide film according to claim 1 .
JP2008197806A 2007-09-04 2008-07-31 Aromatic polyamide film Active JP5309769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197806A JP5309769B2 (en) 2007-09-04 2008-07-31 Aromatic polyamide film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007228591 2007-09-04
JP2007228591 2007-09-04
JP2008197806A JP5309769B2 (en) 2007-09-04 2008-07-31 Aromatic polyamide film

Publications (2)

Publication Number Publication Date
JP2009079210A JP2009079210A (en) 2009-04-16
JP5309769B2 true JP5309769B2 (en) 2013-10-09

Family

ID=40654206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197806A Active JP5309769B2 (en) 2007-09-04 2008-07-31 Aromatic polyamide film

Country Status (1)

Country Link
JP (1) JP5309769B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802238B2 (en) 2007-03-29 2014-08-12 Akron Polymer Systems, Inc. Optical compensation films based on fluoropolymers
US8435636B2 (en) 2007-03-29 2013-05-07 Akron Polymer Systems, Inc. Optical compensation films of brominated styrenic polymers and related methods
US8889043B2 (en) 2007-03-29 2014-11-18 Akron Polymer Systems, Inc. Optical films cast from styrenic fluoropolymer solutions
JP5277594B2 (en) * 2007-09-11 2013-08-28 東レ株式会社 Aromatic polyamide and aromatic polyamide film
JP5699454B2 (en) * 2009-06-04 2015-04-08 東レ株式会社 Film having negative coefficient of thermal expansion, method for producing the same, and laminate
JP5353607B2 (en) * 2009-09-29 2013-11-27 東レ株式会社 Aromatic polyamide and aromatic polyamide film.
JP5668481B2 (en) * 2010-01-14 2015-02-12 東レ株式会社 Aromatic polyamide and aromatic polyamide film
JP5853469B2 (en) * 2010-09-15 2016-02-09 東レ株式会社 Totally aromatic polyamide film, method for producing the same, and laminate
JP5998508B2 (en) * 2011-02-21 2016-09-28 東レ株式会社 Fluorine-containing resin laminated film and method for producing the same
KR20120105720A (en) 2011-03-16 2012-09-26 삼성전자주식회사 Polyamide mixture, film prepared by using same, and display device including the film
US9457496B2 (en) 2011-03-23 2016-10-04 Akron Polymer Systems, Inc. Aromatic polyamide films for transparent flexible substrates
KR101796174B1 (en) 2011-05-19 2017-11-10 삼성전자주식회사 Polyamide block copolymer, method of preparing same, article including same, and display device including the article
US9856376B2 (en) * 2011-07-05 2018-01-02 Akron Polymer Systems, Inc. Aromatic polyamide films for solvent resistant flexible substrates
WO2013028509A2 (en) 2011-08-19 2013-02-28 Akron Polymer Systems, Inc. Thermally stable, low birefringent copolyimide films
US8871882B2 (en) 2012-02-14 2014-10-28 Akron Polymer Systems, Inc. Method for the preparation of styrenic fluoropolymers
US9963548B1 (en) * 2012-04-24 2018-05-08 Akron Polymer Systems, Inc. Solvent resistant, aromatic polyamide films for transparent flexible substrates
TWI633152B (en) * 2012-09-24 2018-08-21 美商亞克朗聚合物系統公司 Solution of aromatic polyamide for producing display element, optical element, or illumination element
CN104884507A (en) * 2012-12-26 2015-09-02 艾克伦聚合物***公司 Aromatic polyamide films for solvent resistant flexible substrates
JP6256038B2 (en) * 2013-02-27 2018-01-10 東レ株式会社 Aromatic polyamide porous membrane and separator for secondary battery
KR20160068798A (en) * 2013-10-04 2016-06-15 아크론 폴리머 시스템즈, 인코포레이티드 Resin composition, substrate, method of manufacturing electronic device and electronic device
JP5817802B2 (en) * 2013-10-15 2015-11-18 栗田工業株式会社 Intermediate for papermaking additive and method for producing papermaking additive
JP7347172B2 (en) * 2018-12-14 2023-09-20 東レ株式会社 Aromatic polyamide or solution containing aromatic polyamideimide
JP7193198B1 (en) * 2021-03-31 2022-12-20 ユニチカ株式会社 Semi-aromatic polyamide film and laminate obtained therefrom

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446305A (en) * 1981-03-02 1984-05-01 Polaroid Corporation Optical device including birefringent polymer
KR20040026905A (en) * 2002-09-26 2004-04-01 주식회사 세넥스테크놀로지 Evaluation apparatus and method of image quality for realtime iris recognition, and storage media having program thereof
JP2005054173A (en) * 2003-07-18 2005-03-03 Toray Ind Inc Plastic substrate
JP2005298749A (en) * 2004-04-15 2005-10-27 Toray Ind Inc Aromatic polyamide film
JP2006213788A (en) * 2005-02-02 2006-08-17 Toray Ind Inc Polymer film
JP4999345B2 (en) * 2006-03-28 2012-08-15 大阪府 Polyamide entangled body and method for producing the same
JP5374868B2 (en) * 2007-03-20 2013-12-25 東レ株式会社 Display material substrate manufacturing method, display material

Also Published As

Publication number Publication date
JP2009079210A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP5309769B2 (en) Aromatic polyamide film
JP5277594B2 (en) Aromatic polyamide and aromatic polyamide film
JP6715406B2 (en) High heat resistant polyimide film
JP5403178B2 (en) Totally aromatic polyamide film
JP4702051B2 (en) Aromatic polymers, films, electrolyte membranes and separators
JP6409540B2 (en) Film, film manufacturing method and laminate
JP2014139296A (en) Aromatic polyamide, aromatic polyamide film and laminate
JP2015120886A (en) Aromatic polyamide film and laminate
KR102117151B1 (en) Polyimide precursor solution and polyimide film prepared by using same
JPWO2004039863A1 (en) Cycloaliphatic or aromatic polyamide, polyamide film, optical member using them, and polyamide copolymer
JP4962046B2 (en) Polyimide film and method for producing the same
KR20160081845A (en) Polyamide-imide precursor composition, polyamide-imide film and display device
JP2008074991A (en) Polyimide, polyamide imide, and film comprising the same
JPWO2018207706A1 (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
KR101721555B1 (en) Process for polyimide resin
JP5668481B2 (en) Aromatic polyamide and aromatic polyamide film
KR20170007227A (en) A process for producing a polyimide resin and a polyimide film
KR102560356B1 (en) Polyimide film and metal-clad laminated body
JP5353607B2 (en) Aromatic polyamide and aromatic polyamide film.
KR20200092628A (en) Preparing method of polyamide-based (co)polymer, and polyamide-based (co)polymer resin composition, polymer film using the same
JP5998508B2 (en) Fluorine-containing resin laminated film and method for producing the same
JP2011032400A (en) Aromatic polyamide film and manufacturing method of the same
JP2013100392A (en) Aromatic polyamide, and laminate
JP2010023271A (en) Laminate
JP2010235859A (en) Polyimide material, film and composition, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5309769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151