JP5228174B2 - Separation membrane manufacturing equipment - Google Patents

Separation membrane manufacturing equipment Download PDF

Info

Publication number
JP5228174B2
JP5228174B2 JP2009199244A JP2009199244A JP5228174B2 JP 5228174 B2 JP5228174 B2 JP 5228174B2 JP 2009199244 A JP2009199244 A JP 2009199244A JP 2009199244 A JP2009199244 A JP 2009199244A JP 5228174 B2 JP5228174 B2 JP 5228174B2
Authority
JP
Japan
Prior art keywords
outer peripheral
partition wall
separation membrane
peripheral side
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009199244A
Other languages
Japanese (ja)
Other versions
JP2011050804A (en
Inventor
宗士 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2009199244A priority Critical patent/JP5228174B2/en
Publication of JP2011050804A publication Critical patent/JP2011050804A/en
Application granted granted Critical
Publication of JP5228174B2 publication Critical patent/JP5228174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば有機溶媒中の水等を分離するために適用される分離膜の製造装置に関するものである。   The present invention relates to an apparatus for manufacturing a separation membrane applied to separate water or the like in an organic solvent, for example.

結晶性の多孔質材料、例えば固体酸性,イオン交換能,吸着分離能,分子レベルの細孔を有する材料は、有機溶媒(被分離対象)中の水等を分離するための分離膜に適用され、その一例としてゼオライト分離膜が挙げられる。   Crystalline porous materials such as solid acid, ion exchange capacity, adsorptive separation capacity, and molecular level pores are applied to separation membranes for separating water in organic solvents (to be separated). One example is a zeolite separation membrane.

この分離膜の製造方法の一例として水熱合成法が挙げられ、ゼオライトから成る分離膜の場合にはシリカ源,アルミナ源等を主成分とする分離膜原料から成る反応液(ゼオライト膜原料を含んだ反応液)を用い、その反応液に支持体を所定条件(所定の反応時間,反応温度等)で接触させ、その支持体表面上にゼオライト膜を形成する手法が知られている(例えば、特許文献1)。   An example of a method for producing the separation membrane is a hydrothermal synthesis method. In the case of a separation membrane made of zeolite, a reaction liquid (including the zeolite membrane raw material) composed of a separation membrane material mainly composed of a silica source, an alumina source, etc. A reaction solution is used, and a support is brought into contact with the reaction solution under predetermined conditions (predetermined reaction time, reaction temperature, etc.) to form a zeolite membrane on the support surface (for example, Patent Document 1).

この水熱合成法に適用される装置としては、例えば円筒状で反応液を収容する反応容器と、その反応容器内を外周側から加熱(反応容器の隔壁を介して加熱)する加熱手段と、を主として備えたものが知られている。この装置の反応容器内に貯留された反応液に対し柱状の支持体を浸漬させた状態で、反応液を反応容器の外周側から加熱手段により加熱することにより、支持体表面上に結晶が付着し目的とする分離膜が形成される。   As an apparatus applied to this hydrothermal synthesis method, for example, a cylindrical reaction vessel containing a reaction solution, a heating means for heating the inside of the reaction vessel from the outer peripheral side (heating through a partition wall of the reaction vessel), The thing mainly equipped with is known. With the columnar support immersed in the reaction solution stored in the reaction vessel of this apparatus, the reaction solution is heated from the outer peripheral side of the reaction vessel by the heating means, so that crystals adhere to the support surface. The desired separation membrane is then formed.

分離膜の性能を示す指標として、下記式(1)で示す分離性能係数αや透過速度Q(kg/m2・h)が挙げられる。ここで、下記式(1)は、分離膜透過前の被分離対象液(例えば、エタノールと水との混合液)の水濃度をA1重量%,溶質(エタノール等)濃度をA2重量%とし、分離膜透過後の水濃度をB1重量%,溶質濃度をB2重量%としたものであり、分離性能係数αが大きいほど分離膜の膜性能が高いことを意味する。また、透過速度Qは、単位時間当たりに流体(被分離対象)が分離膜を透過する量を示すものであり、例えばエタノールと水との混合液から水を当該分離膜により分離する場合には、単位時間当たりに水が分離膜を通過する量を意味する。
α=(B1/B2)/(A1/A2) ……(1)。
Examples of the index indicating the performance of the separation membrane include a separation performance coefficient α and a permeation rate Q (kg / m 2 · h) represented by the following formula (1). Here, the following formula (1) indicates that the water concentration of the separation target liquid (for example, a mixed solution of ethanol and water) before permeation through the separation membrane is A1 wt%, and the solute (ethanol etc.) concentration is A2 wt%. The water concentration after permeation through the separation membrane is B1% by weight, and the solute concentration is B2% by weight. The larger the separation performance coefficient α, the higher the membrane performance of the separation membrane. The permeation speed Q indicates the amount of fluid (subject to be separated) permeating the separation membrane per unit time. For example, when water is separated from a mixed solution of ethanol and water by the separation membrane. Means the amount of water passing through the separation membrane per unit time.
α = (B1 / B2) / (A1 / A2) (1).

なお、欧米バイオマスエタノール製品濃度は99.6%On specとされているが、供給エタノール90%を75℃で脱水した場合、下記表1に示すような参考データを目安とすることができる。   The European and American biomass ethanol product concentration is 99.6% On spec, but when 90% of the supplied ethanol is dehydrated at 75 ° C., reference data as shown in Table 1 below can be used as a guide.

Figure 0005228174
Figure 0005228174

従来、例えば図4(A;概略図),(B;X−X断面図)に示すように、単に円筒状の隔壁41から成る反応容器内の反応液(すなわち、円柱状の空間に収容された反応液)に支持体40を浸漬して分離膜を形成していたが、近年においては、分離膜の生産効率の向上等を目的として、例えば図5(A;概略図),(B;X−X断面図)に示すように複数個(図5中では2個)の支持体40を同時に浸漬して量産する手法が考えられ始めている。しかしながら、反応容器外周側の加熱手段からの熱は、例えば反応容器の内周側の反応液と比較して軸心側の反応液には伝わりにくいため、反応容器内の反応液の温度分布が不均一になり易く、量産される各分離膜の膜性能(分離性能係数α,透過速度Q)においては大きな差が生じてしまう恐れがある。   Conventionally, for example, as shown in FIG. 4A (schematic diagram) and (B; XX cross-sectional view), a reaction liquid in a reaction vessel composed of a cylindrical partition wall 41 (that is, contained in a cylindrical space). In recent years, for the purpose of improving the production efficiency of the separation membrane, for example, FIG. 5 (A; schematic diagram), (B; As shown in (XX sectional view), a method of mass production by simultaneously immersing a plurality of (two in FIG. 5) support bodies 40 is beginning to be considered. However, since the heat from the heating means on the outer peripheral side of the reaction vessel is not easily transmitted to the reaction solution on the axial side as compared with the reaction solution on the inner peripheral side of the reaction vessel, for example, the temperature distribution of the reaction solution in the reaction vessel is It tends to be non-uniform, and there may be a large difference in membrane performance (separation performance coefficient α, permeation speed Q) of each separation membrane to be mass-produced.

また、熱伝導率の高い金属製の反応容器を適用したり加熱手段の発熱量を高める手法も考えられているが、反応液が高温になり過ぎて体積が膨張したり、特に加熱手段に近接する反応容器等の変形や破損等が起こる恐れがある。このような現象は、特に円筒状ではない反応容器、例えば図6(A;概略図),(B;X−X断面図)に示すように内周面が断面略楕円形の筒状の隔壁51から成る反応容器(以下、非円筒状反応容器と称する)を適用した場合にはより顕著となるものと思われる(例えば、特許文献2)。   In addition, a method of applying a metal reaction vessel with high thermal conductivity or increasing the heating value of the heating means is also considered, but the reaction solution becomes too hot and the volume expands, especially in proximity to the heating means The reaction vessel may be deformed or damaged. Such a phenomenon is caused by a reaction vessel that is not particularly cylindrical, for example, a cylindrical partition wall whose inner peripheral surface is substantially elliptical as shown in FIGS. 6 (A; schematic view), (B; XX sectional view). It seems that this becomes more remarkable when a reaction vessel composed of 51 (hereinafter referred to as a non-cylindrical reaction vessel) is applied (for example, Patent Document 2).

さらに、前記のように反応液の膨張や反応容器等の変形や破損が起こると、加熱された反応液の対流(各支持体周囲の対流)等に影響が生じたり、温度分布が不均一になり易く、結果的に各分離膜の膜性能において大きな差が生じる恐れがある。   Furthermore, if the reaction liquid expands or the reaction vessel is deformed or broken as described above, the convection of the heated reaction liquid (convection around each support) will be affected, or the temperature distribution will be uneven. As a result, there is a possibility that a large difference occurs in the membrane performance of each separation membrane.

なお、前記の反応液の膨張や反応容器等の変形や破損に対処する方法として、例えば反応容器の隔壁等の厚さ大きく設定して熱に対する耐久性を高めることが考えられるが、熱伝導率が低くなる恐れがある。   As a method for coping with the expansion of the reaction solution and the deformation or breakage of the reaction vessel, for example, it is conceivable to increase the durability against heat by setting the thickness of the partition wall of the reaction vessel to be large. May be low.

特開2004−82008号公報(例えば、段落2,3,図1に係る記載等参照)Japanese Unexamined Patent Application Publication No. 2004-82008 (see, for example, the description related to paragraphs 2 and 3 and FIG. 1) 特許国際公開2006−132237号公報(例えば、段落6,10〜15,図1に係る記載等参照)。Japanese Patent Application Laid-Open No. 2006-132237 (see, for example, paragraphs 6, 10 to 15, description relating to FIG. 1).

本願発明者は、前記のような技術進歩等に伴って、分離膜の製造方法においては、以下に示す課題があることに着目した。   The inventor of the present application has paid attention to the following problems in the method of manufacturing a separation membrane in accordance with the technical progress as described above.

すなわち、第1課題としては、反応容器内に複数個の支持体を配置して分離膜をそれぞれ形成する場合、従来のように単に円筒状の反応容器を適用しただけでは、各分離膜の膜性能において差が大きくなってしまい、非円筒状反応容器を適用した場合には、反応液の加熱により反応容器等において熱応力が発生し、変形や破損等が起こり易いことが挙げられる。   That is, as a first problem, when a plurality of supports are arranged in a reaction vessel to form a separation membrane, the membrane of each separation membrane can be obtained simply by applying a cylindrical reaction vessel as in the prior art. When a non-cylindrical reaction vessel is applied due to the difference in performance, heat stress is generated in the reaction vessel or the like due to heating of the reaction solution, and deformation or breakage is likely to occur.

また、第2課題としては、例えば反応容器の隔壁等を厚くすることなく、熱に対する耐久性を高めることが挙げられる。   Moreover, as a 2nd subject, the durability with respect to a heat | fever is raised, for example, without thickening the partition of a reaction container.

この発明に係る分離膜の製造装置は、前記の課題を解決すべく創作された技術的思想であって、非円筒状反応容器を適用せず、複数個の支持体が浸漬された反応液について反応容器の外周側と軸心側とから加熱できるようにすることにより、第1課題を解決することが可能となる。また、前記の反応容器の各隔壁や配管等において熱応力を緩和する部材を適用することにより、第2課題を解決することが可能となる。   The separation membrane manufacturing apparatus according to the present invention is a technical idea created to solve the above-described problems, and does not apply a non-cylindrical reaction vessel, and a reaction solution in which a plurality of supports are immersed. By enabling heating from the outer peripheral side and the axial center side of the reaction vessel, the first problem can be solved. In addition, the second problem can be solved by applying a member that relieves thermal stress in each partition wall, piping, or the like of the reaction vessel.

具体的に、この発明に係る製造装置の一態様は、分離膜原料から成る反応液中に柱状の支持体を浸漬し、その支持体表面に分離膜を形成する製造装置であって、円筒状の外周側隔壁、および軸心が外周側隔壁の軸心と同一方向である円筒状の隔壁で外周面の外径が当該外周側隔壁の内周面の内径よりも小さい軸心側隔壁、を有する反応容器を備える。また、前記の外周側隔壁の内周面と軸心側隔壁の外周面との間の円筒状領域内に貯留された反応液を当該外周側隔壁の外周側から間接的に加熱する外周側加熱手段と、前記反応液を軸心側隔壁の内周側から間接的に加熱する軸心側加熱手段と、を備える。そして、複数個の支持体を、それぞれ円筒状領域の軸心方向に延在および当該円筒状領域の周方向に沿って配列して反応液中に浸漬し、前記の各加熱手段により反応液を加熱して各支持体に分離膜を形成することを特徴とする。   Specifically, one aspect of the production apparatus according to the present invention is a production apparatus in which a columnar support is immersed in a reaction solution made of a separation membrane material, and a separation membrane is formed on the surface of the support. An outer peripheral partition wall, and a cylindrical partition whose axial center is in the same direction as the axial center of the outer peripheral partition wall, the outer peripheral surface of which is smaller than the inner peripheral surface of the outer peripheral partition wall. Having a reaction vessel. Further, the outer peripheral side heating that indirectly heats the reaction liquid stored in the cylindrical region between the inner peripheral surface of the outer peripheral side partition wall and the outer peripheral surface of the axial center side partition wall from the outer peripheral side of the outer peripheral side partition wall. Means and an axial center side heating means for indirectly heating the reaction liquid from the inner peripheral side of the axial side partition. Then, a plurality of supports each extend in the axial direction of the cylindrical region and are arranged along the circumferential direction of the cylindrical region, and are immersed in the reaction solution. A separation membrane is formed on each support by heating.

また、前記の支持体を保持しながら反応液中に浸漬させるために、前記円筒状領域の周方向に沿って配列する各支持体の一端側をそれぞれ着脱自在に保持する手段であって、反応容器に対して着脱自在な保持手段を備えても良い。   In addition, in order to immerse in the reaction liquid while holding the support, means for detachably holding one end side of each support arranged along the circumferential direction of the cylindrical region, You may provide the holding means detachable with respect to a container.

前記外周側加熱手段としては、前記外周側隔壁の外周側を覆う加熱手段用隔壁内に収容され、その加熱手段用隔壁の少なくとも一部が、外周側隔壁の軸心方向に伸縮可能な部材から成るものを適用しても良い。   The outer peripheral side heating means is accommodated in a heating means partition wall that covers the outer peripheral side of the outer peripheral side partition wall, and at least a part of the heating means partition wall is made of a member that can expand and contract in the axial direction of the outer peripheral side partition wall. It may be applied.

さらに、前記円筒状領域内に反応液を貯留および/または排出する配管を備え、その配管の少なくとも一部が、外周側隔壁の軸心方向に伸縮可能な部材から成るものであっても良い。   Furthermore, a pipe for storing and / or discharging the reaction liquid may be provided in the cylindrical region, and at least a part of the pipe may be made of a member that can expand and contract in the axial direction of the outer peripheral partition wall.

さらにまた、前記反応容器の外周側隔壁と軸心側隔壁とのうち少なくとも何れか一方の一部が、外周側隔壁の軸心方向に伸縮可能な部材から成るものであっても良い。   Furthermore, at least one of the outer peripheral side partition and the axial center side partition of the reaction vessel may be made of a member that can expand and contract in the axial direction of the outer peripheral side partition.

以上の発明によれば、反応容器内の反応液の温度分布の差を小さくでき、膜性能において差が大きくならないように複数個の分離膜を形成し易くなる。   According to the above invention, the difference in the temperature distribution of the reaction liquid in the reaction vessel can be reduced, and a plurality of separation membranes can be easily formed so as not to increase the difference in membrane performance.

本実施形態に係る分離膜製造装置の概略説明図。Schematic explanatory drawing of the separation membrane manufacturing apparatus concerning this embodiment. 本実施形態に係る分離膜製造装置における支持体の配置説明図。The arrangement explanatory view of the support in the separation membrane manufacture device concerning this embodiment. 本実施例に係るパーベーパレーション評価装置の概略説明図。Schematic explanatory drawing of the pervaporation evaluation apparatus which concerns on a present Example. 従来技術における分離膜製造装置の一例を示す説明図。Explanatory drawing which shows an example of the separation membrane manufacturing apparatus in a prior art. 従来技術における分離膜製造装置の他の例を示す説明図。Explanatory drawing which shows the other example of the separation membrane manufacturing apparatus in a prior art. 従来技術における分離膜製造装置の更に他の例を示す説明図。Explanatory drawing which shows the further another example of the separation membrane manufacturing apparatus in a prior art.

本実施形態の分離膜の製造装置は、反応容器において、円筒状の外周側隔壁(内周面が円筒状の隔壁)と、軸心が外周側隔壁の軸心と同一方向(軸心が略同一)である円筒状の隔壁であって外周面の外径が当該外周側隔壁の内周面の内径よりも小さい軸心側隔壁(外周面が円筒状の軸心側隔壁)と、を有するものである。また、その反応容器内を外周側隔壁の外周側から間接的に加熱する外周側加熱手段と、前記反応容器内を軸心側隔壁の内周側から間接的に加熱する軸心側加熱手段と、を備えたものである。   The separation membrane manufacturing apparatus of the present embodiment includes a cylindrical outer peripheral partition wall (inner peripheral surface cylindrical partition wall) and an axial center in the same direction as the axial center of the outer peripheral partition wall. A cylindrical partition wall having an outer peripheral surface whose outer diameter is smaller than an inner diameter of the inner peripheral surface of the outer peripheral partition wall (an axial peripheral partition wall having a cylindrical outer peripheral surface). Is. Further, an outer peripheral side heating means for indirectly heating the inside of the reaction vessel from the outer peripheral side of the outer peripheral side partition, and an axial center side heating means for indirectly heating the inside of the reaction vessel from the inner peripheral side of the axial center side partition. , With.

この製造装置では、前記反応容器における外周側隔壁の内周面と軸心側隔壁の外周面とによって囲まれた円筒状の領域(すなわち径方向断面が円環状の空間;以下、円筒状領域と称する)内に反応液を貯留する。そして、この反応液中に対し、複数個の支持体を当該円筒状領域の軸心方向に延在および各支持体が円筒状領域の周方向に沿って配列(等間隔を隔てて配列)するように浸漬する。このように所定位置に各支持体を浸漬した状態で、前記の2つの加熱手段を用いて反応液を加熱することにより、前記の各支持体に対し結晶(加熱された反応液によって生じる結晶)を付着させて、目的とする分離膜を形成する。   In this production apparatus, a cylindrical region surrounded by the inner peripheral surface of the outer peripheral partition wall and the outer peripheral surface of the axial-side partition wall in the reaction vessel (that is, a space having a circular cross section in the radial direction; hereinafter, a cylindrical region) The reaction solution is stored in the inside. And in this reaction solution, a plurality of supports are extended in the axial direction of the cylindrical region, and each support is arranged along the circumferential direction of the cylindrical region (arranged at equal intervals). Soak. In such a state where each support is immersed in a predetermined position, the reaction liquid is heated using the two heating means, whereby crystals are formed on the respective support (crystals generated by the heated reaction liquid). To form a target separation membrane.

前記のように円筒状領域内に貯留された反応液においては、外周側隔壁の外周側からと、軸心側隔壁の内周側と、から加熱される。このため、従来のように単に反応容器の外周側から加熱した場合と比較して、反応容器内の反応液の温度分布の差を小さくできる。そして、前記のように所定位置にて反応液中に浸漬した各支持体においては、それぞれ膜性能が略均一な分離膜が形成され易くなる。また、非円筒状反応容器と比較して、反応容器等の変形や破損等が抑制される。   As described above, the reaction liquid stored in the cylindrical region is heated from the outer peripheral side of the outer peripheral side partition and from the inner peripheral side of the axial center side partition. For this reason, compared with the case where it heats only from the outer peripheral side of reaction container like the past, the difference of the temperature distribution of the reaction liquid in reaction container can be made small. As described above, on each support immersed in the reaction solution at a predetermined position, a separation membrane having a substantially uniform membrane performance is easily formed. In addition, deformation and breakage of the reaction vessel and the like are suppressed as compared to the non-cylindrical reaction vessel.

<反応容器>
反応容器は、前記のように円筒状領域内に反応液を貯留、および当該反応液中に複数個の支持体を所定位置にて浸漬できるものであって、2つの加熱手段によって反応液が加熱され目的とする分離膜を製造できる構造であれば、特に制限されることはない。例えば、目的とする分離膜を製造するために支持体において任意の形状および個数が設定されている場合、それら全ての支持体を浸漬させて各分離膜を製造できる構造であれば良い。
<Reaction vessel>
As described above, the reaction vessel can store the reaction solution in the cylindrical region and immerse a plurality of supports in a predetermined position in the reaction solution. The reaction solution is heated by two heating means. The structure is not particularly limited as long as the target separation membrane can be manufactured. For example, in the case where an arbitrary shape and number are set in the support in order to manufacture the target separation membrane, any structure may be used as long as each of the supports can be manufactured by immersing all the supports.

したがって、外周側隔壁や軸心側隔壁の大きさ(外径や内径等)においても、例えば目的とする分離膜に応じて適宜設定して良いが、外周側隔壁と軸心側隔壁の軸心は略同一(好ましくは同一)で、外周側隔壁の内周面と軸心側隔壁の外周面との間の距離(径方向の距離)は略均一であることが望まれる。一般的な分離膜用の支持体を円筒状領域内に浸漬させることを想定すると、外周側隔壁の内径と軸心側隔壁の外径は、両者の差が20mm〜150mm程度となるように設定することが考えられる。   Accordingly, the size (outer diameter, inner diameter, etc.) of the outer peripheral side partition wall and the axial center side partition wall may be appropriately set according to, for example, the target separation membrane. Are substantially the same (preferably the same), and the distance (the radial distance) between the inner peripheral surface of the outer peripheral partition wall and the outer peripheral surface of the axial center partition wall is desirably substantially uniform. Assuming that a support for a general separation membrane is immersed in a cylindrical region, the inner diameter of the outer peripheral partition and the outer diameter of the shaft central partition are set so that the difference between them is about 20 mm to 150 mm. It is possible to do.

各隔壁は、加熱手段による熱に対して耐久性(熱変形に対する強度等)を有するものであって、反応液に対する間接的加熱を考慮して熱伝導率が高いもの、例えばステンレス(SUS304等)などの金属から成るものを適用する。   Each partition wall has durability against heat from the heating means (strength against thermal deformation, etc.), and has high thermal conductivity in consideration of indirect heating to the reaction solution, such as stainless steel (SUS304, etc.) The one made of metal such as

複数個の支持体を反応液中に浸漬させるには、例えば各支持体を着脱自在に保持しながら反応液中に所定位置にて浸漬させることが可能な保持手段を適用することが考えられる。この保持手段の構造例としては、反応容器の一端側に対して着脱自在で複数個の治具を備えた蓋部材であって、その反応容器の一端側に取り付けた状態で各支持体が反応液中の所定位置に浸漬するように保持可能な蓋部材(例えば図1の封止蓋1aa)が挙げられる。したがって前記の各治具は、各々の支持体を所定位置に浸漬できるように円筒状領域の周方向に合わせて蓋部材に設けられたものであって、それぞれ支持体の一端側を吊り下げて保持することが可能なものが挙げられる。   In order to immerse a plurality of supports in the reaction solution, for example, it is conceivable to apply holding means capable of immersing each support in a predetermined position in the reaction solution while detachably holding the supports. An example of the structure of the holding means is a lid member that is detachably attached to one end side of the reaction vessel and includes a plurality of jigs, and each support is reacted with the support member attached to the one end side of the reaction vessel. A lid member (for example, the sealing lid 1aa in FIG. 1) that can be held so as to be immersed in a predetermined position in the liquid is exemplified. Accordingly, each of the jigs described above is provided on the lid member in accordance with the circumferential direction of the cylindrical region so that each support body can be immersed in a predetermined position. The thing which can be hold | maintained is mentioned.

<加熱手段>
各加熱手段としては、特に熱源の種類が制限されることはなく、反応容器の各隔壁を介して反応液を間接的に加熱できるものであれば、流体,基体,電熱線等の種々の熱源を利用したものを適宜適用することができる。また、加熱手段は熱源ジャケット等の隔壁内に収容、例えば反応容器の外周側隔壁よりも大きい径の円筒状の隔壁であって、当該外周側隔壁を覆うように配置された加熱手段用隔壁内に収容される。外周側隔壁の外周側を所望温度の流体(温水等)が循環する構造の場合、外周側隔壁と加熱手段用隔壁とに覆われた領域に所定温度の流体が循環することになる。なお、加熱手段の熱が大気中に放出することを抑制し、反応液に対して効率良く伝達できるようにするために、例えば断熱材等の保温手段を適用しても良い。
<Heating means>
As each heating means, the kind of the heat source is not particularly limited, and various heat sources such as a fluid, a substrate, and a heating wire can be used as long as the reaction liquid can be indirectly heated through each partition wall of the reaction vessel. Those using can be applied as appropriate. Further, the heating means is accommodated in a partition such as a heat source jacket, for example, a cylindrical partition having a larger diameter than the outer peripheral partition of the reaction vessel, and the heating means is disposed so as to cover the outer peripheral partition. Is housed in. In the case of a structure in which a fluid having a desired temperature (hot water or the like) circulates on the outer peripheral side of the outer peripheral partition, the fluid having a predetermined temperature circulates in a region covered with the outer peripheral partition and the heating means partition. In addition, in order to suppress the heat of the heating means from being released into the atmosphere and to efficiently transmit it to the reaction solution, a heat retaining means such as a heat insulating material may be applied.

<支持体>
各支持体は、前記のように円筒状領域内の反応液に浸漬できる柱状のものであって、加熱された反応液によって結晶が付着し分離膜を形成可能なものであれば適宜適用することができ、その一例として支持素体の外周面上に種結晶が付着したものが挙げられる。このように支持素体の外周面上に種結晶が付着された支持体を用いると、その支持体上には、より均質なゼオライト膜を形成させることが可能となる。
<Support>
Each support is columnar that can be immersed in the reaction liquid in the cylindrical region as described above, and is appropriately applied as long as crystals can adhere to the heated reaction liquid and form a separation membrane. As an example, there may be mentioned a seed crystal attached on the outer peripheral surface of the support element. When a support having a seed crystal attached to the outer peripheral surface of the support element is used as described above, a more uniform zeolite membrane can be formed on the support.

支持素体は特に限定されないが、多孔質のものが好ましく用いられる。このような支持素体としては、セラミックス,有機高分子又は金属からなるものなどが挙げられる。セラミックスとしては、ムライト,アルミナ,シリカ,チタニア,ジルコニア等が挙げられ、金属としては、ステンレススチール,焼結されたニッケル,焼結されたニッケルと鉄との混合物等が挙げられる。これらの中でも、特にアルミナが好ましい。支持素体としてアルミナを用いると、支持素体の材質の溶出を抑制することができる。なお、支持素体は、ゼオライトを焼結したものであってもよい。   The support element is not particularly limited, but a porous element is preferably used. Examples of such a support element include those made of ceramics, organic polymers or metals. Examples of ceramics include mullite, alumina, silica, titania, zirconia, and examples of metals include stainless steel, sintered nickel, a mixture of sintered nickel and iron, and the like. Among these, alumina is particularly preferable. When alumina is used as the support element, elution of the material of the support element can be suppressed. The support element may be a sintered product of zeolite.

支持素体が多孔質である場合、孔の平均細孔径は目的とする分離膜等に応じて適宜設定できるが、ミリミクロン程度(例えば、ゼオライト膜の場合において0.1μm〜20μm、より好ましくは0.1μm〜5μm)のものが挙げられる。孔の平均細孔径がミリミクロン程度の範囲であれば、平均細孔径が当該範囲を外れた場合と比較して、ピンホールの少ないゼオライト膜等の分離膜を形成させることが可能となり、膜性能の高い分離膜を得ることが可能となる。平均細孔径が小さ過ぎると(例えば、ゼオライト膜の場合において0.1μm未満)、平均細孔径が上記範囲にある場合と比較して、種結晶が支持素体の細孔内に十分付着せず、形成される分離膜が剥離し易くなる。一方、平均細孔径が大き過ぎると(例えば、ゼオライト膜において20μm超)、平均細孔径が上記範囲にある場合と比較して、結晶(ゼオライト結晶等)で細孔を埋めることができず、ピンホールが発生して、膜性能が低下する傾向となる。例えば、ゼオライト膜の場合において、平均細孔径が0.1μm〜5μm程度であれば、特に分離性能の高いゼオライト膜を得ることが可能となる。   When the support element is porous, the average pore diameter of the pores can be appropriately set according to the target separation membrane, etc., but is about millimicron (for example, 0.1 to 20 μm, more preferably in the case of a zeolite membrane) 0.1 μm to 5 μm). If the average pore diameter of the pores is in the range of about a millimicron, it becomes possible to form a separation membrane such as a zeolite membrane with few pinholes compared to the case where the average pore diameter is outside the range, and membrane performance A high separation membrane can be obtained. If the average pore diameter is too small (for example, less than 0.1 μm in the case of a zeolite membrane), the seed crystal does not sufficiently adhere to the pores of the support body compared to the case where the average pore diameter is in the above range. The formed separation membrane is easily peeled off. On the other hand, if the average pore diameter is too large (for example, more than 20 μm in the zeolite membrane), the pores cannot be filled with crystals (zeolite crystals, etc.) as compared with the case where the average pore diameter is in the above range. Holes are generated and the film performance tends to decrease. For example, in the case of a zeolite membrane, if the average pore diameter is about 0.1 μm to 5 μm, it is possible to obtain a zeolite membrane with particularly high separation performance.

多孔質の支持素体の気孔率においても、目的とする分離膜等に応じて適宜設定できるが、好ましくは1〜50%、より好ましくは30〜50%に設定することが挙げられる。なお、前記の気孔率の範囲外、例えば小さ過ぎる場合(例えば、気孔率1%未満の場合)には支持素体のガス透過速度が小さくなる傾向となり、気孔率が大き過ぎる場合(例えば、気孔率50%超の場合)には支持体の機械強度が低くなる傾向となる。一方、気孔率が前述の範囲内(1〜50%)であれば、当該範囲外の場合と比較して、支持体のガス透過量がより大きくなり、透過速度の高いゼオライト膜を得ることが可能となる。   The porosity of the porous support element can also be appropriately set according to the target separation membrane and the like, but is preferably set to 1 to 50%, more preferably 30 to 50%. In addition, when the porosity is out of the above range, for example, when the porosity is too small (for example, when the porosity is less than 1%), the gas transmission rate of the support element tends to be small, and when the porosity is too large (for example, the porosity) When the rate exceeds 50%, the mechanical strength of the support tends to be low. On the other hand, if the porosity is within the above-mentioned range (1 to 50%), the amount of gas permeation through the support becomes larger and a zeolite membrane with a high permeation rate can be obtained as compared with the case outside the range. It becomes possible.

支持素体に付着させる種結晶は、目的とする分離膜に応じて適宜設定される。例えばゼオライト膜の場合、目的とするゼオライト膜のゼオライトの種類に応じて異なり、通常は形成させるゼオライトと同一種類のゼオライトが用いられるが、結晶構造が類似したゼオライトであれば、異なる種類のものであってもよい。   The seed crystal to be attached to the support element is appropriately set according to the target separation membrane. For example, in the case of a zeolite membrane, it differs depending on the type of zeolite in the target zeolite membrane, and usually the same type of zeolite as the zeolite to be formed is used. There may be.

<反応液>
反応液には、目的とする分離膜等に応じて適宜設定できるが、例えばゼオライト膜の場合には、その原料となるものが含まれる。
<Reaction solution>
The reaction solution can be set as appropriate according to the target separation membrane, etc. For example, in the case of a zeolite membrane, the raw material is included.

ゼオライト膜の原料の場合、アルミナ源及びシリカ源を主成分とし、必要に応じて、アルカリ金属源及び/又はアルカリ土類金属源を含んでもよい。アルミナ源としては、水酸化アルミニウム,アルミン酸ナトリウム,硫酸アルミニウム,硝酸アルミニウム,塩化アルミニウム等のアルミニウム塩の他、アルミナ粉末,コロイダルアルミナ等が挙げられる。シリカ源としては、ケイ酸ナトリウム,水ガラス,ケイ酸カリウム等のアルカリ金属ケイ酸塩の他、シリカ粉末,ケイ酸,コロイダルシリカ,酸性白土,カオリン,ケイ素アルコキシド(アルミニウムイソプロポキシド等)等が挙げられる。アルカリ金属源及びアルカリ土類金属源としては、塩化ナトリウム,塩化カリウム,塩化カルシウム,塩化マグネシウム等が挙げられる。なお、アルカリ金属ケイ酸塩は、シリカ源及びアルカリ金属源として機能する。   In the case of the raw material of the zeolite membrane, an alumina source and a silica source are the main components, and an alkali metal source and / or an alkaline earth metal source may be included as necessary. Examples of the alumina source include aluminum powder, colloidal alumina, aluminum hydroxide, sodium aluminate, aluminum sulfate, aluminum nitrate, aluminum chloride, and other aluminum salts. Silica sources include alkali metal silicates such as sodium silicate, water glass, potassium silicate, silica powder, silicic acid, colloidal silica, acid clay, kaolin, silicon alkoxide (aluminum isopropoxide, etc.), etc. Can be mentioned. Examples of the alkali metal source and alkaline earth metal source include sodium chloride, potassium chloride, calcium chloride, magnesium chloride and the like. The alkali metal silicate functions as a silica source and an alkali metal source.

また、反応液中にシリカ源とアルミナ源とが含まれている場合、そのモル比(SiO2/Al23に換算)は目的とするゼオライト膜のゼオライトの種類によって適宜決定することができる。さらに、シリカ源及びアルミナ源の濃度は特に限定されない。すなわち、シリカ源及び/又はアルミナ源の濃度を高めることによって、反応液をゲル状としてもよく、また、シリカ源及び/又はアルミナ源の濃度を低くすることによって、反応液を低粘度のものとしてもよい。なお、反応液は、結晶化促進剤のような添加剤を含んでもよい。このような結晶化促進剤としては、テトラプロピルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等が挙げられる。 In addition, when the reaction solution contains a silica source and an alumina source, the molar ratio (converted to SiO 2 / Al 2 O 3 ) can be appropriately determined depending on the type of zeolite of the target zeolite membrane. . Furthermore, the concentration of the silica source and the alumina source is not particularly limited. That is, the reaction solution may be gelled by increasing the concentration of the silica source and / or the alumina source, and the reaction solution is made to have a low viscosity by decreasing the concentration of the silica source and / or the alumina source. Also good. The reaction solution may contain an additive such as a crystallization accelerator. Examples of such crystallization accelerators include tetrapropylammonium bromide and tetrabutylammonium bromide.

<伸縮自在な部材>
加熱手段による熱が高く設定される場合には、反応液の熱膨張や反応容器の各隔壁等の熱変形が起こる恐れがある。そこで、必要に応じて製造装置の各構成、例えば反応容器の各隔壁等の一部または全部において、伸縮自在な隔壁部材や配管部材(例えば円筒状のベローズ等)を適用することが考えられる。例えば、反応容器の各隔壁は、加熱手段の熱によって当該反応容器の軸方向に伸縮する恐れがあることから、その軸方向に伸縮自在で円筒状(それぞれの隔壁と同様の円筒状)のベローズを各隔壁の一部または全部において適用することにより、各隔壁等の破損等を抑制することができる。
<Elastic member>
When the heat by the heating means is set high, there is a possibility that the thermal expansion of the reaction solution and the thermal deformation of each partition wall of the reaction vessel may occur. Accordingly, it is conceivable to apply a stretchable partition member or a piping member (for example, a cylindrical bellows) to each configuration of the manufacturing apparatus, for example, a part or all of each partition of the reaction vessel. For example, each partition wall of the reaction vessel may expand and contract in the axial direction of the reaction vessel due to the heat of the heating means, so that it can expand and contract in the axial direction and is a cylindrical bellows (similar to each partition wall). By applying to all or part of each partition wall, breakage of each partition wall can be suppressed.

なお、外周側隔壁や軸心側隔壁において前記のような伸縮自在な隔壁を適用、例えば円筒状ベローズを適用する場合には、それぞれ円筒状領域側の周面がベローズ形状に起因する凹凸状となるため、加熱された反応液の対流等に影響が生じる恐れはあるが、少なくとも各隔壁等の破損等は抑制することができる。   In addition, when the stretchable partition as described above is applied to the outer peripheral side partition and the axial center side partition, for example, when a cylindrical bellows is applied, the peripheral surface on the cylindrical region side is an uneven shape due to the bellows shape. Therefore, there is a possibility that the convection of the heated reaction solution may be affected, but at least damage of each partition wall or the like can be suppressed.

<装置の構造例>
製造装置は、以上示したように外周側隔壁,軸心側隔壁を有する反応容器と、外周側隔壁の外周側,軸心側隔壁の内周側から反応液を間接的に加熱する手段と、を備えた構造であれば良く、例えば図1(A;概略図),(B;X−X断面図)に示す構造が挙げられる。図1における符号1は、円筒状の外周側隔壁(内周面が円筒状の隔壁)2と、その外周側隔壁2の内径よりも小さい外径の円筒状であって軸心が当該外周側隔壁2と同一の軸心側隔壁(外周面が円筒状の軸心側隔壁)3と、から成る反応容器を示すものであり、それら外周側隔壁2と軸心側隔壁3との間には、反応液4を収容する円筒状領域5が形成される。
<Example of device structure>
As shown above, the production apparatus comprises a reaction vessel having an outer peripheral partition, an axial partition, and means for indirectly heating the reaction solution from the outer peripheral side of the outer peripheral partition and the inner peripheral side of the axial partition, The structure shown in FIG. 1 (A; schematic view), (B; XX cross-sectional view) can be given as an example. Reference numeral 1 in FIG. 1 denotes a cylindrical outer peripheral partition wall (inner peripheral surface is a cylindrical partition wall) 2 and a cylindrical shape having an outer diameter smaller than the inner diameter of the outer peripheral partition wall 2, and the axis is the outer peripheral side. 1 shows a reaction vessel composed of the same axial center side partition (the outer peripheral surface is a cylindrical axial center side partition) 3 as the partition wall 2, and between the outer peripheral side partition wall 2 and the axial center side partition wall 3 is shown. A cylindrical region 5 for accommodating the reaction solution 4 is formed.

この反応容器1の一端側(図中では外周側隔壁2の上側)の開口部1aには、複数個の支持体を吊り下げて保持するための治具(図示省略)を備えた着脱自在な封止蓋1aaが取り付けられている。なお、図1中では、軸心側隔壁3の一端側において軸心方向の長さが外周側隔壁2よりも短いため、当該一端側の開口部3aにおいても着脱自在な封止蓋(例えば、捩じ込み式でOリング等を介して封止できる着脱自在な蓋)3aaが取り付けられている。   An opening 1a on one end side of the reaction vessel 1 (upper side of the outer peripheral partition wall 2 in the figure) is provided with a jig (not shown) for suspending and holding a plurality of supports. A sealing lid 1aa is attached. In FIG. 1, since the length in the axial center direction is shorter than the outer peripheral side partition wall 2 at one end side of the axial center side partition wall 3, a removable sealing lid (for example, for example, the opening 3 a on the one end side) A detachable lid 3aa which can be sealed via an O-ring or the like is attached.

一方、反応容器1の他端側の開口部1bには、円筒状領域5内に反応液4を導入または排出するものであって当該円筒状領域5の軸心方向に延在する配管2baと、軸心側隔壁3内に温水を循環させるためのものであって当該軸心側隔壁3の軸心方向に延在する配管3baと、が接続された封止蓋(例えば、盲フランジ)1baが取り付けられている。したがって、前記のように温水が循環する軸心側隔壁3内は、加熱手段用隔壁(加熱ジャケット)としての機能を果たすことになる。   On the other hand, the opening 2b on the other end side of the reaction vessel 1 introduces or discharges the reaction solution 4 into and out of the cylindrical region 5 and a pipe 2ba extending in the axial direction of the cylindrical region 5 and A sealing lid (for example, a blind flange) 1ba connected to a pipe 3ba for circulating hot water in the shaft-side partition 3 and extending in the axial direction of the shaft-side partition 3. Is attached. Therefore, the inside of the shaft side partition 3 through which hot water circulates as described above functions as a partition for heating means (heating jacket).

符号6は、外周側隔壁2の周囲を覆うように設けられた円筒状の加熱手段用隔壁(加熱ジャケット)を示すものであり、その加熱手段用隔壁6と外周側隔壁2とに囲まれた領域に対し配管(図中では4つの配管6a〜6d)を介して循環する温水は、加熱手段として機能することになる。なお、加熱手段用隔壁6の外周側には、前記のように循環される温水を保温するための保温手段(断熱材が充填された保温手段)7が設けられている。   Reference numeral 6 denotes a cylindrical heating means partition (heating jacket) provided so as to cover the periphery of the outer peripheral partition wall 2, and is surrounded by the heating means partition wall 6 and the outer peripheral partition wall 2. The hot water circulated through the pipes (four pipes 6a to 6d in the figure) with respect to the region functions as a heating means. On the outer peripheral side of the heating means partition wall 6, there is provided a heat retaining means (heat retaining means filled with a heat insulating material) 7 for keeping warm water circulated as described above.

符号8a,8bはそれぞれ加熱手段用隔壁6の一部,配管2baの一部に適用された円筒状のベローズを示すものであり、それぞれ加熱手段用隔壁6,配管2baの軸心方向に伸縮可能(それぞれ熱によって変形し易い方向に伸縮可能)なものである。   Reference numerals 8a and 8b denote cylindrical bellows applied to a part of the heating means partition wall 6 and a part of the pipe 2ba, respectively, and can be expanded and contracted in the axial direction of the heating means partition wall 6 and the pipe 2ba, respectively. (Each can be expanded and contracted in a direction that is easily deformed by heat).

図1のように構成された装置を用いて複数個の支持体に分離膜を形成する場合、例えば図2に示すように円筒状領域5に収容された反応液4に対して各支持体20が浸漬(図2中では18個浸漬)するように、それら各支持体20を封止蓋1aaの治具で保持する。そして、前記の各支持体20が浸漬するように封止蓋1aaを取り付けて封止し、軸心側隔壁3内および加熱手段用隔壁6内にそれぞれ温水を循環させて反応液を加熱することにより、各支持体20と反応液4とを反応させる。   When the separation membrane is formed on a plurality of supports using the apparatus configured as shown in FIG. 1, for example, each support 20 with respect to the reaction solution 4 contained in the cylindrical region 5 as shown in FIG. Each of these supports 20 is held by the jig of the sealing lid 1aa so as to be immersed (18 pieces in FIG. 2). Then, the sealing lid 1aa is attached and sealed so that each of the supports 20 is immersed, and the reaction liquid is heated by circulating hot water in the shaft side partition wall 3 and the heating means partition wall 6 respectively. Thus, each support 20 is reacted with the reaction solution 4.

<分離膜の作製>
次に、本実施形態に基づいて分離膜を作製し、その分離膜の膜性能の分析を行った。まず、支持体20としては、平均細孔径が1μmのセラミック製であって、外径12mm×内径9mm×長さ800mmの円筒状の支持素体を用いた。この支持素体をゼオライト結晶スラリー中に3分間浸漬した後、そのスラリー中から支持素体を取り出し、温度45℃で乾燥させて18個の支持体20を得た。
<Preparation of separation membrane>
Next, a separation membrane was produced based on this embodiment, and the membrane performance of the separation membrane was analyzed. First, as the support 20, a cylindrical support element made of a ceramic having an average pore diameter of 1 μm and having an outer diameter of 12 mm × an inner diameter of 9 mm × a length of 800 mm was used. After this support element was immersed in the zeolite crystal slurry for 3 minutes, the support element was taken out of the slurry and dried at a temperature of 45 ° C. to obtain 18 supports 20.

次に、図1に示したような装置であって、前記のように作製した各支持体20を図2に示すように浸漬できる製造装置を用意した。そして、製造装置の円筒状領域内に収容された反応液(アルミナ源及びシリカ源を主成分とする反応液)4中に浸漬(図2に示すように浸漬)して、軸心側隔壁3内および加熱手段用隔壁6内に対する温水の循環により反応液4を温度100℃まで加熱することにより、各支持体20に対してゼオライト分離膜を作成した。なお、各支持体20は、治具としても機能する封止蓋1aa(図2中では図示省略)に対して着脱自在に吊り下げながら、反応液4中に対して浸漬したものとする。また、前記のように浸漬した際に、各支持体20の軸心から外周側隔壁2の内周面および軸心側隔壁3の外周面に対する各最短距離(支持体20から径方向に対する距離)がそれぞれ等しく、各支持体20同士の間の距離(円筒状領域の周方向の間隔)も等しいものとする。   Next, an apparatus as shown in FIG. 1 and capable of immersing each support 20 produced as described above as shown in FIG. 2 was prepared. And it immerses (it immerses as shown in FIG. 2) in the reaction liquid (reaction liquid which has an alumina source and a silica source as a main component) 4 accommodated in the cylindrical area | region of a manufacturing apparatus, and the axial center side partition 3 A zeolite separation membrane was prepared for each support 20 by heating the reaction solution 4 to a temperature of 100 ° C. by circulating hot water through the inside and the heating means partition wall 6. Each support 20 is immersed in the reaction solution 4 while being detachably suspended from a sealing lid 1aa (not shown in FIG. 2) that also functions as a jig. Further, when immersed as described above, the shortest distances (distances from the support 20 to the radial direction) from the axis of each support 20 to the inner periphery of the outer partition 2 and the outer periphery of the partition 3. Are equal to each other, and the distances between the supports 20 (spaces in the circumferential direction of the cylindrical region) are also equal.

<分離膜の評価>
ここで、図3に示すようなパーベーパレーション評価装置により、前記のように作成された各ゼオライト分離膜の膜性能(分離性能係数α,透過速度Q)の評価をそれぞれ行った。まず、評価し易くするために、前記のゼオライト分離膜を長手方向に対して10cm間隔で切断(径方向に切断)して、それぞれ複数個の評価試料を作成した。
<Evaluation of separation membrane>
Here, with the pervaporation evaluation apparatus as shown in FIG. 3, the membrane performance (separation performance coefficient α and permeation rate Q) of each zeolite separation membrane prepared as described above was evaluated. First, in order to facilitate evaluation, the zeolite separation membrane was cut at 10 cm intervals (cut in the radial direction) with respect to the longitudinal direction to prepare a plurality of evaluation samples.

次に、図3に示すように、撹拌器31aを備えた供給槽31内に評価試料30を収容し、その評価試料30の一端側には、真空ゲージ32aを備えた配管32の一端側を接続し、その配管32の他端側には液体窒素トラップ槽33を介して真空ポンプ34を接続した。   Next, as shown in FIG. 3, the evaluation sample 30 is accommodated in a supply tank 31 provided with a stirrer 31a, and one end side of a pipe 32 provided with a vacuum gauge 32a is connected to one end side of the evaluation sample 30. A vacuum pump 34 was connected to the other end side of the pipe 32 via a liquid nitrogen trap tank 33.

次に、前記の供給槽31に対して試験液(温度75℃でエタノール/水の重量比が90/10である液体;以下、透過前試験液と称する)を供給すると共に、その透過前試験液を真空ポンプ34により吸引(真空ゲージ32aによる真空度が10〜1000Paの範囲で吸引)した。これにより、透過前試験液は評価試料30を透過し、その透過した試験液(以下、透過後試験液と称する)は液体窒素トラップ槽33にて捕集される。   Next, a test liquid (liquid having a temperature ratio of ethanol / water of 90/10 at a temperature of 75 ° C .; hereinafter referred to as a pre-permeation test liquid) is supplied to the supply tank 31, and the pre-permeation test is performed. The liquid was sucked by the vacuum pump 34 (suctioned by the vacuum gauge 32a in the range of 10 to 1000 Pa). As a result, the test liquid before permeation passes through the evaluation sample 30, and the permeated test liquid (hereinafter referred to as post-permeation test liquid) is collected in the liquid nitrogen trap tank 33.

そして、前記の透過前試験液,透過後試験液の各組成をガスクロマトグラフで測定することにより、評価試料30の分離性能係数αを求めた。また、捕集された透過後試験液の重量を測定し、その重量,分離膜20の表面積,捕集に要した時間に基づいて、透過速度Qを求めた。   And the separation performance coefficient (alpha) of the evaluation sample 30 was calculated | required by measuring each composition of the said test liquid before permeation | transmission and the test liquid after permeation | transmission with a gas chromatograph. Further, the weight of the collected test solution after permeation was measured, and the permeation rate Q was determined based on the weight, the surface area of the separation membrane 20, and the time required for collection.

その結果、各評価試料30においては、分離性能係数α2000以上,透過速度5.0kg/m2・h以上で十分良好な膜性能を有するだけでなく、それら各評価試料30の膜性能において殆ど差がないことを確認できた。 As a result, each evaluation sample 30 not only has a sufficiently good membrane performance at a separation performance coefficient α2000 or more and a permeation rate of 5.0 kg / m 2 · h or more, but also has almost no difference in the membrane performance of each evaluation sample 30. It was confirmed that there was no.

なお、本実施例で作成したゼオライト膜においては種々の組成および構造のものが知られているが、X型,Y型,A型,T型,MFI型等の組成および構造を有するゼオライト膜を複数個同時に作成する場合においても、図1,図2のような製造装置を適用することにより、十分良好な膜性能を有するだけでなく、それら各評価試料30の膜性能において殆ど差が生じないものと思われる。   The zeolite membrane prepared in this example has various compositions and structures. Zeolite membranes having compositions and structures such as X-type, Y-type, A-type, T-type, and MFI-type are used. Even when a plurality of samples are produced at the same time, by applying the manufacturing apparatus as shown in FIGS. 1 and 2, not only has a sufficiently good film performance, but also there is almost no difference in the film performance of each evaluation sample 30. It seems to be.

以上、本実施形態の分離膜の製造装置によれば、外周側隔壁と軸心側隔壁とによって囲まれた円筒状領域を有する反応容器を備えているため、複数個の支持体をそれぞれ当該円筒状領域の軸心方向に延在および周方向に沿って配列するように反応液中に浸漬しながら、反応液において温度分布の差が生じないように加熱でき、複数個の分離膜をそれぞれ略均一な膜性能で製造することが可能となる。また、非円筒状反応容器を適用した場合と比較して、反応液の加熱による反応容器等の変形や破損等が抑制される。   As described above, according to the separation membrane manufacturing apparatus of the present embodiment, since the reaction vessel having the cylindrical region surrounded by the outer peripheral side partition wall and the axial center side partition wall is provided, a plurality of supports are respectively connected to the cylinder. While extending in the axial direction of the cylindrical region and immersing in the reaction solution so as to be arranged along the circumferential direction, the reaction solution can be heated so as not to cause a difference in temperature distribution. It becomes possible to manufacture with uniform film performance. Further, as compared with the case where a non-cylindrical reaction vessel is applied, deformation or breakage of the reaction vessel or the like due to heating of the reaction liquid is suppressed.

さらに、ベローズ等の伸縮自在な隔壁および配管を適用した場合には、各隔壁等の大きさを厚く設定しなくとも、熱に対する耐久性を高めることができる。   Furthermore, when stretchable partition walls and pipes such as bellows are applied, durability against heat can be enhanced without setting the size of each partition wall or the like thick.

なお、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。例えば、実施例においてはゼオライト分離膜について説明したが、本発明を適用できる分離膜がゼオライト分離膜に限られないことは明らかである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims. For example, in the examples, the zeolite separation membrane has been described. However, it is obvious that the separation membrane to which the present invention can be applied is not limited to the zeolite separation membrane.

1…反応容器
2…外周側隔壁
3…軸心側隔壁
4…反応液
5…円筒状領域
6加熱手段用隔壁
8a,8b…伸縮自在部材
DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... Outer peripheral side partition 3 ... Axial side partition 4 ... Reaction liquid 5 ... Cylindrical area | region 6 Partition for heating means 8a, 8b ... Stretchable member

Claims (5)

分離膜原料から成る反応液中に柱状の支持体を浸漬し、その支持体表面に分離膜を形成する製造装置であって、
円筒状の外周側隔壁、および軸心が外周側隔壁の軸心と同一方向である円筒状の隔壁で外周面の外径が当該外周側隔壁の内周面の内径よりも小さい軸心側隔壁、を有する反応容器と、
前記の外周側隔壁の内周面と軸心側隔壁の外周面との間の円筒状領域内に貯留された反応液を当該外周側隔壁の外周側から間接的に加熱する外周側加熱手段と、
前記反応液を軸心側隔壁の内周側から間接的に加熱する軸心側加熱手段と、を備え、
複数個の支持体を、それぞれ円筒状領域の軸心方向に延在および当該円筒状領域の周方向に沿って配列して反応液中に浸漬し、前記の各加熱手段により反応液を加熱して各支持体に分離膜を形成することを特徴とする分離膜の製造装置。
A manufacturing apparatus for immersing a columnar support in a reaction solution made of a separation membrane raw material and forming a separation membrane on the surface of the support,
A cylindrical outer partition wall, and a cylindrical partition wall whose axial center is in the same direction as the axial center of the outer partition wall, the outer diameter of the outer peripheral surface being smaller than the inner diameter of the inner peripheral surface of the outer partition wall A reaction vessel having
An outer peripheral heating means for indirectly heating the reaction liquid stored in a cylindrical region between the inner peripheral surface of the outer peripheral partition wall and the outer peripheral surface of the axial central partition wall from the outer peripheral side of the outer peripheral partition wall; ,
An axial heating means for indirectly heating the reaction liquid from the inner peripheral side of the axial central partition, and
A plurality of supports each extend in the axial direction of the cylindrical region and are arranged along the circumferential direction of the cylindrical region and are immersed in the reaction solution, and the reaction solution is heated by each of the heating means. The separation membrane manufacturing apparatus is characterized in that a separation membrane is formed on each support.
前記円筒状領域の周方向に沿って配列する各支持体の一端側をそれぞれ着脱自在に保持する手段であって、反応容器に対して着脱自在な保持手段を備えたことを特徴とする請求項1記載の分離膜の製造装置。   A means for detachably holding one end side of each support arranged along the circumferential direction of the cylindrical region, the holding means being detachable from the reaction vessel. The separation membrane production apparatus according to 1. 前記外周側加熱手段は、前記外周側隔壁の外周側を覆う加熱手段用隔壁内に収容され、その加熱手段用隔壁の少なくとも一部が、外周側隔壁の軸心方向に伸縮可能な部材から成ることを特徴とする請求項1または2記載の分離膜の製造装置。   The outer peripheral side heating means is housed in a heating means partition wall that covers the outer peripheral side of the outer peripheral side partition wall, and at least a part of the heating means partition wall is made of a member that can expand and contract in the axial direction of the outer peripheral side partition wall. The apparatus for producing a separation membrane according to claim 1 or 2. 前記円筒状領域内に反応液を貯留および/または排出する配管を備え、その配管の少なくとも一部が、外周側隔壁の軸心方向に伸縮可能な部材から成ることを特徴とする請求項1〜3の何れかに記載の分離膜の製造装置。   2. A pipe for storing and / or discharging the reaction liquid in the cylindrical region is provided, and at least a part of the pipe is made of a member that can expand and contract in the axial direction of the outer peripheral partition wall. 4. The separation membrane production apparatus according to any one of 3 above. 前記反応容器の外周側隔壁と軸心側隔壁とのうち少なくとも何れか一方の一部が、外周側隔壁の軸心方向に伸縮可能な部材から成ることを特徴とする請求項1〜4の何れかに記載の分離膜の製造装置。   5. The structure according to claim 1, wherein at least one of the outer peripheral side partition and the axial center side partition of the reaction vessel is made of a member that can expand and contract in the axial direction of the outer peripheral side partition. An apparatus for producing the separation membrane according to claim 1.
JP2009199244A 2009-08-31 2009-08-31 Separation membrane manufacturing equipment Active JP5228174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199244A JP5228174B2 (en) 2009-08-31 2009-08-31 Separation membrane manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199244A JP5228174B2 (en) 2009-08-31 2009-08-31 Separation membrane manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2011050804A JP2011050804A (en) 2011-03-17
JP5228174B2 true JP5228174B2 (en) 2013-07-03

Family

ID=43940399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199244A Active JP5228174B2 (en) 2009-08-31 2009-08-31 Separation membrane manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5228174B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021881B2 (en) * 2014-11-13 2016-11-09 マイクロ波化学株式会社 Chemical reaction apparatus and chemical reaction method
JP7079708B2 (en) * 2018-10-02 2022-06-02 日立造船株式会社 Thermal synthetic crystal film manufacturing equipment and thermal synthetic crystal film manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937589B1 (en) * 1970-12-15 1974-10-09
JPH07112923B2 (en) * 1987-04-10 1995-12-06 日本原子力研究所 Inner tube pressurized hydrogen purifier
EP0382984A1 (en) * 1989-02-13 1990-08-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal decomposition trap
JP2003144859A (en) * 2001-11-16 2003-05-20 Nissan Motor Co Ltd Gas separating device
CN100429150C (en) * 2003-08-06 2008-10-29 三菱化学株式会社 Method and apparatus for manufacturing zeolite membrane, and zeolite tubular separation membrane provided by the method
JP4650489B2 (en) * 2005-06-10 2011-03-16 三菱化学株式会社 Zeolite membrane production equipment

Also Published As

Publication number Publication date
JP2011050804A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP4650489B2 (en) Zeolite membrane production equipment
EP1894613B1 (en) Porous structure with seed crystal-containing layer for manufacturing zeolite membrane, zeolite membrane, and method for manufacturing zeolite membrane
JP5569901B2 (en) Zeolite membrane, separation membrane module and manufacturing method thereof
JP6171151B2 (en) Zeolite membrane and method for producing the same
JP6043337B2 (en) Ceramic separation membrane and dehydration method
JP4494685B2 (en) Zeolite laminated composite and production method thereof
WO2005014481A1 (en) Method and apparatus for manufacturing zeolite membrane, and zeolite tubular separation membrane provided by the method
EP2832430B1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP5051815B2 (en) Marinoite-type zeolite composite membrane and method for producing the same
JP4759724B2 (en) Zeolite membrane and method for producing the same
JP2014198308A (en) Ceramic separation filter and dehydration method
US8043988B2 (en) FAU-structural-type supported zeolite membranes, their process for preparation and their applications
Lin et al. A novel method for the synthesis of high performance silicalite membranes
JP5228174B2 (en) Separation membrane manufacturing equipment
JP4984566B2 (en) Method for producing zeolite separation membrane
JPWO2012128218A1 (en) Porous body and honeycomb-shaped ceramic separation membrane structure
JP2007203241A (en) Separation membrane, its manufacturing method and substance separation method
WO2017150737A1 (en) Method for separating carbon dioxide and apparatus for separating carbon dioxide
JP7353017B2 (en) Method for producing porous support-zeolite membrane composite
JP5533437B2 (en) Membrane reactor
JP2015186776A (en) Zeolite membrane evaluation method
JP2016190200A (en) Manufacturing method for zeolite film
JP7359590B2 (en) A conjugate and a separation membrane module having the same
JP6696805B2 (en) Fluid separation material and manufacturing method thereof
JP4599144B2 (en) MARLINOITE TYPE ZEOLITE MEMBRANE AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350