JP6171151B2 - Zeolite membrane and method for producing the same - Google Patents

Zeolite membrane and method for producing the same Download PDF

Info

Publication number
JP6171151B2
JP6171151B2 JP2012052163A JP2012052163A JP6171151B2 JP 6171151 B2 JP6171151 B2 JP 6171151B2 JP 2012052163 A JP2012052163 A JP 2012052163A JP 2012052163 A JP2012052163 A JP 2012052163A JP 6171151 B2 JP6171151 B2 JP 6171151B2
Authority
JP
Japan
Prior art keywords
zeolite membrane
zeolite
water
mass
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012052163A
Other languages
Japanese (ja)
Other versions
JP2013126649A (en
Inventor
嘉道 清住
嘉道 清住
長谷川 泰久
泰久 長谷川
長瀬 多加子
多加子 長瀬
山中 直樹
直樹 山中
正也 板倉
正也 板倉
裕介 井出
裕介 井出
正洋 定金
正洋 定金
庸治 佐野
庸治 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hiroshima University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hiroshima University NUC
Priority to JP2012052163A priority Critical patent/JP6171151B2/en
Publication of JP2013126649A publication Critical patent/JP2013126649A/en
Application granted granted Critical
Publication of JP6171151B2 publication Critical patent/JP6171151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、ゼオライト膜およびその製造方法に関するものであって、水を含有する有機酸や各種有機物からの脱水に安定して使用できるゼオライト膜およびその製造方法に関するものである。
本発明は、高性能・高選択な液体および気体分離膜に応用できる。特に耐酸性の脱水膜として使用できる。
The present invention relates to a zeolite membrane and a method for producing the same, and relates to a zeolite membrane that can be used stably for dehydration from water-containing organic acids and various organic substances and a method for producing the same.
The present invention can be applied to high-performance and highly selective liquid and gas separation membranes. In particular, it can be used as an acid-resistant dehydration membrane.

ゼオライトは規則的に配列したミクロ孔を有し、一般に耐熱性が高く化学的にも安定なものが数多く得られることから様々な分野で利用されている。このゼオライトの骨格構造は、Siの一部がAlに置換したアルミノシリケートであり、酸素8員環から14員環までの分子オーダー(0.3−1nm程度)の細孔を有し、立体選択的な吸着作用を持つことよりモレキュラーシーブ(分子ふるい)としての機能を有する。数十種類の天然に産出するゼオライトの他に、これまでに約200種類のゼオライトが合成されており、固体酸触媒、分離吸着剤、イオン交換剤等の分野で幅広く用いられている。
このゼオライトは、可塑性に乏しいため膜化する場合、ほとんどの場合は水熱合成法、すなわち、大量の水とアルミニウム源、シリカ源、アルカリ金属、アミン類などの有機結晶化調整剤を適宜目的の生成物ゼオライト組成になるように調合し、オートクレーブ等の圧力容器にそれらを封じ込めて、場合によっては種晶を付着させたアルミナやムライト、多孔質金属やバイコールガラスなどの多孔質基板を共存させて加熱することにより、それら基板上にゼオライト膜を合成している。
Zeolite has regularly arranged micropores and is generally used in various fields because it has many heat-resistant and chemically stable materials. The skeletal structure of this zeolite is an aluminosilicate in which a part of Si is substituted by Al, and has pores of molecular order (about 0.3-1 nm) from an oxygen 8-membered ring to a 14-membered ring. It has a function as a molecular sieve (molecular sieve) by having a typical adsorption action. In addition to dozens of naturally occurring zeolites, about 200 types of zeolites have been synthesized so far and are widely used in fields such as solid acid catalysts, separated adsorbents, and ion exchangers.
This zeolite has poor plasticity, and when it is formed into a film, in most cases, a hydrothermal synthesis method, that is, a large amount of water and an organic crystallization regulator such as an aluminum source, a silica source, an alkali metal, or an amine is appropriately used. Prepare a product zeolite composition, enclose them in a pressure vessel such as an autoclave, and possibly coexist with a porous substrate such as alumina or mullite, porous metal or Vycor glass with seed crystals attached. A zeolite membrane is synthesized on these substrates by heating.

近年、ゼオライト膜合成技術の向上により、多くの熱エネルギーが必要とされる蒸留法に代る分離法として実用化された例として、Na-LTA型ゼオライトの親水性を利用したアルコール水溶液からの水選択透過による、アルコールの濃縮方法(特許文献1)やMOR型膜を用いたアルコールからの脱水方法(特許文献2)などが提案されている。   As an example of practical separation as an alternative to the distillation method that requires a lot of thermal energy due to improvements in zeolite membrane synthesis technology in recent years, water from an alcohol aqueous solution using the hydrophilicity of Na-LTA zeolite has been introduced. A method of concentrating alcohol by selective permeation (Patent Document 1), a method of dehydrating from alcohol using an MOR type membrane (Patent Document 2), and the like have been proposed.

しかしながら、特許文献1記載のNa-LTA型ゼオライトは多量の水や酸と接触するとその構造が破壊されるなどの耐酸性や耐多量水性がないため、有機物が存在しない中性付近での運転、10質量%程度の水蒸気下での運転を余議なくされるという問題があり、分離濃縮対象の適用範囲が限定的であった。また、特許文献2記載のMOR膜の場合は、透過流束(単位時間、単位面積当たりの透過物質の質量)が1kg/m2・h以下であり、処理量が小さいという問題点があった。 However, the Na-LTA type zeolite described in Patent Document 1 does not have acid resistance or water resistance such as destruction of its structure when contacted with a large amount of water or acid. There is a problem that the operation under steam of about 10% by mass is obligated, and the application range of the separation and concentration target is limited. Further, in the case of the MOR membrane described in Patent Document 2, the permeation flux (unit time, mass of permeation material per unit area) is 1 kg / m 2 · h or less, and there is a problem that the amount of processing is small. .

これらの観点から、より耐酸性が優れ、水分子(0.265nm)が選択的に透過できる酸素8員環の細孔径を有するPHI型(特許文献3)やMER型(特許文献4)の膜が提案されている。しかし、特許文献3および4記載のものはいずれも透過流束が1kg/m2・h以下と不十分であり、実用化への課題があった。 From these viewpoints, PHI type (Patent Document 3) and MER type (Patent Document 4) membranes having superior acid resistance and having an oxygen 8-membered ring pore diameter through which water molecules (0.265 nm) can selectively permeate. Proposed. However, all of those described in Patent Documents 3 and 4 have insufficient permeation fluxes of 1 kg / m 2 · h or less, and have problems in practical use.

そこで、SiO2/Al2O3=5以上の高シリカ型チャバサイト(CHA)膜を1-アダマンタンアミンを有機鋳型剤として用いて合成し、CHA膜層がX線回折パターンにおいて、特定の面が配向したCHA膜を用いて、酢酸などの有機酸からの脱水を行ったものも提案されている(特許文献5参照)。しかしながら、1-アダマンタンアミンは一般に入手困難で、高価であるばかりか、無機酸混合物を作製した後、水酸化するが、アンチ体が30〜50%副生成するなど問題点も多いので、汎用の有機アミンでの合成が望ましい。
これに対し本発明者らは、特許文献6記載のCHA型のゼオライト膜を提案した。特許文献5に記載のゼオライト膜は4kg/m2・h以上の透過流束を有する。また、有機鋳型剤としての有機アミンを使用しない利点がある。一方、得られるCHA膜のSi/Al比に改善の余地があり、有機酸存在下でより長期の使用に耐えられるようにすることが望まれていた。
ベンジルトリメチルアンモニウムを有機アミンとして用いて、高シリカ型CHA粉末を合成する手法(非特許文献1)も報告されているが、膜化したものではない。
Therefore, high silica type chabasite (CHA) film of SiO 2 / Al 2 O 3 = 5 or more was synthesized using 1-adamantanamine as an organic templating agent, and the CHA film layer had a specific surface in the X-ray diffraction pattern. There has also been proposed a method in which dehydration from an organic acid such as acetic acid is performed using a CHA film in which is oriented (see Patent Document 5). However, 1-adamantanamine is generally difficult to obtain and expensive, and it is hydroxylated after preparing an inorganic acid mixture, but there are many problems such as by-product formation of 30% to 50% of the anti form. Synthesis with organic amines is desirable.
In contrast, the present inventors have proposed a CHA-type zeolite membrane described in Patent Document 6. The zeolite membrane described in Patent Document 5 has a permeation flux of 4 kg / m 2 · h or more. Further, there is an advantage that no organic amine is used as an organic templating agent. On the other hand, there is room for improvement in the Si / Al ratio of the obtained CHA film, and it has been desired to be able to withstand long-term use in the presence of an organic acid.
A method of synthesizing a high silica type CHA powder using benzyltrimethylammonium as an organic amine (Non-patent Document 1) has also been reported, but it has not been formed into a film.

特開平7−185275号公報JP-A-7-185275 特開2003−144871号公報JP 2003-144871 A 特開2007−313390号公報JP 2007-313390 A 特開2007−313389号公報JP 2007-313389 A 国際公開2010/098473号パンフレットInternational Publication 2010/098473 Pamphlet 特開2011−16123号公報JP 2011-16123 A

Chemistry Letters. Vol.37, No.9(2008)908.Chemistry Letters. Vol. 37, No. 9 (2008) 908.

本発明は、ゼオライト膜による分離・濃縮において、実用上十分な処理量と分離性能を両立するばかりでなく、長期間安定にその分離性能を保持出来得るゼオライト膜とその製造方法を提供するものである。   The present invention provides a zeolite membrane that can not only achieve practically sufficient throughput and separation performance in separation / concentration by a zeolite membrane, but also can maintain the separation performance stably for a long period of time, and a method for producing the same. is there.

上記課題は以下の手段により解決された。
(1)多孔質支持体上に製膜されたゼオライト膜の製造方法であって、
前記ゼオライト膜の結晶構造が、Si/Al比で10以上のチャバサイトであり、かつ他のゼオライト層が混入しないCHA純相で、該膜を構成する各CHA結晶は配向せず向きがランダムであり、
水熱合成溶液に脱Al処理したFAUゼオライトを用い、ベンジルトリメチルアンモニウムを有機鋳型剤として使用し、前記多孔質支持体上に、チャバサイト膜を形成することを特徴とするゼオライト膜の製造方法。
(2)前記FAUゼオライトの脱Al処理を無機酸で行うことを特徴とする(1)に記載のゼオライト膜の製造方法。
(3)前記多孔質支持体にCHAまたはフォージャサイトの種晶を付着させ、前記チャバサイト膜を形成することを特徴とする(1)または(2)に記載のゼオライト膜の製造方法。
(4)前記脱Al処理したFAUゼオライトが、Si/Al比が10〜100の、硫酸または硝酸処理した結晶性FAUゼオライトであることを特徴とする(1)〜(3)のいずれか1項に記載のゼオライト膜の製造方法
(5)水熱合成を、100〜200℃で、5時間〜15日間行うことを特徴とする(1)〜()のいずれか1項に記載のゼオライト膜の製造方法。
)前記水熱合成後、多孔質支持体上に製膜されたゼオライト膜を、400℃以上で3〜10時間燃焼することを特徴とする(1)〜()のいずれか1項に記載のゼオライト膜の製造方法。
)前記ゼオライト膜が、有機物と水の混合物から、水を選択的に透過させることができるゼオライト膜であることを特徴とする(1)〜()のいずれか1項に記載のゼオライト膜の製造方法。
)前記有機物が、カルボン酸化合物であることを特徴とする()に記載のゼオライト膜の製造方法。
)前記ゼオライト膜が、有機物と水の混合物から水を99.9%以上で選択的に透過させることができるゼオライト膜であることを特徴とする()または()に記載のゼオライト膜の製造方法。
The above problems have been solved by the following means.
(1) A method for producing a zeolite membrane formed on a porous support,
The crystal structure of the zeolite membrane is a chabasite having a Si / Al ratio of 10 or more, and is a pure CHA phase in which other zeolite layers are not mixed. Each CHA crystal constituting the membrane is not oriented and the orientation is random. Yes,
A method for producing a zeolite membrane , comprising using a dehydrated FAU zeolite in a hydrothermal synthesis solution, using benzyltrimethylammonium as an organic templating agent, and forming a chabasite membrane on the porous support.
(2) The method for producing a zeolite membrane according to (1), wherein the FAU zeolite is subjected to de-Al treatment with an inorganic acid.
(3) The method for producing a zeolite membrane according to (1) or (2), wherein a seed crystal of CHA or faujasite is adhered to the porous support to form the chabazite membrane.
(4) Any one of (1) to (3), wherein the de-Al-treated FAU zeolite is a crystalline FAU zeolite treated with sulfuric acid or nitric acid having a Si / Al ratio of 10 to 100. A method for producing a zeolite membrane as described in 1. above .
(5 ) The method for producing a zeolite membrane according to any one of (1) to ( 4 ), wherein the hydrothermal synthesis is performed at 100 to 200 ° C for 5 hours to 15 days.
( 6 ) After the hydrothermal synthesis, the zeolite membrane formed on the porous support is burned at 400 ° C. or higher for 3 to 10 hours, (1) to ( 5 ) A method for producing a zeolite membrane as described in 1. above.
( 7 ) The zeolite according to any one of (1) to ( 6 ), wherein the zeolite membrane is a zeolite membrane that can selectively permeate water from a mixture of an organic substance and water. A method for producing a membrane.
( 8 ) The method for producing a zeolite membrane according to ( 7 ), wherein the organic substance is a carboxylic acid compound.
( 9 ) The zeolite according to ( 7 ) or ( 8 ), wherein the zeolite membrane is a zeolite membrane capable of selectively permeating water from a mixture of an organic substance and water at 99.9% or more. A method for producing a membrane.

なお、本発明におけるチャバサイト(CHA)型ゼオライトとは、International Zeolite Association(IZA)が定めるゼオライトの構造を規定するコードでCHA構造のものを示す。天然に産出するチャバサイトと同等の結晶構造を有するゼオライトである。
本発明において、耐酸性を有するとは一般的な無機酸や酢酸などの有機酸水溶液で5日間浸漬処理しても、その構造に変化がなく、かつ骨格内の脱Alが起こりにくく、そのSi/Al化学組成が処理前後でほぼ変わらないことを意味する。
The chabazite (CHA) type zeolite in the present invention is a code that defines the zeolite structure defined by the International Zeolite Association (IZA) and indicates a CHA structure. It is a zeolite having a crystal structure equivalent to that of naturally occurring chabasite.
In the present invention, having acid resistance means that even if it is immersed for 5 days in an organic acid aqueous solution such as a general inorganic acid or acetic acid, its structure does not change and de-Al is not easily generated in the skeleton. / Al means that the chemical composition is almost unchanged before and after treatment.

本発明者らは、高シリカ型のCHA膜を多孔質支持体に合成できることを明らかにした。本発明によれば、耐薬品性に優れた高透過流束および高選択性を持つ脱水ゼオライト膜が合成可能であり、工業的な液体およびガス分離プロセス等に採用され得るゼオライト膜を簡便に、かつ、短期間で製造することが可能である。また、石油化学工業において、分離と触媒作用を持ち合わせたメンブレンリアクターとしても応用可能である。   The present inventors have revealed that a high silica type CHA membrane can be synthesized on a porous support. According to the present invention, it is possible to synthesize a dehydrated zeolite membrane having a high permeation flux excellent in chemical resistance and a high selectivity, and a zeolite membrane that can be employed in industrial liquid and gas separation processes, In addition, it can be manufactured in a short period of time. In the petrochemical industry, it can also be applied as a membrane reactor having both separation and catalytic action.

実施例で用いたパーベーパレーション測定装置の説明図である。It is explanatory drawing of the pervaporation measuring apparatus used in the Example. 実施例2で得られたゼオライト膜のXRDパターンである。3 is an XRD pattern of the zeolite membrane obtained in Example 2. FIG. 実施例2で得られたゼオライト膜の表面電子顕微鏡像であり、(a)は表面、(b)は断面である。It is a surface electron microscope image of the zeolite membrane obtained in Example 2, (a) is a surface, (b) is a cross section.

以下、本発明の詳細を説明する。なお、本発明において数値範囲の記載は、両端値のみならず、その中に含まれる全ての任意の中間値を含むものとする。   Details of the present invention will be described below. In the present invention, the description of the numerical value range includes not only both end values but also any arbitrary intermediate value included therein.

(多孔質支持体)
本発明における多孔質支持体は、その表面にゼオライトを薄膜として結晶化できれば良く、アルミナ、シリカ、ムライト、ジルコニア、チタニア、ステンレススチールやアルミニウムを代表とする金属あるいは各種合金製の多孔質支持体、陽極酸化膜多孔質支持体などである。好ましくは平均細孔径が0.1〜10ミクロンを有する当該多孔質支持体であるものとする。例えばα-アルミナチューブや(株)ニッカトーのPMチューブ(ムライト管状支持体)、F(α-アルミナ平板円盤状または角板形状)(いずれも商品名)などがある。これら支持体の表面処理の方法としては、水洗い、超音波洗浄などが良い。好ましくは水による1〜10分の超音波洗浄により、支持体表面の洗浄を行えば良い。表面平滑性を改善するために、紙やすりやグラインダーなどにより、その表面を研磨しても良い。
支持体の厚さは好ましくは0.5〜10mmである。
(Porous support)
The porous support in the present invention is only required to be able to crystallize a zeolite as a thin film on its surface, and is made of a porous support made of metal or various alloys such as alumina, silica, mullite, zirconia, titania, stainless steel and aluminum, Anodized porous support. Preferably, the porous support has an average pore diameter of 0.1 to 10 microns. For example, there are α-alumina tube, Nikkato's PM tube (mullite tubular support), F (α-alumina flat disk shape or square plate shape) (both are trade names), and the like. As a method for surface treatment of these supports, washing with water, ultrasonic washing, and the like are preferable. The surface of the support is preferably cleaned by ultrasonic cleaning with water for 1 to 10 minutes. In order to improve the surface smoothness, the surface may be polished with a sandpaper or a grinder.
The thickness of the support is preferably 0.5 to 10 mm.

(高シリカCHA膜の合成法)
本発明におけるCHA膜とは、好ましくは厚さが0.5〜5μmの薄膜であり、分離膜に用いることのできる形状であればよい。
本発明においては、水熱合成法により前述の多孔質支持体にゼオライトを製膜する。その際に多孔質支持体に付着させる種晶については、必須ではなく、大きさや量に左右されるものではないが、予め合成したCHAまたはフォージャサイトの種晶を多孔質支持体に擦り込んだ後、水熱合成より種晶を成長させて強固な連続膜にするのが好ましい。この水熱合成には、適当な容器、例えば耐圧容器を使えばよい。多孔質支持体の配置は、垂直の場合は重力の影響による水熱合成液の濃度の偏りが考えられるので、圧力容器に対して水平が好ましい。
(Synthesis method of high silica CHA film)
The CHA membrane in the present invention is preferably a thin film having a thickness of 0.5 to 5 μm as long as it can be used for a separation membrane.
In the present invention, a zeolite is formed on the porous support by the hydrothermal synthesis method. In this case, the seed crystal to be attached to the porous support is not essential and does not depend on the size or amount, but a pre-synthesized CHA or faujasite seed crystal is rubbed into the porous support. After that, it is preferable to grow a seed crystal by hydrothermal synthesis to form a strong continuous film. For this hydrothermal synthesis, an appropriate vessel, for example, a pressure vessel may be used. The arrangement of the porous support is preferably horizontal with respect to the pressure vessel because the concentration of the hydrothermal synthesis solution due to the influence of gravity can be considered when it is vertical.

本発明において、高シリカCHA膜の具体的な合成条件は、FAUを硫酸や硝酸などの無機酸で処理して予め脱Al処理した原料を、水熱合成溶液に用いる。脱Al処理の程度は、得られる高シリカCHA膜のSi/Al比(モル比)にほぼ相関があるので、すなわち、脱Al処理したFAUが水熱合成反応中にCHAに転換されるので、Si/Al=10〜10000の範囲で所望のものを選択することができる。好ましくは、Si/Al比が10〜100の、硫酸または硝酸処理したFAUを用いる。処理する無機酸は、硫酸、硝酸はもちろん、塩酸、リン酸、ホウ酸などが使用できる。無機酸処理するFAUは、入手容易なHSZ-350HUA(USY=Ultra Stable Y、Si/Al2=10.4、Na2O/Al2O3=0.007、東ソー(株)製)やHSZ-360HUA(USY=Ultra Stable Y、Si/Al2=14、Na2O/Al2O3=0.006、東ソー(株)製)、HSZ-390HUA(USY=Ultra Stable Y、Si/Al2=360、Na2O/Al2O3=0.07、東ソー(株)製)などがあるが、もちろん通常の水熱合成で得られるSi/Al=3〜6程度のものも使用可能であり、カチオン種がNa以外の一価のKやLi、Rb、Cs、二価のMg、Ca、Sr、Baなどであっても良い。 In the present invention, as a specific synthesis condition of the high silica CHA film, a raw material obtained by treating FAU with an inorganic acid such as sulfuric acid or nitric acid to remove Al in advance is used for the hydrothermal synthesis solution. The degree of de-Al treatment is almost correlated with the Si / Al ratio (molar ratio) of the resulting high silica CHA film, that is, the de-Al-treated FAU is converted to CHA during the hydrothermal synthesis reaction. A desired one can be selected in the range of Si / Al = 10 to 10,000. Preferably, FAU treated with sulfuric acid or nitric acid having a Si / Al ratio of 10 to 100 is used. As the inorganic acid to be treated, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid and the like can be used. FAU for inorganic acid treatment is available HSZ-350HUA (USY = Ultra Stable Y, Si / Al 2 = 10.4, Na 2 O / Al 2 O 3 = 0.007, manufactured by Tosoh Corporation) and HSZ-360HUA (USY = Ultra Stable Y, Si / Al 2 = 14, Na 2 O / Al 2 O 3 = 0.006, manufactured by Tosoh Corporation), HSZ-390HUA (USY = Ultra Stable Y, Si / Al 2 = 360, Na 2 O / Al 2 O 3 = 0.07, manufactured by Tosoh Corporation), etc. Of course, Si / Al = 3 to 6 obtained by normal hydrothermal synthesis can also be used, and the cation species is other than Na It may be monovalent K, Li, Rb, Cs, divalent Mg, Ca, Sr, Ba or the like.

本発明において、有機アミンとして市販品であるベンジルトリメチルアンモニウム(BTMA)を使用する。40%水溶液や40%メタノール溶液などが市販されているが、濃度・溶媒を問わず、BTMAが存在していれば有機鋳型剤として効果を発揮する。好ましくは、BTMA40%水溶液(例えば、和光純薬(株)、024-01622)である。   In the present invention, benzyltrimethylammonium (BTMA), which is a commercial product, is used as the organic amine. 40% aqueous solution and 40% methanol solution are commercially available, but if BTMA is present regardless of concentration and solvent, it will be effective as an organic templating agent. A BTMA 40% aqueous solution (for example, Wako Pure Chemical Industries, Ltd., 024-01622) is preferable.

本発明において、水熱合成液がSi元素源、Al元素源、有機アミンおよび水を含み、さらに必要に応じてアルカリ源を加えたものではなく、すなわち、無定形のアルミノシリケートゲルではなく、無機酸で脱Al処理した結晶性FAUを水熱合成溶液として使用する点で、特許文献5記載のゼオライト膜などと全く違う。さらに、有機鋳型剤として用いる有機アミンは1−アダマンタンアミンの誘導体ではなく、入手容易な市販品である(例えば、和光純薬(株)、024−01622、40%水溶液)。
脱Al処理したFAUを水熱合成液に用いることで、BTMAを有機鋳型剤として用いて優れたゼオライト膜が得られる理由は明らかではないが、本発明での二次成長液中に含まれるのが無定形のアミノシリケートゲルではなく、結晶性FAUであることから、FAUの分解により生成した局所的秩序構造を有する構造ユニット(ナノパーツ)が膜形成過程に有効に寄与するためと推定される。
In the present invention, the hydrothermal synthesis liquid contains an Si element source, an Al element source, an organic amine and water, and is not added with an alkali source if necessary, that is, not an amorphous aluminosilicate gel, but an inorganic It is completely different from the zeolite membrane described in Patent Document 5 in that a crystalline FAU subjected to Al removal treatment with an acid is used as a hydrothermal synthesis solution. Furthermore, the organic amine used as the organic templating agent is not a derivative of 1-adamantanamine but a commercially available product (for example, Wako Pure Chemical Industries, Ltd., 024-01622, 40% aqueous solution).
The reason why an excellent zeolite film can be obtained by using BTMA as an organic templating agent by using FAU subjected to de-Al treatment in the hydrothermal synthesis solution is not clear, but is included in the secondary growth solution in the present invention. rather than but amorphous a Le amino silicate gel, estimated because it is crystalline FAU, because structural unit having a locally ordered structure generated by the decomposition of FAU (the nano parts) is effectively contributing to the film formation process Is done.

本発明において、水熱合成時間および温度は特に限定されるものではないが、結晶化の速度や脱Alした出発原料FAUのCHAへの転換速度を考慮すると、100℃〜200℃で、5時間〜15日であれば構わない。好ましくは、120℃〜150℃で、3日〜7日である。また、水熱合成終了後の膜は圧力容器から取り出した後、水洗、乾燥および焼成することにより、CHA分離膜として利用するが、水洗は膜表面の余分なゲル状物質を取り除くだけで良く、乾燥は室温〜150℃の空気中で行えば良い。焼成は、膜層内に存在するBTMAを取り除くために行うもので、400℃以上で3時間〜100時間であれば良い。好ましくは、500〜600℃で10時間であり、熱膨張によるCHA膜層へのクラックの発生に留意するために、昇温および降温を0.1〜1℃/分で行えばさらに好ましい。
本発明のゼオライト膜はCHA結晶構造が配向したものではなく、ランダムオリエンテーション(Random Orientation)であることがひとつの特徴である。また、その結晶構造がSi/Al比で10以上、好ましくは10〜10000、さらに好ましくは10〜100のCHAであり、かつ他のゼオライト層が混入しないCHA純相であることを特徴とする。
In the present invention, the hydrothermal synthesis time and temperature are not particularly limited, but considering the rate of crystallization and the conversion rate of the de-Al starting material FAU to CHA, it is 100 ° C. to 200 ° C. for 5 hours. ~ 15 days are fine. Preferably, it is 120 to 150 ° C. and 3 to 7 days. The membrane after completion of hydrothermal synthesis is taken out of the pressure vessel, washed with water, dried and baked to be used as a CHA separation membrane, but washing with water only removes excess gel-like substances on the membrane surface, Drying may be performed in air at room temperature to 150 ° C. Firing is performed to remove BTMA present in the film layer, and may be performed at 400 ° C. or higher for 3 hours to 100 hours. Preferably, the temperature is 500 to 600 ° C. for 10 hours, and it is more preferable to raise and lower the temperature at 0.1 to 1 ° C./min in order to pay attention to the occurrence of cracks in the CHA film layer due to thermal expansion.
One feature of the zeolite membrane of the present invention is that the CHA crystal structure is not oriented but is in a random orientation. Further, the crystal structure is CHA having a Si / Al ratio of 10 or more, preferably 10 to 10,000, more preferably 10 to 100, and a CHA pure phase not mixed with other zeolite layers.

(分離・濃縮方法)
本発明において、得られたゼオライト膜を用いてパーベーパレーションを用いて脱水処理を行うことができる。脱水を行う際は、ゼオライト膜に脱水する有機溶媒を直接接触させた上、ゼオライト膜表面と内部の間に化学ポテンシャルの勾配を生じさせて、有機物と水の混合物から水を選択的に透過させる処理を行うことができる。ここで、化学ポテンシャルの勾配を生じさせる方法として、例えば膜構造体内部を減圧する方法、スイープガスを流す方法などが挙げられる。また、分離手法にとらわれることなく、蒸気中から選択的に脱水する、ベーパーパーミエイションによって目的生成物を分離・濃縮することも可能である。
(Separation / concentration method)
In the present invention, dehydration treatment can be performed using pervaporation using the obtained zeolite membrane. When performing dehydration, the organic solvent to be dehydrated is brought into direct contact with the zeolite membrane, and a gradient of chemical potential is created between the surface and inside of the zeolite membrane to selectively permeate water from a mixture of organic matter and water. Processing can be performed. Here, as a method of generating a gradient of chemical potential, for example, a method of depressurizing the inside of the film structure, a method of flowing a sweep gas, and the like can be cited. In addition, it is possible to separate and concentrate the target product by vapor permeation, which is selectively dehydrated from the steam, without being bound by the separation method.

本発明により、分離可能な対象としては、酢酸に代表されるカルボン酸や酢酸エステルなどのエステル類などが挙げられる。好ましくはカルボン酸類と水の混合物からの脱水である。   Examples of separable objects according to the present invention include esters such as carboxylic acids represented by acetic acid and acetic acid esters. Dehydration from a mixture of carboxylic acids and water is preferred.

次に、本発明を実施例に基づいて具体的に説明するが、本発明の範囲は、以下の実施例により何ら制約されるものではない。
(実施例1)
HSZ-360HUA(USY=Ultra Stable Y、Si/Al2=14、Na2O/Al2O3=0.006、東ソー(株)製)を20g量り、1M濃度の硫酸(和光純薬、試薬特級)水溶液400mLを加えて、約3時間室温で攪拌した。その後、濾過してpHが約7になるまで水洗した。ついで100℃で5時間乾燥した後の生成物のSi/Al比は、21.2であった。また、粉末X線回折のパターンは、International Zeolite Association(IZA)が発行している、Collection of Simulated XRD Powder Patterns for Zeolites 4th Edition(ELSEVIER,ISBN=0 444 50702 7,2001)p153で定義されるパターンとほぼ同一であったことから、非晶質アルミノシリケートではないことがわかる。
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, the scope of the present invention is not restrict | limited at all by the following Examples.
Example 1
HSZ-360HUA (USY = Ultra Stable Y, Si / Al 2 = 14, Na 2 O / Al 2 O 3 = 0.006, manufactured by Tosoh Corporation) weighed 20g, 1M concentration sulfuric acid (Wako Pure Chemicals, reagent grade) 400 mL of an aqueous solution was added and stirred at room temperature for about 3 hours. Then, it filtered and washed with water until pH became about 7. The Si / Al ratio of the product after drying at 100 ° C. for 5 hours was 21.2. The pattern of the powder X-ray diffraction, International Zeolite Association (IZA) has issued, as defined in Collection of Simulated XRD Powder Patterns for Zeolites 4 th Edition (ELSEVIER, ISBN = 0 444 50702 7,2001) p153 Since it was almost the same as the pattern, it was found that it was not an amorphous aluminosilicate.

この硫酸処理したHSZ-360HUAを10.1g秤量し、これにイオン交換水15gを加えて粘調ゲルを得た。さらに塩化ナトリウム(和光純薬、試薬特級)を1g加え、攪拌しながら水酸化ベンジルトリメチルアンモニウム水溶液(和光純薬、40%水溶液、試薬特級)を加えて、二次成長液を得た。この二次成長液に種晶として予め合成しておいたCHA結晶粉末(Si/Al=18.2)を0.2g加えた。この時の二次成長液の化学組成は、SiO2:0.003Al2O3:0.2BTMAOH:0.1NaCl:5.02H2Oである。その後、この二次成長液を室温で1時間攪拌した後、内容積30mLのオートクレーブ(自家製、テフロン(登録商標)内筒付き、直径10mmΦ、長さ300mm)に移して、オートクレーブのふたを閉めて、100℃に設定した電気オーブン(エスペック製、ST-110型)に水平に入れた。24時間後、電気オーブンからオートクレーブを一旦取り出し(以下この処理をエイジング(ここでは100℃24時間のエイジングである)という)、水冷した後に開封した。開封したオートクレーブに、200mm長のα−アルミナ中空糸(自家製、直径2mmΦ、内径1.6mmΦ、気孔率42%、平均細孔径0.15mm)を挿入した。この、α−アルミナ中空糸に予め合成しておいたSi/Al比が18.1のCHA種晶を付着させた(以下この処理をラビングという)。付着量は3.2g/m2であった。再びオートクレーブのふたを閉めて、130℃設定の電気オーブンに水平に入れた。その後11日後に、オートクレーブを電気オーブンから取り出して水冷した後、オートクレーブから200mm長のα−アルミナ中空糸を取り出した。このα−アルミナ中空糸を良く水洗した後、空気中(室温)で12時間乾燥した。乾燥した後、550℃で10時間焼成してゼオライト膜1を得た。 10.1 g of this sulfuric acid-treated HSZ-360HUA was weighed, and 15 g of ion exchange water was added thereto to obtain a viscous gel. Further, 1 g of sodium chloride (Wako Pure Chemicals, reagent grade) was added, and an aqueous solution of benzyltrimethylammonium hydroxide (Wako Pure Chemicals, 40% aqueous solution, reagent grade) was added with stirring to obtain a secondary growth solution. 0.2 g of CHA crystal powder (Si / Al = 18.2) previously synthesized as seed crystals was added to the secondary growth solution. The chemical composition of the secondary growth liquid at this time is SiO 2 : 0.003Al 2 O 3 : 0.2BTMAOH: 0.1NaCl: 5.02H 2 O. After that, this secondary growth solution was stirred at room temperature for 1 hour, then transferred to an autoclave with an internal volume of 30 mL (homemade, with a Teflon (registered trademark) inner cylinder, diameter 10 mmΦ, length 300 mm), and the autoclave lid was closed. And placed horizontally in an electric oven set at 100 ° C. (Espec, ST-110 type). After 24 hours, the autoclave was once taken out from the electric oven (hereinafter, this treatment is referred to as aging (herein, aging at 100 ° C. for 24 hours)), water-cooled, and then opened. A 200 mm long α-alumina hollow fiber (homemade, diameter 2 mmΦ, inner diameter 1.6 mmΦ, porosity 42%, average pore diameter 0.15 mm) was inserted into the opened autoclave. A CHA seed crystal having a Si / Al ratio of 18.1 synthesized in advance was attached to the α-alumina hollow fiber (hereinafter, this treatment is referred to as rubbing). The adhesion amount was 3.2 g / m 2 . The autoclave lid was closed again and placed horizontally in an electric oven set at 130 ° C. After 11 days, the autoclave was taken out from the electric oven and cooled with water, and then a 200 mm long α-alumina hollow fiber was taken out from the autoclave. The α-alumina hollow fiber was thoroughly washed with water and then dried in the air (room temperature) for 12 hours. After drying, it was calcined at 550 ° C. for 10 hours to obtain a zeolite membrane 1.

次に、このゼオライト膜1について、X線回折測定を行ったところ、通常の粉末パターンと回折強度および回折位置がほぼ同じであったことから、膜を構成しているCHA結晶層の構造は、いわゆるランダムオリエンターション(Random Orientation)であることがわかった。X線回折測定の具体的な測定手法は、ゼオライト膜1を支持体であるα-アルミナ管の外表面をX線ができるだけ多く照射するように切断して、通常のガラス試料板に設置して、粉末X線回折測定と同様に測定した。粉末X線回折測定装置は、Bruker/Mac Science AXS-M21X型を用いて測定した。
その結果、ゼオライト膜1の回折角度と強度は、以下の通りであった。
2θ(度) 回折強度(%)
9.48 100
12.91 20
20.56 84
23.32 15
24.86 19
30.54 51
なお、強度10%以下のピークと、支持体であるα-アルミナのピークは割愛した。
Next, when the X-ray diffraction measurement was performed on the zeolite membrane 1, since the diffraction intensity and diffraction position were almost the same as those of a normal powder pattern, the structure of the CHA crystal layer constituting the membrane was It turned out to be a so-called random orientation. A specific measurement method of X-ray diffraction measurement is that the zeolite membrane 1 is cut so that the outer surface of an α-alumina tube as a support is irradiated with as much X-ray as possible, and is set on a normal glass sample plate. The measurement was performed in the same manner as the powder X-ray diffraction measurement. The powder X-ray diffractometer was measured using Bruker / Mac Science AXS-M21X type.
As a result, the diffraction angle and intensity of the zeolite membrane 1 were as follows.
2θ (degrees) Diffraction intensity (%)
9.48 100
12.91 20
20.56 84
23.32 15
24.86 19
30.54 51
In addition, the peak of intensity 10% or less and the peak of α-alumina as a support were omitted.

また、ゼオライト膜1の製膜時に同時に生成した粉末の焼成後の回折角度と強度は、以下の通りであった。
2θ(度) 回折強度(%)
9.46 100
12.88 18
17.63 11
20.52 79
22.98 21
24.77 16
27.52 7
30.54 53
以上の結果からも、ゼオライト膜1は、膜を構成する各CHA結晶の配向はしておらず、粉末状態に近い、ランダムオリエンターション(Random Orientation)であることがわかる。
Moreover, the diffraction angle and intensity after firing of the powder produced simultaneously with the formation of the zeolite membrane 1 were as follows.
2θ (degrees) Diffraction intensity (%)
9.46 100
12.88 18
17.63 11
20.52 79
22.98 21
24.77 16
27.52 7
30.54 53
From the above results, it can be seen that the zeolite membrane 1 is not in the orientation of each CHA crystal constituting the membrane, but is in a random orientation close to a powder state.

次に、このゼオライト膜1の両端10mmを切り捨て、残りを1/3の約60mmずつにほぼ均等に切断した。切断した3本それぞれを、ゼオライト膜の片端を6mmΦのSUS管にトールシール(商品名、ニラコ(株)製)で接続した後、さらにポリアミド樹脂(三菱レイヨン製)で接続した。ゼオライト膜の先端側も同様にトールシールとポリアミド樹脂で封止した。このSUS管に接続したゼオライト膜1のうちの中央の1本を浸透気化装置に設置して、水(10mass%)/エタノール(90mass%)の混合水溶液からの75℃における浸透気化分離試験を行った。その結果、透過流束Qは2.9kg/m2・hとなり、分離係数α(水/エタノール)は2350であった。次に、このゼオライト膜1を用いて、水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、透過流束Qは3.4kg/m2・hとなり、分離係数α(水/酢酸)は1158(透過水溶液中の酢酸の濃度は、0.086mass%)となった。 Next, 10 mm on both ends of the zeolite membrane 1 was cut off, and the remainder was cut almost equally into about 1/3 of each 60 mm. Each of the three cut pieces was connected to one end of the zeolite membrane to a 6 mmφ SUS tube with a tall seal (trade name, manufactured by Niraco Co., Ltd.), and further connected with a polyamide resin (manufactured by Mitsubishi Rayon). The tip side of the zeolite membrane was similarly sealed with a tall seal and a polyamide resin. One of the zeolite membranes 1 connected to the SUS tube is installed in the pervaporation device, and the pervaporation test at 75 ° C from the aqueous solution of water (10 mass%) / ethanol (90 mass%) is conducted. It was. As a result, the permeation flux Q was 2.9 kg / m 2 · h, and the separation factor α (water / ethanol) was 2350. Next, this zeolite membrane 1 was subjected to a pervaporation separation test at 75 ° C. from a mixed aqueous solution of water (50 mass%) / acetic acid (50 mass%). As a result, the permeation flux Q was 3.4 kg / m 2 · The separation factor α (water / acetic acid) was 1158 (the concentration of acetic acid in the permeated aqueous solution was 0.086 mass%).

また、他の2本も水(10mass%)/エタノール(90 mass%)で透過流束Qはそれぞれ、2.8および2.9kg/m2・hであり、分離係数α(水/エタノール)はそれぞれ、2400および2260であった。さらに、水(50 mass%)/酢酸(50 mass%)系では透過流束Qはそれぞれ、3.51および3.32kg/m2・hであり、分離係数α(水/酢酸)はそれぞれ、1200および1110となった。このことから、ゼオライト膜1は長さ方向における分離性能の偏りは、ほぼ無いことがわかる。
なお、浸透気化分離試験は、図1に示すバッチ式のパーベーパレーション測定装置を用いて測定し、単位時間当たりの透過量Q(kg/m2・h)と分離係数(水/エタノールおよび酢酸)を求めた。図1中、ゼオライト膜5で分離対象液6を分離する。3はマグネチックスターラー、4は水浴、7は真空ゲージである。1は油回転ポンプ、2はコールドトラップ(液体窒素)である。
透過してくる物質の中の水およびエタノール濃度は、島津製作所製のガスクロマトグラフィーGC-8A(パックドカラム Shincarbon A)を用いて、酢酸濃度は島津製作所製のガスクロマトグラフィーGC-8A(キャピラリーカラム 5MS)を用いて測定した。なお、検量線より求めたエタノールの検出限界は、0.005mass%であり、酢酸の検出限界は0.001mass%であった。
The other two were water (10 mass%) / ethanol (90 mass%), the permeation flux Q was 2.8 and 2.9 kg / m 2 · h, respectively, and the separation factor α (water / ethanol) was 2400 and 2260. Furthermore, in the water (50 mass%) / acetic acid (50 mass%) system, the permeation flux Q is 3.51 and 3.32 kg / m 2 · h, respectively, and the separation factor α (water / acetic acid) is 1200 and 1110, respectively. It became. From this, it can be seen that the zeolite membrane 1 has almost no deviation in separation performance in the length direction.
The pervaporation test was measured using the batch-type pervaporation measuring device shown in FIG. 1, and the permeation amount Q (kg / m 2 · h) per unit time and the separation factor (water / ethanol and acetic acid). ) In FIG. 1, a separation target liquid 6 is separated by a zeolite membrane 5. 3 is a magnetic stirrer, 4 is a water bath, and 7 is a vacuum gauge. 1 is an oil rotary pump, 2 is a cold trap (liquid nitrogen).
The concentration of water and ethanol in the permeating substance was determined using Shimadzu Gas Chromatography GC-8A (packed column Shincarbon A), and the acetic acid concentration was Shimadzu Gas Chromatography GC-8A (capillary column 5MS). ). The ethanol detection limit determined from the calibration curve was 0.005 mass%, and the acetic acid detection limit was 0.001 mass%.

(実施例2)
以下、使用した装置、試薬は、特にことわりがない場合は実施例1と同じものを使用し、分離性能評価は長さ方向に性能の偏りがないことがわかったので、3本のうち中央の1本を用いて試験を行った。
前記実施例1と全く同様に二次成長液の調製を行い、二次成長時間を7日とし、エイジング処理をなしとした以外は、実施例1と全て同様にしてゼオライト膜2を得た。このゼオライト膜2の水(10mass%)/エタノール(90mass%)の混合水溶液からの75℃における浸透気化分離性能は、透過流束Qは2.24kg/m2・hとなり、分離係数α(水/エタノール)は1170であった。次に、このゼオライト膜2を用いて、水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、透過流束Qは7kg/m2・hとなり、分離係数α(水/酢酸)は2500以上(透過水溶液中の酢酸の濃度は、0.04mass%)となった。
ゼオライト膜2のXRDパターンを図2に示す。結晶構造はCHA型ゼオライトであることがわかる。また、ゼオライト膜2の表面電子顕微鏡像を図3に示す。図3(a)は表面の顕微鏡像であり、図3(b)は断面の顕微鏡像である。膜を構成している各結晶は双貫(Over Growth)しており、特定の面が発達した様子は観察されない。
(Example 2)
Hereinafter, the equipment and reagents used were the same as in Example 1 unless otherwise specified, and it was found that the separation performance evaluation had no performance bias in the length direction. The test was conducted using one.
A zeolite growth film 2 was obtained in the same manner as in Example 1 except that a secondary growth solution was prepared in the same manner as in Example 1, except that the secondary growth time was 7 days and the aging treatment was not performed. The pervaporation separation performance of this zeolite membrane 2 from a water (10 mass%) / ethanol (90 mass%) mixed aqueous solution at 75 ° C. has a permeation flux Q of 2.24 kg / m 2 · h, and a separation factor α (water / Ethanol) was 1170. Next, this zeolite membrane 2 was used to conduct a pervaporation separation test at 75 ° C. from a mixed aqueous solution of water (50 mass%) / acetic acid (50 mass%). The permeation flux Q was 7 kg / m 2 · h. The separation factor α (water / acetic acid) was 2500 or more (the concentration of acetic acid in the permeated aqueous solution was 0.04 mass%).
The XRD pattern of the zeolite membrane 2 is shown in FIG. It can be seen that the crystal structure is CHA-type zeolite. A surface electron microscope image of the zeolite membrane 2 is shown in FIG. 3A is a microscopic image of the surface, and FIG. 3B is a microscopic image of the cross section. Each crystal composing the film is over-growth, and the appearance of development of a specific surface is not observed.

(実施例3)
前記実施例1と全く同様に二次成長液の調製を行い、二次成長時間を5日とした以外は、実施例2と全て同様にしてゼオライト膜3を得た。このゼオライト膜3の水(10mass%)/エタノール(90mass%)の混合水溶液からの75℃における浸透気化分離性能は、透過流束Qは2.1kg/m2・hとなり、分離係数α(水/エタノール)は600であった。次に、このゼオライト膜3を用いて、水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、透過流束Qは3.4kg/m2・hとなり、分離係数α(水/酢酸)は730(透過水溶液中の酢酸の濃度は、0.13mass%)となった。
(Example 3)
A zeolite growth film 3 was obtained in the same manner as in Example 2, except that the secondary growth solution was prepared in the same manner as in Example 1 and the secondary growth time was 5 days. The pervaporation separation performance of this zeolite membrane 3 from a water (10 mass%) / ethanol (90 mass%) mixed aqueous solution at 75 ° C. has a permeation flux Q of 2.1 kg / m 2 · h, and a separation factor α (water / Ethanol) was 600. Next, this zeolite membrane 3 was used to conduct a pervaporation separation test at 75 ° C. from a mixed aqueous solution of water (50 mass%) / acetic acid (50 mass%). The permeation flux Q was 3.4 kg / m 2 · The separation factor α (water / acetic acid) was 730 (the concentration of acetic acid in the permeated aqueous solution was 0.13 mass%).

(実施例4)
前記実施例1と全く同様に二次成長液の調製を行い、二次成長時間を5日とし、二次成長温度を150℃とした以外は、実施例2と全て同様にしてゼオライト膜4を得た。このゼオライト膜4の水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、透過流束Qは3.8kg/m2・hとなり、分離係数α(水/酢酸)は870(透過水溶液中の酢酸の濃度は、0.11mass%)となった。
Example 4
A zeolite growth film was prepared in the same manner as in Example 2 except that the secondary growth solution was prepared in the same manner as in Example 1 except that the secondary growth time was 5 days and the secondary growth temperature was 150 ° C. Obtained. When the pervaporation separation test at 75 ° C. from the water (50 mass%) / acetic acid (50 mass%) mixed aqueous solution of the zeolite membrane 4 was conducted, the permeation flux Q was 3.8 kg / m 2 · h, and the separation factor α (Water / acetic acid) was 870 (the concentration of acetic acid in the permeated aqueous solution was 0.11 mass%).

(実施例5)
前記実施例1と全く同様に二次成長液の調製を行い、二次成長時間を7日とし、二次成長温度を150℃とした以外は、実施例2と全て同様にしてゼオライト膜5を得た。このゼオライト膜5の水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、透過流束Qは3.16kg/m2・hとなり、分離係数α(水/酢酸)は1666(透過水溶液中の酢酸の濃度は、0.06mass%)となった。
(Example 5)
A zeolite growth film 5 was prepared in the same manner as in Example 2 except that the secondary growth solution was prepared in the same manner as in Example 1 except that the secondary growth time was 7 days and the secondary growth temperature was 150 ° C. Obtained. When the pervaporation separation test at 75 ° C. from the water (50 mass%) / acetic acid (50 mass%) mixed aqueous solution of this zeolite membrane 5 was conducted, the permeation flux Q was 3.16 kg / m 2 · h, and the separation factor α (Water / acetic acid) was 1666 (the concentration of acetic acid in the permeated aqueous solution was 0.06 mass%).

(実施例6)
前記実施例1と全く同様に二次成長液の調製を行い、エイジング処理を100℃で1日の条件で行った以外は、実施例2と全て同様にしてゼオライト膜6を得た。このゼオライト膜6の水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、透過流束Qは4.1kg/m2・hとなり、分離係数α(水/酢酸)は1666(透過水溶液中の酢酸の濃度は、0.06mass%)となった。
(Example 6)
A zeolite growth film 6 was obtained in the same manner as in Example 2 except that the secondary growth solution was prepared in the same manner as in Example 1 and the aging treatment was performed at 100 ° C. for 1 day. When a pervaporation separation test at 75 ° C. from a water (50 mass%) / acetic acid (50 mass%) aqueous solution of the zeolite membrane 6 was conducted, the permeation flux Q was 4.1 kg / m 2 · h, and the separation factor α (Water / acetic acid) was 1666 (the concentration of acetic acid in the permeated aqueous solution was 0.06 mass%).

(実施例7)
前記実施例1と全く同様に二次成長液の調製を行い、二次成長時間を7日とし、二次成長温度を150℃とした以外は、実施例2と全て同様にしてゼオライト膜7を得た。このゼオライト膜7の水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、透過流束Qは5.15kg/m2・hとなり、分離係数α(水/酢酸)は870(透過水溶液中の酢酸の濃度は、0.11mass%)となった。
(Example 7)
A zeolite growth film 7 was prepared in the same manner as in Example 2 except that the secondary growth solution was prepared in the same manner as in Example 1 except that the secondary growth time was 7 days and the secondary growth temperature was 150 ° C. Obtained. When the pervaporation separation test at 75 ° C. from a water (50 mass%) / acetic acid (50 mass%) aqueous solution of the zeolite membrane 7 was conducted, the permeation flux Q was 5.15 kg / m 2 · h, and the separation factor α (Water / acetic acid) was 870 (the concentration of acetic acid in the permeated aqueous solution was 0.11 mass%).

(実施例8)
前記実施例1と全く同様に二次成長液の調製を行い、エイジング処理及びラビング処理を行わず、2mass%の種晶を二次成長液に入れなかった以外は、実施例2と全て同様にしてゼオライト膜8を得た。このゼオライト膜8の水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、透過流束Qは2.0kg/m2・hとなり、分離係数α(水/酢酸)は92(透過水溶液中の酢酸の濃度は、1.07mass%)となった。
(Example 8)
A secondary growth solution was prepared in exactly the same manner as in Example 1, except that aging treatment and rubbing treatment were not performed, and 2 mass% seed crystals were not added to the secondary growth solution. Thus, a zeolite membrane 8 was obtained. When the pervaporation separation test at 75 ° C. from the water (50 mass%) / acetic acid (50 mass%) aqueous solution of the zeolite membrane 8 was conducted, the permeation flux Q was 2.0 kg / m 2 · h, and the separation factor α (Water / acetic acid) was 92 (the concentration of acetic acid in the permeated aqueous solution was 1.07 mass%).

(実施例9)<酢酸PV長期試験>
前記実施例2で得られたゼオライト膜2を用いて、水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験の長期試験を行った。1時間目の分離性能は、実施例2に記載の通り、透過流束Qは7kg/m2・hとなり、分離係数α(水/酢酸)は2500(透過水溶液中の酢酸の濃度は、0.04mass%)であった。
1日後では、Q=6.96kg/m2・h、α(水/酢酸)=2500であり、3日後では、Q=6.75 kg/m2・h、α(水/酢酸)=2500、7日後でも、Q=6.71kg/m2・h、α(水/酢酸)=2500であり、酢酸中での膜性能劣化はほとんど観察されなかった。
このことから、本発明で得られたCHA膜は、高透過流束および高選択性を有するばかりでなく、長期安定性にも優れたゼオライト膜であることがわかった。
(Example 9) <Acetic acid PV long-term test>
Using the zeolite membrane 2 obtained in Example 2, a long-term test of pervaporation separation test at 75 ° C. from a mixed aqueous solution of water (50 mass%) / acetic acid (50 mass%) was performed. As described in Example 2, the separation performance at 1 hour was a permeation flux Q of 7 kg / m 2 · h, a separation factor α (water / acetic acid) of 2500 (the concentration of acetic acid in the permeated aqueous solution was 0.04 mass%).
After 1 day, Q = 6.96 kg / m 2 · h, α (water / acetic acid) = 2500, and after 3 days, Q = 6.75 kg / m 2 · h, α (water / acetic acid) = 2500, 7 days later However, Q = 6.71 kg / m 2 · h, α (water / acetic acid) = 2500, and membrane performance degradation in acetic acid was hardly observed.
From this, it was found that the CHA membrane obtained in the present invention is a zeolite membrane having not only high permeation flux and high selectivity but also excellent long-term stability.

(比較例1)
特許文献6(特開2011-16123号公報)の実施例1に記載の方法で、Si/Al比=2.7のCHA膜をα-アルミナ支持体に製膜してゼオライト膜9を得た。このゼオライト膜9を用いて、水(10mass%)/エタノール(90mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、透過流束Qは4.6kg/m2・hとなり、分離係数α(水/エタノール)は10000以上(ガスクロマトグラフィーの検出限界以下)であった。次に、このゼオライト膜9を用いて、水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行ったところ、1時間目の透過流束Qは2.1kg/m2・hとなり、分離係数α(水/酢酸)は900(透過水溶液中の酢酸の濃度は、0.12mass%)となった。さらに、水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を続けたところ、24時間後には透過流束Qは11.3kg/m2・hとなり、分離係数α(水/酢酸)は9(透過水溶液中の酢酸の濃度は、10.24mass%)となった。48時間後には膜が破壊され、水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験を行うことができなかった。
(Comparative Example 1)
A zeolite membrane 9 was obtained by forming a CHA membrane having a Si / Al ratio of 2.7 on an α-alumina support by the method described in Example 1 of Patent Document 6 (Japanese Patent Laid-Open No. 2011-16123). When this pervaporation separation test at 75 ° C. from a mixed aqueous solution of water (10 mass%) / ethanol (90 mass%) was performed using this zeolite membrane 9, the permeation flux Q was 4.6 kg / m 2 · h, The separation factor α (water / ethanol) was 10000 or more (below the detection limit of gas chromatography). Next, this zeolite membrane 9 was used to conduct a pervaporation separation test at 75 ° C. from a mixed aqueous solution of water (50 mass%) / acetic acid (50 mass%). The permeation flux Q at the first hour was 2.1 kg. / m 2 · h, and the separation factor alpha (water / acetic acid) 900 (concentration of acetic acid in the permeated solution is, 0.12 mass%) became. Furthermore, when the pervaporation separation test at 75 ° C from a mixed aqueous solution of water (50 mass%) / acetic acid (50 mass%) was continued, the permeation flux Q was 11.3 kg / m 2 · h after 24 hours, and the separation factor α (water / acetic acid) was 9 (the concentration of acetic acid in the permeated aqueous solution was 10.24 mass%). After 48 hours, the membrane was destroyed, and the pervaporation separation test at 75 ° C. from a mixed aqueous solution of water (50 mass%) / acetic acid (50 mass%) could not be performed.

このことから、特許文献6に記載の方法、すなわち、二次成長液に無定形アルミノケイ酸ゲルを使用し、有機アミンの代わりにSrを用いてSi/Al比を3程度にしたCHA膜は、水(10mass%)/エタノール(90mass%)の混合水溶液からの75℃における浸透気化分離試験では、優れた性能を有するが、水(50mass%)/酢酸(50mass%)の混合水溶液からの75℃における浸透気化分離試験では、安定性に欠けることがわかった。   From this, the method described in Patent Document 6, that is, a CHA film in which an amorphous aluminosilicate gel is used as the secondary growth solution and Sr is used instead of organic amine to make the Si / Al ratio about 3 is obtained. In the pervaporation separation test at 75 ° C from a mixed aqueous solution of water (10 mass%) / ethanol (90 mass%), it has excellent performance, but 75 ° C from a mixed aqueous solution of water (50 mass%) / acetic acid (50 mass%). In the pervaporation separation test, the stability was found to be lacking.

(比較例2)
比較例1のゼオライト膜9を用いて、90mass%のエタノール水溶液に塩酸(試薬特級)を3mass%添加してpH=1.8としてからの75℃における浸透気化分離試験において、水およびエタノールの透過流束を調べたところ、膜の破壊と考えられるエタノールのリークはなかったが、水の透過流束が約30分で激減し、その後10時間では塩酸添加なしの場合の水の透過流束の1/3以下(6kg/m2・hから1.8kg/m2・h)となった。
(Comparative Example 2)
In the pervaporation separation test at 75 ° C. after adding 3 mass% of hydrochloric acid (reagent special grade) to 90 mass% ethanol aqueous solution and adjusting the pH to 1.8 using the zeolite membrane 9 of Comparative Example 1, the permeation flux of water and ethanol As a result, there was no ethanol leak, which was considered to be a membrane breakage, but the permeation flux of water drastically decreased in about 30 minutes, and then 1 / th of the permeation flux of water without addition of hydrochloric acid in 10 hours. It was 3 or less (from 6kg / m 2 · h to 1.8kg / m 2 · h).

(実施例10)
前記実施例2で得られたゼオライト膜2を用いて、水(35mass%)/酢酸(65mass%)の混合水溶液から90℃における浸透気化分離を行った。その結果、透過流束Qは6.7kg/m2・h、分離係数α(水/酢酸)は4600(透過水溶液中の酢酸濃度は約0.04mass%)となった。
(Example 10)
Using the zeolite membrane 2 obtained in Example 2, pervaporation separation was performed at 90 ° C. from a mixed aqueous solution of water (35 mass%) / acetic acid (65 mass%). As a result, the permeation flux Q was 6.7 kg / m 2 · h, and the separation factor α (water / acetic acid) was 4600 (the concentration of acetic acid in the permeated aqueous solution was about 0.04 mass%).

(実施例11)
前記実施例2で得られたゼオライト膜2を用いて、水(10mass%)/酢酸(90mass%)の混合水溶液から90℃における浸透気化分離を行った。その結果、透過流束Qは2.6kg/m2・h、分離係数α(水/酢酸)は5600(透過水溶液中の酢酸濃度は約0.16mass%)となった。
(Example 11)
Using the zeolite membrane 2 obtained in Example 2, pervaporation separation at 90 ° C. was performed from a mixed aqueous solution of water (10 mass%) / acetic acid (90 mass%). As a result, the permeation flux Q was 2.6 kg / m 2 · h, and the separation factor α (water / acetic acid) was 5600 (the concentration of acetic acid in the permeated aqueous solution was about 0.16 mass%).

(実施例12)
ゼオライト膜2を用いて、水(50mass%)/酢酸(50mass%)の混合水溶液から45℃における浸透気化分離を行った。その結果、透過流束Qは3.8kg/m2・h、分離係数α(水/酢酸)は2500(透過水溶液中の酢酸濃度は約0.04mass%)となった。
(Example 12)
The zeolite membrane 2 was used for pervaporation separation at 45 ° C. from a mixed aqueous solution of water (50 mass%) / acetic acid (50 mass%). As a result, the permeation flux Q was 3.8 kg / m 2 · h, and the separation factor α (water / acetic acid) was 2500 (the concentration of acetic acid in the permeated aqueous solution was about 0.04 mass%).

実施例10〜12の結果をまとめると表Aのようになる。   Table A summarizes the results of Examples 10-12.

(参考例1)
本発明により得られたCHAと特許文献5および6により得られるCHAの耐酢酸性について以下の補助実験を行った。
イオン交換水217.4gにKOH(和光純薬、試薬特級)15.8gを溶解させた。この溶液に、Y型ゼオライト(東ソー製、HSZ-330HUA、Si/Al=3.2)25.2gを少量ずつ加えて、攪拌しスラリー溶液にした。このスラリー溶液を500mLのテフロン(登録商標)ボトルに移し、室温で1時間攪拌を続けた後、95℃のオーブンで100時間静置した。生成物を取り出し、濾過・水洗した後、70℃で1日乾燥して、粉末試料1を得た。この粉末試料1は、特許文献6に記載の方法であり、Si/Al比は2.6であった。
イオン交換水にN,N,N-トリメチルアダマンタンアンモニウム水酸化物(TMAdaOH、40mass%水溶液、非特許文献2を参照して合成)、NaOH、水酸化アルミニウム(和光純薬製)、種晶を所定量溶解させて、室温で15分攪拌した。この溶液にヒュームドシリカ(Cab-O-Sil M5:商品名、Aldrich製)を加え、さらに室温で4時間攪拌した。この溶液を45mLの内容積のテフロン(登録商標)内筒付きのオートクレーブに移し、150℃で5日間水熱処理を行った。その後、生成物を取り出し、遠心分離によりpHが約7になるまで水洗した後、70℃で1日乾燥して、粉末試料2−1〜2−3を得た。この粉末試料2−1〜2−3は、特許文献5に記載の膜素材であるSSZ-13であり、水酸化アルミニウムおよびヒュームドシリカの組成比を変化させることで、Si/Al比が8.1、12、17の3種類を得た。
イオン交換水に、ベンジルトリメチルアンモニウム水酸化物(BTMAOH、40mass%水溶液、Aldrich製)、NaOH、種晶、硫酸処理したFAU(東ソー製、HSZ-360HUA、Si/Al=7.4)を所定量加えて室温で15分攪拌した。この溶液を45mLの内容積のテフロン(登録商標)内筒付きのオートクレーブに移し、125℃で7〜14日間水熱処理を行った。その後、生成物を取り出し、遠心分離によりpHが約7になるまで水洗した後、70℃で1日乾燥して、粉末試料3−1〜3−5を得た。この粉末試料3−1〜3−5は、硫酸処理したFAUのSi/Al比を変えることで、Si/Al比が5.2、8.4、16、17、21の5種類を得た。
本参考例1で得られた粉末試料を表1にまとめた。
(Reference Example 1)
The following auxiliary experiment was conducted on the acetic acid resistance of CHA obtained by the present invention and CHA obtained by Patent Documents 5 and 6.
15.8 g of KOH (Wako Pure Chemicals, reagent grade) was dissolved in 217.4 g of ion-exchanged water. To this solution, 25.2 g of Y-type zeolite (manufactured by Tosoh Corporation, HSZ-330HUA, Si / Al = 3.2) was added little by little, and stirred to obtain a slurry solution. The slurry solution was transferred to a 500 mL Teflon (registered trademark) bottle, stirred for 1 hour at room temperature, and then allowed to stand in an oven at 95 ° C. for 100 hours. The product was taken out, filtered and washed with water, and then dried at 70 ° C. for 1 day to obtain a powder sample 1. This powder sample 1 was the method described in Patent Document 6, and the Si / Al ratio was 2.6.
N, N, N-trimethyladamantanammonium hydroxide (TMAdaOH, 40 mass% aqueous solution, synthesized by referring to Non-Patent Document 2), NaOH, aluminum hydroxide (manufactured by Wako Pure Chemical Industries), seed crystal After quantitative dissolution, the mixture was stirred at room temperature for 15 minutes. Fumed silica (Cab-O-Sil M5: trade name, manufactured by Aldrich) was added to this solution, and the mixture was further stirred at room temperature for 4 hours. This solution was transferred to an autoclave with a 45 mL internal volume Teflon (registered trademark) inner cylinder, and hydrothermally treated at 150 ° C. for 5 days. Thereafter, the product was taken out, washed with water by centrifugation until the pH reached about 7, and then dried at 70 ° C. for 1 day to obtain powder samples 2-1 to 2-3. These powder samples 2-1 to 2-3 are SSZ-13, which is a film material described in Patent Document 5, and the Si / Al ratio is 8.1 by changing the composition ratio of aluminum hydroxide and fumed silica. , 12 and 17 were obtained.
Add predetermined amount of benzyltrimethylammonium hydroxide (BTMAOH, 40 mass% aqueous solution, Aldrich), NaOH, seed crystal, sulfuric acid-treated FAU (Tosoh, HSZ-360HUA, Si / Al = 7.4) to ion-exchanged water. Stir at room temperature for 15 minutes. This solution was transferred to an autoclave with a 45 mL internal volume Teflon (registered trademark) inner cylinder, and hydrothermally treated at 125 ° C. for 7 to 14 days. Thereafter, the product was taken out, washed with water by centrifugation until the pH reached about 7, and then dried at 70 ° C. for 1 day to obtain powder samples 3-1 to 3-5. For these powder samples 3-1 to 3-5, five types of Si / Al ratios of 5.2, 8.4, 16, 17, and 21 were obtained by changing the Si / Al ratio of the FAU treated with sulfuric acid.
The powder samples obtained in Reference Example 1 are summarized in Table 1.

(参考例2)
参考例1で得られた各粉末試料を、90vol%の酢酸水溶液を用いて75℃で5日間浸漬処理を行った。その結果、粉末試料1はX線回折ピークが無くなっており、構造が崩壊していることがわかった。一方、粉末試料2−3および粉末試料3−4(いずれもSi/Al比が17の試料)は、X線回折ピーク([1 0 0]、[2 0 1]、[3 -1 -1]面)の相対強度に全く変化がなかった。
この粉末試料2−1〜2−3と3−1〜3−5に関して、さらに90vol%の酢酸水溶液を用いて75℃で30日間浸漬処理を行った結果、同様にX線回折ピーク([1 0 0]、[2 0 1]、[3 -1 -1]面)の相対強度に全く変化がなかったものの、Si/Al比は粉末試料2のSi/Al比が8.1だった試料2−1が30日後の酢酸水溶液浸漬により、9.3となり、Si/Al比が12だった試料2−2が14.1となり、Si/Al比が17だった試料2−3が27となった。一方、本発明により合成した粉末試料3−1〜3−5は、全てのSi/Al比(5.2〜21)において、30日間の90vol%の酢酸水溶液処理後においても、ほとんど変化していないことがわかった。このことは、長期間の酢酸処理において、SSZ-13と本発明に用いるCHAの違いを示しており、本発明の酢酸脱水膜とした場合において、長期安定性に優れることを示している。
(Reference Example 2)
Each powder sample obtained in Reference Example 1 was immersed for 5 days at 75 ° C. using a 90 vol% acetic acid aqueous solution. As a result, it was found that the powder sample 1 had no X-ray diffraction peak and the structure was destroyed. On the other hand, powder sample 2-3 and powder sample 3-4 (both samples having a Si / Al ratio of 17) have X-ray diffraction peaks ([1 0 0], [2 0 1], [3 -1 -1]. There was no change in the relative strength of the surface.
The powder samples 2-1 to 2-3 and 3-1 to 3-5 were further immersed in a 90 vol% acetic acid aqueous solution at 75 ° C. for 30 days. As a result, X-ray diffraction peaks ([1 [0 0], [2 0 1] and [3 -1 -1] planes), the Si / Al ratio was 8.1, but the Si / Al ratio of the powder sample 2 was 8.1. 1 was 30 after 30 days of immersion in an acetic acid aqueous solution, sample 2-2 having a Si / Al ratio of 12 was 14.1, and sample 2-3 having a Si / Al ratio of 17 was 27. On the other hand, the powder samples 3-1 to 3-5 synthesized according to the present invention have almost no change in all Si / Al ratios (5.2 to 21) even after treatment with 90 vol% acetic acid aqueous solution for 30 days. I understood. This indicates the difference between SSZ-13 and CHA used in the present invention in the long-term acetic acid treatment, and the long-term stability is excellent when the acetic acid dehydrated film of the present invention is used.

(参考例3)
参考例1で得られた、粉末試料3のSi/Al比が17の粉末を、各5M濃度の塩酸水溶液、硝酸水溶液、硫酸水溶液に5日間室温で浸漬させた後、X線回折を測定した結果、浸漬処理前後のX線回折ピーク([1 0 0]、[2 0 1]、[3 -1 -1]面)の相対強度に全く変化がなかった。
このことから、本発明に用いるCHAは、酢酸のみならず、一般的な無機酸に対する耐性も非常に優れていることがわかった。
(Reference Example 3)
The powder obtained in Reference Example 1 having a Si / Al ratio of 17 was immersed in a 5M aqueous hydrochloric acid solution, a nitric acid aqueous solution and a sulfuric acid aqueous solution for 5 days at room temperature, and then X-ray diffraction was measured. As a result, there was no change in the relative intensity of the X-ray diffraction peaks ([1 0 0], [2 0 1], [3 -1 -1] plane) before and after the immersion treatment.
From this, it was found that CHA used in the present invention is very excellent in resistance to not only acetic acid but also general inorganic acids.

上記の粉末試料の特性から、本発明のゼオライト膜は耐酸性が強いことがわかる。同じ高シリカCHAで、本発明に用いるものが耐酸性に優れている理由は明らかではないが、以下のように推定される。
本発明に用いるCHAはFAUゼオライトを脱Alして原料に使用しているので、脱Alの過程でFAU中の余分なAlや骨格内のAlの位置が違ってくる。酸に強いサイトにしか残らず、それらの酸に強いナノサイズパーツが高シリカCHAに転換されるので、転換後はAlが骨格からさらに動きにくい。一方、非晶質アルミノケイ酸原料から合成する一般的なCHAは、Alの位置がほぼ偶然によって決まるので、酸に弱いサイトにもAlが入ると考えられる。
これらのことから、本発明のCHA膜は、塩酸、硝酸、硫酸に代表される無機酸からの脱水を安定して行える素材としても期待できる。脱水の方法としては、分離膜のみならず、圧力振幅法(PSA:Pressure Swing Adsorption)や温度振幅法(TPA:Temperature Swing Adsorption)などを例示できる。
From the characteristics of the above powder sample, it can be seen that the zeolite membrane of the present invention has strong acid resistance. The reason why the same high silica CHA used in the present invention is excellent in acid resistance is not clear, but is estimated as follows.
Since CHA used in the present invention removes FAU zeolite and uses it as a raw material, the position of excess Al in the FAU and Al in the skeleton varies in the process of de-Al. Only the acid-resistant sites remain, and those acid-resistant nano-sized parts are converted to high silica CHA, so that after conversion, Al is more difficult to move from the skeleton. On the other hand, in general CHA synthesized from amorphous aluminosilicate raw material, the position of Al is almost determined by chance, so it is considered that Al also enters sites that are vulnerable to acid.
From these facts, the CHA film of the present invention can be expected as a material capable of stably dehydrating from inorganic acids typified by hydrochloric acid, nitric acid and sulfuric acid. Examples of the dehydration method include not only a separation membrane but also a pressure amplitude method (PSA: Pressure Swing Adsorption) and a temperature amplitude method (TPA: Temperature Swing Adsorption).

1 油回転ポンプ
2 コールドトラップ(液体窒素)
3 マグネチックスターラー
4 水浴
5 ゼオライト膜
6 分離対象液(エタノールまたは酢酸水溶液)
7 真空ゲージ
1 Oil rotary pump 2 Cold trap (liquid nitrogen)
3 Magnetic stirrer 4 Water bath 5 Zeolite membrane 6 Liquid to be separated (ethanol or acetic acid aqueous solution)
7 Vacuum gauge

Claims (9)

多孔質支持体上に製膜されたゼオライト膜の製造方法であって、
前記ゼオライト膜の結晶構造が、Si/Al比で10以上のチャバサイトであり、かつ他のゼオライト層が混入しないCHA純相で、該膜を構成する各CHA結晶は配向せず向きがランダムであり、
水熱合成溶液に脱Al処理したFAUゼオライトを用い、ベンジルトリメチルアンモニウムを有機鋳型剤として使用し、前記多孔質支持体上に、チャバサイト膜を形成することを特徴とするゼオライト膜の製造方法。
A method for producing a zeolite membrane formed on a porous support,
The crystal structure of the zeolite membrane is a chabasite having a Si / Al ratio of 10 or more, and is a pure CHA phase in which other zeolite layers are not mixed. Each CHA crystal constituting the membrane is not oriented and the orientation is random. Yes,
A method for producing a zeolite membrane , comprising using a dehydrated FAU zeolite in a hydrothermal synthesis solution, using benzyltrimethylammonium as an organic templating agent, and forming a chabasite membrane on the porous support.
前記FAUゼオライトの脱Al処理を無機酸で行うことを特徴とする請求項1に記載のゼオライト膜の製造方法。   The method for producing a zeolite membrane according to claim 1, wherein the FAU zeolite is subjected to de-Al treatment with an inorganic acid. 前記多孔質支持体にCHAまたはフォージャサイトの種晶を付着させ、前記チャバサイト膜を形成することを特徴とする請求項1または2に記載のゼオライト膜の製造方法。   The method for producing a zeolite membrane according to claim 1 or 2, wherein a seed crystal of CHA or faujasite is attached to the porous support to form the chabazite membrane. 前記脱Al処理したFAUゼオライトが、Si/Al比が10〜100の、硫酸または硝酸処理した結晶性FAUゼオライトであることを特徴とする請求項1〜3のいずれか1項に記載のゼオライト膜の製造方法。   4. The zeolite membrane according to claim 1, wherein the dealuminated FAU zeolite is a crystalline FAU zeolite treated with sulfuric acid or nitric acid having a Si / Al ratio of 10 to 100. 5. Manufacturing method. 水熱合成を、100〜200℃で、5時間〜15日間行うことを特徴とする請求項1〜のいずれか1項に記載のゼオライト膜の製造方法。 The method for producing a zeolite membrane according to any one of claims 1 to 4 , wherein the hydrothermal synthesis is performed at 100 to 200 ° C for 5 hours to 15 days. 前記水熱合成後、多孔質支持体上に製膜されたゼオライト膜を、400℃以上で3〜10時間燃焼することを特徴とする請求項1〜のいずれか1項に記載のゼオライト膜の製造方法。 The zeolite membrane according to any one of claims 1 to 5 , wherein after the hydrothermal synthesis, the zeolite membrane formed on the porous support is burned at 400 ° C or more for 3 to 10 hours. Manufacturing method. 前記ゼオライト膜が、有機物と水の混合物から、水を選択的に透過させることができるゼオライト膜であることを特徴とする請求項1〜のいずれか1項に記載のゼオライト膜の製造方法。 The method for producing a zeolite membrane according to any one of claims 1 to 6 , wherein the zeolite membrane is a zeolite membrane capable of selectively permeating water from a mixture of an organic substance and water. 前記有機物が、カルボン酸化合物であることを特徴とする請求項に記載のゼオライト膜の製造方法。 The method for producing a zeolite membrane according to claim 7 , wherein the organic substance is a carboxylic acid compound. 前記ゼオライト膜が、有機物と水の混合物から水を99.9%以上で選択的に透過させることができるゼオライト膜であることを特徴とする請求項またはに記載のゼオライト膜の製造方法。
The method for producing a zeolite membrane according to claim 7 or 8 , wherein the zeolite membrane is a zeolite membrane capable of selectively permeating water from a mixture of an organic substance and water at 99.9% or more.
JP2012052163A 2011-11-17 2012-03-08 Zeolite membrane and method for producing the same Expired - Fee Related JP6171151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012052163A JP6171151B2 (en) 2011-11-17 2012-03-08 Zeolite membrane and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011251277 2011-11-17
JP2011251277 2011-11-17
JP2012052163A JP6171151B2 (en) 2011-11-17 2012-03-08 Zeolite membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013126649A JP2013126649A (en) 2013-06-27
JP6171151B2 true JP6171151B2 (en) 2017-08-02

Family

ID=48777498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052163A Expired - Fee Related JP6171151B2 (en) 2011-11-17 2012-03-08 Zeolite membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP6171151B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267717B2 (en) 2018-03-21 2022-03-08 Basf Corporation CHA zeolite material and related method of synthesis

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102155696B1 (en) 2013-09-13 2020-09-15 삼성전자주식회사 Composite membrane, preparing method thereof, and lithium air battery including the same
JP6785483B2 (en) * 2013-09-30 2020-11-18 国立研究開発法人産業技術総合研究所 Composite membrane with zeolite thin film and its manufacturing method
JP6614138B2 (en) * 2014-04-18 2019-12-04 三菱ケミカル株式会社 Method for producing porous support-zeolite membrane composite
KR101638338B1 (en) 2014-11-25 2016-07-12 고려대학교 산학협력단 control method for pore size of silica chabazite zeolite membranes and silica chabazite zeolite membranes with controlled the pore size using the same
JP6670764B2 (en) * 2015-01-30 2020-03-25 日本碍子株式会社 Separation membrane structure
WO2016121887A1 (en) * 2015-01-30 2016-08-04 日本碍子株式会社 Separation membrane structure
JP6476021B2 (en) * 2015-03-12 2019-02-27 日立造船株式会社 Zeolite membrane and method for producing zeolite powder
CN110719808B (en) * 2017-06-07 2021-12-28 日本碍子株式会社 Dewatering method and dewatering device
JP7257244B2 (en) 2019-05-08 2023-04-13 日立造船株式会社 Zeolite membrane composite and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417969B2 (en) * 2008-12-17 2014-02-19 東ソー株式会社 Method for producing chabazite using N, N, N-trimethyl-benzylammonium ion
CN105413483B (en) * 2009-02-27 2018-05-22 三菱化学株式会社 Inorganic porous support-zeolite membrane complex, its manufacturing method and use its separation method
JP5569901B2 (en) * 2009-06-08 2014-08-13 独立行政法人産業技術総合研究所 Zeolite membrane, separation membrane module and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267717B2 (en) 2018-03-21 2022-03-08 Basf Corporation CHA zeolite material and related method of synthesis

Also Published As

Publication number Publication date
JP2013126649A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP6171151B2 (en) Zeolite membrane and method for producing the same
JP5569901B2 (en) Zeolite membrane, separation membrane module and manufacturing method thereof
JP7060042B2 (en) Method for Producing Porous Support-Zeolite Membrane Complex and Porous Support-Zeolite Membrane Complex
US10639594B2 (en) Zeolite membrane, production method therefor, and separation method using same
JP7106883B2 (en) Porous support-zeolite membrane composite, method for producing and separating RHO-type zeolite
JP7056658B2 (en) Ammonia separation method and zeolite
US9561477B2 (en) Methods for synthesizing microporous crystals and microporous crystal membranes
US11666867B2 (en) Zeolite separation membrane and production method therefor
JP5051816B2 (en) Philipsite type zeolite composite membrane and method for producing the same
JP2016047530A (en) Recovery method of alcohol from alcohol-water mixture
JP5051815B2 (en) Marinoite-type zeolite composite membrane and method for producing the same
Zhang et al. Synthesis of silicalite-1 membranes with high ethanol permeation in ultradilute solution containing fluoride
Zhang et al. Synthesis of a silicalite zeolite membrane in ultradilute solution and its highly selective separation of organic/water mixtures
JP5857533B2 (en) Method for recovering organic solvent from organic solvent-acid-water mixture
Ma et al. Seeding-free synthesis of high-performance MFI zeolite membranes on superhydrophobic supports inspired by “like grows like” principle
Tao et al. Enhanced pervaporation performance of zeolite membranes treated by atmospheric-pressure plasma
JP5481075B2 (en) Method for producing zeolite membrane
JP6785483B2 (en) Composite membrane with zeolite thin film and its manufacturing method
JP4820631B2 (en) Philipsite type zeolite membrane and method for producing the same
JP2017018848A (en) Dehydration concentration method of ethylene amine using zeolite membrane
JP4599144B2 (en) MARLINOITE TYPE ZEOLITE MEMBRANE AND METHOD FOR PRODUCING THE SAME
CN111406035B (en) MWW-type zeolite, process for producing the same, and cracking catalyst
Ahmed et al. Synthesis of SAPO-34 Membrane and Its Application to the Separation of Water/Acetic Acid Mixtures by Vapor Permeation
Kita Zeolite membranes for pervaporation
Vo et al. Memory effect in DDR zeolite powder and membrane synthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170601

R150 Certificate of patent or registration of utility model

Ref document number: 6171151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees