JP5223001B2 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
JP5223001B2
JP5223001B2 JP2011510288A JP2011510288A JP5223001B2 JP 5223001 B2 JP5223001 B2 JP 5223001B2 JP 2011510288 A JP2011510288 A JP 2011510288A JP 2011510288 A JP2011510288 A JP 2011510288A JP 5223001 B2 JP5223001 B2 JP 5223001B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetoresistive element
magnetoresistive
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011510288A
Other languages
English (en)
Other versions
JPWO2010122919A1 (ja
Inventor
修二 前川
秀人 安藤
和彦 今井
雅之 尾花
浩太 朝妻
文人 小池
一郎 徳永
昌廣 川村
武也 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2011510288A priority Critical patent/JP5223001B2/ja
Publication of JPWO2010122919A1 publication Critical patent/JPWO2010122919A1/ja
Application granted granted Critical
Publication of JP5223001B2 publication Critical patent/JP5223001B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Description

本発明は、固定磁性層の磁化方向が反対方向の複数の磁気抵抗効果素子を備える磁気センサに関する。
複数の磁気抵抗効果素子を用いて構成されたブリッジ回路を備える磁気センサは、出力を大きくすべく、外部磁場に対して逆の電気特性となる2種類の前記磁気抵抗効果素子を使用する。磁気抵抗効果素子としてGMR素子(巨大磁気抵抗効果素子)を用いた場合、GMR素子を構成する固定磁性層の磁化方向(P方向)を一方の磁気抵抗効果素子と他方の磁気抵抗効果素子とで反対にすれば、電気特性を逆にすることが出来る。従来では、次のような方法で磁気センサを製造していた。
まず図6(a)に示すように、基板1上に同形の4つの磁気抵抗効果素子2〜5を形成する。また個々の磁気抵抗効果素子2〜5の両端には端子部2a,2b〜5a,5bを形成する。
磁気抵抗効果素子2〜5は、反強磁性層/固定磁性層/非磁性層/フリー磁性層の積層構造を基本構造とするGMR素子(巨大磁気抵抗効果素子)である。GMR素子を構成する固定磁性層は磁化方向が一方向に固定される。一方、フリー磁性層は、磁化方向が外部磁場により変動可能にされている。
固定磁性層は、磁場中熱処理により反強磁性層との間で生じる交換結合磁界(Hex)により磁化固定される。
図6(a)のように、同形状の4つの磁気抵抗効果素子2〜5を形成した後、磁場中熱処理を施して、全ての磁気抵抗効果素子2〜5の固定磁性層を同じ磁化方向(P方向)に固定する。
続いて、図6(b)の工程では、基板1を分断してチップ化し、一方のチップ8を180度反転させ、各チップ7,8を共通の支持基板6上に設置する(図6(c))。
図6(c)に示すように、一方のチップ7に設けられた磁気抵抗効果素子2,3の固定磁性層の磁化方向(P方向)と、他方のチップ8に設けられた磁気抵抗効果素子4,5の固定磁性層の磁化方向(P方向)は反対方向となる。これにより外部磁場に対し、磁気抵抗効果素子2,3の電気特性と、磁気抵抗効果素子4,5の電気特性を逆にすることが出来る。
特開2007−242989号公報
しかしながら、従来では、各基板1a,1b上に磁気抵抗効果素子2,3(4,5)が2つずつ設けられたチップ7,8を2つ必要とし、各チップ7,8を支持基板6に設置するため磁気センサが大型化する問題があった。
また従来では、基板1を切断した後、一方のチップ8を180度反転させて、さらに各チップ7,8を支持基板に貼り付ける(ダイボンディング)という一連の作業工程が必要になり、また1つの基板1から製造できる取り個数が少なくなり製造工程の煩雑化及び製造コストの上昇が問題となった。また製造ばらつきが生じやすく磁気センサの検出精度にもばらつきが生じやすくなった。
また図6(c)に示す支持基板6には図示しない入力電極、グランド電極、出力電極が設けられており、各磁気抵抗効果素子2〜5に接続された端子部2a,2b〜5a,5bと各電極間を例えばワイヤボンディングして初めてブリッジ回路を構成できる。このためワイヤボンディングを必要とする製造工程の煩雑さに加え、磁気抵抗効果素子2〜5の抵抗以外に余分な抵抗がブリッジ回路に加味され、ノイズが重畳されやすく、また中点電位もばらつきが生じやすくなり検出精度の低下を招きやすかった。
そこで本発明は、上記従来の課題を解決するためのものであり、特に、1チップ構成で複数の磁気抵抗効果素子の固定磁性層の磁化方向を反平行に調整できる磁気センサを提供することを目的とする。
本発明は、磁気抵抗効果素子を備えた磁気センサであって、
同一基板に、下側磁気抵抗効果素子と、上側磁気抵抗効果素子とが絶縁中間層を介して積層され、
前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子はともに、磁化方向が固定される固定磁性層と、前記固定磁性層に非磁性層を介して積層された外部磁場を受けて磁化方向が変動するフリー磁性層と、前記固定磁性層の前記非磁性層とは反対側の面に形成され、前記固定磁性層との間で磁場中熱処理により交換結合磁界を生じさせる反強磁性層と、を有する積層構造を備えており、
前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子の少なくともどちらか一方の前記固定磁性層は、複数の磁性層と前記磁性層の間に介在する非磁性中間層との積層フェリ構造で構成されており、前記下側磁気抵抗効果素子を構成する固定磁性層と前記上側磁気抵抗効果素子を構成する固定磁性層の層構成が異なっており、
前記下側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向と、前記上側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向とが反平行になっていることを特徴とするものである。
ここで「非磁性層との当接層」とは、固定磁性層が積層フェリ構造であるときは、複数の磁性層のうち、非磁性層に当接する磁性層を指し、固定磁性層が磁性層の単層構造、あるいは磁性層の積層構造であるときは、固定磁性層全体が前記当接層に該当する。
本発明では1チップにて構成でき、これにより、磁気センサの小型化を促進でき、また製造ばらつきを小さくでき、さらに取り個数を増やすことができ、製造コストを抑えることができる。しかも本発明では、1チップ構成でも、固定磁性層の構造を、下側磁気抵抗効果素子と上側磁気抵抗効果素子とで変更することで、1回の磁場中熱処理にて、下側磁気抵抗効果素子の固定磁性層の磁化方向と、上側磁気抵抗効果素子の固定磁性層の磁化方向とを反平行にすることが出来る。
また、前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子がともに積層フェリ構造であり、
前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子のどちらか一方の前記固定磁性層を構成する前記磁性層の数が奇数であり、他方の前記固定磁性層を構成する前記磁性層の数が偶数であることが好ましい。また、前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子のどちらか一方の前記固定磁性層を構成する前記磁性層の数が3であり、他方の前記固定磁性層を構成する前記磁性層の数が2であることがより好ましい。これにより、各磁気抵抗効果素子の素子高さを最小限に抑えつつ、固定磁性層からフリー磁性層への漏れ磁界の影響を弱めることができ、検出精度を向上させることができる。また固定磁性層の磁化固定力を強めることができる。
また本発明では、前記絶縁中間層の表面が平坦化処理されており、前記絶縁中間層の平坦化面上に前記上側磁気抵抗効果素子が形成されていることが好ましい。これにより、上側磁気抵抗効果素子を高精度に所定形状に形成することができる。
また本発明では、前記基板の同一面内に、複数の前記下側磁気抵抗効果素子と、複数の前記上側磁気抵抗効果素子と、入力電極と、グランド電極と、第1の出力電極と、第2の出力電極とが形成され、前記下側磁気抵抗効果素子と前記上側磁気抵抗効果素子とが各電極に接続されてブリッジ回路を構成していることが好ましい。このように1チップ内に磁気抵抗効果素子と共に各種の電極を配置できるため、磁気センサの小型化をより効果的に促進できる。また、1チップ内でブリッジ回路を構成できることで、ノイズ重畳を抑制でき、検出精度を向上できる。
また本発明では、平面視にて、複数の前記下側磁気抵抗効果素子及び複数の前記上側磁気抵抗効果素子はX方向に並設されており、前記磁気抵抗効果素子を介して、前記X方向に直交するY方向の両側位置の一方に、前記入力電極と前記グランド電極とがX方向に並設され、他方に、前記第1の出力電極と、前記第2の出力電極とがX方向に並設されていることが好ましい。これにより各磁気抵抗効果素子の素子長さを同じに合わせ易く、ブリッジ回路の中点電位を高精度に調整しやすい。また磁気抵抗効果素子から各電極までの引き出し長さを小さくでき、より磁気センサの小型化に貢献できる。
また本発明では、少なくとも前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子の双方と接続される電極は、前記下側磁気抵抗効果素子から延出して形成された前記下側磁気抵抗効果素子と同じ層構成の下側積層膜及び前記上側磁気抵抗効果素子から延出して形成された前記上側磁気抵抗効果素子と同じ層構成の上側積層膜が前記絶縁中間層を介して積層された積層部を有し、前記電極には、前記上側積層膜の側面から前記下側積層膜まで露出する凹部が設けられ、前記凹部内に埋め込まれた導電層と、前記上側積層膜及び前記下側積層膜とが電気的に接続されていることが好ましい。これにより、簡単な構造にて、電気接続の安定性を向上させることができる。
本発明では、前記絶縁中間層は、下から第1の絶縁層、第2の絶縁層及び第3の絶縁層の順に積層され、前記第1の絶縁層はAl23層、前記第2の絶縁層は、SiO2層あるいはSiN層、前記第3の絶縁層は、Al23層で形成されることが好ましい。
また本発明では、前記第2の絶縁層の膜厚は5000Å以上で20000Å以下であることが好ましい。前記第2の絶縁層の膜厚は10000Å以上で15000Å以下であることがより好ましい。
本発明の磁気センサによれば、1チップにて構成でき、これにより、磁気センサの小型化を促進でき、また製造ばらつきを小さくでき、さらに取り個数を増やすことができ、製造コストを抑えることができる。しかも本発明では、1チップ構成でも、固定磁性層の構造を、下側磁気抵抗効果素子と上側磁気抵抗効果素子とで変更することで、1回の磁場中熱処理にて、下側磁気抵抗効果素子の固定磁性層の磁化方向と、上側磁気抵抗効果素子の固定磁性層の磁化方向とを反平行にすることが出来る。
本実施形態における磁気センサの平面図、 図1に示す磁気センサをA−A線に沿って切断した部分拡大縦断面図、 図3(a)は、図1に示す磁気センサをB−B線に沿って切断した部分拡大縦断面図、図3(b)は図3(a)の変形例を示す部分拡大縦断面図、 図4(a)(b)は、下側磁気抵抗効果素子及び上側磁気抵抗効果素子の積層構造を拡大縦断面図、 本実施形態の磁気センサの回路図、 従来の磁気センサの製造工程を示す平面図、
図1は本実施形態における磁気センサの平面図、図2は、図1に示す磁気センサをA−A線に沿って切断した部分拡大縦断面図、図3(a)は、図1に示す磁気センサをB−B線に沿って切断した部分拡大縦断面図、図3(b)は図3(a)の変形例を示す部分拡大縦断面図、図4(a)(b)は、下側磁気抵抗効果素子及び上側磁気抵抗効果素子の積層構造を拡大縦断面図、図5は、本実施形態の磁気センサの回路図、である。
本実施形態の磁気センサ10は、図1,図2に示すように、同一の基板11に、2つの下側磁気抵抗効果素子13,14と、2つの上側磁気抵抗効果素子15,16とが絶縁中間層を介して積層されている。
図2に示すように、基板11上には絶縁下地層12が形成され、この絶縁下地層12の上に下側磁気抵抗効果素子13,14が形成されている。また、上側磁気抵抗効果素子15,16は絶縁中間層17の平坦化面17a上に形成される。図2に示すように上側磁気抵抗効果素子15,16上は保護層18で覆われている。ここで絶縁下地層12は例えば膜厚が1000Å程度のAl23で形成される。また、絶縁中間層17は、下から、例えば膜厚が1000Å程度のAl23層と、膜厚が5000Å〜20000Å程度のSiO2層又はSiN層と、膜厚が1000Å程度のAl23層との積層構造で形成される。
ここで、絶縁中間層17は、上記のように3層構造とすることが好ましい。下から第1の絶縁層、第2の絶縁層、第3の絶縁層の順に積層され、第1の絶縁層を構成するAl23層は、下側磁気抵抗効果素子13,14を酸化等から保護する。また第2の絶縁層を構成するSiO2層又はSiN層は、下側磁気抵抗効果素子13,14と上側磁気抵抗効果素子15,16間を電気的に分離し且つ耐ESDに必要十分な膜厚を有する。また、第3の絶縁層を構成するAl23層は、上側磁気検出素子15,16のGMR特性の安定を得る目的のため設けられる。特に、ESD耐性を確保するために、第2の絶縁層の膜厚は5000Å以上で、更に好ましくは10000Å以上必要である。また、第2の絶縁層の膜厚は厚すぎると成膜プロセス及び電極の上下コンタクトのためのエッチングプロセス時間が長くなるため、20000Å以下、特に好ましくは15000Å以下とすることが好ましい。
また保護層18は、2000Å程度のAl23層やSiO2層で形成される。なお上記の絶縁構成はあくまでも一例である。上記では無機絶縁材料を使用したが有機絶縁材料を用いることもできる。
図1に示すように上側磁気抵抗効果素子15,16はX方向に間隔を空けて配置されている。上側磁気抵抗効果素子15,16はミアンダ形状で形成されている。下側磁気抵抗効果素子13,14は、絶縁中間層17を介して上側磁気抵抗効果素子15,16と重なるようにミアンダ形状で形成されており、図1では、上側磁気抵抗効果素子15,16の側面からX−Y平面にはみ出した部分を点線で示している。
図1に示すように、磁気抵抗効果素子13〜16の図示Y1側には第1の出力電極20と第2の出力電極21とがX方向に間隔を空けて配置されている。図1に示すように、上側磁気抵抗効果素子15の左側先端部15aが、第1の出力電極20の位置まで延ばされて前記第1の出力電極20に接続されている。また、下側磁気抵抗効果素子13の右側先端部13aが、第1の出力電極20の位置まで延ばされて前記第1の出力電極20に接続されている。また、上側磁気抵抗効果素子16の左側先端部16aが、第2の出力電極21の位置まで延ばされて前記第2の出力電極21に接続されている。また、下側磁気抵抗効果素子14の右側先端部14aが、第2の出力電極21の位置まで延ばされて前記第2の出力電極21に接続されている。
図1に示すように、磁気抵抗効果素子13〜16の図示Y2側には入力電極22と、グランド電極23,24とがX方向に間隔を空けて配置されている。図1の実施形態ではグランド電極23,24が2つ、入力電極22が1つである。
図1に示すように、入力電極22は、グランド電極23,24の間に配置される。そして、上側磁気抵抗効果素子15の右側先端部15bが、入力電極22の位置まで延ばされて前記入力電極22に接続されている。また、下側磁気抵抗効果素子14の左側先端部14bが、入力電極22の位置まで延ばされて前記入力電極22に接続されている。
また図1に示すように、下側磁気抵抗効果素子13の左側先端部13bが、図示X2側のグランド電極23の位置まで延ばされて前記グランド電極23に接続されている。また、上側磁気抵抗効果素子16の右側先端部16bが、図示X1側のグランド電極24の位置まで延ばされて前記グランド電極24に接続されている。
図3(a)は入力電極22の縦断面である。図3(a)に示すように、入力電極22には、例えばAuでメッキ形成された導電層25が設けられ、導電層25の露出表面25aが電極表面となっている。図3(a)に示すように、導電層25は、入力電極22の略中央位置に設けられ、導電層25の周囲には、下側磁気抵抗効果素子13,14と同じ構成の下側積層膜26と、前記下側積層膜26の上に絶縁中間層17を介して、上側磁気抵抗効果素子15,16と同じ構成の上側積層膜27との積層部32が設けられる。図3(a)の構造の製造方法について説明する。
例えばまず、下側磁気抵抗効果素子を基板11の面内全域にスパッタ法等で形成し、エッチング法を用いて、ミアンダ形状の下側磁気抵抗効果素子13,14を形成するとともに、下側積層膜26を各電極20〜24の形成領域に形成する。このとき、下側積層膜26を、グランド電極24の形成領域に形成することは必須でない。グランド電極24は、上側磁気抵抗効果素子16とのみ接続されるためである。また、第1出力電極20、第2の出力電極21、グランド電極23及び入力電極22に形成される下側積層膜26については、各下側磁気抵抗効果素子13,14と一体形成する。
そして、下側磁気抵抗効果素子13,14上及び下側積層膜26上に絶縁中間層17を形成し、絶縁中間層17の表面を平坦化処理した後、前記絶縁中間層17上に、上側磁気抵抗効果素子15,16を形成するとともに、上側積層膜27を、各電極20〜24の形成領域に形成する。
例えば上側磁気抵抗効果素子を基板11の面内全域にスパッタ法等で形成し、エッチング法を用いて、ミアンダ形状の上側磁気抵抗効果素子15,16を形成するとともに、上側積層膜27を各電極20〜24の形成領域に形成する。このとき、上側積層膜27を、グランド電極23の形成領域に形成することは必須でない。グランド電極23は、下側磁気抵抗効果素子13とのみ接続されるためである。また、第1出力電極20、第2の出力電極21、グランド電極24及び入力電極22に形成される上側積層膜27については、各上側磁気抵抗効果素子15,16と一体形成する。
続いて、エッチングにて、各電極20〜24の略中央部分の下側積層膜26,絶縁中間層17及び上側積層膜27を除去して凹部33を形成する。そして、図3(a)に示すように、凹部33内に露出する上側積層膜27の上面から、上側積層膜27、絶縁中間層17及び下側積層膜26の側面、さらには絶縁下地層12の上面にかけて導電下地層28を例えばスパッタ法を用いて形成する。そして、その後に形成された保護層18に導電下地層28にまで通じる凹部18aを形成し、その凹部18a内に導電層25を例えばメッキ形成する。
図3(a)に示す断面構造に形成することで、各電極20〜24と、下側磁気抵抗効果素子13,16及び上側磁気抵抗効果素子15,16間の電気的な接触安定性を向上させることができる。しかも、下側磁気抵抗効果素子13,14と導電層25間を、導電下地層28及び下側積層膜26を通じて、上側磁気抵抗効果素子15,16と導電層25間を、導電下地層28及び上側積層膜27を通じて、電気的に接続でき簡単且つ確実な接続構造を実現できる。
図3(b)に示す他の実施形態では、下側積層膜26及び絶縁中間層17まで形成し、各電極20〜24の略中央領域の下側積層膜26及び絶縁中間層17をエッチングで除去した後、絶縁下地層12が露出した凹部29内にAuやAl等の第1の導電層30を形成し、続いて、上側積層膜27の形成後、第1の導電層30の表面から上側積層膜27の表面にかけて、Au等でメッキされた第2の導電層31を形成している。
この実施形態でも、下側磁気抵抗効果素子13,14と導電層30,31間を、下側積層膜26を通じて、上側磁気抵抗効果素子15,16と導電層30,31間を、上側積層膜27を通じて、電気的に接続でき簡単且つ確実な接続構造を実現できる。
図3の断面構造は、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16の双方が接続される入力電極22、出力電極20,21に好ましく適用される。
図4(a)は、例えば下側磁気抵抗効果素子13,14の積層構造を示す縦断面図であり、図4(b)は、例えば上側磁気抵抗効果素子15,16の積層構造を示す縦断面図である。
図4(a)に示すように、下側磁気抵抗効果素子13,14は、下から下地層40、反強磁性層41、固定磁性層42、非磁性層43、フリー磁性層44及び保護層45の順に積層された巨大磁気抵抗効果素子(GMR素子)である。
反強磁性層41は、Ir−Mn合金(イリジウム−マンガン合金)などの反強磁性材料で形成されている。非磁性層43はCu(銅)などである。フリー磁性層44は、Ni−Fe合金(ニッケル−鉄合金)などの軟磁性材料で形成されている。保護層45はTa(タンタル)などである。
図4(a)に示すように下側磁気抵抗効果素子13,14の固定磁性層42は、下から第1磁性層46、非磁性中間層47、第2磁性層48の順に積層された積層フェリ構造である。例えば、第1磁性層46及び第2磁性層48は共にCo−Fe合金で形成され、非磁性中間層47はRu(ルテニウム)で形成される。
反強磁性層41と第1磁性層46の間では磁場中熱処理により交換結合磁界(Hex)が生じるとともに、第1磁性層46と第2磁性層48の間ではRKKY的相互作用が生じて、第1磁性層46と第2磁性層48の磁化方向は互いに反平行状態で固定される。図4(a)に示すように、例えば、第1磁性層46の磁化方向(P1方向)はX2方向で、第2磁性層48の磁化方向(P2方向)はX1方向である。本実施形態において、「固定磁性層42の磁化方向」とは、非磁性層43に接する第2磁性層48の磁化方向(P2方向)を指す。
図4(a)に示す下側磁気抵抗効果素子13,14の総厚は、200〜300Å程度である。
また図4(b)に示すように、上側磁気抵抗効果素子15,16は、下から下地層40、反強磁性層41、固定磁性層49、非磁性層43、フリー磁性層44及び保護層45の順に積層された巨大磁気抵抗効果素子(GMR素子)である。図4(b)に示すように、上側磁気抵抗効果素子15,16の固定磁性層49は、下から第1磁性層50、非磁性中間層51、第2磁性層52、非磁性中間層53、第3磁性層54の順に積層された積層フェリ構造である。例えば、第1磁性層50、第2磁性層52、及び第3磁性層54は共にCo−Fe合金で形成され、非磁性中間層51,53はRu(ルテニウム)で形成される。
反強磁性層41と第1磁性層50の間では磁場中熱処理により交換結合磁界(Hex)が生じるとともに、第1磁性層50と第2磁性層52の間、及び第2磁性層52と第3磁性層54の間ではRKKY的相互作用が生じて、非磁性中間層51,53を介して互いに対向する磁性層同士の磁化方向は反平行状態で固定される。図4(b)に示すように、例えば、第1磁性層50及び第3磁性層54の磁化方向(P1方向)はX2方向で、第2磁性層48の磁化方向(P2方向)はX1方向である。図4(b)での「固定磁性層49の磁化方向」は、非磁性層43に接する第3磁性層54の磁化方向(P3方向)である。
図4(b)に示す上側磁気抵抗効果素子15,16の総厚は、下側磁気抵抗効果素子13,14と同様、200〜300Å程度であるが、下側磁気抵抗効果素子13,14よりも層数が多い分、やや総厚が、下側磁気抵抗効果素子13,14よりも厚くなる(数Å〜数十Å程度厚くなる)。
図4(a)(b)に示すように、下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)と、上側磁気抵抗効果素子15,16の固定磁性層49の磁化方向(P3方向)とが反平行になっている。
一方、フリー磁性層44の磁化方向は、外部磁場により変動する。例えば、外部磁場がX1方向に作用するとフリー磁性層44の磁化はX1方向に向く。このとき下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)はX1方向であるため、フリー磁性層44の磁化方向と固定磁性層42の磁化方向とが平行になり下側磁気抵抗効果素子13,14の電気抵抗値は最小値になる。一方、上側磁気抵抗効果素子15,16の固定磁性層42の磁化方向(P3方向)はX2方向であるため、フリー磁性層44の磁化方向と固定磁性層42の磁化方向とが反平行になり上側磁気抵抗効果素子15,16の電気抵抗値は最大値になる。このように下側磁気抵抗効果素子13,14と上側磁気抵抗効果素子15,16の固定磁性層の磁化方向は反平行であるため、下側磁気抵抗効果素子13,14の電気特性と、上側磁気抵抗効果素子15,16の電気特性は逆になる。
図5に示すように下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16によりブリッジ回路が構成される。そして図5に示すブリッジ回路の第1の出力電極20及び第2の出力電極21からの出力は、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16の電気抵抗値の変動に基づいて変化する。第1の出力電極20及び第2の出力電極21は、図示しない集積回路の差動増幅器に接続され、これにより差動出力を得ることが出来る。
図1,図2に示すように、本実施形態では、同一の基板11に、下側磁気抵抗効果素子13,14と上側磁気抵抗効果素子15,16とを絶縁中間層17を介して積層しており、1チップにて磁気センサ10を構成できる。これにより、磁気センサ10の小型化を促進できる。また従来のように複数のチップで磁気センサ10を構成する場合に比べて、各チップ間の位置決め等が必要なく製造ばらつきを小さくでき、さらに取り個数を増やすことができ、製造コストを抑えることができる。
しかも本実施形態では、1チップ構成でも、固定磁性層42,49の構造を、下側磁気抵抗効果素子13,14と上側磁気抵抗効果素子15,16とで異ならすことで、1回の磁場中熱処理にて、下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)と、上側磁気抵抗効果素子15,16の固定磁性層49の磁化方向(P3方向)とを反平行にすることが出来る。
磁場中熱処理は、上記したように、反強磁性層41と第1磁性層46,50間に交換結合磁界(Hex)を生じさせるために行う。この磁場中熱処理は、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16の双方を形成した後、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16に対して同時に行なう。
下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16の固定磁性層42,49は共に積層フェリ構造である。本実施形態では、図4(a)に示すように下側磁気抵抗効果素子13,14の固定磁性層42を構成する磁性層46,48を2つ、図4(b)に示すように、上側磁気抵抗効果素子15,16の固定磁性層49を構成する磁性層50,52,54を3つ設けている。そして、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16に対して磁場中熱処理を施すと、反強磁性層41との間で交換結合磁界(Hex)が生じ、さらに各磁性層間でRKKY的相互作用が生じ、これにより、非磁性中間層を介して対向する磁性層同士は互いに反平行に磁化固定される。本実施形態では、一方の磁気抵抗効果素子の固定磁性層を構成する磁性層の数を偶数に、他方の磁気抵抗効果素子の固定磁性層を構成する磁性層の数を奇数にしたことで、1回の磁場中熱処理でも、下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)と、上側磁気抵抗効果素子15,16の固定磁性層49の磁化方向(P3方向)とを反平行にすることが可能になる。
例えば、図4(a)に示す下側磁気抵抗効果素子13,14の固定磁性層42の構成はそのままで、図4(b)に示す上側磁気抵抗効果素子15,16を構成する固定磁性層49を1つの磁性層の単層構造で形成することもできる。これによっても、下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)と、上側磁気抵抗効果素子15,16の固定磁性層49の磁化方向とを反平行にすることが可能になる。
ただし固定磁性層を磁性層の単層(あるいは積層)構造とするより図4(a)(b)に示す積層フェリ構造としたほうが、固定磁性層42,49からフリー磁性層44に漏れる磁界を小さくでき、検出精度を向上させることができて好適である。また、積層フェリ構造とすることで、固定磁性層の磁化固定力を強めることが出来る。
また固定磁性層を構成する磁性層の数は限定しないが、図4(a)(b)に示すように、積層フェリ構造で形成された一方の固定磁性層42の磁性層46,48を2つ、積層フェリ構造で形成された他方の固定磁性層42の磁性層50,52,54を3つとすることで、両方の固定磁性層を積層フェリ構造としたときに最小数の磁性層で一方の固定磁性層42の磁化方向(P2方向)と他方の固定磁性層49の磁化方向(P3方向)とを反平行にできる。
なお図4(a)の構成が上側磁気抵抗効果素子15,16の層構成で、図4(b)の構成が下側磁気抵抗効果素子13,14の層構成であってもよい。
図2に示すように絶縁中間層17の表面は平坦化処理により平坦化面17aで形成されている。これにより、絶縁中間層17上に形成される上側磁気抵抗効果素子15,16を高精度に所定形状で形成することが可能である。
また図1に示すように、本実施形態では、基板11の同一面内に、複数の下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16と、入力電極22と、グランド電極23,24と、第1の出力電極20と、第2の出力電極21とが形成されている。そして、図1,図5に示すように、各下側磁気抵抗効果素子13,14及び各上側磁気抵抗効果素子15,16とが各電極20〜24に接続されてブリッジ回路を構成している。
このように本実施形態では、1チップ内に磁気抵抗効果素子13〜16と共に各電極20〜24を配置するため磁気センサ10の小型化を効果的に促進できる。また1チップ内でブリッジ回路を構成できることで、各チップ間をワイヤボンディングで接続してブリッジ回路を構成するような場合に比べて余分な抵抗がブリッジ回路に乗りにくくノイズ重畳を抑制でき、検出精度を効果的に向上させることができる。
また、図1に示すように、複数の下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16は、X方向に並設されている。そして、図1に示すように、磁気抵抗効果素子13〜16を介してX方向と直交するY方向の両側の一方(図1ではY2側)に、入力電極22と、グランド電極23,24とがX方向に並設されている。また、Y方向の他方(図1ではY1側)には、第1の出力電極20と第2の出力電極21とがX方向に並設されている。
図1に示すように、第1の出力電極20及び第2の出力電極21のX方向への幅寸法T1,T2は、ほぼ磁気抵抗効果素子13〜16のX方向への幅寸法と同じである。第1の出力電極20は、下側磁気抵抗効果素子13及び上側磁気抵抗効果素子15とY1−Y2方向へ対向する位置に設けられる。また、第2の出力電極21は、下側磁気抵抗効果素子14及び上側磁気抵抗効果素子16とY1−Y2方向へ対向する位置に設けられる。そして、各磁気抵抗効果素子13〜16の一方の先端部13a〜16aがY1方向へ、各磁気抵抗効果素子13〜15と出力電極20,21間のギャップ分延ばされて、各磁気抵抗効果素子13〜15と各出力電極20,21が接続されている。
また図1に示すように、入力電極22は、上側磁気抵抗効果素子15の先端部15bと下側磁気抵抗効果素子14の先端部14bとY1−Y2方向にて対向する位置に設けられている。また、グランド電極23は、下側磁気抵抗効果素子13の先端部13bとY1−Y2方向にて対向する位置に設けられ、グランド電極24は、上側磁気抵抗効果素子16の先端部16bとY1−Y2方向にて対向する位置に設けられる。そして、各磁気抵抗効果素子13〜16の先端部13b〜16bがY2方向へ、各磁気抵抗効果素子13〜16と入力電極22及びグランド電極23,24間のギャップ分延ばされて、各磁気抵抗効果素子13〜16と入力電極22及びグランド電極23,24が接続されている。
図1に示すように、各磁気抵抗効果素子13〜16は略同一のミアンダ形状で形成され、また図1のように、各磁気抵抗効果素子13〜16と各電極20〜24とを配置することで、各磁気抵抗効果素子13〜16の先端部13a,13b〜16a,16bの各電極20〜24までの延出長さもほぼ同じに出来る。したがって、各磁気抵抗効果素子13〜16の素子長さを同一に合わせ易く、ブリッジ回路の中点電位を高精度に調整しやすい。また、磁気抵抗効果素子13〜16から各電極20〜24までの各先端部13a,16a〜13b,16bの延出長さを小さくでき、より効果的に磁気センサ1の小型化を促進できる。
なお図1に示す符号22の電極がグランド電極で、符号23,24の電極が入力電極であってもよい。
10 磁気センサ
11 基板
13,14 下側磁気抵抗効果素子
15,16 上側磁気抵抗効果素子
17 絶縁中間層
18 保護層
20,21 出力電極
22 入力電極
23,24 グランド電極
25,30,31 導電層
26 下側積層膜
27 上側積層膜
18a,29,33 凹部
41 反強磁性層
42,49 固定磁性層
43 非磁性層
44 フリー磁性層
46,48,50,52,54 (固定磁性層を構成する)磁性層
47,51,53 非磁性中間層

Claims (10)

  1. 磁気抵抗効果素子を備えた磁気センサであって、
    同一基板に、下側磁気抵抗効果素子と、上側磁気抵抗効果素子とが絶縁中間層を介して積層され、
    前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子はともに、磁化方向が固定される固定磁性層と、前記固定磁性層に非磁性層を介して積層された外部磁場を受けて磁化方向が変動するフリー磁性層と、前記固定磁性層の前記非磁性層とは反対側の面に形成され、前記固定磁性層との間で磁場中熱処理により交換結合磁界を生じさせる反強磁性層と、を有する積層構造を備えており、
    前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子の少なくともどちらか一方の前記固定磁性層は、複数の磁性層と前記磁性層の間に介在する非磁性中間層との積層フェリ構造で構成されており、前記下側磁気抵抗効果素子を構成する固定磁性層と前記上側磁気抵抗効果素子を構成する固定磁性層の層構成が異なっており、
    前記下側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向と、前記上側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向とが反平行になっており、
    前記絶縁中間層は、第1の絶縁層、第2の絶縁層及び第3の絶縁層の積層構造で形成されることを特徴とする磁気センサ。
  2. 前記第1の絶縁層及び前記第3の絶縁層は、Al層で形成され、前記第2の絶縁層は、SiO層又はSiN層で形成される請求項1記載の磁気センサ。
  3. 前記第2の絶縁層の膜厚は5000Å以上で20000Å以下である請求項1又は2に記載の磁気センサ。
  4. 前記第2の絶縁層の膜厚は10000Å以上で15000Å以下である請求項3記載の磁気センサ。
  5. 前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子がともに積層フェリ構造であり、
    前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子のどちらか一方の前記固定磁性層を構成する前記磁性層の数が奇数であり、他方の前記固定磁性層を構成する前記磁性層の数が偶数である請求項1ないし4のいずれか1項に記載の磁気センサ。
  6. 前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子のどちらか一方の前記固定磁性層を構成する前記磁性層の数が3であり、他方の前記固定磁性層を構成する前記磁性層の数が2である請求項5記載の磁気センサ。
  7. 前記絶縁中間層の表面が平坦化処理されており、前記絶縁中間層の平坦化面上に前記上側磁気抵抗効果素子が形成されている請求項1ないし6のいずれか1項に記載の磁気センサ。
  8. 前記基板の同一面内に、複数の前記下側磁気抵抗効果素子と、複数の前記上側磁気抵抗効果素子と、入力電極と、グランド電極と、第1の出力電極と、第2の出力電極とが形成され、前記下側磁気抵抗効果素子と前記上側磁気抵抗効果素子とが各電極に接続されてブリッジ回路を構成している請求項1ないし7のいずれか1項に記載の磁気センサ。
  9. 平面視にて、複数の前記下側磁気抵抗効果素子及び複数の前記上側磁気抵抗効果素子はX方向に並設されており、前記磁気抵抗効果素子を介して、前記X方向に直交するY方向の両側位置の一方に、前記入力電極と前記グランド電極とがX方向に並設され、他方に、前記第1の出力電極と、前記第2の出力電極とがX方向に並設されている請求項8記載の磁気センサ。
  10. 磁気抵抗効果素子を備えた磁気センサであって、
    同一基板に、下側磁気抵抗効果素子と、上側磁気抵抗効果素子とが絶縁中間層を介して積層され、
    前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子はともに、磁化方向が固定される固定磁性層と、前記固定磁性層に非磁性層を介して積層された外部磁場を受けて磁化方向が変動するフリー磁性層と、前記固定磁性層の前記非磁性層とは反対側の面に形成され、前記固定磁性層との間で磁場中熱処理により交換結合磁界を生じさせる反強磁性層と、を有する積層構造を備えており、
    前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子の少なくともどちらか一方の前記固定磁性層は、複数の磁性層と前記磁性層の間に介在する非磁性中間層との積層フェリ構造で構成されており、前記下側磁気抵抗効果素子を構成する固定磁性層と前記上側磁気抵抗効果素子を構成する固定磁性層の層構成が異なっており、
    前記下側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向と、前記上側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向とが反平行になっており、
    前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子の双方と接続される電極は、前記下側磁気抵抗効果素子から延出して形成された前記下側磁気抵抗効果素子と同じ層構成の下側積層膜及び前記上側磁気抵抗効果素子から延出して形成された前記上側磁気抵抗効果素子と同じ層構成の上側積層膜が前記絶縁中間層を介して積層された積層部を有し、前記電極には、前記上側積層膜の側面から前記下側積層膜まで露出する凹部が設けられ、前記凹部内に埋め込まれた導電層と、前記上側積層膜及び前記下側積層膜とが電気的に接続されていることを特徴とする磁気センサ。
JP2011510288A 2009-04-22 2010-04-13 磁気センサ Active JP5223001B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510288A JP5223001B2 (ja) 2009-04-22 2010-04-13 磁気センサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009103737 2009-04-22
JP2009103737 2009-04-22
JP2011510288A JP5223001B2 (ja) 2009-04-22 2010-04-13 磁気センサ
PCT/JP2010/056564 WO2010122919A1 (ja) 2009-04-22 2010-04-13 磁気センサ

Publications (2)

Publication Number Publication Date
JPWO2010122919A1 JPWO2010122919A1 (ja) 2012-10-25
JP5223001B2 true JP5223001B2 (ja) 2013-06-26

Family

ID=43011037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011510288A Active JP5223001B2 (ja) 2009-04-22 2010-04-13 磁気センサ

Country Status (2)

Country Link
JP (1) JP5223001B2 (ja)
WO (1) WO2010122919A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279373B (zh) * 2011-07-13 2013-06-12 中国人民解放军国防科学技术大学 一种单轴静电驱动的弱磁场测量传感器
JP5809478B2 (ja) * 2011-08-02 2015-11-11 アルプス電気株式会社 磁気センサ
US9470764B2 (en) * 2011-12-05 2016-10-18 Hercules Technology Growth Capital, Inc. Magnetic field sensing apparatus and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283816A (ja) * 1996-04-08 1997-10-31 Fujitsu Ltd 磁界を感知する磁気抵抗センサ
JP2007064695A (ja) * 2005-08-29 2007-03-15 Yamaha Corp 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
WO2009031539A1 (ja) * 2007-09-03 2009-03-12 Alps Electric Co., Ltd. 磁気検出装置
JP2009064528A (ja) * 2007-09-07 2009-03-26 Hitachi Ltd 磁気抵抗効果ヘッド及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283816A (ja) * 1996-04-08 1997-10-31 Fujitsu Ltd 磁界を感知する磁気抵抗センサ
JP2007064695A (ja) * 2005-08-29 2007-03-15 Yamaha Corp 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
WO2009031539A1 (ja) * 2007-09-03 2009-03-12 Alps Electric Co., Ltd. 磁気検出装置
JP2009064528A (ja) * 2007-09-07 2009-03-26 Hitachi Ltd 磁気抵抗効果ヘッド及びその製造方法

Also Published As

Publication number Publication date
WO2010122919A1 (ja) 2010-10-28
JPWO2010122919A1 (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5066579B2 (ja) 磁気センサ及び磁気センサモジュール
JP5021764B2 (ja) 磁気センサ
JP5174911B2 (ja) 磁気センサ及び磁気センサモジュール
US9182458B2 (en) Magnetoresistive sensing device
JP5686635B2 (ja) 磁気センサ及びその製造方法
JP6296155B2 (ja) 異方性磁気抵抗素子、磁気センサおよび電流センサ
TWI443360B (zh) 磁阻感測器及其製造方法
WO2009151024A1 (ja) 磁気センサ及び磁気センサモジュール
JP5066581B2 (ja) 磁気センサ及び磁気センサモジュール
WO2009151023A1 (ja) 磁気センサ及び磁気センサモジュール
JP5802565B2 (ja) 磁気センサ
JP5223001B2 (ja) 磁気センサ
JP5066525B2 (ja) 磁気検出装置およびその製造方法
JP4689516B2 (ja) 磁気検出装置
JP6506604B2 (ja) 磁気センサ
JP5265689B2 (ja) 磁気結合型アイソレータ
JP2017040628A (ja) 磁気センサ
JP5284288B2 (ja) 磁気センサ及びその製造方法
WO2010137606A1 (ja) 磁気センサ
US20140347047A1 (en) Magnetoresistive sensor
JP5000665B2 (ja) 磁気検出装置およびその製造方法
JP2009302279A (ja) 磁気センサの製造方法
WO2011111458A1 (ja) 磁気センサ
JP2018101735A (ja) 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子
JP2018152452A (ja) 磁気センサ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5223001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350