JP5201077B2 - シリコンウェーハの製造方法 - Google Patents

シリコンウェーハの製造方法 Download PDF

Info

Publication number
JP5201077B2
JP5201077B2 JP2009118454A JP2009118454A JP5201077B2 JP 5201077 B2 JP5201077 B2 JP 5201077B2 JP 2009118454 A JP2009118454 A JP 2009118454A JP 2009118454 A JP2009118454 A JP 2009118454A JP 5201077 B2 JP5201077 B2 JP 5201077B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
wafer
pulled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009118454A
Other languages
English (en)
Other versions
JP2010265143A5 (ja
JP2010265143A (ja
Inventor
浩紀 村上
裕 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009118454A priority Critical patent/JP5201077B2/ja
Priority to DE102010028924.8A priority patent/DE102010028924B4/de
Publication of JP2010265143A publication Critical patent/JP2010265143A/ja
Publication of JP2010265143A5 publication Critical patent/JP2010265143A5/ja
Application granted granted Critical
Publication of JP5201077B2 publication Critical patent/JP5201077B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • C30B15/16Heating of the melt or the crystallised materials by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、絶縁ゲートバイポーラトランジスタに適したシリコンウェーハを製造するために、チョクラルスキー法によりシリコン単結晶を製造し、このシリコン単結晶をスライスして得られたウェーハ内部の欠陥が低減されたシリコンウェーハの製造方法に関するものである。
近年、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、以下、IGBTという)の開発などが進められている。IGBTは、メモリ等のLSIのようにウェーハの表面近傍だけ(ウェーハの横方向だけ)を使う素子ではなく、ウェーハの厚さ方向(ウェーハの縦方向)をも使う素子であるので、その特性はウェーハのバルクの品質に影響される。このため、ウェーハ表層部に存在するCOP(Crystal Originated Particle:空孔型凝集欠陥)や酸素析出物だけではなく、ウェーハ内部のCOPや酸素析出物をも低減する必要がある。
従来、IGBT用シリコンウェーハの製造方法が、例えば、特許文献1に開示されている。この特許文献1には、チョクラルスキー法(以下、CZ法という)により格子間酸素濃度が7.0×1017atoms/cm3以下であるシリコン単結晶を形成し、このシリコン単結晶に中性子線を照射することによりリンをドープしてからウェーハを切り出し、このウェーハに対して少なくとも酸素を含む雰囲気で次の式(1)を満たす温度T(℃)で酸化雰囲気アニールを行い、ウェーハの一面側にポリシリコン層又は歪み層を形成することが開示されている。
[Oi]≦2.123×1021exp(−1.035/k(T+273))…(1)
上記式(1)において、[Oi]はASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法による測定値であり、kはボルツマン定数8.617×10-5eV/Kである。このように製造されたシリコンウェーハでは、格子間酸素濃度が極めて低いシリコン単結晶を酸素雰囲気中でアニールすることで、COPを消滅させることができる。またシリコン単結晶に中性子を照射して原子核転換することにより、シリコン原子の一部をリン原子に変換させることで、抵抗率が均一なウェーハを得られるようになっている。
再公表特許 WO2004/073057号公報(請求項1及び2、明細書第5頁第9行〜同頁第17行、明細書第5頁第22行〜同頁第26行)
しかし、上記従来の特許文献1に示されたIGBT用シリコンウェーハの製造方法では、シリコン融液にリン等のドーパントを含有させずにシリコン単結晶を引上げた後、このシリコン単結晶に中性子を照射することにより、径方向及び軸方向に抵抗率の均一なシリコンウェーハを得ることができるけれども、シリコン単結晶内に存在するCOPのサイズが大きい場合やCOPの密度が高い場合には、ウェーハに酸化熱処理を施してもCOPを完全に消滅させることができない不具合があった。
一方、IGBT用のシリコン単結晶ウェーハとしては、これまで以上に酸素濃度が可及的に低減され、かつ面内の抵抗分布が均一なシリコンウェーハの提供が要求される。シリコン単結晶中の酸素濃度を低下させる技術として、これまでシリコン融液に水平磁場を印加してるつぼの回転速度を遅くすることにより、るつぼからシリコン融液中への酸素の取込み量を低減することができ、単結晶中の格子間酸素濃度を低下できることが知られていた。しかしながら、本発明者らの実験によれば、シリコン融液に水平磁場を印加した状態で、るつぼの回転速度を低速にするだけでは、格子間酸素濃度が6.0×1017atoms/cm3以下というような極めて酸素濃度の低いシリコン単結晶を育成できないことが明らかとなった。また、シリコン単結晶の回転速度を遅くすることで、格子間酸素濃度をより低減できることを知見した。
本発明の第1の目的は、シリコン単結晶をスライスして得られたシリコンウェーハ内のCOPのサイズが100nm以下であり、その密度が3×10 6 atoms/cm 3 以下であるため、このウェーハに所定の酸化熱処理を施すことにより、ウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることができる、シリコンウェーハの製造方法を提供することにある。本発明の第2の目的は、シリコン単結晶を引上げた直後のるつぼ内にシリコン原料を供給して溶融させ、先に引上げたシリコン単結晶と同等の品質特性を有するシリコン単結晶をるつぼから引上げることにより、複数本のシリコン単結晶の略全長にわたって、格子間酸素濃度を低減できる、シリコンウェーハの製造方法を提供することにある。本発明の第3の目的は、シリコン融液に水平磁場を印加し、るつぼの回転速度を遅くし、更にシリコン単結晶の回転速度を遅くして、シリコン単結晶とシリコン融液との固液界面の形状を平坦化した状態でシリコン単結晶を引上げることにより、シリコン単結晶内の格子間酸素濃度を低減できる、シリコンウェーハの製造方法を提供することにある。本発明の第4の目的は、シリコン単結晶が所定のサイズ及び密度のCOP発生領域を含むことにより、シリコン単結晶の許容される引上げ速度の幅が狭くなるのを抑制でき、またシリコン単結晶に中性子を照射して、シリコン原子の一部をリン原子に変換してシリコン単結晶にリンをドープすることにより、シリコン単結晶内のリンの濃度が径方向及び軸方向にわたって均一になり、結果としてシリコン単結晶内の径方向の面内抵抗率のバラツキを低減することができる、シリコンウェーハの製造方法を提供することにある。
本発明の第1の観点は、チャンバに収容されたるつぼにシリコン融液を貯留し、このシリコン融液に種結晶を浸漬して回転させながらシリコン単結晶を引上げた後に、このシリコン単結晶に中性子を照射することによりシリコン単結晶にリンをドープし、このシリコン単結晶をスライスしてシリコンウェーハを製造する方法において、るつぼから、内部の格子間酸素濃度が6.0×1017atoms/cm3以下であるシリコン単結晶であって、サイズが100nm以下でありかつ密度が3×106atoms/cm3以下であるCOPの発生領域を含むシリコン単結晶を引上げた後に、このシリコン単結晶への中性子の照射によりシリコン単結晶の径方向の面内抵抗率のバラツキを5%以下にし、シリコン単結晶をスライスして得られたシリコンウェーハに、酸素ガス雰囲気中で1100〜1300℃の範囲内の所定の温度まで加熱し、この所定の温度に2〜5時間保持する熱処理を施すことにより、シリコンウェーハ全域にわたってCOPを消滅させることを特徴とする。ここで、シリコン単結晶の径方向の面内抵抗率のバラツキは、シリコン単結晶をスライスして得られたシリコンウェーハの左端から5mm内側に入った位置、ウェーハの左端と中心との中間位置、ウェーハの中心、ウェーハの右端と中心との中間位置、及びウェーハの右端から5mm内側に入った位置で抵抗率を4探針法によりそれぞれ測定し、これらの測定値の分布幅を算出した後に、この分布幅を測定値の最小値で除して100倍して得られた値をいう。
本発明の第2の観点は、第1の観点に基づく発明であって、更に引上げ中のシリコン単結晶の中心部が融点から1370℃までの温度域におけるシリコン単結晶の引上げ軸方向の温度勾配のうち、引上げ中のシリコン単結晶の中心部の温度勾配をGcとし、引上げ中のシリコン単結晶の外周部の温度勾配をGeとするとき、Gc/Ge≧1の関係を満たす条件下でシリコン単結晶を引上げることを特徴とする。
本発明の第3の観点は、第1の観点に基づく発明であって、更にシリコン単結晶内の格子間酸素濃度が全長にわたって6.0×1017atoms/cm3以下となるようにシリコン単結晶を引上げた後に、るつぼ内にシリコン原料を供給して溶融させ、るつぼ内のシリコン融液から新たにシリコン単結晶を引上げることにより、複数本のシリコン単結晶を引上げるとともに、引上げ後の各シリコン単結晶に中性子を照射することによりシリコン単結晶にリンをドープすることを特徴とする。
本発明の第4の観点は、第1ないし第の観点に基づく発明であって、更にるつぼ内のシリコン融液に0.2T以上の水平磁場を印加するとともに、るつぼの回転速度が1.5rpm以下であり、引上げ中のシリコン単結晶の回転速度が7rpm以下であることを特徴とする。
本発明の第1の観点のシリコンウェーハの製造方法では、シリコン融液に電気抵抗率を調整するためのリン等のドーパントを含有させずにシリコン単結晶を引上げた後、このシリコン単結晶に中性子を照射して原子核転換することにより、シリコン原子の一部をリン原子に変換してシリコン単結晶にリンをドープしたので、シリコン単結晶内のリンの濃度を径方向及び軸方向にわたって均一にすることができる。この結果、シリコン単結晶内の径方向の面内抵抗率のバラツキをシリコン単結晶の直胴部のほぼ全長にわたって低減することができる。また所定のサイズ及び密度のCOP発生領域を含む結晶領域を対象とするので、無欠陥単結晶における問題点、即ち無欠陥単結晶の生産性が低下したり、或いは許容される引上げ速度の幅が狭いことによる単結晶の引上げ制御が困難となるという問題点を解消することができる。
また本発明の第1の観点のシリコンウェーハの製造方法では、上記シリコン単結晶をスライスして得られたシリコンウェーハ内のCOPのサイズが100nm以下であり、その密度が3×10 6 atoms/cm 3 以下であるため、このウェーハに所定の酸化熱処理を施すと、ウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることができる。
本発明の第2の観点のシリコンウェーハの製造方法では、Gc/Ge≧1の関係を満たす条件下でCOPが発生するようにシリコン単結晶を引上げることにより、COPのサイズが小さくかつその密度が低い単結晶を得ることができる。従来の引上げ方法のGc/Ge<1の関係を満たす条件下でCOPが発生するように単結晶を引上げると、即ち引上げ速度を速くしてCOPサイズを縮小化させるのに適した冷却速度の速いホットゾーンで単結晶を引上げると、単結晶内のCOPのサイズは小さくなるけれども、その密度は高くなってしまう。この結果、従来のホットゾーンで引上げられた単結晶では、その後の酸化熱処理によってウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることはできないけれども、本発明のホットゾーンで引上げられた単結晶では、その後の酸化熱処理によってウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることができる。
本発明の第3の観点のシリコンウェーハの製造方法では、シリコン単結晶を引上げた直後のるつぼ内にシリコン原料を供給して溶融させ、先に引上げたシリコン単結晶と同等の品質特性を有するシリコン単結晶をるつぼから引上げることにより、1つのるつぼからシリコン単結晶を複数本引上げる、いわゆるマルチプリングが可能となる。この結果、複数本のシリコン単結晶の直胴部のほぼ全長にわたって、格子間酸素濃度を低減できる。
本発明の第4の観点のシリコンウェーハの製造方法では、シリコン融液に水平磁場を印加し、るつぼの回転速度を遅くし、更にシリコン単結晶の回転速度を遅くしたので、シリコン単結晶とシリコン融液との固液界面の形状が平坦化した状態でシリコン単結晶が引上げられる。この結果、シリコン単結晶の回転速度を遅くしても、シリコン単結晶内の格子間酸素濃度を直胴部のほぼ全長にわたって低減することができる。
本発明実施形態のシリコン単結晶の製造方法に用いられる装置の縦断面構成図である。 左半分は冷却速度の速いホットゾーンで引上げたシリコン単結晶中に発生する結晶欠陥の生成挙動を示す模式図であり、右半分は無欠陥単結晶の引上げに適したホットゾーンで引上げたシリコン単結晶中に発生する結晶欠陥の生成挙動を示す模式図である。 比較例2及び3のウェーハ内の光散乱体(COP)のサイズ及び密度の関係を示す図である。 比較例4及び実施例2のウェーハ内の光散乱体(COP)のサイズ及び密度の関係を示す図である。 比較例2及び3のウェーハについて酸化熱処理を施す前後におけるGOIの歩留まりを示す図である。 比較例4及び実施例2のウェーハについて酸化熱処理を施す前後におけるGOIの歩留まりを示す図である。 比較例5及び6のウェーハについて酸化熱処理を施す前後におけるGOIの歩留まりを示す図である。 実施例3〜5のウェーハについて酸化熱処理を施す前後におけるGOIの歩留まりを示す図である。 無欠陥単結晶の引上げに適したホットゾーンで引上げた比較例7、比較例8 実施例6及び実施例7のシリコン単結晶に対して中性子照射を行う前後の抵抗率の面内分布を示す図である。 無欠陥単結晶の引上げに適したホットゾーンで引上げた比較例9、比較例 10、実施例8及び実施例9のシリコン単結晶に対して中性子照射を行う前後の抵抗率の面内分布を示す図である。 無欠陥単結晶の引上げに適したホットゾーンでマルチプリング法により引上げた2本のシリコン単結晶(実施例10及び11)の引上げ率と格子間酸素濃度との関係を示す図である。 るつぼの回転速度とシリコン単結晶の回転速度と格子間酸素濃度との関係を示す図である。
次に本発明を実施するための形態を図面に基づいて説明する。図1に示すように、シリコン単結晶11の引上げ装置は、内部を真空可能に構成されたメインチャンバ12と、このチャンバ12内の中央に設けられたるつぼ13とを備える。メインチャンバ12は円筒状の真空容器である。またるつぼ13は、石英により形成されシリコン融液15が貯留される有底円筒状の内層容器13aと、黒鉛により形成され上記内層容器13aの外側に嵌合された有底円筒状の外層容器13bとからなる。外層容器13bの底部にはシャフト14の上端が接続され、このシャフト14の下端にはシャフト14を介してるつぼ13を回転させかつ昇降させるるつぼ駆動手段16が設けられる。更にるつぼ13の外周面は円筒状のヒータ17によりるつぼ13の外周面から所定の間隔をあけて包囲され、このヒータ17の外周面は円筒状の保温筒18によりヒータ17の外周面から所定の間隔をあけて包囲される。
一方、メインチャンバ12の上端には、内部が連通するようにメインチャンバ12より小径の円筒状のプルチャンバ19が接続される。このプルチャンバ19の上端には引上げ回転手段20が設けられる。この引上げ回転手段20は、下端にシードチャック21が取付けられた引上げ軸22を昇降させるとともに、この引上げ軸22をその軸線を中心に回転させるように構成される。また上記シードチャック21には種結晶23が着脱可能に装着される。この種結晶23の下端をシリコン融液15中に浸漬した後、種結晶23を引上げ回転手段20により回転させかつ引上げるとともに、るつぼ13をるつぼ駆動手段16により回転させかつ上昇させることにより、種結晶23の下端からシリコン単結晶11を引上げて引上げるように構成される。
メインチャンバ12内にはアルゴンガス等の不活性ガスが流通される。プルチャンバ19の側壁にはガス供給パイプ24の一端が接続され、このガス供給パイプ24の他端は不活性ガスを貯留するタンク(図示せず)に接続される。またメインチャンバ12の下壁にはガス排出パイプ26の一端が接続され、このガス排出パイプ26の他端は真空ポンプ27の吸入口に接続される。タンク内の不活性ガスは、ガス供給パイプ24を通ってプルチャンバ19内に導入され、メインチャンバ12内を通った後、ガス排出パイプ26を通ってメインチャンバ12から排出されるように構成される。なお、ガス供給パイプ24及び排出パイプ26にはこれらのパイプを流れる不活性ガスの流量を調整する第1及び第2流量調整弁41,42がそれぞれ設けられる。
またメインチャンバ12内には、シリコン単結晶11外周面へのヒータ17の輻射熱の照射を遮るとともに、上記不活性ガスを整流するための熱遮蔽体28が設けられる。この熱遮蔽体28は、下方に向うに従って直径が次第に小さくなりかつシリコン融液15から引上げられるシリコン単結晶11の外周面をこの外周面から所定の間隔をあけて包囲する円錐台状の筒体28aと、この筒体28aの上縁に連設され外方に略水平方向に張り出すフランジ部28bとを有する。熱遮蔽体28は、フランジ部28bを保温筒18上にリング板28cを介して載置することにより、筒体28aの下縁がシリコン融液15表面から所定のギャップをあけて上方に位置するようにメインチャンバ12内に固定される。更にシリコン融液15には水平磁場29を印加しながらシリコン単結晶11を引上げるように構成される。この水平磁場29は、同一のコイル直径を有する第1及び第2コイル31,32を、るつぼ13の外周面から水平方向に所定の間隔をあけた外側方に、るつぼ13を中心として互いに対向するように配設し、これらのコイル31,32にそれぞれ同一向きの電流を流すことにより発生する。なお、図1中の符号51は、シリコン原料52をるつぼ13に供給するための原料供給管である。この原料供給管51は1つのるつぼ13から複数本のシリコン単結晶11を引上げるマルチプリング法に用いられる。
このように構成された引上げ装置を用いてシリコン単結晶11を引上げる方法を説明する。先ず第1及び第2コイル31,32にそれぞれ同一向きの電流を流すことにより水平磁場29を発生させる。この水平磁場29の磁場強度はシリコン融液15表面とるつぼ13の中心軸との交点で測定され、その磁場強度が0.2T(テスラ)以上となるように、第1及び第2コイル31,32に流れる電流が制御される。ここで、磁場強度を0.2T以上に限定したのは、磁場強度が0.2T未満ではシリコン単結晶11への酸素の取込みを低減するという効果が薄れてしまうからである。但し、過度に磁場強度を高くすると、るつぼ13の内層容器13aの内表面の劣化を促進し単結晶11の有転位化を招くおそれがあるため、磁場強度を0.5T以下とすることが望ましい。なお、るつぼ13内のシリコン融液15には、P(リン)等のドーパントは添加されていない。
次に上記装置を用いて引上げるシリコン単結晶11の中心部が融点から1370℃までの温度域における単結晶11の引上げ軸方向の温度勾配のうち、単結晶11の中心部の温度勾配をGcとし、単結晶11の外周部の温度勾配をGeとするとき、Gc/Ge≧1という関係を満たす条件下でCOPが発生するようにシリコン単結晶11を引上げる。ここで、Gc/Ge≧1という関係を満たす条件下でCOPが発生するようにシリコン単結晶11を引上げるのは、COPのサイズが小さくかつその密度が低い単結晶11を得るためである。具体的には、単結晶11内のCOPのサイズが100nm以下、かつその密度が3×106atoms/cm3以下、好ましくは1×106atoms/cm3以下となるCOPの発生領域を含む単結晶11を引上げる。ここで、単結晶11内におけるCOPのサイズを100nm以下に限定したのは、このサイズよりもCOPサイズが大きい場合には高温の酸化熱処理を施してもCOPが消滅し難くなるからであり、単結晶11内におけるCOPの密度を3×106atoms/cm3以下に限定したのは、3×106atoms/cm3を超えるとそのCOP密度が多いため、酸化熱処理を施しても消滅されないCOP密度が増加してしまうからである。
更にシリコン単結晶11の引上げ中におけるるつぼ13の回転速度を1.5rpm以下、好ましくは0.3rpm以下に設定し、引上げ中のシリコン単結晶11の回転速度を7rpm以下、好ましくは5rpm以下に設定する。ここで、るつぼ13の回転速度を1.5rpm以下に限定し、シリコン単結晶11の回転速度を7rpm以下に限定したのは、シリコン単結晶11の格子間酸素濃度を6×1017atoms/cm3以下に保つためである。なお、シリコン単結晶11の回転速度の下限は0.5rpm以上とすることが望ましく、これよりも遅い場合にはシリコン単結晶11に変形を生じる。上述のように、Gc/Ge≧1という関係を満たす条件とすることで、単結晶11とシリコン融液15との固液界面の形状が平坦化し、この状態でシリコン融液15に水平磁場29を印加し、るつぼ13の回転速度を遅くし、更に単結晶11の回転速度を遅くすることで、シリコン単結晶11内の格子間酸素濃度を低減できる。但し、上記条件でシリコン単結晶11を引上げても、るつぼ13内のシリコン融液15の残量が少なくなると、るつぼ13の石英製の内層容器13aへのシリコン融液15の接触面積がシリコン融液15の残量に対して相対的に増すため、シリコン単結晶11内の格子間酸素濃度は増大し、シリコン単結晶11の直胴部後半において、格子間酸素濃度を6×1017atoms/cm3を超える直胴部が育成されることになる。
このため、マルチプリング法により1つのるつぼ13から複数本のシリコン単結晶11を引上げることが有効となる。即ち、シリコン単結晶11内の格子間酸素濃度が6.0×1017atoms/cm3を超えない範囲、好ましくは4×1017atoms/cm3えない範囲でシリコン単結晶11の引上げを完了させ、メインチャンバ12内を含む炉内を真空に保った状態で、シリコン単結晶11を取出し、シリコン原料52を原料供給管51からるつぼ13に供給して溶融させ、このるつぼ13内のシリコン融液15から新たにシリコン単結晶11を引上げる。このマルチプリング法による引上げでは、引上げるシリコン単結晶11内の格子間酸素濃度を6.0×1017atoms/cm3以下、好ましくは4×1017atoms/cm3以下となるように、引上げるシリコン単結晶11の直胴部のトップからボトムまでの長さを予め設定しておく。例えば、最初のシリコン単結晶11を引上げる前又は1本のシリコン単結晶11を引上げた後に、シリコン原料52をるつぼ13に供給して溶融たシリコン融液15を全てシリコン単結晶11として引上げたときの引上げ率を100%とするとき、引上げ率が60〜80%となったときにシリコン単結晶11の引上げを完了するように設定する。そして、この予め設定した引上げ率までシリコン単結晶11を引上げた後、引上げ装置に設けられた原料供給管51からるつぼ13内にシリコン原料52を供給して溶融させ、再び種結晶23をシリコン融液15中に浸漬させてるつぼ13から新たにシリコン単結晶11を引上げることにより、複数本のシリコン単結晶11を引上げる。この結果、複数本のシリコン単結晶11の直胴部のほぼ全長にわたって、格子間酸素濃度を低減できる。なお、本明細書におけるシリコン単結晶11内の格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法による測定値である。ここで、単結晶11内の格子間酸素濃度を6×1017atoms/cm3以下に限定したのは、6×1017atoms/cm3を超えると単結晶11内に酸素析出物が形成されて再結合ライフタイムが低下したり、酸素ドナー形成による抵抗率の変動を生じるという不具合があり、更に酸化熱処理によってCOPを消滅することが困難となるからである。
このように引上げられたシリコン単結晶11に中性子ドーピング法により中性子を照射する。中性子ドーピング法は、シリコン単結晶11中に約3%存在する30Siを核反応により31Pに変換する反応を利用して、高純度のシリコン単結晶11にリンをドープ(添加)することにより、シリコン単結晶11を半導体化する方法である。シリコン単結晶11に上記中性子ドーピング法を用いて中性子を照射し原子核転換することにより、シリコン原子の一部をリン原子に転換させる。この結果、シリコン単結晶11にリンが均一にドープされるので、径方向の面内抵抗率が全長にわたって均一なシリコン単結晶11が得られる。即ち、シリコン単結晶11の径方向の面内抵抗率のバラツキを5%以下、好ましくは4%以下とすることができる。ここで、シリコン単結晶11の径方向の面内抵抗率のバラツキを5%以下に限定したのは、IGBTの品質を安定にすることができ、デバイス工程における歩留まりを向上させるためである。
上記シリコン単結晶11をスライスして得られたシリコンウェーハについて、酸素ガス雰囲気中で1100〜1300℃、好ましくは1150〜1200℃の範囲内の所定の温度まで加熱し、この所定の温度に2〜5時間、好ましくは3〜4℃保持する熱処理を施す。これによりウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることができる。ここで、熱処理の保持温度1100〜1300℃の範囲内に限定したのは、1100℃未満ではCOPが消滅し難くなり、1300℃を超えるとウェーハに与える熱負荷が大きくなり過ぎてウェーハにスリップ転位などが発生してしまうからである。更に上記熱処理の保持時間を2〜5時間の範囲内に限定したのは、2時間未満ではCOPを十分に消滅させることができず、5時間を超えて熱処理を行ってもCOP消滅効果はさほど変わらないからである。
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図1に示す引上げ装置を用いて引上げるシリコン単結晶11の中心部が融点から1370℃までの温度域における単結晶11の引上げ軸方向の温度勾配のうち、単結晶11の中心部の温度勾配をGcとし、単結晶11の外周部の温度勾配をGeとするとき、Gc/Ge=1.2という関係を満たす条件下で、即ち図2のホットゾーンBで、引上げ速度を徐々に低下させて単結晶11を引上げた。ここで、るつぼ13内のシリコン融液15に0.3Tの水平磁場を印加して、格子間酸素濃度が13×1017atoms/cm3であるシリコン単結晶と、格子間酸素濃度が3×1017atoms/cm3であるシリコン単結晶を引上げた。上記格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法に準じて測定した。なお、シリコン融液にはリン等のドーパントは添加せず、引上げ完了後にシリコン単結晶11に重水炉を用いて中性子を照射した。
一方、単結晶内の欠陥分布を調べるためには、OSFリングの発生分布を確認する必要がある。そこで、OSFリングの発生分布を確認するために、故意に酸素濃度の高いシリコン単結晶(酸素濃度:13×1017atoms/cm3)も引上げた。この結果に基づき酸素濃度の低いシリコン単結晶(酸素濃度:3×1017atoms/cm3)の欠陥分布を推定した。この場合、酸素濃度が異なるだけでその他の仕様は同一とした。具体的には、単結晶の直径を210mmとし、結晶方位を<100>とし、単結晶の直胴部の長さを1700mmとした。更に単結晶の引上げ速度をいくら速くしても、OSFリングの発生領域は単結晶の最外周部より外に排除する(消滅させる)ことができない。このため、単結晶の最外周部にOSFリングの発生領域が存在することになるけれども、このOSFリング領域はその後の単結晶の丸め加工、即ち単結晶の直径が210mmから200mmになるように単結晶の外周面を切削することにより排除される。このため、引上げる実際の単結晶の直径を目標直径よりも大きいものとした。
<比較例1>
引上げる単結晶の中心部が融点から1370℃までの温度域の冷却が促進されるように、炉内の構造部品(断熱材や熱遮蔽体等)の配設位置や構造を調整したホットゾーン、即ちGc<Geの関係、具体的にはGc/Ge=0.98という関係を満たす図2のホットゾーンAを有するシリコン単結晶の引上げ装置(図示せず)を用いたこと以外は、実施例1と同一条件でシリコン単結晶を引上げた。
<比較試験1及び評価>
実施例1及び比較例1の装置により引上げかつ中性子を照射したシリコン単結晶のうち酸素濃度が13×1017atoms/cm3である高酸素濃度の単結晶を縦割りにして、評価用サンプルをそれぞれ作製した。そしてこれらの評価用サンプルについて酸素析出物を評価するための熱処理を施した。具体的には、評価用サンプルを酸化雰囲気中で800℃に4時間保持した後に、1000℃に16時間保持する熱処理を行った。次に熱処理後の評価用サンプルの表面に銅デコレーション法により欠陥を顕在化させた。具体的には、評価用サンプル表面を銅で汚染し、1000℃に1時間保持する熱処理を行って、銅を評価用サンプル中に拡散させた後に、評価用サンプルを急冷することにより、評価用サンプルの表面の欠陥を顕在化させた。更に急冷後の評価用サンプルをライト液で選択エッチングを行い、評価用サンプル表面に現れたピットを光学顕微鏡で観察した。その結果を図2に示す。
図2から明らかなように、実施例1のホットゾーンBでは図2の右側に示すようなOSFリングがV/Gが小さくなったときに中心部に向けて急激に縮小するような略U字状になり、比較例1のホットゾーンAでは図2の左側に示すようなOSFリングがV/Gが小さくなるに従って中心部に向けて徐々に縮小するような略V字状になることを確認できた。また、実施例1のホットゾーンBと、比較例1のホットゾーンAでは、COP領域におけるCOPのサイズ及び密度の分布が大きく異なり、比較例1のホットゾーンAの評価用サンプルでは、引上げ速度が速くなるほどCOPのサイズは小さくなるけれども、COPの密度が高くなるのに対し、実施例1のホットゾーンBの評価用サンプルでは、引上げ速度が遅いほどCOPのサイズが小さくなるとともに、COPの密度も減少する傾向があることが判明した。
<実施例2>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-2]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを実施例2とした。なお、[B-2]領域はOSFリングに近接したCOPの発生領域(引上げ速度が遅い条件)であることを意味する。
<比較例2>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の左側のホットゾーンAにおける[A-1]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例2とした。なお、[A-1]領域はOSFリングから離れたCOPの発生領域(引上げ速度が速い条件)であることを意味する。
<比較例3>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の左側のホットゾーンAにおける[A-2]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例3とした。なお、[A-2]領域はOSFリングに近接したCOPの発生領域(引上げ速度が遅い条件)であることを意味する。
<比較例4>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-1]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例4とした。なお、[B-1]領域はOSFリングから離れたCOPの発生領域(引上げ速度が速い条件)であることを意味する。
<比較試験2及び評価>
実施例2及び比較例2〜4のウェーハ内のCOPのサイズ及び密度を測定した。具体的には、各ウェーハについて、赤外散乱トモグラフ(三井金属社製:MO441)を用いてCOPのサイズ及び密度の分布をそれぞれ測定した。その結果を図3及び図4に示す。なお、COPは赤外散乱トモグラフにより光散乱体として測定された。即ち、図3及び図4の縦軸の光散乱体の密度はCOPの密度を意味する。
図3から明らかなように、比較例2のウェーハ(引上げ速度が速い条件で引上げられた[A-1]領域のウェーハ)では、COPのサイズが小さいけれどもその密度が高かった。また比較例3のウェーハ(引上げ速度が遅い条件で引上げられた[A-2]領域のウェーハ)では、COPの密度が低いけれどもそのサイズが大きかった。更に比較例2のウェーハは比較例3のウェーハに比べてCOPのサイズが小さいけれどもそのサイズが100nmを超えるものが半数以上あった。一方、図4から明らかなように、比較例4のウェーハ(引上げ速度が速い条件で引上げられた[B-1]領域のウェーハ)では、COPの密度は小さかったけれども、そのサイズが大きかったのに対し、実施例2のウェーハ(引上げ速度が遅い条件で引上げられた[B-2]領域のウェーハ)では、COPのサイズが小さく100nmを超えるものが存在せず、かつその密度も3×106atoms/cm3以下であった。
<比較試験3及び評価>
実施例1及び比較例1の引上げ装置を用いてシリコン単結晶を引上げるときのV/G範囲について調査した。具体的には、実施例2の[B-2]領域が得られる条件、即ちCOPのサイズが100nm以下であって、その密度が3×106atoms/cm3以下である結晶領域が得られるV/G[mm2/(分・℃)]範囲を調査した。ここで、Vは引上げ速度(mm/分)であり、Gは固液界面近傍の引上げ軸方向の温度勾配(℃/mm)である。その結果、実施例2の[B-2]領域が得られるV/Gは0.23〜0.33[mm2/(分・℃)]の範囲であった。このV/Gの範囲はコンピュータを用いた伝熱計算により求めた。なお、図2の破線で囲む領域は、実施例2の[B-2]領域と同等のCOP特性、即ちCOPのサイズが100nm以下であり、その密度3×106atoms/cm3以下である結晶領域の範囲を模式的に示したものである。一方、図2の二点鎖線で囲む領域は、比較例4の[B-1]領域と同等のCOP特性、即ちCOPのサイズが100nm以下であるけれども、その密度が3×106atoms/cm3以下であることを満たさない結晶領域の範囲を模式的に示したものである。
<比較試験4及び評価>
実施例2及び比較例2〜4のウェーハについて、酸素ガス100%の雰囲気中で1100℃の温度に4時間保持する酸化熱処理を施した。この酸化熱処理の前後におけるGOIの歩留まりをTZDB(Time Zero Dielectric Breakdown:瞬時絶縁破壊)法により求めた。GOIの歩留まりは、シリコンウェーハ上にゲート酸化膜(酸化膜)と電極を形成してMOS(Metal Oxide Semiconductor)構造を作製した後、電極に電圧を印加しゲート酸化膜を破壊させて、ブレイクダウン電圧を測定することにより求めた。ここで、ゲート酸化膜の絶縁破壊はウェーハの欠陥部分で生じた。なお、TZDB法による具体的なゲート酸化膜の耐圧の測定は次のようにして行った。先ずウェーハ表面上に厚さ25nmのゲート酸化膜(SiO2)を形成した。次にこのゲート酸化膜上にゲート電極面積10mm2のポリシリコン電極を形成した。更にウェーハとポリシリコン電極との間にステップ電圧印加法により電圧を印加し、最終的に判定電界強度11MV/cmの電圧を印加した。測定温度は室温(25℃)とした。その結果を図5及び図6に示す。
図5及び図6から明らかなように、比較例2〜4のウェーハでは、酸化熱処理によりGOI歩留まりは多少向上したけれども、いずれも酸化熱処理後のGOI歩留まりは80%程度であったのに対し、実施例2のウェーハでは、GOI歩留まりが100%に向上した。また赤外散乱トモグラフ(三井金属社製:MO441)を用いて、酸化熱処理後の比較例4及び実施例2のウェーハについてCOPの発生状況を確認したところ、比較例4のウェーハにはCOPが観察されたけれども、実施例2のウェーハにはCOPは観察されなかった。
<実施例3>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-2-1]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを実施例3とした。なお、[B-2-1]領域は単結晶の径方向の中央から外周に向ってCOPの発生領域、OSFリング及び無欠陥領域がこの順に存在することを意味する。
<実施例4>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-2-2]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを実施例4とした。なお、[B-2-2]領域は単結晶の径方向の中央にCOPの発生領域が存在し、径方向の外周部にOSFリングが存在することを意味する。
<実施例5>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-2-3]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを実施例5とした。なお、[B-2-3]領域は単結晶の径方向の全面にCOP領域が存在することを意味する。
<比較例5>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-1-1]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例5とした。なお、[B-1-1]領域は[B-1]領域のうち引上げ速度の速い側のCOPの発生領域(COP密度が3×106atoms/cm3を超える領域)であることを意味する。
<比較例6>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-1-2]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例6とした。なお、[B-1-2]領域は[B-1]領域のうち引上げ速度の遅い側のCOPの発生領域([B-2]領域に近い側の領域)であることを意味する。
<比較試験5及び評価>
実施例3〜5と比較例5及び6のウェーハについても上記比較試験4と同様にしてGOIの歩留まりを求めた。この比較試験5は各結晶領域の有効性を更に検証するために行った。その結果を図7及び図8に示す。図7及び図8から明らかなように、比較例5及び6では、いずれも酸化熱処理後のGOIの歩留まりが80%程度と低かったのに対し、実施例3〜5のウェーハでは、いずれも酸化熱処理後のGOIの歩留まりが100%まで向上した。また赤外散乱トモグラフ(三井金属社製:MO441)を用いて、酸化熱処理後の実施例3〜5のウェーハについてCOPの発生状況を確認したところ、いずれもCOPは観察されなかった。
<実施例6及び7>
実施例2のウェーハを作製したときのV/Gの条件で、シリコン単結晶を引上げた後、このシリコン単結晶に中性子照射を行った。そしてこのシリコン単結晶の直胴部のトップ及びボトムをスライスして2枚のウェーハを作製した後に、これらのウェーハを酸化雰囲気中で1000℃に10分間保持した。直胴部のトップをスライスして得られたウェーハを実施例6とし、直胴部のボトムをスライスして得られたウェーハを実施例7とした。なお、V/Gを一定としたこと以外は、実施例1の装置を用いて引上げたシリコン単結晶をスライスして実施例2のウェーハを得たときと同一条件で2枚のウェーハを作製した。
<実施例8及び9>
実施例6及び7と同一条件でシリコン単結晶を引上げ、このシリコン単結晶に中性子を照射し、このシリコン単結晶の直胴部のトップ及びボトムをスライスして2枚のウェーハを作製し、更にこれらのウェーハを酸化雰囲気中で1000℃に10分間保持した。直胴部のトップをスライスして得られたウェーハを実施例8とし、直胴部のボトムをスライスして得られたウェーハを実施例9とした。
<比較例7及び8>
シリコン単結晶に中性子照射を行わなかったこと以外は、実施例6及び7と同様にして2枚のウェーハを得た。直胴部のトップをスライスして得られたウェーハを比較例7とし、直胴部のボトムをスライスして得られたウェーハを比較例8とした。
<比較例9及び10>
シリコン単結晶に中性子照射を行わなかったこと以外は、実施例8及び9と同様にして2枚のウェーハを得た。直胴部のトップをスライスして得られたウェーハを比較例9とし、直胴部のボトムをスライスして得られたウェーハを比較例10とした。
<比較試験6及び評価>
実施例6〜9及び比較例7〜10のシリコンウェーハの径方向の抵抗率の面内分布を測定し、この測定値から面内抵抗率のバラツキを算出した。具体的には、ウェーハの左端から5mm内側に入った位置、ウェーハの左端と中心との中間位置、ウェーハの中心、ウェーハの右端と中心との中間位置、及びウェーハの右端から5mm内側に入った位置で抵抗率をそれぞれ測定し、これらの測定値の分布幅を算出した後に、この分布幅を測定値の最小値で除して100倍することにより、面内抵抗率のバラツキを算出した。なお、抵抗率は4探針法により測定した。これらの結果を図9及び図10に示す。図9から明らかなように、中性子を照射しなかった比較例7及び8のウェーハでは径方向の抵抗率の分布幅が約1400Ω・cm(面内抵抗率のバラツキ:約36%)及び約2400Ω・cm(面内抵抗率のバラツキ:約85%)と非常に大きかったのに対し、中性子を照射した実施例6及び7のウェーハでは径方向の抵抗率の分布幅が約1.6Ω・cm(面内抵抗率のバラツキ:約3.2%)及び約1.2Ω・cm(面内抵抗率のバラツキ:約2.5%)と極めて小さくなった。また図10から明らかなように、中性子を照射しなかった比較例9及び10のウェーハでは径方向の抵抗率の分布幅が約2300Ω・cm(面内抵抗率のバラツキ:約10%)及び約1400Ω・cm(面内抵抗率のバラツキ:約36%)と非常に大きかったのに対し、中性子を照射した実施例8及び9のウェーハでは径方向の抵抗率の分布幅が約2.2Ω・cm(面内抵抗率のバラツキ:約4.5%)及び約2.1Ω・cm(面内抵抗率のバラツキ:約4.2%)と極めて小さくなった。即ち、実施例6〜9のウェーハでは、目標とする径方向の面内抵抗率のバラツキの範囲内、即ち5%以内であった。
<実施例10及び11>
図1に示す引上げ装置を用い、内径24インチ(約600mm)のるつぼ13を使用して多結晶シリコン原料を170kg充填して溶融させ、このシリコン融液15から引上げ長さ(引上げ率)の異なる、結晶方位が<100>であって直径が210mmであるシリコン単結晶11をそれぞれ引上げた。そして引上げ率80%で引上げたシリコン単結晶を実施例10とし、引上げ率95%で引上げたシリコン単結晶を実施例11とした。これらのシリコン単結晶の引上げ後に、面内抵抗率が50Ω・cmとなるように、シリコン単結晶に中性子を照射した。なお、その他の引上げ条件は次のようであった。引上げ中のシリコン単結晶11の中心部が融点から1370℃までの温度域における単結晶11の引上げ軸方向の温度勾配のうち、単結晶11の中心部の温度勾配をGcとし、単結晶11の外周部の温度勾配をGeとするとき、Gc/Ge≧1という関係、具体的にはGc/Ge=1.2という関係を満たす図2のホットゾーンBを用いた。またV/Gが0.23〜0.33の範囲内になるように引上げ速度を調整し、るつぼ13内のシリコン融液15に0.3Tの水平磁場を印加した。更にるつぼの回転速度は0.3rpmとした。
<比較試験7及び評価>
実施例10及び11のシリコン単結晶の直胴部をその引上げ方向に一定の間隔をあけて所定の厚さとなるように切り出した複数のウェーハの格子間酸素濃度を測定した。格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法に準じて測定した。その結果を図11に示す。図11から明らかなように、実施例11ではシリコン単結晶の直胴部後半(引上げ率80%以上)において、格子間酸素濃度が6.0×1017atoms/cm3を超える結晶部分が育成されたのに対し、実施例10ではシリコン単結晶の引上げ方向の位置に拘らず、シリコン単結晶内の酸素濃度はほぼ均一であった。即ち、この引上げ条件では、引上げ率80%以下の範囲でシリコン単結晶を引上げることにより、直胴部全長にわたって格子間酸素濃度が6.0×1017atoms/cm3以下のシリコン単結晶を育成できることが分かった。なお、実施例10のシリコン単結晶の引上げが終了してシリコン単結晶を取出した後に、るつぼ内に残留するシリコン融液に多結晶シリコン原料を再度充填して実施例10と同じ融液量に調整し、実施例10と同条件で再度シリコン単結晶を育成した(マルチプリング法で育成した)ところ、このシリコン単結晶の酸素濃度分布は実施例10のシリコン単結晶の酸素濃度分布と略同じであった。
<比較試験8及び評価>
図1に示す引上げ装置を用いてシリコン単結晶11を引上げた。この引上げ中のシリコン単結晶11の中心部が融点から1370℃までの温度域における単結晶11の引上げ軸方向の温度勾配のうち、単結晶11の中心部の温度勾配をGcとし、単結晶11の外周部の温度勾配をGeとするとき、Gc/Ge≧1という関係、具体的にはGc/Ge=1.2という関係を満たす図2のホットゾーンBを用いた。またV/Gが0.23〜0.33の範囲内になるように引上げ速度を調整した。また引上げた単結晶11の直胴部トップの位置における径方向の面内抵抗率が100Ω・cmとなるように、溶解前にシリコン原料にリンを添加してシリコン融液15にリンを含有させ、るつぼ13内のシリコン融液15に0.2Tの水平磁場を印加した。更に単結晶の直径は210mmであり、単結晶の結晶方位は<100>であり、単結晶の直胴部の長さは1700mmであった。一方、るつぼの回転速度を0.1rpm、0.3rpm、0.7rpm、1.0rpm、1.7rpm及び2.0rpmの6水準とし、単結晶の回転速度を1〜8rpmの8水準として、互いに逆方向に回転させながらシリコン単結晶を引上げた。これらのシリコン単結晶の直胴部トップ部から200mmの位置で切り出したウェーハ内の格子間酸素濃度を測定した。格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法に準じて測定した。その結果を図12に示す。
図12から明らかなように、るつぼの回転速度が1.5rpm以下であり、かつ単結晶の回転速度が7rpm以下であると、ウェーハ中の格子間酸素濃度を6.0×1017atoms/cm3以下にすることができることが分かった。
11 シリコン単結晶
12 メインチャンバ(チャンバ)
13 るつぼ
15 シリコン融液
22 引上げ軸
23 種結晶
29 水平磁場
52 シリコン原料

Claims (4)

  1. チャンバに収容されたるつぼにシリコン融液を貯留し、このシリコン融液に種結晶を浸漬して回転させながらシリコン単結晶を引上げた後に、このシリコン単結晶に中性子を照射することにより前記シリコン単結晶にリンをドープし、このシリコン単結晶をスライスしてシリコンウェーハを製造する方法において、
    前記るつぼから、内部の格子間酸素濃度が6.0×1017atoms/cm3以下であるシリコン単結晶であって、サイズが100nm以下でありかつ密度が3×106atoms/cm3以下であるCOPの発生領域を含むシリコン単結晶を引上げた後に、
    このシリコン単結晶への中性子の照射により前記シリコン単結晶の径方向の面内抵抗率のバラツキを5%以下にし、
    前記シリコン単結晶をスライスして得られたシリコンウェーハに、酸素ガス雰囲気中で1100〜1300℃の範囲内の所定の温度まで加熱し、この所定の温度に2〜5時間保持する熱処理を施すことにより、前記シリコンウェーハ全域にわたってCOPを消滅させる
    ことを特徴とするシリコンウェーハの製造方法。
    ここで、前記シリコン単結晶の径方向の面内抵抗率のバラツキは、前記シリコン単結晶をスライスして得られたシリコンウェーハの左端から5mm内側に入った位置、ウェーハの左端と中心との中間位置、ウェーハの中心、ウェーハの右端と中心との中間位置、及びウェーハの右端から5mm内側に入った位置で抵抗率を4探針法によりそれぞれ測定し、これらの測定値の分布幅を算出した後に、この分布幅を測定値の最小値で除して100倍して得られた値をいう。
  2. 引上げ中のシリコン単結晶の中心部が融点から1370℃までの温度域における前記シリコン単結晶の引上げ軸方向の温度勾配のうち、前記引上げ中のシリコン単結晶の中心部の温度勾配をGcとし、前記引上げ中のシリコン単結晶の外周部の温度勾配をGeとするとき、Gc/Ge≧1の関係を満たす条件下で前記シリコン単結晶を引上げる請求項1記載のシリコンウェーハの製造方法。
  3. シリコン単結晶内の格子間酸素濃度が全長にわたって6.0×1017atoms/cm3以下となるようにシリコン単結晶を引上げた後に、るつぼ内にシリコン原料を供給して溶融させ、前記るつぼ内のシリコン融液から新たにシリコン単結晶を引上げることにより、複数本のシリコン単結晶を引上げるとともに、引上げ後の各シリコン単結晶に中性子を照射することにより前記シリコン単結晶にリンをドープする請求項1記載のシリコンウェーハの製造方法。
  4. るつぼ内のシリコン融液に0.2T以上の水平磁場を印加するとともに、前記るつぼの回転速度が1.5rpm以下であり、引上げ中のシリコン単結晶の回転速度が7rpm以下である請求項1ないし3いずれか1項に記載のシリコンウェーハの製造方法。
JP2009118454A 2009-05-15 2009-05-15 シリコンウェーハの製造方法 Active JP5201077B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009118454A JP5201077B2 (ja) 2009-05-15 2009-05-15 シリコンウェーハの製造方法
DE102010028924.8A DE102010028924B4 (de) 2009-05-15 2010-05-12 Vefahren zur Herstellung eines Siliciumeinkristalls und Verfahren zur Herstellung eines Siliciumwafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118454A JP5201077B2 (ja) 2009-05-15 2009-05-15 シリコンウェーハの製造方法

Publications (3)

Publication Number Publication Date
JP2010265143A JP2010265143A (ja) 2010-11-25
JP2010265143A5 JP2010265143A5 (ja) 2012-03-01
JP5201077B2 true JP5201077B2 (ja) 2013-06-05

Family

ID=43362492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118454A Active JP5201077B2 (ja) 2009-05-15 2009-05-15 シリコンウェーハの製造方法

Country Status (2)

Country Link
JP (1) JP5201077B2 (ja)
DE (1) DE102010028924B4 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052392B2 (ja) * 2013-03-06 2016-12-27 トヨタ自動車株式会社 半導体ウエハの順電圧ばらつき低減方法
JP5974978B2 (ja) 2013-05-29 2016-08-23 信越半導体株式会社 シリコン単結晶製造方法
JP6167752B2 (ja) * 2013-08-21 2017-07-26 信越半導体株式会社 シリコン単結晶材料の製造方法
JP6052189B2 (ja) 2014-01-16 2016-12-27 信越半導体株式会社 シリコン単結晶ウェーハの熱処理方法
JP6052188B2 (ja) 2014-01-16 2016-12-27 信越半導体株式会社 シリコン単結晶ウェーハの熱処理方法
KR101680213B1 (ko) * 2015-04-06 2016-11-28 주식회사 엘지실트론 실리콘 단결정 잉곳의 성장 방법
CN108699724B (zh) * 2016-02-08 2021-05-04 Topsil 环球晶圆股份公司 磷掺杂硅单晶
JP6565810B2 (ja) * 2016-07-11 2019-08-28 株式会社Sumco 中性子照射シリコン単結晶の製造方法
JP6642410B2 (ja) * 2016-12-20 2020-02-05 株式会社Sumco シリコン単結晶の製造方法
DE102019213236A1 (de) 2019-09-02 2021-03-04 Siltronic Ag Verfahren zur Herstellung von Halbleiterscheiben aus einkristallinem Silizium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496388B2 (ja) * 1996-02-08 2004-02-09 信越半導体株式会社 粒状シリコン原料の供給方法および供給管
LU90979B1 (fr) * 2002-10-22 2004-04-23 Alain Franchet Broyeur manuel réglable
WO2004073057A1 (ja) 2003-02-14 2004-08-26 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハの製造方法
KR100743821B1 (ko) * 2003-02-25 2007-07-30 가부시키가이샤 섬코 실리콘 단결정 육성 방법, 실리콘 웨이퍼 제조 방법 및 soi 기판 제조 방법
JP4148049B2 (ja) * 2003-07-15 2008-09-10 株式会社Sumco 原料供給装置
JP4760729B2 (ja) * 2006-02-21 2011-08-31 株式会社Sumco Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
WO2009025340A1 (ja) * 2007-08-21 2009-02-26 Sumco Corporation Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
JP5246163B2 (ja) * 2007-08-21 2013-07-24 株式会社Sumco Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
JP2010202414A (ja) * 2009-02-27 2010-09-16 Sumco Corp シリコン単結晶の育成方法及びシリコンウェーハの製造方法

Also Published As

Publication number Publication date
JP2010265143A (ja) 2010-11-25
DE102010028924A1 (de) 2011-03-10
DE102010028924B4 (de) 2016-02-11

Similar Documents

Publication Publication Date Title
JP5201077B2 (ja) シリコンウェーハの製造方法
US6702892B2 (en) Production device for high-quality silicon single crystals
JP5138678B2 (ja) Cz成長中のシリコン単結晶側表面から誘起される凝集点欠陥および酸素クラスターの形成制御
KR101929506B1 (ko) 실리콘 단결정 웨이퍼의 제조방법
EP2226412B1 (en) Method for growing silicon single crystal and method for producing silicon wafer
JP3624827B2 (ja) シリコン単結晶の製造方法
JP5321460B2 (ja) Igbt用シリコン単結晶ウェーハの製造方法
JP3692812B2 (ja) 窒素ドープした低欠陥シリコン単結晶ウエーハおよびその製造方法
JP5283543B2 (ja) シリコン単結晶の育成方法
JP4699675B2 (ja) アニールウェーハの製造方法
JPWO2009025340A1 (ja) Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
JP5163459B2 (ja) シリコン単結晶の育成方法及びシリコンウェーハの検査方法
JP2010222241A (ja) Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法
JP2010265143A5 (ja)
JP6044277B2 (ja) シリコン単結晶ウェーハの製造方法
EP2159827A2 (en) Silicon wafer and method for producing the same
JP4634553B2 (ja) シリコン単結晶ウエーハおよびその製造方法
JP2020033200A (ja) シリコン単結晶の製造方法及びシリコンウェーハ
JP4857517B2 (ja) アニールウエーハ及びアニールウエーハの製造方法
JP5668786B2 (ja) シリコン単結晶の育成方法及びシリコンウェーハの製造方法
JP4150167B2 (ja) シリコン単結晶の製造方法
US8460463B2 (en) Silicon wafer and method for producing the same
JP2007210820A (ja) シリコン単結晶の製造方法
JPH11335198A (ja) シリコン単結晶ウェ―ハおよびその製造方法
JP4048660B2 (ja) Czシリコン単結晶の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5201077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250