JP5910479B2 - Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor - Google Patents

Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor Download PDF

Info

Publication number
JP5910479B2
JP5910479B2 JP2012271160A JP2012271160A JP5910479B2 JP 5910479 B2 JP5910479 B2 JP 5910479B2 JP 2012271160 A JP2012271160 A JP 2012271160A JP 2012271160 A JP2012271160 A JP 2012271160A JP 5910479 B2 JP5910479 B2 JP 5910479B2
Authority
JP
Japan
Prior art keywords
particles
negative electrode
secondary battery
silicon oxide
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012271160A
Other languages
Japanese (ja)
Other versions
JP2014116249A (en
Inventor
浩一朗 渡邊
浩一朗 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012271160A priority Critical patent/JP5910479B2/en
Priority to KR1020130152047A priority patent/KR102029485B1/en
Priority to CN201310677119.8A priority patent/CN103872292B/en
Publication of JP2014116249A publication Critical patent/JP2014116249A/en
Application granted granted Critical
Publication of JP5910479B2 publication Critical patent/JP5910479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、リチウムイオン二次電池用負極活物質として用いた際に、高い初回充放電効率、良好なサイクル特性を有する炭素被膜を有する被覆粒子の製造方法、リチウムイオン二次電池用負極活物質、ならびにこれを負極に用いたリチウムイオン二次電池及び電気化学キャパシタに関するものである。   The present invention relates to a method for producing coated particles having a carbon film having high initial charge / discharge efficiency and good cycle characteristics when used as a negative electrode active material for a lithium ion secondary battery, and a negative electrode active material for a lithium ion secondary battery. And a lithium ion secondary battery and an electrochemical capacitor using the same as a negative electrode.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の非水電解質二次電池が強く要望されている。従来、この種の非水電解質二次電池の高容量化策として、例えば、負極材料にB、Ti、V、Mn、Co、Fe、Ni、Cr、Nb、Mo等の酸化物及びそれらの複合酸化物を用いる方法、熔湯急冷したM100-xSix(x≧50at%,M=Ni、Fe、Co、Mn)を負極材として適用する方法、負極材料に珪素の酸化物を用いる方法、負極材料にSi22O,Ge22O及びSn22Oを用いる方法等が知られている。 In recent years, with the remarkable development of portable electronic devices, communication devices, etc., there is a strong demand for non-aqueous electrolyte secondary batteries with high energy density from the viewpoints of economy and downsizing and weight reduction of devices. Conventionally, as a measure for increasing the capacity of this type of non-aqueous electrolyte secondary battery, for example, negative electrode materials such as oxides such as B, Ti, V, Mn, Co, Fe, Ni, Cr, Nb, and Mo and composites thereof Method using oxide, method using M 100-x Si x (x ≧ 50 at%, M = Ni, Fe, Co, Mn) quenched with molten metal as a negative electrode material, method using silicon oxide as negative electrode material A method using Si 2 N 2 O, Ge 2 N 2 O, and Sn 2 N 2 O as a negative electrode material is known.

中でも、酸化珪素は、電池容量は珪素と比較して小さいものの、炭素と比較すれば質量あたりで5〜6倍と高く、さらには体積膨張も小さく、負極活物質として使用しやすいと考えられていた。しかしながら、酸化珪素は不可逆容量が大きく、初期効率が70%程度と非常に低いため実際に電池を作製した場合では正極の電池容量を過剰に必要とし、活物質あたり5〜6倍の容量増加分に見合うだけの電池容量の増加を期待することができなかった。さらに、サイクル特性の向上も望まれていた。   Among them, although silicon oxide has a small battery capacity compared to silicon, it is considered to be easy to use as a negative electrode active material because it is 5 to 6 times higher per mass than carbon and further has a small volume expansion. It was. However, silicon oxide has a large irreversible capacity, and the initial efficiency is very low at about 70%. Therefore, when a battery is actually manufactured, the battery capacity of the positive electrode is excessively required, and the capacity increase by 5 to 6 times per active material. The battery capacity could not be expected to increase to meet Furthermore, improvement of cycle characteristics has been desired.

一方、酸化珪素は絶縁体であるため、何らかの手段で導電性を付与する。導電性を付与する方法としては、カーボン等導電性のある粒子と混合する方法、粒子の表面をカーボン被膜で被覆する方法、及びその両方を組み合わせること等が挙げられる。カーボン被膜で被覆する方法としては、複合粒子を有機物ガス中で化学蒸着(CVD)する方法が好適であり、熱処理時に反応器内に有機物ガスを導入することで効率よく行うことが可能である。   On the other hand, since silicon oxide is an insulator, conductivity is imparted by some means. Examples of the method for imparting conductivity include a method of mixing with conductive particles such as carbon, a method of coating the surface of particles with a carbon coating, and a combination of both. As a method of coating with a carbon film, a method of chemical vapor deposition (CVD) of the composite particles in an organic gas is suitable, and it can be efficiently performed by introducing an organic gas into the reactor during heat treatment.

特開平11−269647号公報JP-A-11-269647 特開2004−047404号公報Japanese Patent Laid-Open No. 2004-047404

本発明は、酸化珪素の高い電池容量を維持しつつ、初回充放電効率が高く、サイクル特性に優れた非水電解質二次電池が得られる、負極活物質として有効な被覆粒子、及びその製造方法、ならびにこれを用いた負極を有するリチウムイオン二次電池及び電気化学キャパシタを提供することを目的とする。   The present invention provides a nonaqueous electrolyte secondary battery having high initial charge / discharge efficiency and excellent cycle characteristics while maintaining a high battery capacity of silicon oxide, and a coated particle effective as a negative electrode active material, and a method for producing the same And a lithium ion secondary battery and an electrochemical capacitor having a negative electrode using the same.

本発明者らは、上記目的を達成するため鋭意検討し、酸化珪素の初期効率とサイクル特性両方の向上を確立すべく検討を行った。カーボン被膜は導電性を付与すればよいだけではなく、ガス発生による電極の膨張等によりサイクル特性に影響を及ぼす電解液との反応性の面から、比表面積を小さくして接触面積を低減することが望ましい。しかしながら、塗膜厚みとの関係から粒径はいたずらに大きくするわけにはいかず、カーボン被膜の表面を平滑にすることが効果的である。また、酸化珪素には熱処理により比表面積が低下するという性質があり、900℃あたりから徐々に低下が始まる。1,200℃あたりからは焼結による粒度分布の変化も見られるが、これは表面に存在する細孔径が変化することによる。反面、カーボン被膜は蒸着後の熱履歴により比表面積が増大する傾向にあり、初期充放電効率とサイクル特性の双方を改善するには、比表面積を増大させずに不均化を進める必要があった。   The present inventors diligently studied in order to achieve the above object, and studied to establish both the initial efficiency and cycle characteristics of silicon oxide. Carbon coatings need not only have electrical conductivity, but also should reduce the contact area by reducing the specific surface area in terms of reactivity with the electrolyte that affects cycle characteristics due to electrode expansion due to gas generation. Is desirable. However, the particle size cannot be increased unnecessarily due to the relationship with the coating thickness, and it is effective to smooth the surface of the carbon coating. In addition, silicon oxide has a property that the specific surface area is reduced by heat treatment, and gradually starts to decrease from around 900 ° C. From around 1,200 ° C., a change in particle size distribution due to sintering is also observed, but this is due to a change in the pore diameter existing on the surface. On the other hand, the carbon film tends to increase in specific surface area due to the thermal history after vapor deposition, and in order to improve both the initial charge / discharge efficiency and the cycle characteristics, it is necessary to proceed with disproportionation without increasing the specific surface area. It was.

検討の結果、酸化珪素を化学蒸着(CVD)する工程において、予め非晶質の酸化珪素粒子を、有機物ガスを通気せずに熱処理を行い不均化させ、その後不均化温度よりも低い温度で有機物ガス中で化学蒸着(CVD)処理をすることにより、BET比表面積を低く抑えることが可能となり、得られた被覆粒子を、非水電解質二次電池用負極活物質として用いると、初期充放電効率及びサイクル特性に優れた非水電解質二次電池が得られることを知見し、本発明をなすに至ったものである。   As a result of the investigation, in the step of chemical vapor deposition (CVD) of silicon oxide, amorphous silicon oxide particles are preliminarily disproportionated by heat treatment without passing an organic gas, and then a temperature lower than the disproportionation temperature. By performing chemical vapor deposition (CVD) treatment in organic gas, it becomes possible to keep the BET specific surface area low, and when the obtained coated particles are used as a negative electrode active material for a non-aqueous electrolyte secondary battery, It has been found that a nonaqueous electrolyte secondary battery excellent in discharge efficiency and cycle characteristics can be obtained, and has led to the present invention.

従って、本発明は下記発明を提供する。
[1].酸化珪素粒子、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子及びこれらの混合粒子から選ばれる粒子を、有機物ガスを通気せずに熱処理した後、得られた熱処理粒子を、有機物ガス中で化学蒸着(CVD)処理をする、炭素被膜を有し、BET比表面積が0.5〜4.0m 2 /gである被覆粒子からなる非水電解質二次電池用負極活物質の製造方法であって、上記熱処理の温度(熱処理中の最高温度)T1が900〜1,200℃であり、化学蒸着処理中の温度(化学蒸着処理中の最高温度)T2が850〜1,150℃であり、上記T1とT2とが、T1>T2であることを特徴とする製造方法。
[2].T1が1,000〜1,200℃、T2が950〜1,150℃である[1]記載の製造方法。
[3].酸化珪素粒子、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子及びこれらの混合粒子から選ばれる粒子の平均粒子径が、0.1〜50μmである[1]又は[2]記載の製造方法。
[4].上記被覆粒子が、珪素ナノ粒子が珪素酸化物中に分散した構造を有する複合粒子の表面に、炭素被膜を有する被覆粒子である[1]〜[3]のいずれかに記載の製造方法。
[5].[1]〜[4]のいずれかに記載の製造方法で得られた負極活物質を含む負極を調製する工程を有する、リチウムイオン二次電池の製造方法
[6].[1]〜[4]のいずれかに記載の製造方法で得られた負極活物質を含む負極を調製する工程を有する、電気化学キャパシタの製造方法
Accordingly, the present invention provides the following inventions.
[1]. After heat-treating particles selected from silicon oxide particles, composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide, and mixed particles thereof without passing an organic gas, the obtained heat-treated particles are converted into an organic gas. a chemical vapor deposition (CVD) process at medium, it has a carbon film, method of preparing a negative active material for a non-aqueous electrolyte secondary cell comprising the coated particles is a BET specific surface area of 0.5~4.0m 2 / g The temperature of the heat treatment (maximum temperature during heat treatment) T1 is 900 to 1,200 ° C., and the temperature during chemical vapor deposition (maximum temperature during chemical vapor deposition) T2 is 850 to 1,150 ° C. There, the manufacturing method described above and T1 and T 2, characterized in that a T1> T2.
[2]. The production method according to [1] , wherein T1 is 1,000 to 1,200 ° C and T2 is 950 to 1,150 ° C.
[3]. The average particle size of particles selected from silicon oxide particles, composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide, and mixed particles thereof is 0.1 to 50 μm. [1] or [2] Production method.
[4]. The production method according to any one of [1] to [3], wherein the coated particles are coated particles having a carbon coating on the surface of composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide.
[5]. [1] - a step of preparing a negative electrode containing a negative electrode active material obtained by the production method according to any one of [4] The method of manufacturing a lithium ion secondary battery.
[6]. [1] - a step of preparing a negative electrode containing a negative electrode active material obtained by the production method according to any one of [4] The method of the electrochemical capacitor.

本発明で得られた被覆粒子を、非水電解質二次電池用負極活物質として用いることで、初回充放電効率が高く、高容量でかつサイクル特性に優れた非水電解質二次電池を得ることができる。また、製造方法についても簡便であり、工業的規模の生産にも十分耐え得るものである。   By using the coated particles obtained in the present invention as a negative electrode active material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery having high initial charge / discharge efficiency, high capacity, and excellent cycle characteristics is obtained. Can do. Moreover, the manufacturing method is also simple and can sufficiently withstand industrial scale production.

実施例1,3で得られた被覆粒子のX線回折(Cu−Kα)における、2θ=28.4°付近のチャートである。4 is a chart around 2θ = 28.4 ° in X-ray diffraction (Cu—Kα) of the coated particles obtained in Examples 1 and 3. FIG. 実施例2で得られた被覆粒子のX線回折(Cu−Kα)における、2θ=28.4°付近のチャートである。6 is a chart around 2θ = 28.4 ° in X-ray diffraction (Cu—Kα) of the coated particles obtained in Example 2. FIG. 比較例1,(実施例1)で得られた被覆粒子のX線回折(Cu−Kα)における、2θ=28.4°付近のチャートである。6 is a chart around 2θ = 28.4 ° in X-ray diffraction (Cu—Kα) of the coated particles obtained in Comparative Example 1 (Example 1). 比較例2で得られた被覆粒子のX線回折(Cu−Kα)における、2θ=28.4°付近のチャートである。6 is a chart around 2θ = 28.4 ° in X-ray diffraction (Cu—Kα) of the coated particles obtained in Comparative Example 2. FIG.

以下、本発明について詳細に説明する。
本発明の製造方法は、非水電解質二次電池用負極活物質として用いる、化学蒸着(CVD)処理によって得られた炭素被膜を有する被覆粒子の製造方法である。つまり、酸化珪素粒子、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子及びこれらの混合粒子から選ばれる粒子を、有機物ガスを通気せずに熱処理した後、得られた熱処理後の粒子を、有機物ガス中で化学蒸着(CVD)処理をする、炭素被膜を有する被覆粒子からなる非水電解質二次電池用負極活物質の製造方法であって、上記熱処理の温度(熱処理中の最高温度)T1と、化学蒸着処理中の温度(化学蒸着処理中の最高温度)T2とが、T1>T2であることを特徴とする製造方法である。
Hereinafter, the present invention will be described in detail.
The production method of the present invention is a method for producing coated particles having a carbon coating film obtained by a chemical vapor deposition (CVD) process, which is used as a negative electrode active material for a nonaqueous electrolyte secondary battery. That is, the heat-treated particles obtained after heat-treating particles selected from silicon oxide particles, composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide, and mixed particles thereof without passing an organic gas. Is a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery comprising coated particles having a carbon coating, which is subjected to chemical vapor deposition (CVD) treatment in an organic gas, wherein the temperature of the heat treatment (maximum temperature during heat treatment) ) T1 and a temperature during chemical vapor deposition (maximum temperature during chemical vapor deposition) T2 satisfy T1> T2.

[酸化珪素粒子、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子及びこれらの混合粒子から選ばれる粒子]
化学蒸着(CVD)処理前の原料粒子としては、下記粒子が挙げられる。
(1)酸化珪素粒子
本発明において酸化珪素とは、非晶質の珪素酸化物の総称である。不均化前の酸化珪素は、一般式SiOx(0<x≦2、好適には0.8≦x<1.1)で表される。酸化珪素は、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得ることができる。
[Silicon oxide particles, composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide, and mixed particles thereof]
Examples of raw material particles before chemical vapor deposition (CVD) include the following particles.
(1) Silicon oxide particles In the present invention, silicon oxide is a general term for amorphous silicon oxide. The silicon oxide before disproportionation is represented by the general formula SiO x (0 <x ≦ 2, preferably 0.8 ≦ x <1.1). Silicon oxide can be obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon.

(2)珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子
この複合粒子は、例えば、珪素の微粒子を珪素系化合物と混合したものを焼成する方法や、上記(1)一般式SiOxで表される不均化前の酸化珪素粒子を、アルゴン等の不活性な非酸化性雰囲気中、400℃以上、好適には800〜1,100℃の温度で熱処理し、不均化反応を行うことで得ることができる。特に後者の方法で得た材料は、珪素の微結晶が均一に分散されるため好ましい。上記不均化反応により、珪素ナノ粒子のサイズを1〜100nmとすることができる。珪素ナノ粒子が珪素酸化物に分散した構造を有する粒子中の珪素酸化物については、酸化珪素が好ましく、二酸化珪素がより好ましい。なお、透過電子顕微鏡によって、シリコンのナノ粒子(結晶)が無定形の酸化珪素に分散していることが確認される。
(2) Composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide Examples of the composite particles include a method of firing a mixture of silicon fine particles with a silicon-based compound, and (1) the general formula SiO x described above. The silicon oxide particles before disproportionation represented by the above are heat-treated in an inert non-oxidizing atmosphere such as argon at a temperature of 400 ° C. or higher, preferably 800 to 1,100 ° C. to carry out the disproportionation reaction. It can be obtained by doing. In particular, the material obtained by the latter method is preferable because silicon microcrystals are uniformly dispersed. By the disproportionation reaction, the size of the silicon nanoparticles can be set to 1 to 100 nm. As for the silicon oxide in the particles having a structure in which silicon nanoparticles are dispersed in silicon oxide, silicon oxide is preferable, and silicon dioxide is more preferable. A transmission electron microscope confirms that silicon nanoparticles (crystals) are dispersed in amorphous silicon oxide.

珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子は、銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察されることで確認できる。また、回折ピークの回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径は、好ましくは1〜500nm、より好ましくは1〜100nm、さらに好ましくは2〜20nmである。珪素の微粒子の大きさが1nmより小さいと、充放電容量が小さくなる場合があるし、逆に500nmより大きいと充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれがある。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することができる。   Composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide belong to Si (111) centered around 2θ = 28.4 ° in X-ray diffraction (Cu-Kα) with copper as the cathode. This can be confirmed by observing the observed diffraction peak. Moreover, the particle diameter of the silicon crystal determined by the Scherrer equation based on the broadening of the diffraction line of the diffraction peak is preferably 1 to 500 nm, more preferably 1 to 100 nm, and still more preferably 2 to 20 nm. If the size of the silicon fine particles is smaller than 1 nm, the charge / discharge capacity may be reduced. Conversely, if the silicon fine particle is larger than 500 nm, the expansion / contraction during charge / discharge increases, and the cycle performance may decrease. The size of the silicon fine particles can be measured by a transmission electron micrograph.

化学蒸着(CVD)処理前の原料粒子の平均粒子径は、0.1〜50μmが好ましく、下限は0.2μm以上がより好ましく、0.5μm以上がさらに好ましい。上限は30μm以下がより好ましく、20μm以下がさらに好ましい。なお、本発明において平均粒子径は、レーザー光回折法による粒度分布測定における重量平均粒子径で表すことができる。   The average particle diameter of the raw material particles before the chemical vapor deposition (CVD) treatment is preferably 0.1 to 50 μm, the lower limit is more preferably 0.2 μm or more, and further preferably 0.5 μm or more. The upper limit is more preferably 30 μm or less, and further preferably 20 μm or less. In the present invention, the average particle diameter can be represented by a weight average particle diameter in particle size distribution measurement by a laser light diffraction method.

化学蒸着(CVD)処理前のBET比表面積は0.5〜100m2/gが好ましく、1〜20m2/gがより好ましい。なお、本発明におけるBET比表面積とは、N2ガス吸着量によって評価するBET1点法にて測定した時の値のことである。 Chemical vapor deposition (CVD) BET specific surface area before the treatment is preferably 0.5~100m 2 / g, 1~20m 2 / g is more preferable. Note that the BET specific surface area in the present invention refers to a value measured by a BET1 point method for evaluating the N 2 gas adsorption.

[化学蒸着(CVD)処理前の熱処理]
化学蒸着(CVD)処理前の熱処理は、酸化性ガスを通気せずに熱処理を行うことが重要である。例えば、アルゴン等の不活性ガスの通気(常圧)や、減圧下で行う方法がある。但し、1,100℃を超えるような高温で且つ減圧下で熱処理を行うと、珪素と二酸化珪素が反応・昇華してしまうおそれがある。不活性ガスを通気する際、雰囲気中に残存する微量の酸素を無くすために水素や、カーボンCVDされない程度の有機物ガスを微量混合して通気する方法もある。
[Heat treatment before chemical vapor deposition (CVD)]
It is important that the heat treatment before the chemical vapor deposition (CVD) treatment is performed without passing an oxidizing gas. For example, there are a method in which an inert gas such as argon is vented (at normal pressure) or under reduced pressure. However, if heat treatment is performed at a high temperature exceeding 1,100 ° C. and under reduced pressure, silicon and silicon dioxide may react and sublime. When venting the inert gas, there is a method in which a trace amount of hydrogen or an organic gas that is not subjected to carbon CVD is mixed and vented in order to eliminate a trace amount of oxygen remaining in the atmosphere.

[化学蒸着(CVD)処理]
引き続き有機物ガスを通気すること等により、有機物ガス中で化学蒸着(CVD)処理をする。本発明における有機物ガスを発生する原料として用いられる有機物としては、特に非酸性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択され、例えば、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環〜3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油等も単独もしくは混合物として用いることができる。
[Chemical vapor deposition (CVD) treatment]
Subsequently, chemical vapor deposition (CVD) treatment is performed in the organic substance gas by, for example, venting the organic substance gas. As an organic substance used as a raw material for generating an organic gas in the present invention, an organic substance that can be thermally decomposed at the above heat treatment temperature to generate carbon (graphite) is selected, particularly in a non-acidic atmosphere. For example, methane, ethane, A single or mixture of hydrocarbons such as ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone , Pyridine, anthracene, phenanthrene, and the like, and monocyclic to tricyclic aromatic hydrocarbons or a mixture thereof. Further, gas light oil, creosote oil, anthracene oil, naphtha cracked tar oil and the like obtained in the tar distillation step can be used alone or as a mixture.

本発明においては、上記熱処理の温度(熱処理中の最高温度)T1と、化学蒸着処理中の温度(化学蒸着処理中の最高温度)T2とが、T1>T2であること、つまり、化学蒸着(CVD)処理前に予め熱処理を行い、その熱処理よりも低い温度で化学蒸着(CVD)処理をすることが重要である。T1=T2では本発明の目的が得られず、T1<T2だと、T2が高温の場合、適正な温度で化学蒸着(CVD)処理を行って生成したカーボン被膜の状態が変化し、負極活物質として使用した場合に特性が損なわれるおそれがある。   In the present invention, the temperature of the heat treatment (maximum temperature during heat treatment) T1 and the temperature during chemical vapor deposition (maximum temperature during chemical vapor deposition) T2 satisfy T1> T2, that is, chemical vapor deposition ( It is important to perform a heat treatment in advance before the (CVD) process and to perform a chemical vapor deposition (CVD) process at a temperature lower than the heat treatment. When T1 = T2, the object of the present invention cannot be obtained. When T1 <T2, when T2 is high, the state of the carbon film formed by performing chemical vapor deposition (CVD) treatment at an appropriate temperature changes, and the negative electrode active When used as a substance, properties may be impaired.

なお、T2は化学蒸着処理中の温度(化学蒸着処理中の最高温度)であるが、本発明においては、「化学蒸着処理」とは、有機物ガスを通気と共に熱処理することをいう。従って、化学蒸着(CVD)処理前の熱処理と化学蒸着(CVD)処理とを連続して行う場合は、有機物ガスを通気前は「化学蒸着(CVD)処理前の熱処理」であり、有機物ガスを通気後は「化学蒸着(CVD)処理」となる。   T2 is a temperature during the chemical vapor deposition process (maximum temperature during the chemical vapor deposition process). In the present invention, “chemical vapor deposition process” refers to a heat treatment of organic gas with ventilation. Therefore, when the heat treatment before the chemical vapor deposition (CVD) treatment and the chemical vapor deposition (CVD) treatment are continuously performed, the organic gas is vented before the chemical vapor deposition (CVD) treatment, and the organic gas is removed. After venting, “chemical vapor deposition (CVD) processing” is performed.

上記温度によれば、処理の条件は特に限定されないが、「化学蒸着(CVD)処理前の熱処理」(T1)の温度は900〜1,300℃が好ましく、1,000〜1,200℃がより好ましい。処理温度が1,300℃を超えると、急激に容量が低下するおそれがあり、処理温度が1,300℃未満の温度領域であれば、酸化珪素を不均化させて珪素ナノ粒子を大きくすることで、初回充放電効率が向上する。処理時間は1〜20時間が好ましく、2〜3時間がより好ましい。化学蒸着(CVD)処理温度T2は、有機物ガスの種類により適宜選定される。また、T1>T2満たすことを条件に、好適には850〜1,250℃、より好適には950〜1,150℃の範囲で適宜選定される。化学蒸着(CVD)処理時間は、ガスの種類、必要なカーボン量によって適宜選定される。   According to the said temperature, although the conditions of a process are not specifically limited, 900-1300 degreeC is preferable and the temperature of "the heat processing before a chemical vapor deposition (CVD) process" (T1) is 1,000-1,200 degreeC. More preferred. When the processing temperature exceeds 1,300 ° C., the capacity may decrease rapidly. If the processing temperature is below 1,300 ° C., silicon oxide is disproportionated to enlarge silicon nanoparticles. Thus, the initial charge / discharge efficiency is improved. The treatment time is preferably 1 to 20 hours, more preferably 2 to 3 hours. The chemical vapor deposition (CVD) processing temperature T2 is appropriately selected according to the type of organic gas. Moreover, it is suitably selected in the range of 850 to 1,250 ° C., more preferably 950 to 1,150 ° C., provided that T1> T2 is satisfied. The chemical vapor deposition (CVD) processing time is appropriately selected according to the type of gas and the required amount of carbon.

カーボン被覆量は特に限定されるものではないが、カーボン被覆した被覆粒子全体に対して0.3〜40質量%が好ましく、0.5〜30質量%がより好ましい。カーボン被覆量が0.3質量%未満では、十分な導電性を維持できないおそれがあり、結果として非水電解質二次電池用負極活物質とした際にサイクル性が低下する場合がある。逆にカーボン被覆量が40質量%を超えても、効果の向上が見られないばかりか、負極材料に占める黒鉛の割合が多くなり、非水電解質二次電池用負極活物質として用いた場合、充放電容量が低下する場合がある。   The amount of carbon coating is not particularly limited, but is preferably 0.3 to 40% by mass, and more preferably 0.5 to 30% by mass with respect to the entire coated particles coated with carbon. If the carbon coating amount is less than 0.3% by mass, sufficient conductivity may not be maintained, and as a result, the cycle performance may be lowered when a negative electrode active material for a non-aqueous electrolyte secondary battery is obtained. Conversely, even if the carbon coating amount exceeds 40% by mass, not only the improvement of the effect is not seen, the proportion of graphite in the negative electrode material increases, and when used as a negative electrode active material for a non-aqueous electrolyte secondary battery, The charge / discharge capacity may be reduced.

[炭素被膜を有する被覆粒子]
上記によって得られた炭素被膜を有する被覆粒子は、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子の表面に、炭素被膜を有する被覆粒子であることが好ましい。なお、化学蒸着(CVD)処理前の原料粒子が、(2)珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子の場合は、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子の表面に、炭素被膜を有する被覆粒子が得られる。また、(1)酸化珪素粒子の場合は、「化学蒸着(CVD)処理前の熱処理」、又は「化学蒸着(CVD)処理前の熱処理」及び「化学蒸着(CVD)処理」によって、酸化珪素の不均化反応により、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子となり、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子の表面に、炭素被膜を有する被覆粒子が得られる。上記複合粒子は、0<酸素/珪素(モル比)<1.0であることが好ましい。
[Coated particles with carbon coating]
The coated particles having a carbon coating obtained as described above are preferably coated particles having a carbon coating on the surface of a composite particle having a structure in which silicon nanoparticles are dispersed in silicon oxide. In addition, when the raw material particles before chemical vapor deposition (CVD) are (2) composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide, a composite having a structure in which silicon nanoparticles are dispersed in silicon oxide Coated particles having a carbon coating on the surface of the particles are obtained. In addition, in the case of (1) silicon oxide particles, the “heat treatment before chemical vapor deposition (CVD) treatment” or “heat treatment before chemical vapor deposition (CVD) treatment” and “chemical vapor deposition (CVD) treatment” and “chemical vapor deposition (CVD) treatment” The disproportionation reaction results in composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide, and coated particles having a carbon coating are obtained on the surface of the composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide. It is done. The composite particles preferably satisfy 0 <oxygen / silicon (molar ratio) <1.0.

炭素被膜を有する被覆粒子の平均粒子径は、0.1〜20μmが好ましく、下限は0.5m以上がより好ましく、1μm以上がさらに好ましい。上限は20μm以下がより好ましく、15μm以下がさらに好ましい。なお、本発明において平均粒子径は、レーザー光回折法による粒度分布測定における重量平均粒子径で表すことができる。   The average particle size of the coated particles having a carbon coating is preferably 0.1 to 20 μm, the lower limit is more preferably 0.5 m or more, and even more preferably 1 μm or more. The upper limit is more preferably 20 μm or less, and further preferably 15 μm or less. In the present invention, the average particle diameter can be represented by a weight average particle diameter in particle size distribution measurement by a laser light diffraction method.

炭素被膜を有する被覆粒子のBET比表面積は0.2〜30m2/gが好ましく、0.5〜20m2/gがより好ましく、0.5〜8m2/gがさらに好ましく、0.5〜4.0m2/gが特に好ましい。30m2/gを超えると電解液との接触面積が増加し、電解液の分解反応が促進されるおそれがある。本発明の製法により、上記BET比表面積を有する被覆粒子を得ることができる。 BET specific surface area of the coated particles with a carbon film 0.2~30m 2 / g, more preferably from 0.5 to 20 m 2 / g, more preferably 0.5~8m 2 / g, 0.5~ 4.0 m 2 / g is particularly preferred. If it exceeds 30 m 2 / g, the contact area with the electrolytic solution may increase, and the decomposition reaction of the electrolytic solution may be accelerated. By the production method of the present invention, coated particles having the BET specific surface area can be obtained.

[非水電解質二次電池用負極活物質]
本発明は、上記炭素被膜を有する被覆粒子を非水電解質二次電池用負極活物質として用いるものである。これにより、初回充放電効率が高く、高容量でかつサイクル特性に優れた非水電解質二次電池を得ることができる。
[Negative electrode active material for non-aqueous electrolyte secondary battery]
In the present invention, the coated particles having the carbon coating are used as a negative electrode active material for a non-aqueous electrolyte secondary battery. Thereby, a nonaqueous electrolyte secondary battery having high initial charge / discharge efficiency, high capacity, and excellent cycle characteristics can be obtained.

[非水電解質二次電池用負極材]
本発明の非水電解質二次電池用負極材は、上記炭素被膜を有する被覆粒子を含有するものである。被覆粒子の負極(負極材中の固形分)中の含有量は20〜95質量%が好ましく、30〜90質量%がより好ましい。
[Negative electrode material for non-aqueous electrolyte secondary battery]
The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention contains coated particles having the carbon coating. The content of the coated particles in the negative electrode (solid content in the negative electrode material) is preferably 20 to 95% by mass, and more preferably 30 to 90% by mass.

非水電解質二次電池用負極材には、カーボン、黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粒子や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粒子、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。   A conductive agent such as carbon or graphite can be added to the negative electrode material for a non-aqueous electrolyte secondary battery. Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the constituted battery may be used. Specifically, Al, Ti, Fe, Ni, Cu, Metal particles such as Zn, Ag, Sn, Si, metal fibers, natural graphite, artificial graphite, various coke particles, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, various resin fired bodies Such graphite can be used.

[負極]
負極(成型体)の調製方法としては下記の方法が挙げられる。上記被覆粒子と、必要に応じて導電剤と、結着剤等の他の添加剤とに、N−メチルピロリドン又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。この場合、集電体としては、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
[Negative electrode]
Examples of the method for preparing the negative electrode (molded body) include the following methods. A paste-like mixture is prepared by kneading the coated particles, if necessary, a conductive agent, and other additives such as a binder with a solvent such as N-methylpyrrolidone or water. Apply to electrical sheet. In this case, as the current collector, any material that is usually used as a negative electrode current collector, such as a copper foil or a nickel foil, can be used without any particular limitation on thickness and surface treatment. In addition, the shaping | molding method which shape | molds a mixture into a sheet form is not specifically limited, A well-known method can be used.

[リチウムイオン二次電池]
リチウムイオン二次電池は、上記負極を用いる点に特徴を有し、その他の正極、負極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn24、V25、MnO2、TiS2、MoS2等の遷移金属の酸化物、リチウム、及びカルコゲン化合物等が用いられる。電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
[Lithium ion secondary battery]
The lithium ion secondary battery is characterized in that the negative electrode is used, and other materials such as the positive electrode, the negative electrode, the electrolyte, and the separator, the battery shape, and the like can be known, and are not particularly limited. For example, as the positive electrode active material, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 and other transition metal oxides, lithium, chalcogen compounds, and the like are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate and lithium perchlorate is used. As the non-aqueous solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, One type or a combination of two or more types such as 2-methyltetrahydrofuran is used. Various other non-aqueous electrolytes and solid electrolytes can also be used.

[電気化学キャパシタ]
電気化学キャパシタは、上記負極材を用いる点に特徴を有し、その他の電解質、セパレータ等の材料及びキャパシタ形状等は限定されない。例えば、電解質として六フッ化リン酸リチウム、過塩素リチウム、ホウフッ化リチウム、六フッ化砒素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
[Electrochemical capacitor]
The electrochemical capacitor is characterized in that the negative electrode material is used, and other materials such as an electrolyte and a separator, and a capacitor shape are not limited. For example, non-aqueous solutions containing lithium salts such as lithium hexafluorophosphate, lithium perchlorate, lithium borofluoride, lithium hexafluoroarsenate, etc. are used as the electrolyte, and propylene carbonate, ethylene carbonate, dimethyl carbonate are used as the non-aqueous solvent. , Diethyl carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran and the like. Various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
平均粒子径が5μm、BET比表面積が3.5m2/gの酸化珪素:SiOx(x=0.92)300gをバッチ式加熱炉内に仕込んだ。油回転式真空ポンプで炉内を減圧した後、アルゴンを0.1L/minで通気して復圧した。アルゴンをそのまま通気しつつ炉内を200℃/hr(時間、以下同様)で1,150℃に昇温し、そのまま3時間保持した。降温後取り出して物性を確認したところ、粒度分布に変化はなかったが、BET比表面積は1.9m2/gに減少していた。この粒子100gをバッチ式加熱炉内に仕込み、油回転式真空ポンプで炉内を減圧しつつ炉内を200℃/hrで1,000℃まで昇温し、1,000℃に達した後にCH4ガスを0.3NL/min流入し、20時間のカーボン被覆処理を行った。この時の減圧度は800Paであった。処理後は降温し、105gの黒色粒子を得た。得られた黒色粒子は、平均粒子径5.2μm、BET比表面積が2.0m2/gで、黒色粒子に対するカーボン被覆量4.8質量%の導電性粒子であった。
[Example 1]
300 g of silicon oxide: SiO x (x = 0.92) having an average particle diameter of 5 μm and a BET specific surface area of 3.5 m 2 / g was charged into a batch-type heating furnace. After reducing the pressure inside the furnace with an oil rotary vacuum pump, argon was vented at 0.1 L / min to restore the pressure. The inside of the furnace was heated to 1,150 ° C. at 200 ° C./hr (time, the same applies hereinafter) while argon was being passed as it was, and was maintained for 3 hours. When the physical properties were confirmed by taking out after cooling, the particle size distribution was not changed, but the BET specific surface area was reduced to 1.9 m 2 / g. 100 g of these particles were charged into a batch-type heating furnace, and the temperature in the furnace was increased to 1,000 ° C. at 200 ° C./hr while reducing the pressure in the furnace with an oil rotary vacuum pump. 4 gas was introduced at 0.3 NL / min, and carbon coating treatment was performed for 20 hours. The degree of vacuum at this time was 800 Pa. After the treatment, the temperature was lowered to obtain 105 g of black particles. The obtained black particles were conductive particles having an average particle diameter of 5.2 μm, a BET specific surface area of 2.0 m 2 / g, and a carbon coating amount of 4.8% by mass with respect to the black particles.

<電池評価>
次に、以下の方法で、得られた被覆粒子を負極活物質として用いた電池評価を行った。
得られた粒子45質量%と人造黒鉛(平均粒子径10μm)45質量%、ポリイミド10質量%を混合し、さらにN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ12μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cm2に打ち抜き、負極とした。ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
<Battery evaluation>
Next, battery evaluation using the obtained coated particles as a negative electrode active material was performed by the following method.
45% by mass of the obtained particles, 45% by mass of artificial graphite (average particle diameter 10 μm) and 10% by mass of polyimide are mixed, and further N-methylpyrrolidone is added to form a slurry, and this slurry is applied to a copper foil having a thickness of 12 μm. Then, after drying at 80 ° C. for 1 hour, the electrode was pressure-formed by a roller press, and this electrode was vacuum-dried at 350 ° C. for 1 hour, then punched out to 2 cm 2 to obtain a negative electrode. Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used for the counter electrode, and lithium hexafluorophosphate was mixed with ethylene carbonate and diethyl carbonate in 1/1 (volume ratio) as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved in a liquid at a concentration of 1 mol / L and using a polyethylene microporous film having a thickness of 30 μm as a separator was produced.

作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.5mA/cm2の定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cm2を下回った時点で充電を終了した。放電は0.5mA/cm2の定電流で行い、セル電圧が2.0Vに達した時点で放電を終了し、放電容量を求めた。以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量2,291mAh/g、初回放電容量1,811mAh/g、初回充放電効率79%、50サイクル目の放電容量維持率92.3%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。 The prepared lithium ion secondary battery was allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the test cell voltage reached 0 V at 0.5 mA / cm 2 . Charging was performed at a constant current, and after reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. Then, charging was terminated when the current value fell below 40 μA / cm 2 . The discharge was performed at a constant current of 0.5 mA / cm 2 , and when the cell voltage reached 2.0 V, the discharge was terminated and the discharge capacity was determined. The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. As a result, the initial charge capacity was 2,291 mAh / g, the initial discharge capacity was 1,811 mAh / g, the initial charge / discharge efficiency was 79%, the discharge capacity retention rate at the 50th cycle was 92.3%, and the initial charge / discharge capacity was high. It was confirmed that the lithium ion secondary battery was excellent in efficiency and cycleability.

[実施例2]
実施例1で熱処理を行ったSiOx粒子100gをバッチ式加熱炉内に仕込んだ。油回転式真空ポンプで炉内を減圧しつつ炉内を200℃/hrで1,100℃まで昇温し、1,000℃からはCH4ガスを0.3NL/minで通気しながら30℃/hrの昇温速度で1,100℃まで昇温した。1,100℃ではCH4ガス0.3NL/min通気のまま10時間保持してカーボン被覆処理を行った。処理後は降温し、105.4gの黒色粒子を得た。得られた黒色粒子は、平均粒子径5.3μm、BET比表面積が3.2m2/gで、黒色粒子に対するカーボン被覆量5.1質量%の導電性粒子であった。
[Example 2]
100 g of the SiO x particles subjected to the heat treatment in Example 1 were charged into a batch type heating furnace. While reducing the pressure inside the furnace with an oil rotary vacuum pump, the temperature inside the furnace was raised to 1,100 ° C. at 200 ° C./hr, and from 1,000 ° C., CH 4 gas was vented at 0.3 NL / min to 30 ° C. The temperature was increased to 1,100 ° C. at a rate of temperature increase of / hr. At 1,100 ° C., the carbon coating treatment was performed by holding the CH 4 gas at 0.3 NL / min for 10 hours while aeration. After the treatment, the temperature was lowered to obtain 105.4 g of black particles. The obtained black particles were conductive particles having an average particle diameter of 5.3 μm, a BET specific surface area of 3.2 m 2 / g, and a carbon coating amount of 5.1% by mass with respect to the black particles.

[実施例3]
実施例1で熱処理を行ったSiOx粒子100gをバッチ式加熱炉内に仕込んだ。油回転式真空ポンプで炉内を減圧しつつ炉内を200℃/hrで950℃まで昇温し、950℃到達時点でトルエンを気化器で気化させたガスを0.3g/minで通気して3時間保持してカーボン被覆処理を行った。処理後は降温し、105.7gの黒色粒子を得た。得られた黒色粒子は、平均粒子径5.3μm、BET比表面積が1.8m2/gで、黒色粒子に対するカーボン被覆量5.4質量%の導電性粒子であった。
[Example 3]
100 g of the SiO x particles subjected to the heat treatment in Example 1 were charged into a batch type heating furnace. While reducing the pressure inside the furnace with an oil rotary vacuum pump, the temperature inside the furnace was raised to 950 ° C. at 200 ° C./hr, and when 950 ° C. was reached, a gas obtained by vaporizing toluene with a vaporizer was vented at 0.3 g / min. The carbon coating treatment was performed for 3 hours. After the treatment, the temperature was lowered to obtain 105.7 g of black particles. The obtained black particles were conductive particles having an average particle diameter of 5.3 μm, a BET specific surface area of 1.8 m 2 / g, and a carbon coating amount of 5.4% by mass with respect to the black particles.

[比較例1]
実施例1で使用したSiOx粒子100gを熱処理せずバッチ式加熱炉内に仕込んだ。油回転式真空ポンプで炉内を減圧しつつ炉内を200℃/hrで1,000℃に昇温し、CH4ガスを0.3NL/min流入し、20時間のカーボン被覆処理を行った。処理後は降温し、105.1gの黒色粒子を得た。得られた黒色粒子は、平均粒子径5.2μm、黒色粒子に対するカーボン被覆量4.9質量%の導電性粒子で、BET比表面積が4.7m2/gであった。
[Comparative Example 1]
100 g of the SiO x particles used in Example 1 were charged into a batch-type heating furnace without heat treatment. While reducing the pressure inside the furnace with an oil rotary vacuum pump, the temperature inside the furnace was increased to 1,000 ° C. at 200 ° C./hr, CH 4 gas was introduced at 0.3 NL / min, and carbon coating treatment was performed for 20 hours. . After the treatment, the temperature was lowered to obtain 105.1 g of black particles. The obtained black particles were conductive particles having an average particle diameter of 5.2 μm and a carbon coating amount of 4.9% by mass with respect to the black particles, and the BET specific surface area was 4.7 m 2 / g.

次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果、初回充電容量2,271mAh/g、初回放電容量1,698mAh/g、初回充放電効率75%、50サイクル目の放電容量維持率93.1%であった。実施例に比べ、明らかに、初回充放電効率に劣るリチウムイオン二次電池であることが確認された。   Next, a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed. As a result, the initial charge capacity was 2,271 mAh / g, the initial discharge capacity was 1,698 mAh / g, the initial charge / discharge efficiency was 75%, and the 50th cycle discharge capacity retention rate was 93.1%. It was clearly confirmed that the lithium ion secondary battery was inferior in the initial charge / discharge efficiency compared to the examples.

[比較例2]
実施例1で使用したSiOx粒子100gをバッチ式加熱炉内に仕込んだ。油回転式真空ポンプで炉内を減圧しつつ炉内を200℃/hrで1,000℃に昇温し、CH4ガスを0.3NL/min流入し、20時間のカーボン被覆処理を行った。その後CH4ガス停止後、200℃/hrで1,150℃に昇温し、3時間保持した。処理後は降温し、105.5gの黒色粒子を得た。得られた黒色粒子は、平均粒子径5.2μm、黒色粒子に対するカーボン被覆量5.2質量%の導電性粒子であったが、BET比表面積が9.2m2/gと高い数値であった。
[Comparative Example 2]
100 g of SiO x particles used in Example 1 were charged into a batch type heating furnace. While reducing the pressure inside the furnace with an oil rotary vacuum pump, the temperature inside the furnace was increased to 1,000 ° C. at 200 ° C./hr, CH 4 gas was introduced at 0.3 NL / min, and carbon coating treatment was performed for 20 hours. . Thereafter, after stopping CH 4 gas, the temperature was raised to 1,150 ° C. at 200 ° C./hr and held for 3 hours. After the treatment, the temperature was lowered to obtain 105.5 g of black particles. The obtained black particles were conductive particles having an average particle diameter of 5.2 μm and a carbon coating amount of 5.2 mass% with respect to the black particles, but the BET specific surface area was a high numerical value of 9.2 m 2 / g. .

次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果、初回充電容量2,281mAh/g、初回放電容量1,802mAh/g、初回充放電効率79%、50サイクル目の放電容量維持率82.5%であった。実施例に比べ、明らかにサイクル特性に劣るリチウムイオン二次電池であることが確認された。表1に、T1(℃):熱処理の温度(熱処理中の最高温度)、T2(℃):化学蒸着処理中の温度(化学蒸着処理中の最高温度)、熱処理と化学蒸着処理の条件を示す。評価結果を表2に示す。   Next, a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed. As a result, the initial charge capacity was 2,281 mAh / g, the initial discharge capacity was 1,802 mAh / g, the initial charge / discharge efficiency was 79%, and the 50th cycle discharge capacity retention rate was 82.5%. It was confirmed that the lithium ion secondary battery was clearly inferior in cycle characteristics as compared with the examples. Table 1 shows T1 (° C.): temperature of heat treatment (maximum temperature during heat treatment), T2 (° C.): temperature during chemical vapor deposition treatment (maximum temperature during chemical vapor deposition treatment), and conditions of heat treatment and chemical vapor deposition treatment. . The evaluation results are shown in Table 2.

Figure 0005910479
Figure 0005910479

Figure 0005910479
Figure 0005910479

実施例1〜3、比較例1〜2で得られた被覆粒子のX線回折(Cu−Kα)における、2θ=28.4°付近のチャートを図1〜4に示す。この結果から、実施例1〜3では適正なCVD温度と、高い初期効率特性が得られる不均化が両立できていることがわかる。なお、実施例の被覆粒子を用いた電池は、初期効率とサイクル特性双方の特性が優れていた。   1 to 4 show charts around 2θ = 28.4 ° in the X-ray diffraction (Cu-Kα) of the coated particles obtained in Examples 1 to 3 and Comparative Examples 1 and 2. From this result, it can be seen that in Examples 1 to 3, both an appropriate CVD temperature and a disproportionation capable of obtaining a high initial efficiency characteristic can be achieved. In addition, the battery using the coated particles of the examples was excellent in both initial efficiency and cycle characteristics.

Claims (6)

酸化珪素粒子、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子及びこれらの混合粒子から選ばれる粒子を、有機物ガスを通気せずに熱処理した後、得られた熱処理粒子を、有機物ガス中で化学蒸着(CVD)処理をする、炭素被膜を有し、BET比表面積が0.5〜4.0m 2 /gである被覆粒子からなる非水電解質二次電池用負極活物質の製造方法であって、上記熱処理の温度(熱処理中の最高温度)T1が900〜1,200℃であり、化学蒸着処理中の温度(化学蒸着処理中の最高温度)T2が850〜1,150℃であり、上記T1とT2とが、T1>T2であることを特徴とする製造方法。 After heat-treating particles selected from silicon oxide particles, composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide, and mixed particles thereof without passing an organic gas, the obtained heat-treated particles are converted into an organic gas. a chemical vapor deposition (CVD) process at medium, it has a carbon film, method of preparing a negative active material for a non-aqueous electrolyte secondary cell comprising the coated particles is a BET specific surface area of 0.5~4.0m 2 / g The temperature of the heat treatment (maximum temperature during heat treatment) T1 is 900 to 1,200 ° C., and the temperature during chemical vapor deposition (maximum temperature during chemical vapor deposition) T2 is 850 to 1,150 ° C. There, the manufacturing method described above and T1 and T 2, characterized in that a T1> T2. T1が1,000〜1,200℃、T2が950〜1,150℃である請求項1記載の製造方法。 The production method according to claim 1 , wherein T1 is 1,000 to 1,200 ° C and T2 is 950 to 1,150 ° C. 酸化珪素粒子、珪素ナノ粒子が珪素酸化物に分散した構造を有する複合粒子及びこれらの混合粒子から選ばれる粒子の平均粒子径が、0.1〜50μmである請求項1又は2記載の製造方法。3. The production method according to claim 1, wherein the average particle diameter of the particles selected from silicon oxide particles, composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide, and mixed particles thereof is 0.1 to 50 μm. . 上記被覆粒子が、珪素ナノ粒子が珪素酸化物中に分散した構造を有する複合粒子の表面に、炭素被膜を有する被覆粒子である請求項1〜3のいずれか1項記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the coated particles are coated particles having a carbon coating on the surface of composite particles having a structure in which silicon nanoparticles are dispersed in silicon oxide. 請求項1〜4のいずれか1項記載の製造方法で得られた負極活物質を含む負極を調製する工程を有する、リチウムイオン二次電池の製造方法 Either a step of preparing a negative electrode containing a negative electrode active material obtained by the manufacturing method of the preceding claim, method for producing a lithium ion secondary battery of claims 1 to 4. 請求項1〜4のいずれか1項記載の製造方法で得られた負極活物質を含む負極を調製する工程を有する、電気化学キャパシタの製造方法 A step of preparing a negative electrode containing a negative electrode active material obtained by the method of any of claims 1-4, method for producing an electrochemical capacitor.
JP2012271160A 2012-12-12 2012-12-12 Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor Active JP5910479B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012271160A JP5910479B2 (en) 2012-12-12 2012-12-12 Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor
KR1020130152047A KR102029485B1 (en) 2012-12-12 2013-12-09 Method for producing negative electrode active material for nonaqueous electrolytic secondary battery, lithium ion secondary battery and electrochemical capacitor
CN201310677119.8A CN103872292B (en) 2012-12-12 2013-12-12 Anode for nonaqueous electrolyte secondary battery active material and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012271160A JP5910479B2 (en) 2012-12-12 2012-12-12 Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor

Publications (2)

Publication Number Publication Date
JP2014116249A JP2014116249A (en) 2014-06-26
JP5910479B2 true JP5910479B2 (en) 2016-04-27

Family

ID=50910605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012271160A Active JP5910479B2 (en) 2012-12-12 2012-12-12 Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor

Country Status (3)

Country Link
JP (1) JP5910479B2 (en)
KR (1) KR102029485B1 (en)
CN (1) CN103872292B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018325A (en) * 2014-10-24 2020-12-01 株式会社半导体能源研究所 Secondary battery and method for manufacturing secondary battery
JP6403540B2 (en) * 2014-10-30 2018-10-10 信越化学工業株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102591996B1 (en) * 2015-07-31 2023-10-20 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
CN107317006A (en) * 2017-06-21 2017-11-03 中国科学院宁波材料技术与工程研究所 Aoxidize silicon substrate carbon compound cathode materials, its preparation method and lithium ion battery
JP6592156B2 (en) * 2018-09-11 2019-10-16 信越化学工業株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4130961B2 (en) 1998-03-23 2008-08-13 三井鉱山株式会社 Chemical vapor deposition method
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2005149957A (en) * 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP5245559B2 (en) * 2008-06-16 2013-07-24 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2010225494A (en) * 2009-03-25 2010-10-07 Shin-Etsu Chemical Co Ltd Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
JP5310251B2 (en) * 2009-05-18 2013-10-09 信越化学工業株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2011076788A (en) * 2009-09-29 2011-04-14 Shin-Etsu Chemical Co Ltd Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery, and lithium ion secondary battery and electrochemical capacitor
JP6010279B2 (en) * 2011-04-08 2016-10-19 信越化学工業株式会社 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
CN103872292A (en) 2014-06-18
JP2014116249A (en) 2014-06-26
KR20140076497A (en) 2014-06-20
CN103872292B (en) 2018-04-03
KR102029485B1 (en) 2019-10-07

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5310251B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP5500047B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5406799B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP5454353B2 (en) Non-aqueous electrolyte secondary battery negative electrode silicon oxide and method for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP2010225494A (en) Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
JP6193798B2 (en) Method for producing negative electrode material for lithium ion secondary battery
KR20090086320A (en) Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
JP2010272411A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
EP2768050A1 (en) Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP5910479B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5320890B2 (en) Method for producing negative electrode material
JP6299248B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP2013258135A (en) Silicon oxide particle, manufacturing method thereof, lithium ion secondary battery, and electrochemical capacitor
JP6046594B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP5798209B2 (en) Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery
JP6408639B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016222475A (en) Graphite-coated particle, and method for producing the same
JP5558312B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2010177070A (en) Method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150