JP5164418B2 - Carbon material for electricity storage device electrode and method for producing the same - Google Patents

Carbon material for electricity storage device electrode and method for producing the same Download PDF

Info

Publication number
JP5164418B2
JP5164418B2 JP2007109567A JP2007109567A JP5164418B2 JP 5164418 B2 JP5164418 B2 JP 5164418B2 JP 2007109567 A JP2007109567 A JP 2007109567A JP 2007109567 A JP2007109567 A JP 2007109567A JP 5164418 B2 JP5164418 B2 JP 5164418B2
Authority
JP
Japan
Prior art keywords
carbon material
storage device
activation
electricity storage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007109567A
Other languages
Japanese (ja)
Other versions
JP2008270427A (en
Inventor
哲也 久米
靖之 東恩納
和明 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2007109567A priority Critical patent/JP5164418B2/en
Publication of JP2008270427A publication Critical patent/JP2008270427A/en
Application granted granted Critical
Publication of JP5164418B2 publication Critical patent/JP5164418B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、新規な蓄電デバイス電極用炭素材料及びその製造方法に関する。   The present invention relates to a novel carbon material for an electricity storage device electrode and a method for producing the same.

近年、電子機器の高機能化に伴い、電気二重層キャパシタ、リチウムイオン電池等の蓄電デバイスが果たす役割は大きくなっている。   In recent years, with the enhancement of functionality of electronic equipment, the role played by power storage devices such as electric double layer capacitors and lithium ion batteries is increasing.

電気二重層キャパシタは電気エネルギーを化学エネルギーに変換することなく直接貯蔵することができ、単純化すると2つの電極と電解液から構成される構造を有しているため、小型化、軽量化が容易であり、従来は携帯機器などの電源やバックアップ電源、電気自動車やハイブリッド自動車向けの補助電源などとしての利用が当初期待されていた(特許文献1を参照のこと)。最近では、電気二重層キャパシタは蓄電デバイスとしての高性能化、特に高容量化が進み、従来の主たる用途であるメモリバックアップ電源以外にも燃料電池車やハイブリッド車の電気自動車用補助電源など新規用途への適用が進みつつある。   An electric double layer capacitor can store electric energy directly without converting it to chemical energy, and since it has a structure composed of two electrodes and an electrolyte, it can be easily reduced in size and weight. Conventionally, it was originally expected to be used as a power source for portable devices, a backup power source, an auxiliary power source for electric vehicles and hybrid vehicles (see Patent Document 1). Recently, electric double layer capacitors have become more powerful as power storage devices, especially with higher capacities, and in addition to conventional memory backup power sources, which are the main applications, new applications such as auxiliary power sources for fuel cell vehicles and hybrid vehicles for electric vehicles Application to is progressing.

上述の長所に加え、電気二重層キャパシタには性能劣化が極めて少ないという利点を有する。具体的に説明すると、電気二重層キャパシタにおいては、電解液に浸漬した電極に直流電圧を印加することにより、+側に分極された電極には−イオンが、−側に分極された電極には+イオンが静電気力により引きつけられ、それぞれの電極の界面に電気二重層が形成される。このように、電気二重層キャパシタの原理は充放電に伴って電解質イオンが溶液内を移動し、電極界面に吸脱着するという単純な物理現象によるため、電気化学反応を伴う二次電池と異なり充放電を繰り返しても電気化学反応による物質変化がなく、性能劣化が起こりにくい。   In addition to the above-mentioned advantages, the electric double layer capacitor has an advantage that performance degradation is extremely small. More specifically, in an electric double layer capacitor, by applying a DC voltage to an electrode immersed in an electrolytic solution, -ion is applied to an electrode polarized on the + side, and an electrode polarized on the-side is applied to the electrode. + Ions are attracted by electrostatic force, and an electric double layer is formed at the interface of each electrode. In this way, the principle of the electric double layer capacitor is based on a simple physical phenomenon in which electrolyte ions move in the solution and are absorbed and desorbed at the electrode interface with charge and discharge, and therefore, unlike a secondary battery with an electrochemical reaction, the charge is charged. Even if the discharge is repeated, there is no material change due to the electrochemical reaction, and performance deterioration is unlikely to occur.

しかしながら、電気二重層キャパシタはリチウムイオン二次電池と比較するとエネルギー容量が低いという欠点を有している。電気二重層キャパシタの特性は電極材料の主成分である活性炭及び電解液と密接な関係があるため、かかる欠点を解決するために、一般的にはアルカリ等を用いた賦活処理による表面部分の改質、比表面積の増大等により電気二重層キャパシタの容量向上が行われている。   However, the electric double layer capacitor has a disadvantage that its energy capacity is lower than that of the lithium ion secondary battery. Since the characteristics of electric double layer capacitors are closely related to the activated carbon and electrolyte solution, which are the main components of the electrode material, in order to solve these disadvantages, surface modification is generally performed by activation treatment using alkali or the like. The capacity of electric double layer capacitors has been improved by increasing the quality and specific surface area.

その高容量化の実現の一方で、電気二重層キャパシタにおける内部抵抗が更なる高出力化を妨げている。電気二重層キャパシタの内部抵抗は、電解液中の電解イオンが活性炭等の炭素材料に吸着脱離する際の移動抵抗によるところが大きい。このような蓄電デバイスにおける内部抵抗は実質的に利用できる電源電圧の低下を招き、電気機器の安定動作の妨げとなるだけでなく、電力の有効利用を阻害する要因となる。多くの場合、内部抵抗が回路の動作に大きな影響を与える事は無いが、特に大電流を必要とする機器で使用することが意図されるキャパシタにとって、この内部抵抗は無視できない。   While realizing the higher capacity, the internal resistance in the electric double layer capacitor prevents further increase in output. The internal resistance of the electric double layer capacitor is largely due to the movement resistance when electrolytic ions in the electrolytic solution are adsorbed and desorbed on a carbon material such as activated carbon. Such an internal resistance in the electricity storage device substantially lowers the power supply voltage that can be used, which not only hinders the stable operation of the electrical equipment but also hinders the effective use of electric power. In many cases, the internal resistance does not significantly affect the operation of the circuit, but this internal resistance is not negligible, especially for capacitors intended for use in devices that require large currents.

特開平5−299297JP-A-5-299297

キャパシタの内部抵抗の低下は活性炭の表面部分の改質、比表面積の増大等によるキャパシタの静電容量の増大の産物としてもたらされることがあるが、従来の蓄電デバイス用電極材料は蓄電デバイスの高容量化に重点が置かれている。   Although the decrease in the internal resistance of a capacitor may be brought about as a product of an increase in the capacitance of the capacitor due to the modification of the surface portion of activated carbon, an increase in specific surface area, etc., conventional electrode materials for power storage devices Emphasis is placed on capacity.

従って、本発明の目的は、高出力が要求される蓄電デバイス用の電極に使用する炭素材料及びその製法の提供に関する。   Therefore, the objective of this invention is related with provision of the carbon material used for the electrode for electrical storage devices in which high output is requested | required, and its manufacturing method.

本発明者がかかる課題を解決するべく、蓄電デバイス電極用炭素材料について鋭意検討した結果、通常一回行われていた賦活工程を二回に増やすことにより、活性炭のメソ細孔近辺、特に細孔直径5.0〜100nmの範囲内の細孔の総容積が従来のものと比較して増大すること、更に、このような細孔特性を有する活性炭を用いて形成した電極を利用することにより、蓄電デバイスの内部抵抗が大幅に低減可能であること、を見出し、本発明を完成するに至った。   As a result of intensive studies on the carbon material for the electricity storage device electrode in order to solve such problems, the present inventor has increased the activation process that was normally performed once to twice, in the vicinity of mesopores of activated carbon, in particular, pores. By increasing the total volume of pores within a diameter range of 5.0 to 100 nm compared to the conventional one, and further by utilizing an electrode formed using activated carbon having such pore characteristics, The inventors have found that the internal resistance of the electricity storage device can be greatly reduced, and have completed the present invention.

即ち、本発明は細孔直径5.0〜100nmの範囲内の細孔の総容積が0.10ml/g以上であることを特徴とする蓄電デバイス用炭素材料、を提供する。   That is, the present invention provides a carbon material for an electricity storage device, wherein the total volume of pores within a pore diameter range of 5.0 to 100 nm is 0.10 ml / g or more.

本発明の蓄電デバイス電極用炭素材料によれば、従来使用されていた炭素材料と比較して内部抵抗を半減することができ、その結果従来にない高出力の蓄電デバイスを提供することが可能となる。理論に拘束されることを意図するものではないが、かかる内部抵抗の低下は、電解液と接触する活性炭が適切な細孔径に調節されたことで、特にメソ孔近辺の細孔容積を増大したことで、電解液の濡れ性、電解液及び電解質の拡散速度が向上したことに起因するものと考えられる。   According to the carbon material for an electricity storage device electrode of the present invention, the internal resistance can be halved as compared with a conventionally used carbon material, and as a result, an unprecedented high output electricity storage device can be provided. Become. While not intending to be bound by theory, such a decrease in internal resistance increased the pore volume, particularly near the mesopores, by adjusting the activated carbon in contact with the electrolyte to an appropriate pore size. Thus, it is considered that the wettability of the electrolytic solution and the diffusion rate of the electrolytic solution and the electrolyte are improved.

本発明は第一の観点において、細孔直径5.0〜100nmの範囲内の細孔の総容積が炭素材料1g当たり0.10ml以上であることを特徴とする蓄電デバイス電極用炭素材料、を提供する。ここで、本発明の炭素材料とは、電荷を吸脱着することができる活性炭や導電性カーボン等の炭素性材料を主成分とする材料を意味し、蓄電デバイスの電極の製造に一般的に使用されているものであればどのようなものでもよい。   According to a first aspect of the present invention, there is provided a carbon material for an electricity storage device electrode, wherein a total volume of pores having a pore diameter in the range of 5.0 to 100 nm is 0.10 ml or more per 1 g of the carbon material. provide. Here, the carbon material of the present invention means a material mainly composed of a carbonaceous material such as activated carbon or conductive carbon capable of adsorbing and desorbing electric charge, and is generally used for manufacturing an electrode of an electricity storage device. Anything may be used.

本発明の炭素材料は、従来のものと比較して細孔容積が大きく、窒素吸着法に従い測定した場合、細孔直径5.0〜100nmの範囲内の細孔の総容積が炭素材料1g当たり0.10ml以上である。ここで、細孔直径及び細孔容積は一般的な窒素吸着による細孔分布測定装置を用いて算出することができる。特に断りのない限り、本明細書で使用する細孔直径及び細孔容積は窒素吸着法に従い算出したものである。   The carbon material of the present invention has a larger pore volume than conventional ones, and when measured according to the nitrogen adsorption method, the total volume of pores within a pore diameter range of 5.0 to 100 nm per 1 g of carbon material. It is 0.10 ml or more. Here, the pore diameter and the pore volume can be calculated using a general pore distribution measuring apparatus by nitrogen adsorption. Unless otherwise specified, the pore diameter and pore volume used in this specification are calculated according to the nitrogen adsorption method.

上記炭素材料を電気二重層キャパシタの分極性電極材料に使用する場合、高い比表面積を有すること、高い電気伝導性を有すること、電解液中で電気化学的に安定であること、そして安価であること等が要求されることから、本発明の炭素材料には好ましくは活性炭材料が原料として使用される。活性炭材料として、限定しないが、植物系、例えばヤシ殻又は木材等、あるいは鉱物系、例えば石炭系又は石油ピッチ等を使用することができる。これらの活性炭材料の形状は限定されず、粉末状、粒状、繊維状のいずれであってもよい。   When the carbon material is used as a polarizable electrode material for an electric double layer capacitor, it has a high specific surface area, high electrical conductivity, electrochemical stability in an electrolyte, and low cost. Therefore, an activated carbon material is preferably used as a raw material for the carbon material of the present invention. Although it does not limit as activated carbon material, plant type, for example, a coconut shell or wood, etc., or mineral type, for example, coal type or petroleum pitch, etc. can be used. The shape of these activated carbon materials is not limited, and may be any of powder, granule, and fiber.

電極材料として用いる活性炭の製造方法は大きく分けて1)炭化、2)賦活、3)洗浄、4)粉砕の工程を経由するのが一般的である。   The production method of activated carbon used as an electrode material is roughly divided into 1) carbonization, 2) activation, 3) washing, and 4) pulverization.

本発明においては、上記賦活工程と洗浄工程の間に、賦活炭を細粒して更に二次賦活する工程を介することで、最終的に5.0〜100nmの細孔を0.10ml/g以上を有する電極材料が得られる。   In the present invention, the pores of 5.0 to 100 nm are finally reduced to 0.10 ml / g through a step of finely activating activated carbon and further secondary activation between the activation step and the washing step. An electrode material having the above is obtained.

従って、本発明は第二の観点において、1)炭化処理した活性炭材料を一次賦活する工程、2)90%以上の粒子が0.25mm以下の粒径となるように一次賦活後の当該材料を細粒する工程、及び3)当該細粒粒子を二次賦活する工程、を含んで成ること特徴とする蓄電デバイス電極用炭素材料の製造方法、を提供する。   Accordingly, in the second aspect of the present invention, 1) a step of primary activation of the carbonized activated carbon material, and 2) the material after the primary activation so that 90% or more of the particles have a particle size of 0.25 mm or less. There is provided a method for producing a carbon material for an electricity storage device electrode, comprising a step of finely granulating, and 3) a step of secondary activation of the fine particle.

賦活には大きく分けて水蒸気賦活と薬品賦活の二種類があるが、薬品回収及び排水処理施設等のコストを考慮した場合薬品賦活よりも水蒸気賦活を採用することが一般的である。本発明における細粒工程前の一次賦活工程も水蒸気賦活により実施することが好ましい。尚、水蒸気賦活の条件は特に限定されない。   There are two types of activation, steam activation and chemical activation. In consideration of costs such as chemical recovery and wastewater treatment facilities, it is common to employ steam activation rather than chemical activation. It is preferable that the primary activation step before the fine granule step in the present invention is also carried out by steam activation. In addition, the conditions for steam activation are not particularly limited.

一次賦活工程を経た賦活炭は、使用する原料等によって異なるが、平均直径2mm前後、6×12メッシュ程度のものであることが好ましい。本発明の細粒工程において、当該賦活炭粒子は、一般的な乾式アトマイザーを用いて、例えば90%以上の粒子が、粒径0.25mm以下となるように粉砕される。   The activated charcoal that has undergone the primary activation step varies depending on the raw materials used, but is preferably about 6 mm in average diameter and about 6 × 12 mesh. In the fine granulation step of the present invention, the activated charcoal particles are pulverized using a general dry atomizer so that, for example, 90% or more of the particles have a particle size of 0.25 mm or less.

細粒粒子は、続いて二次賦活にかけられる。ここで、二次賦活の条件は特に限定されず、水蒸気賦活でも薬品賦活でもよい。しかし、上述のようにコストの観点からは水蒸気賦活が好ましい。賦活処理の一例を示すと、細粒工程後の賦活炭粒子は、ロータリーキルン炉において、700〜900℃の温度で窒素雰囲気又は窒素/水蒸気の混合ガスのもと、2〜5時間処理することで二次賦活することができる。   The fine particles are subsequently subjected to secondary activation. Here, the secondary activation conditions are not particularly limited, and may be steam activation or chemical activation. However, as described above, steam activation is preferable from the viewpoint of cost. As an example of the activation treatment, the activated carbon particles after the fine granulation process are treated in a rotary kiln furnace at a temperature of 700 to 900 ° C. under a nitrogen atmosphere or a mixed gas of nitrogen / water vapor for 2 to 5 hours. Secondary activation can be performed.

一方、薬品賦活の場合、塩化亜鉛、リン酸等の酸、そして水酸化アルカリ金属、例えば水酸化カリウム、水酸化ナトリウム、水酸化リチウム等、若しくは炭酸アルカリ金属、例えば炭酸アルカリ金属、炭酸カリウム、炭酸ナトリウム等のアルカリを用いることができる。   On the other hand, in the case of chemical activation, an acid such as zinc chloride or phosphoric acid, and an alkali metal hydroxide such as potassium hydroxide, sodium hydroxide or lithium hydroxide, or an alkali metal carbonate such as an alkali metal carbonate, potassium carbonate or carbonate An alkali such as sodium can be used.

上記二次賦活処理の後、活性炭粒子は一般的な方法に従い水又は酸を用いて洗浄される。続いて、乾燥させた活性炭粒子を乾式振動ミルでミル粉砕することにより、所望の粒度に粉砕された本発明の蓄電デバイス電極用炭素材料が完成する。   After the secondary activation treatment, the activated carbon particles are washed with water or acid according to a general method. Subsequently, the dried activated carbon particles are pulverized with a dry vibration mill to complete the carbon material for an electricity storage device electrode of the present invention pulverized to a desired particle size.

本発明の蓄電デバイス用炭素材料は、蓄電デバイスの電極材料として使用することができる。例えば、電気二重層キャパシタの場合、本発明の製造方法により得られた炭素材料を、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシメチルセルロース等のバインダと混練りした後、圧延してシート状に成形することで電極層を製造することができる。   The carbon material for an electricity storage device of the present invention can be used as an electrode material for an electricity storage device. For example, in the case of an electric double layer capacitor, the carbon material obtained by the production method of the present invention is kneaded with a binder such as polytetrafluoroethylene, polyvinylidene fluoride, carboxymethylcellulose, and then rolled to form a sheet. Thus, the electrode layer can be manufactured.

以下の実施例を用いて、本発明の発明を更に具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。   The invention of the present invention will be described more specifically with reference to the following examples. The present invention is not limited to these examples.

(実施例1)
活性炭材料としてヤシ殻を用い、内熱式ロータリーキルンにおいて窒素雰囲気のもと500〜750℃で当該ヤシ殻を乾留することで炭化した(2時間:昇温5℃/分)。炭化したヤシ殻を、別の外熱式ロータリーキルン内で900℃で5〜7時間水蒸気賦活し、比表面積1000m2/g、細孔容積0.5ml/g(6×12メッシュ)に調整した(一次賦活工程)。
Example 1
Coconut husk was used as the activated carbon material, and carbonized by dry distillation of the coconut shell at 500 to 750 ° C. in a nitrogen atmosphere in an internal heating rotary kiln (2 hours: temperature increase 5 ° C./min). The carbonized coconut shell was steam-activated at 900 ° C. for 5 to 7 hours in another externally heated rotary kiln and adjusted to a specific surface area of 1000 m 2 / g and a pore volume of 0.5 ml / g (6 × 12 mesh) ( Primary activation process).

乾式アトマイザー(ダルトン社製)を用いて、90%以上の粒子が0.25mm以下となるように一次賦活炭粒子を粉砕した(細粒工程)。再び内熱式ロータリーキルンにおいて、細粒された前記粒子を850℃で水蒸気賦活した(二次賦活工程)。   Using a dry atomizer (Dalton), primary activated carbon particles were pulverized so that 90% or more of the particles would be 0.25 mm or less (fine granulation step). Again, in the internal heat type rotary kiln, the finely divided particles were steam-activated at 850 ° C. (secondary activation step).

二次賦活炭を0.1Nの塩酸で洗浄し、乾式振動ミル(村川精機社製)で平均粒径10μmに調整することで蓄電デバイス用炭素材料を調製した(実施例1)。   The secondary activated charcoal was washed with 0.1N hydrochloric acid and adjusted to an average particle size of 10 μm with a dry vibration mill (Murakawa Seiki Co., Ltd.) to prepare a carbon material for an electricity storage device (Example 1).

(比較例1)
実施例1と同様のヤシ殻を活性炭材料として用い、内熱式ロータリーキルンにおいて窒素雰囲気のもと500℃で当該ヤシ殻を乾留することで炭化した(2時間:昇温5℃/分)。乾式アトマイザー(ダルトン社製)を用いて炭化したヤシ殻粒子を0.15〜5mmに粉砕して整粒した。
(Comparative Example 1)
The same coconut shell as in Example 1 was used as the activated carbon material, and carbonized by dry distillation of the coconut shell at 500 ° C. under a nitrogen atmosphere in an internal heat rotary kiln (2 hours: temperature increase 5 ° C./min). Palm shell particles carbonized using a dry atomizer (manufactured by Dalton) were pulverized to 0.15 to 5 mm and sized.

別の内熱式ロータリーキルンにおいて900℃で当該ヤシ殻を5〜7時間水蒸気賦活した。賦活炭を0.1Nの塩酸で洗浄し、乾式振動ミル(村川精機社製)で平均粒径10μmに調整することで蓄電デバイス用炭素材料を調製した(比較例1)。   In another internal heat type rotary kiln, the coconut shell was steam-activated at 900 ° C. for 5 to 7 hours. The activated charcoal was washed with 0.1N hydrochloric acid and adjusted to an average particle size of 10 μm with a dry vibration mill (Murakawa Seiki Co., Ltd.) to prepare a carbon material for an electricity storage device (Comparative Example 1).

(比較例2及び3)
ヤシ殻を原料とする活性炭(クラレケミカル社製:製品番号YP17−D)及びフェノール樹脂を原料とする活性炭(クラレケミカル社製:製品番号RP−15)を入手した。尚、いずれの活性炭も賦活工程は一回の水蒸気賦活による。その他の詳細な製法については不明である。
(Comparative Examples 2 and 3)
Activated carbon using coconut shell as a raw material (manufactured by Kuraray Chemical Co., Ltd .: product number YP17-D) and activated carbon using phenol resin as a raw material (manufactured by Kuraray Chemical Co., Ltd .: product number RP-15) were obtained. In any activated carbon, the activation process is performed by one-time steam activation. Other detailed manufacturing methods are unknown.

上述の活性炭を比較例1と同様に乾式振動ミル(村川精機社製)で平均粒径10μmに調節した。ヤシ殻由来のものを比較例2とし、フェノール樹脂由来のものを比較例3とする。   The above-mentioned activated carbon was adjusted to an average particle size of 10 μm with a dry vibration mill (Murakawa Seiki Co., Ltd.) in the same manner as in Comparative Example 1. The one derived from coconut shell is referred to as Comparative Example 2, and the one derived from phenol resin is referred to as Comparative Example 3.

(比較例4)
500〜700℃の炭化工程、一回のアルカリ賦活工程を経由して調製されたフェノール樹脂由来の活性炭を関西熱化学社より入手した(製品番号MSP−20)。当該活性炭の平均粒径を比較例1のものと同様に10μmに調整した(比較例4)。
(Comparative Example 4)
An activated carbon derived from a phenol resin prepared through a carbonization step at 500 to 700 ° C. and a single alkali activation step was obtained from Kansai Thermal Chemical Co., Ltd. (product number MSP-20). The average particle diameter of the activated carbon was adjusted to 10 μm as in Comparative Example 1 (Comparative Example 4).

(物性評価)
実施例1と比較例1〜4の炭素材料のBET比表面積(m2/g)、総細孔容積(ml/g)、BJH平均細孔径(nm)を以下の表1に示す。ここで、BET比表面積と細孔容積(平均細孔径)はNOVA3000(ユアサアイオニクス社製)を用いて測定した。
(Evaluation of the physical properties)
The BET specific surface area (m 2 / g), total pore volume (ml / g), and BJH average pore diameter (nm) of the carbon materials of Example 1 and Comparative Examples 1 to 4 are shown in Table 1 below. Here, the BET specific surface area and pore volume (average pore diameter) were measured using NOVA3000 (manufactured by Yuasa Ionics).

Figure 0005164418
Figure 0005164418

表1を参照すると、実施例1と比較例1〜4の炭素材料はBET比表面積と総細孔容積にほとんど違いは見られないものの、5nm以上の細孔容積が大きく異なることがわかる。かかる差異を明確にするために両炭素材料の微分細孔容積分布及び積分細孔容積分布をそれぞれ図1及び図2に示す。   Referring to Table 1, it can be seen that the carbon materials of Example 1 and Comparative Examples 1 to 4 have very different pore volumes of 5 nm or more, although there is almost no difference between the BET specific surface area and the total pore volume. In order to clarify such a difference, the differential pore volume distribution and the integral pore volume distribution of both carbon materials are shown in FIGS. 1 and 2, respectively.

実施例1の炭素材料は数nm以降の細孔径において全体的に比較例のものよりも大きい(図1)。また、図2から明らかなように、比較例の炭素材料はいずれも5nm前後で細孔容積の増大がプラトーに達しているのに対し、実施例1の炭素材料は5nm以降も細孔容積が有意に増大する。   The carbon material of Example 1 is generally larger than that of the comparative example in the pore diameter after several nm (FIG. 1). In addition, as is clear from FIG. 2, the carbon materials of the comparative examples all reach a plateau at about 5 nm, whereas the carbon material of Example 1 has a pore volume of 5 nm and beyond. Significantly increases.

(電気二重層キャパシタ用分極電極の作製)
一般的な電気二重層キャパシタ用分極電極の製法に従い、バインダとしてポリフッ化ビニリデン(呉羽化学社製KFポリマーL#9210)、導電助剤としてカーボンブラック(電気化学社製デンカブラック)を用い、上記炭素材料とを混合した。混合比は、当該電極用炭素材料100重量部に対し、ポリフッ化ビニリデン20重量部、カーボンブラック10重量部とした。
(Preparation of polarization electrode for electric double layer capacitor)
In accordance with a general method for producing a polarizing electrode for an electric double layer capacitor, polyvinylidene fluoride (KF Polymer L # 9210, Kureha Chemical Co., Ltd.) is used as a binder, and carbon black (Denka Black, Denki Kagaku Co., Ltd.) is used as a conductive additive. The material was mixed. The mixing ratio was 20 parts by weight of polyvinylidene fluoride and 10 parts by weight of carbon black with respect to 100 parts by weight of the carbon material for electrodes.

前記の混合物を特殊機化工業社製TKハイビスミックスにより真空混練りし、サンクメタル社製ミニコーターを用いアルミ箔上に塗布しシート状に成型した。更に、サンクメタル社製ロールプレスにより緻密化したシートを5cm角のシート片にカッティングし、電極シートを得た。   The mixture was vacuum-kneaded with TK Hibismix manufactured by Tokushu Kika Kogyo Co., Ltd., and applied onto an aluminum foil using a mini coater manufactured by Sank Metal Co., Ltd., and formed into a sheet shape. Furthermore, the sheet | seat densified with the roll press by a Sank Metal company was cut to the sheet piece of 5 cm square, and the electrode sheet was obtained.

(電気二重層キャパシタの組み立て)
上述の電極シートはセパレーター(ニッポン高度紙工業社製TF4060)を1枚介して塗布面を対向させ、150℃で4時間真空乾燥させ、電解液(キシダ化学社製の1Mテトラエチルアンモニウムテトラフルオロボレート(TEA.BF4)/炭酸プロピレン(PC)溶液)を含浸させ、アルミラミネートの外包に組み込むことでキャパシタを組み立てた。
(Assembly of electric double layer capacitor)
The above electrode sheet was coated with a separator (TF4060 manufactured by Nippon Kogyo Paper Industries Co., Ltd.) facing each other and vacuum-dried at 150 ° C. for 4 hours to obtain an electrolyte (1M tetraethylammonium tetrafluoroborate manufactured by Kishida Chemical Co., Ltd.) TEA.BF4) / propylene carbonate (PC) solution) was impregnated and incorporated into an aluminum laminate outer package to assemble a capacitor.

(内部抵抗の比較)
実施例1、比較例1〜4の電極シートを用いてそれぞれ作製した上記キャパシタの特性を評価するために、当該キャパシタの内部抵抗(Ωcm2)を測定した。当該測定には北斗電工社製SM8を用いた。内部抵抗は、2.5V、2cm2/mAで放電した直後の0.1秒間でのIRアップを基に測定した。また、上記測定は室温(25℃)で評価した。結果を表2及び図2に示す。
(Comparison of internal resistance)
In order to evaluate the characteristics of the capacitors prepared using the electrode sheets of Example 1 and Comparative Examples 1 to 4, the internal resistance (Ωcm 2 ) of the capacitors was measured. For the measurement, SM8 manufactured by Hokuto Denko Corporation was used. The internal resistance was measured based on the IR increase in 0.1 seconds immediately after discharging at 2.5 V and 2 cm 2 / mA. Moreover, the said measurement was evaluated at room temperature (25 degreeC). The results are shown in Table 2 and FIG.

Figure 0005164418
Figure 0005164418

表2に示したとおり、実施例1の電極シートを用いたキャパシタは、5nm以上の細孔容積が0.1ml/g以下の炭素材料を使用した比較例1〜4のものと比較して、静電容量(F/ml)は若干低下するものの(結果は示さない)、内部抵抗が半減した。図2のグラフからは、5nm以上の細孔容積が低下するにつれ内部抵抗が低下することがわかる。   As shown in Table 2, the capacitor using the electrode sheet of Example 1 was compared with those of Comparative Examples 1 to 4 using a carbon material having a pore volume of 5 nm or more and 0.1 ml / g or less. Although the capacitance (F / ml) slightly decreased (results are not shown), the internal resistance was halved. From the graph of FIG. 2, it can be seen that the internal resistance decreases as the pore volume of 5 nm or more decreases.

本発明の蓄電デバイス用炭素材料は、蓄電デバイスの電極として使用した場合、従来のものと比較して内部抵抗を顕著に低下させることができ、その結果当該蓄電デバイスからは瞬時に大電流を放出させることが可能となる。従って、バックアップ電源のように高容量であることが要求される蓄電デバイスよりもむしろ高出力タイプの大型キャパシタ等の蓄電デバイスに好適である。   The carbon material for an electricity storage device of the present invention, when used as an electrode of an electricity storage device, can significantly reduce the internal resistance compared to the conventional one, and as a result, instantly releases a large current from the electricity storage device. It becomes possible to make it. Therefore, it is suitable for a power storage device such as a large capacitor of a high output type rather than a power storage device required to have a high capacity such as a backup power source.

図1は実施例1と比較例1〜4の炭素材料の微分細孔容積分布を示す図である。FIG. 1 is a diagram showing differential pore volume distributions of the carbon materials of Example 1 and Comparative Examples 1 to 4. 図2は実施例1と比較例1〜4の炭素材料の積分細孔容積分布を示す図である。FIG. 2 is a diagram showing the integrated pore volume distribution of the carbon materials of Example 1 and Comparative Examples 1 to 4. 図3は実施例1及び比較例1〜4の炭素材料を用いて調製した電極を有する電気二重層キャパシタの内部抵抗(Ωcm2)を比較したグラフである。FIG. 3 is a graph comparing the internal resistance (Ωcm 2 ) of electric double layer capacitors having electrodes prepared using the carbon materials of Example 1 and Comparative Examples 1 to 4.

Claims (2)

1)炭化処理した植物又は鉱物由来の活性炭材料を一次賦活する工程、2)90%以上の粒子が0.25mm以下の粒径となるように一次賦活後の当該材料を細粒する工程、及び3)当該細粒粒子を二次賦活する工程、を含んで成る方法により製造される、細孔直径5.0〜100nmの範囲内の細孔の総容積が炭素材料1g当たり0.10ml以上であること特徴とする蓄電デバイス電極用炭素材料。 1) a step of primary activation of a carbonized plant or mineral-derived activated carbon material, 2) a step of finely granulating the material after the primary activation so that 90% or more of the particles have a particle size of 0.25 mm or less, and 3) The total volume of pores having a pore diameter in the range of 5.0 to 100 nm produced by a method comprising the step of secondary activation of the fine particles is 0.10 ml or more per gram of carbon material A carbon material for an electricity storage device electrode, characterized in that 1)炭化処理した植物又は鉱物由来の活性炭材料を一次賦活する工程、2)90%以上の粒子が0.25mm以下の粒径となるように一次賦活後の当該材料を細粒する工程、及び3)当該細粒粒子を二次賦活する工程、を含んで成ること特徴とする蓄電デバイス電極用炭素材料の製造方法。 1) a step of primary activation of a carbonized plant or mineral-derived activated carbon material, 2) a step of finely granulating the material after the primary activation so that 90% or more of the particles have a particle size of 0.25 mm or less, and 3) A method for producing a carbon material for an electricity storage device electrode, comprising a step of secondary activation of the fine particles.
JP2007109567A 2007-04-18 2007-04-18 Carbon material for electricity storage device electrode and method for producing the same Expired - Fee Related JP5164418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109567A JP5164418B2 (en) 2007-04-18 2007-04-18 Carbon material for electricity storage device electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109567A JP5164418B2 (en) 2007-04-18 2007-04-18 Carbon material for electricity storage device electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008270427A JP2008270427A (en) 2008-11-06
JP5164418B2 true JP5164418B2 (en) 2013-03-21

Family

ID=40049562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109567A Expired - Fee Related JP5164418B2 (en) 2007-04-18 2007-04-18 Carbon material for electricity storage device electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP5164418B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563239B2 (en) * 2009-05-13 2014-07-30 関西熱化学株式会社 Method for producing porous carbon material
JP5931326B2 (en) * 2010-02-23 2016-06-08 カルゴンカーボンジャパン株式会社 Activated carbon for electric double layer capacitors
CN102651484B (en) * 2012-05-10 2016-04-20 中国第一汽车股份有限公司 A kind of energy storage device having lithium ion battery and super capacitor feature concurrently
JP2023130538A (en) * 2020-08-17 2023-09-21 株式会社クラレ Positive electrode additive for electrochemical element, composition for electrochemical element positive electrode, positive electrode for electrochemical element, and electrochemical element containing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883736A (en) * 1994-09-09 1996-03-26 Nippon Sanso Kk Active carbon electrode of electronic double-layer capacitor and manufacture thereof
JPH09328308A (en) * 1996-04-10 1997-12-22 Mitsubishi Chem Corp Activated carbon, its production and capacitor using the same
WO1999043614A1 (en) * 1998-02-25 1999-09-02 Kureha Kagaku Kogyo K.K. Activated carbon and process for producing the same
JP4618929B2 (en) * 2000-05-09 2011-01-26 三菱化学株式会社 Activated carbon for electric double layer capacitors
JP2003309046A (en) * 2002-04-17 2003-10-31 Masayuki Yoshio High energy density electric double layer capacitor

Also Published As

Publication number Publication date
JP2008270427A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
Rajesh et al. Pinecone biomass‐derived activated carbon: the potential electrode material for the development of symmetric and asymmetric supercapacitors
Xie et al. Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density
Senthilkumar et al. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte
US9053871B2 (en) High surface area and low structure carbon blacks for energy storage applications
JP5207338B2 (en) Porous carbon material, method for producing porous carbon material, electric double layer capacitor
Thangavel et al. High Volumetric Quasi‐Solid‐State Sodium‐Ion Capacitor under High Mass Loading Conditions
Wei et al. Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
US8333810B1 (en) Carbon nanotube tower-based supercapacitor
US20170301484A1 (en) High Surface Area Carbon Materials and Methods for Making Same
JP5164418B2 (en) Carbon material for electricity storage device electrode and method for producing the same
JP5434389B2 (en) Carbon porous body manufacturing method and power storage device
JP2005001969A (en) Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
KR102055033B1 (en) Polarizable electrode material and electric double layer capacitor using same
JP5058155B2 (en) Method for producing carbon material for electrochemical device electrode
JP2014105119A (en) Sulfur-doped active carbon for storage device and method for producing the same
JP2013049617A (en) Method for producing activated carbon porous body, activated carbon porous body, and electrode for electric double layer capacitor
KR102177976B1 (en) Method for manufacturing graphene composite, eletrode active material and secondary battery including the same
WO2021241334A1 (en) Electrochemical device
TW201631613A (en) Cathode for a lithium ion capacitor
JP2020088119A (en) Manufacturing method of carbon material for electrical double layer capacitor
JP2016004962A (en) Electrode material for power storage device, manufacturing method for the same, electrode mixture material for power storage device and method of manufacturing electrode for power storage device
WO2021241420A1 (en) Electrode for electrochemical devices, and electrochemical device
KR20110014362A (en) Manufacturing method of porous activated carbon and non-porous carbon material composite electrode for capacitive deionization
JP2005093778A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees