JP2003309046A - High energy density electric double layer capacitor - Google Patents

High energy density electric double layer capacitor

Info

Publication number
JP2003309046A
JP2003309046A JP2002153134A JP2002153134A JP2003309046A JP 2003309046 A JP2003309046 A JP 2003309046A JP 2002153134 A JP2002153134 A JP 2002153134A JP 2002153134 A JP2002153134 A JP 2002153134A JP 2003309046 A JP2003309046 A JP 2003309046A
Authority
JP
Japan
Prior art keywords
double layer
electric double
activated carbon
layer capacitor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002153134A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshio
真幸 芳尾
Masaru Sugita
勝 杉田
Ryuji Kuramoto
隆二 倉本
Kenichi Isono
健一 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002153134A priority Critical patent/JP2003309046A/en
Publication of JP2003309046A publication Critical patent/JP2003309046A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide activated carbon for the electrode of an electric double layer capacitor having a larger capacitance by modifying the conventional activated carbon for the electrode of the electric double layer capacitor. <P>SOLUTION: The activated carbon for the electrode of the electric double layer capacitor is heated at 700-1000°C by itself or with metallic salts in a steam or gaseous carbon dioxide atmosphere for modification. These modified activated carbon can form a larger capacitance in the electric double layer capacitor compared with the unmodified activated carbon. Hence, it is possible to provide the high energy density electric double layer capacitor. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[発明の属する技術分野]本発明は、電気
二重層キャパシタ電極用材料、それらにより形成される
電極およびそれらの電極による構成されるキャパシタ。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for an electric double layer capacitor electrode, an electrode formed by them and a capacitor constituted by those electrodes.

【0002】[従来の技術及び問題点]近年、電子機器
の進展はめざましく、携帯用電子機器の小型化、軽量化
が急速に進行している。これらの電源となるリチウムイ
オン電池などが小型、軽量である高エネルギー密度電池
として重要が急速にのびている。 電気二重層キャパシ
タはこれらの電池と従来からのキャパシタ(コンデンサ
ー)の中間に値する新規な電源として注目されている。
すなわちこれらのリチウムイオン電池などが300回な
いし500回の充放電が可能なことに対して、電気二重
層キャパシタは10000回ないし100000回の充
放電が可能なこと、電池に比較すると10倍以上の高電
流で電力貯蔵あるいは充放電可能なことなど電池には求
めることができない高性能を有している。 したがって
停電用電源あるいは電気自動車などの補助電源として、
あるいは回生エネルギー回収用電源として大きな用途が
考えられている。従来、電気二重層キャパシタ電極材料
としては活性炭やカーボンナノチューブなどの炭素材料
が用いられているが、価格が安価な点などから活性炭が
広く使用されている。活性炭は比表面積が大きく、電気
二重層キャパシタ用の電極材料としては最適である。そ
の合成法は、通常活性炭を水蒸気賦活法あるいはKOH
賦活法によっている。しかしながら、KOH賦活法では
活性炭の数倍のKOHを混合して、焼成しているが、か
なり危険で爆発などの現象が起こるため、性能はよい
が、コストが高価になる。そのため大量生産法は主とし
て水蒸気雰囲気下での焼成によっている。またこれらの
活性炭を用いて作成される電気二重層キャパシタは水溶
液系と、有機溶媒系電解液からなっている。水溶液系電
気二重層キャパシタは電圧が低いため、大型電気二重層
キャパシタには3V近い電圧を示す、有機溶媒系電解液
からなる電気二重層キャパシタが適している。しかしな
がら電気二重層キャパシタの容量は、電池に比較すると
非常に小さく、容量の上昇が急務となっている。これま
で種々の方法を用いて、活性炭を用いる電気二重層キャ
パシタの容量増加がおこなわれてきたが、ほとんど成功
していなかった。
[Prior Art and Problems] In recent years, electronic devices have been remarkably developed, and portable electronic devices have been rapidly reduced in size and weight. Lithium-ion batteries, etc., which are the power sources of these, are rapidly gaining importance as high energy density batteries that are small and lightweight. The electric double layer capacitor is attracting attention as a new power source that is intermediate between these batteries and conventional capacitors.
That is, while these lithium-ion batteries can be charged and discharged 300 to 500 times, the electric double layer capacitor can be charged and discharged 10,000 to 100,000 times, which is more than 10 times that of batteries. It has high performance that cannot be demanded from a battery, such as the ability to store or charge electricity at high current. Therefore, as a power source for blackouts or as an auxiliary power source for electric vehicles,
Alternatively, it is considered to have a large use as a power source for regenerative energy recovery. Conventionally, carbon materials such as activated carbon and carbon nanotubes have been used as the electric double layer capacitor electrode material, but activated carbon is widely used because of its low price. Activated carbon has a large specific surface area and is optimal as an electrode material for electric double layer capacitors. The synthesis method is usually activated carbon by steam activation method or KOH.
It depends on the activation method. However, in the KOH activation method, KOH which is several times as much as the activated carbon is mixed and fired, but since it is quite dangerous and phenomena such as explosion occur, the performance is good, but the cost becomes expensive. Therefore, the mass production method is mainly performed by firing in a steam atmosphere. An electric double layer capacitor made by using these activated carbons is composed of an aqueous solution type and an organic solvent type electrolytic solution. Since an aqueous solution type electric double layer capacitor has a low voltage, an electric double layer capacitor composed of an organic solvent type electrolytic solution showing a voltage of about 3 V is suitable for a large size electric double layer capacitor. However, the capacity of the electric double layer capacitor is much smaller than that of the battery, and there is an urgent need to increase the capacity. Up to now, the capacity of an electric double layer capacitor using activated carbon has been increased by using various methods, but it has hardly succeeded.

【0003】[発明が解決しようとする問題点]前述の
如く、電気二重層キャパシタ用活性炭の容量は、水蒸気
賦活法やKOH賦活法によりかなり上昇してきたが、実
用的にはまだ不十分である。電気二重層キャパシタのエ
ネルギー密度を上げることが急務である。
[Problems to be Solved by the Invention] As described above, the capacity of activated carbon for electric double layer capacitors has been considerably increased by the steam activation method or the KOH activation method, but it is still insufficient in practical use. . There is an urgent need to increase the energy density of electric double layer capacitors.

【0004】[発明が解決しようとする課題]本発明
は、かかる間題点を解決し、電気二重層キャパシタとし
て使用できる水蒸気賦活法やKOH賦活法により合成さ
れた活性炭の容量、ひいてはエネルギー密度を増大さ
せ、さらには導電剤を加えずとも使用できる電気二重層
キャパシタ電極用活性炭の提供を目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems and improves the capacity, and thus the energy density, of activated carbon synthesized by a steam activation method or a KOH activation method that can be used as an electric double layer capacitor. It is an object of the present invention to provide activated carbon for an electric double layer capacitor electrode, which can be increased and used without adding a conductive agent.

【0005】[問題点を解決するための手段]本発明
は、通常用いられている電気二重層キャパシタ用活性炭
を、単独であるいは金属塩共存下水蒸気雰囲気あるいは
炭酸ガス雰囲気中700〜1000℃で加熱して改質す
ることを特徴とする。これらの改質活性炭は、未改質の
活性炭に比較して電気二重層キャパシタの容量を増加さ
せる。さらに導電性を上げる効果もあり、電極合剤に導
電剤を加えずとも使用できるため、さらに高電圧までの
充電が可能となる。これらにより高容量、高エネルギー
密度の電気二重層キャパシタの供給が可能である。
[Means for Solving the Problems] The present invention heats a commonly used activated carbon for an electric double layer capacitor at 700 to 1000 ° C. in a steam atmosphere or a carbon dioxide gas atmosphere alone or in the presence of a metal salt. And is modified. These modified activated carbons increase the capacity of the electric double layer capacitor compared to unmodified activated carbons. Further, it also has the effect of increasing the conductivity, and since it can be used without adding a conductive agent to the electrode mixture, it is possible to charge to a higher voltage. With these, it is possible to supply an electric double layer capacitor having high capacity and high energy density.

【0006】本発明で用いられるキャパシタ用活性炭
は、フェノール系、アクリル系、レーヨン系、ピッチ系
などから合成された繊維状活性炭、あるいはヤシ殻系、
石炭系、木質系素灰などから賦活された活性炭、あるい
は合成高分子から誘導されるガラス状、繊維状カーボン
などが使用される。本発明で用いられるキャパシタ活物
質の平均粒子径は、良好な電極性能を得る上で、1〜5
0μm、好ましくは、3〜30μmである。本発明で用
いられる金属塩類は塩化ニッケル,塩化鉄などである
が、これに限るものではなく、コバルトやマンガン、銅
などの塩化物,酸化物,酢酸塩などを含む。本発明で用
いられる金属塩類の重量比は約0.4〜1%であるが、
これに限るものではなく、0.1%〜5%の範囲でも効
果が得られる。
The activated carbon for capacitors used in the present invention is a fibrous activated carbon synthesized from phenol-based, acrylic-based, rayon-based, pitch-based, etc., or coconut shell-based carbon.
Activated carbon activated from coal-based or wood-based ash, or glassy or fibrous carbon derived from a synthetic polymer is used. The average particle size of the capacitor active material used in the present invention is 1 to 5 in order to obtain good electrode performance.
It is 0 μm, preferably 3 to 30 μm. The metal salts used in the present invention are nickel chloride, iron chloride and the like, but are not limited to these, and include chlorides such as cobalt, manganese and copper, oxides and acetates. The weight ratio of the metal salts used in the present invention is about 0.4-1%,
The effect is not limited to this, and the effect can be obtained in the range of 0.1% to 5%.

【0007】本発明の塗布ペーストは、前記活性炭黒鉛
系あるいはアセチレンブラック、ファーネスブラックな
どのカーボン系導電性物質を併せて80重量%〜98.
5重量%とポリフッ化ビニリデン(PVdF)やラテッ
クス(スチレンブタジエン系ゴム(SBR)を水系溶剤
に分散したもの),テフロン(登録商標)などの結着剤
を含んでいることを特徴とする電気二重層キャパシタ電
極用塗布ペーストである。また、導電性物質を含まずと
も使用できる電気二重層キャパシタ電極用塗布ペースト
である。本発明の集電体の金属箔としては、アルミニウ
ム、ニッケル、ステンレススチール、銅などの金属箔、
金属網状物、金属多孔体等の1μm〜100μmの厚み
のものが用いられる。本発明のキャパシタ電極は、前記
塗布ペーストを、前記金属箔に、ドクターブレド法、各
種コーター法、グラビヤ法、インクジェット法等の任意
の方法で塗布し、絶乾し、電極を得る。必要ならば、更
にプレスしてもよい。本発明の塗布ペースト及び非水系
二次電池電極は、キャパシタ活物質と黒鉛系あるいはア
セチレンブラック、ファーネスブラックなどの導電性物
質を併せて80重量%〜98.5重量%とポリフッ化ビ
ニリデン(PVdF)やラテックス(スチレンブタジエ
ン系ゴム(SBR)を水系溶剤に分散したもの),テフ
ロンなどの結着剤を含んでいることを特徴とする電気二
重層キャパシタ電極用塗布ペーストである。また、導電
性物質を含まずとも使用できる電気二重層キャパシタ電
極用塗布ペーストである。キャパシタ活物質が、98.
5重量%を越えると集電体への接着が、悪くなり充放電
サイクル寿命に劣る。また80重量%未満では、キャパ
シタとして、体積当たりの容量が低下し好ましくない。
The coating paste of the present invention contains 80% by weight to 98% by weight of the activated carbon graphite-based or carbon-based conductive material such as acetylene black and furnace black.
5% by weight of polyvinylidene fluoride (PVdF), latex (styrene-butadiene rubber (SBR) dispersed in an aqueous solvent), Teflon (registered trademark), etc. It is a coating paste for a multilayer capacitor electrode. Further, it is an electric double layer capacitor electrode coating paste which can be used without containing a conductive substance. As the metal foil of the current collector of the present invention, aluminum, nickel, stainless steel, metal foil such as copper,
A metal net, a metal porous body or the like having a thickness of 1 μm to 100 μm is used. The capacitor electrode of the present invention is obtained by applying the coating paste to the metal foil by an arbitrary method such as a doctor blade method, various coater methods, a gravure method, an inkjet method, etc. and drying to obtain an electrode. Further pressing may be performed if necessary. The coating paste and the non-aqueous secondary battery electrode of the present invention include a capacitor active material and a conductive material such as graphite-based or acetylene black or furnace black in an amount of 80 wt% to 98.5 wt% and polyvinylidene fluoride (PVdF). A coating paste for an electric double layer capacitor electrode, characterized in that it contains a binder such as latex, latex (styrene-butadiene rubber (SBR) dispersed in an aqueous solvent), and Teflon. Further, it is an electric double layer capacitor electrode coating paste which can be used without containing a conductive substance. The capacitor active material is 98.
If it exceeds 5% by weight, the adhesion to the current collector will be poor and the charge / discharge cycle life will be poor. On the other hand, if it is less than 80% by weight, the capacity per volume of the capacitor decreases, which is not preferable.

【0008】本発明の電極に使用する電解液は、非プロ
トン性有機溶媒、例えばプロピレンカーボネート、エチ
レンカーボネート、ジメチルカーボネート、エチルメチ
ルカニボネート、ジエチルカーボネニト、γ−ブチロラ
クトン、スルホラン等であって、とくに限定されるわけ
でない。電解塩としてはEtNBF,EtNPF
,EtPBF,EtMeNBF などがあ
る。但し Et はC のMeはCHを略した
ものである。またこれらの 塩に LiC10、Li
BF,LiPF、LiA、CFSO
i、(CFSONLi等のリチウム塩を添加し
ても良い。本発明の電極に使用する電解液は、水溶液系
でも可能であり、この場合は電解質塩としては硫酸、苛
性カリなどが使用される。本発明の電極は円筒形、シー
ト形、角形等の任意の形状にして電極に用いられる。
The electrolytic solution used in the electrode of the present invention is an aprotic organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, ethylmethyl cannibonate, diethylcarbonenite, γ-butyrolactone, sulfolane and the like. It is not limited. As the electrolytic salt, Et 4 NBF 4 , Et 4 NPF is used.
6 , Et 4 PBF 4 , Et 3 MeNBF 4, and the like. However, Et is an abbreviation for C 3 H 5 and CH 3 . Further, these salts may be added to LiC10 4 , Li
BF 4 , LiPF 6 , LiA S F 6 , CF 3 SO 3 L
A lithium salt such as i, (CF 3 SO 2 ) 2 NLi may be added. The electrolytic solution used for the electrode of the present invention may be an aqueous solution, and in this case, sulfuric acid, caustic potash, etc. are used as the electrolyte salt. The electrode of the present invention is formed into any shape such as a cylindrical shape, a sheet shape, and a rectangular shape, and is used as the electrode.

【0009】[実施の形態]以下に本発明の実施例を説
明する。但し、以下に示す実施例は、本発明の例示であ
って本発明の電極は、これらに限定されるものではな
い。
[Embodiment] An embodiment of the present invention will be described below. However, the examples described below are examples of the present invention, and the electrodes of the present invention are not limited thereto.

【00010】[実施例1]平均粒子径20μmの水蒸
気賦活の電気二重層キャパシタ電極用活性炭(呉羽化学
工業(株)製)を80℃の塩化ニッケル水溶液中で4時
間撹拌した後、110℃で乾燥する。このときの塩化ニ
ッケルの量は活性炭に対し0.43重量部とする。乾燥
後活性炭を電気炉に入れ、不活性ガス気流下で850℃
まで昇温し、2時間保持する。導入するガスを二酸化炭
素に切り替え、さらに3時間熱処理したのち、再度不活
性ガスを導入しつつ冷却する。この活性炭80重量部に
導電剤10重量部、結着剤としてPVdF10重量部と
なるようにPVdFのNMP溶液を加えて撹拌し、活性
炭を分散させ、塗工液とする。これを表面を粗くした2
0μmのアルミ箔に膜厚200μmになるように塗布す
る。130°Cで真空乾燥を行う。これを16mmφに
打抜き、電極とする。
Example 1 Steam-activated activated carbon for electric double layer capacitor electrodes (manufactured by Kureha Chemical Industry Co., Ltd.) having an average particle size of 20 μm was stirred in an aqueous nickel chloride solution at 80 ° C. for 4 hours and then at 110 ° C. dry. The amount of nickel chloride at this time is 0.43 parts by weight with respect to the activated carbon. After drying, put the activated carbon in an electric furnace and in an inert gas stream at 850 ° C.
The temperature is raised to and held for 2 hours. The gas to be introduced is switched to carbon dioxide, heat treatment is further performed for 3 hours, and then cooling is performed while introducing an inert gas again. A conductive agent (10 parts by weight) and a PVdF NMP solution as a binder (10 parts by weight) were added to 80 parts by weight of this activated carbon and stirred to disperse the activated carbon to obtain a coating liquid. Roughened the surface of this 2
It is applied to a 0 μm aluminum foil so as to have a film thickness of 200 μm. Vacuum dry at 130 ° C. This is punched out into 16 mmφ and used as an electrode.

【00011】[実施例2]平均粒子径20μmの水蒸
気賦活の電気二重層キャパシタ電極用活性炭(呉羽化学
工業(株)製)を80℃の塩化ニッケル水溶液中で4時
間撹拌した後、110℃で乾燥する。このときの塩化ニ
ッケルの量は活性炭に対し0.43重量部とする。乾燥
後活性炭を電気炉に入れ、不活性ガス気流下で850℃
まで昇温し、2時間保持する。導入するガスを水蒸気に
切り替え、さらに3時間熱処理したのち、再度不活性ガ
スを導入しつつ冷却する。この活性炭80重量部に導電
剤10重量部、結着剤としてPVdF10重量部となる
ようにPVdFのNMP溶液を加えて撹拌し、活性炭を
分散させ、塗工液とする。これを表面を粗くした20μ
mのアルミ箔に膜厚200μmになるように塗布する。
130°Cで真空乾燥を行う。これを16mmφに打抜
き、電極とする。
Example 2 Steam-activated activated carbon for electric double layer capacitor electrodes (manufactured by Kureha Chemical Industry Co., Ltd.) having an average particle size of 20 μm was stirred in an aqueous solution of nickel chloride at 80 ° C. for 4 hours and then at 110 ° C. dry. The amount of nickel chloride at this time is 0.43 parts by weight with respect to the activated carbon. After drying, put the activated carbon in an electric furnace and in an inert gas stream at 850 ° C.
The temperature is raised to and held for 2 hours. The gas to be introduced is changed to water vapor, heat treatment is further performed for 3 hours, and then the inert gas is again introduced and cooled. A conductive agent (10 parts by weight) and a PVdF NMP solution as a binder (10 parts by weight) were added to 80 parts by weight of this activated carbon and stirred to disperse the activated carbon to obtain a coating liquid. 20μ with roughened surface
m aluminum foil to a film thickness of 200 μm.
Vacuum dry at 130 ° C. This is punched out into 16 mmφ and used as an electrode.

【00012】[実施例3]平均粒子径20μmの水蒸
気賦活の電気二重層キャパシタ電極用活性炭(呉羽化学
工業(株)製)をを電気炉に入れ、不活性ガス気流下で
850℃まで昇温し、2時間保持する。導入するガスを
二酸化炭素に切り替え、さらに3時間熱処理したのち、
再度不活性ガスを導入しつつ冷却する。この活性炭80
重量部に導電剤10重量部、結着剤としてPVdF10
重量部となるようにPVdFのNMP溶液を加えて撹拌
し、活性炭を分散させ、塗工液とする。これを表面を粗
くした20μmのアルミ箔に膜厚200μmになるよう
に塗布する。130°Cで真空乾燥を行う。これを16
mmφに打抜き、電極とする。
[Example 3] Activated carbon for steam-activated electric double layer capacitor electrodes (manufactured by Kureha Chemical Industry Co., Ltd.) having an average particle size of 20 µm was placed in an electric furnace and heated to 850 ° C under an inert gas stream. And hold for 2 hours. After changing the gas to be introduced to carbon dioxide and performing heat treatment for 3 hours,
Cool while introducing the inert gas again. This activated carbon 80
10 parts by weight of conductive agent, PVdF10 as a binder
An NMP solution of PVdF is added so as to be a weight part and stirred, and activated carbon is dispersed to obtain a coating liquid. This is applied to a 20 μm-thick aluminum foil having a roughened surface so as to have a film thickness of 200 μm. Vacuum dry at 130 ° C. This 16
It is punched into mmφ and used as an electrode.

【00013】[実施例4]平均粒子径20μmの水蒸
気賦活の電気二重層キャパシタ電極用活性炭(呉羽化学
工業(株)製)をを電気炉に入れ、不活性ガス気流下で
850℃まで昇温し、2時間保持する。導入するガスを
水蒸気に切り替え、さらに3時間熱処理したのち、再度
不活性ガスを導入しつつ冷却する。この活性炭80重量
部に導電剤10重量部、結着剤としてPVdF10重量
部となるようにPVdFのNMP溶液を加えて撹拌し、
活性炭を分散させ、塗工液とする。これを表面を粗くし
た20μmのアルミ箔に膜厚200μmになるように塗
布する。130°Cで真空乾燥を行う。これを16mm
φに打抜き、電極とする。
[Example 4] Activated carbon for steam activated electric double layer capacitor electrodes (manufactured by Kureha Chemical Industry Co., Ltd.) having an average particle diameter of 20 µm was placed in an electric furnace and heated to 850 ° C under an inert gas stream. And hold for 2 hours. The gas to be introduced is changed to water vapor, heat treatment is further performed for 3 hours, and then the inert gas is again introduced and cooled. To 80 parts by weight of this activated carbon, 10 parts by weight of a conductive agent and 10 parts by weight of PVdF as a binder were added and stirred with an NMP solution of PVdF,
Activated carbon is dispersed to obtain a coating liquid. This is applied to a 20 μm-thick aluminum foil having a roughened surface so as to have a film thickness of 200 μm. Vacuum dry at 130 ° C. This is 16mm
Punch into φ and use as electrode.

【00014】[実施例5]平均粒子径20μmの水蒸
気賦活の電気二重層キャパシタ電極用活性炭(呉羽化学
工業(株)製)を80℃の塩化第二鉄水溶液中で4時間
撹拌した後、110℃で乾燥する。このときの塩化第二
鉄の量は活性炭に対し0.43重量部とする。乾燥後活
性炭を電気炉に入れ、不活性ガス気流下で850℃まで
昇温し、2時間保持する。導入するガスを二酸化炭素に
切り替え、さらに3時間熱処理したのち、再度不活性ガ
スを導入しつつ冷却する。この活性炭80重量部に導電
剤10重量部、結着剤としてPVdF10重量部となる
ようにPVdFのNMP溶液を加えて撹拌し、活性炭を
分散させ、塗工液とする。これを表面を粗くした20μ
mのアルミ箔に膜厚200μmになるように塗布する。
130°Cで真空乾燥を行う。これを16mmφに打抜
き、電極とする。
Example 5 Steam-activated activated carbon for electric double layer capacitor electrodes (Kureha Chemical Industry Co., Ltd.) having an average particle size of 20 μm was stirred in an aqueous ferric chloride solution at 80 ° C. for 4 hours, and then 110 Dry at ℃. The amount of ferric chloride at this time is 0.43 parts by weight with respect to the activated carbon. After drying, the activated carbon is put into an electric furnace, heated to 850 ° C. under an inert gas stream, and kept for 2 hours. The gas to be introduced is switched to carbon dioxide, heat treatment is further performed for 3 hours, and then cooling is performed while introducing an inert gas again. A conductive agent (10 parts by weight) and a PVdF NMP solution as a binder (10 parts by weight) were added to 80 parts by weight of this activated carbon and stirred to disperse the activated carbon to obtain a coating liquid. 20μ with roughened surface
m aluminum foil to a film thickness of 200 μm.
Vacuum dry at 130 ° C. This is punched out into 16 mmφ and used as an electrode.

【00015】[比較例1]平均粒子径20μmの水蒸
気賦活の電気二重層キャパシタ電極用活性炭(呉羽化学
工業(株)製)80重量部に導電剤10重量部、結着剤
としてPVdF10重量部となるようにPVdFのNM
P溶液を加えて撹拌し、活性炭を分散させ、塗工液とす
る。これを表面を粗くした20μmのアルミ箔に膜厚2
00μmになるように塗布する。130°Cで真空乾燥
を行う。これを16mmφに打抜き、電極とする。
[Comparative Example 1] 80 parts by weight of activated carbon (produced by Kureha Chemical Industry Co., Ltd.) for an electric double layer capacitor electrode of water vapor activation having an average particle size of 20 μm, 10 parts by weight of a conductive agent, and 10 parts by weight of PVdF as a binder. To be PVdF NM
The P solution is added and stirred to disperse the activated carbon to obtain a coating liquid. This is applied to a 20 μm aluminum foil with a roughened surface to a film thickness of 2
Apply so as to have a thickness of 00 μm. Vacuum dry at 130 ° C. This is punched out into 16 mmφ and used as an electrode.

【00016】[キャパシタの作製とその評価]実施例
1〜5」及び比較例1に記述した電極材を正負両極とし
て、あらかじめ150℃で真空乾燥したガラス繊維濾紙
(ADVANTEC:GA100)をセパレーターとし
て介在させ、1モル/リットルの(C・NB
のプロピレンカーボネート溶液を電解液として電気
二重層キャパシタを作製した。
[Production of capacitor and its evaluation] The electrode materials described in Examples 1 to 5 "and Comparative Example 1 were used as positive and negative electrodes, and glass fiber filter paper (ADVANTEC: GA100) preliminarily vacuum dried at 150 ° C was used as a separator. 1 mol / liter of (C 2 H 5 ) 4 · NB
An electric double layer capacitor was produced using a propylene carbonate solution of F 4 as an electrolytic solution.

【00017】充放電の測定は、東洋システム製電池用
充放電測定装置TOSCAT3100U型を使用し、充
電0.8mAの定電流充電を行い、3Vまで充電を行っ
た。放電は0.8mAの定電流放電を行い、終止電圧を
0Vとした。
The charge / discharge was measured by using a battery charge / discharge measuring device TOSCAT3100U manufactured by Toyo System Co., Ltd., and constant current charging of 0.8 mA was performed to charge up to 3V. The discharge was a constant current discharge of 0.8 mA, and the final voltage was 0V.

【00018】静電容量は次のようにして求めた。The capacitance was determined as follows.

【00019】放電曲線(放電電圧−放電時間)から放
電エネルギー(放電電圧x電流(0.8mA)の時間積
分として合計放電エネルギー(W・s)を求め、静電容
量(F)=2x合計放電エネルギー(W・s)/(放電
開始電圧(V))の式を用いて評価セルの静電容量を
求め、この静電容量を用いた活性炭の単位重量当たり静
電容量(F/g)とした。
From the discharge curve (discharge voltage-discharge time), the total discharge energy (Ws) was obtained as the time integration of the discharge energy (discharge voltage x current (0.8 mA), and electrostatic capacity (F) = 2 x total discharge The capacitance of the evaluation cell is calculated using the formula of energy (Ws) / (discharge starting voltage (V)) 2 , and the capacitance per unit weight of activated carbon (F / g) is calculated using this capacitance. And

【00020】実施例、比較例に記した電極を用いて作
製した電気二重層キャパシタの静電容量を表1に示す。
Table 1 shows the electrostatic capacities of the electric double layer capacitors produced by using the electrodes described in Examples and Comparative Examples.

【00021】[00021]

【表1】 [Table 1]

【00022】[発明の効果]表1の如く、本発明によ
る電極は、比較例1に示す再賦活を行わない市販の活性
炭に対して最大で約25%大きな静電容量を示した。ま
た図1に示すがごとく、長いサイクルにわたり、市販の
活性炭より大きな容量を示しており、高エネルギー密度
でかつ長寿命の電気二重層キャパシタを供与することが
可能である。さらに図2に示すがごとく、高い電流密度
で充放電を行った場合でも容量の低下が少なく優れた電
気二重層キャパシタを作成することを可能とした。
[Effects of the Invention] As shown in Table 1, the electrode according to the present invention showed a maximum capacitance of about 25% larger than that of the commercially available activated carbon shown in Comparative Example 1 which was not reactivated. Further, as shown in FIG. 1, it exhibits a larger capacity than a commercially available activated carbon over a long cycle, and it is possible to provide an electric double layer capacitor having a high energy density and a long life. Further, as shown in FIG. 2, it is possible to produce an excellent electric double layer capacitor with a small decrease in capacity even when charged and discharged at a high current density.

【0023】[0023]

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)塩化ニッケルと炭酸ガスにより再賦活し
た活性炭及び(b)市販の活性炭を用いた電気二重層キ
ャパシタのサイクル特性
FIG. 1 is a cycle characteristic of an electric double layer capacitor using (a) activated carbon reactivated by nickel chloride and carbon dioxide and (b) commercially available activated carbon.

【図2】(a)塩化ニッケルと炭酸ガスにより再賦活し
た活性炭及び(b)市販の活性炭を用いた電気二重層キ
ャパシタの放電レート特性
FIG. 2 is a discharge rate characteristic of an electric double layer capacitor using (a) activated carbon reactivated by nickel chloride and carbon dioxide and (b) commercially available activated carbon.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 磯野 健一 福岡県三池郡高田町原1018   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenichi Isono             1018 Takadachobara, Miike District, Fukuoka Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 既知の電気二重層用活性炭(通常の水蒸
気賦活あるいはKOH賦活法等による)を金属塩共存下
で、炭酸ガス雰囲気中700〜1000℃で加熱して改
質することを特徴とする電気二重層キャパシタ用活性炭
の改質方法。
1. A method of modifying a known activated carbon for electric double layer (by a conventional steam activation or KOH activation method) in the presence of a metal salt at 700 to 1000 ° C. in a carbon dioxide gas atmosphere for modification. Method for reforming activated carbon for electric double layer capacitor.
【請求項2】 既知の電気二重層用活性炭(通常水蒸気
賦活あるいはKOH賦活法等による)をさらに金属塩共
存下で、水蒸気雰囲気中700〜1000℃で加熱して
改質することを特徴とする電気二重層キャパシタ用活性
炭の改質方法。あるいは既知の電気二重層用活性炭を炭
酸ガス雰囲気中700〜1000℃で加熱して改質する
ことを特徴とする電気二重層キャパシタ用活性炭の改質
方法。
2. A known electric double layer activated carbon (usually steam activated or KOH activated) is further heated in a steam atmosphere at 700 to 1000 ° C. for reforming in the presence of a metal salt. A method for reforming activated carbon for electric double layer capacitors. Alternatively, a known method for reforming activated carbon for an electric double layer capacitor is characterized by heating the activated carbon for an electric double layer at 700 to 1000 ° C. in a carbon dioxide gas atmosphere for reforming.
【請求項3】請求項1または請求項2により作製される
電気二重層キャパシタ電極
3. An electric double layer capacitor electrode produced according to claim 1 or 2.
【請求項4】請求項3により作製される電気二重層キャ
パシタ
4. An electric double layer capacitor manufactured according to claim 3.
JP2002153134A 2002-04-17 2002-04-17 High energy density electric double layer capacitor Pending JP2003309046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002153134A JP2003309046A (en) 2002-04-17 2002-04-17 High energy density electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153134A JP2003309046A (en) 2002-04-17 2002-04-17 High energy density electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2003309046A true JP2003309046A (en) 2003-10-31

Family

ID=29398000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153134A Pending JP2003309046A (en) 2002-04-17 2002-04-17 High energy density electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2003309046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311573C (en) * 2004-03-24 2007-04-18 Tdk株式会社 Electrode and manufacturing method for the same, electrochemical device manufacturing method and electrochemical device
JP2007281427A (en) * 2007-02-02 2007-10-25 Nfk Holdings Co Ltd Method for manufacturing activated carbon for electric double layer capacitor or coal as its raw material, and installation for manufacturing activated carbon for electric double layer capacitor
JP2008270427A (en) * 2007-04-18 2008-11-06 Cataler Corp Carbon material for power storage device electrode, and manufacturing method thereof
JP2012049389A (en) * 2010-08-27 2012-03-08 Nippon Carbon Co Ltd Method of producing active carbon for capacitor and active carbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311573C (en) * 2004-03-24 2007-04-18 Tdk株式会社 Electrode and manufacturing method for the same, electrochemical device manufacturing method and electrochemical device
JP2007281427A (en) * 2007-02-02 2007-10-25 Nfk Holdings Co Ltd Method for manufacturing activated carbon for electric double layer capacitor or coal as its raw material, and installation for manufacturing activated carbon for electric double layer capacitor
JP2008270427A (en) * 2007-04-18 2008-11-06 Cataler Corp Carbon material for power storage device electrode, and manufacturing method thereof
JP2012049389A (en) * 2010-08-27 2012-03-08 Nippon Carbon Co Ltd Method of producing active carbon for capacitor and active carbon

Similar Documents

Publication Publication Date Title
JP5322435B2 (en) Negative electrode active material for electricity storage devices
CN104810504B (en) A kind of Flexible graphene collector and active material integrated electrode pole piece and preparation method thereof
US7691782B2 (en) Active carbon, production method thereof and polarizable electrode
WO2012146046A1 (en) Polyimide capacitance battery and manufacturing method thereof
WO2011103708A1 (en) Capacitor cell with high-specific-energy organic system
JP2007115721A (en) Lithium ion capacitor
JP2013157603A (en) Activated carbon for lithium ion capacitor, electrode including the same as active material, and lithium ion capacitor using electrode
US20120099246A1 (en) Lithium ion capacitor
JP2009205918A (en) Power storage device
CN110993358A (en) Flexible zinc ion capacitor
JP2007180431A (en) Lithium ion capacitor
WO2018059180A1 (en) High-power, high-energy chemical power supply and preparation method therefor
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
JP4731974B2 (en) Lithium ion capacitor
JP2001210318A (en) Manufacturing method of negative electrode for nonaqueous electrolytic solution secondary battery
JP2003309046A (en) High energy density electric double layer capacitor
JP2007294539A (en) Lithium ion hybrid capacitor
JP2000306609A (en) Secondary power supply
WO2018197903A1 (en) Battery comprising an electrode having carbon additives
JP2008166309A (en) Lithium ion capacitor
JP4732074B2 (en) Lithium ion capacitor
CN114188504A (en) Electrochemical device and electronic device
JP2006310412A (en) Lithium-ion capacitor
JP2003017370A (en) Coating paste for capacitor and electric double layer capacitor electrode
JPH1027733A (en) Electric double-layer capacitor and manufacture thereof