JP2014105119A - Sulfur-doped active carbon for storage device and method for producing the same - Google Patents

Sulfur-doped active carbon for storage device and method for producing the same Download PDF

Info

Publication number
JP2014105119A
JP2014105119A JP2012257398A JP2012257398A JP2014105119A JP 2014105119 A JP2014105119 A JP 2014105119A JP 2012257398 A JP2012257398 A JP 2012257398A JP 2012257398 A JP2012257398 A JP 2012257398A JP 2014105119 A JP2014105119 A JP 2014105119A
Authority
JP
Japan
Prior art keywords
range
activated carbon
sulfur
ebonite
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012257398A
Other languages
Japanese (ja)
Other versions
JP6006624B2 (en
JP2014105119A5 (en
Inventor
Soji Shiraishi
壮志 白石
Masanori Nara
将法 奈良
Kensuke Sakata
健介 坂田
Hiroshi Kiyokumo
博史 清雲
Takashi Tonouchi
敬 登之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Gunma University NUC
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Gunma University NUC
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Gunma University NUC, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2012257398A priority Critical patent/JP6006624B2/en
Publication of JP2014105119A publication Critical patent/JP2014105119A/en
Publication of JP2014105119A5 publication Critical patent/JP2014105119A5/ja
Application granted granted Critical
Publication of JP6006624B2 publication Critical patent/JP6006624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To produce active carbon for the electrode of a storage battery not only having high volume in charging/discharging at a high current density but also having excellent durability to high voltage charging of 3 V or higher.SOLUTION: The active carbon for a storage device is doped with sulfur, in which specific surface area lies in the range of 1,500 to 1,700 m/g, micropore volume lies in the range of 0.6 to 0.8 ml/g, the average micropore width lies in the range of 0.95 to 1.15 nm, and the atomic ratio of sulfur to carbon lies in the range of 0.05 to 0.06.

Description

本発明は、電気二重層キャパシタ等の蓄電デバイスの電極に用いられる活性炭及びその活性炭を製造する方法に関するものである。   The present invention relates to activated carbon used for an electrode of an electricity storage device such as an electric double layer capacitor and a method for producing the activated carbon.

充電して繰り返し使える電気二重層キャパシタ(Electric Double Layer Capacitor)は、活性炭などの多孔質炭素電極内の細孔に形成されるイオンの吸着層、即ち電気二重層に電荷を蓄えるコンデンサである。この電気二重層キャパシタは長寿命で高出力であるため、コンピュータのメモリのバックアップ用電源として普及しており、最近では、鉄道車両に搭載した電力貯蔵システムやハイブリッド車の補助電源として急激に注目されている。   An electric double layer capacitor that can be charged and used repeatedly is an ion adsorption layer formed in pores in a porous carbon electrode such as activated carbon, that is, a capacitor that stores electric charge in an electric double layer. Because this electric double layer capacitor has a long life and high output, it is widely used as a backup power source for computer memory. Recently, it has attracted a great deal of attention as a power storage system installed in railway vehicles and as an auxiliary power source for hybrid vehicles. ing.

図7に示すように、電気二重層キャパシタ10は、電解液11に浸漬した二枚の活性炭電極12,13間に電源14を繋いで電圧を印加することで充電される。充電時は電解質イオンが電極表面に吸着する。具体的には、正極12では正孔(h)に電解液11中の陰イオン(−)が、負極13では電子(e)に電解液11中の陽イオン(+)がそれぞれ引きつけられ、正孔(h)と陰イオン(−)とは、また電子(e)と陽イオン(+)とはおよそ数Åという極小の距離をおいて配向し電気二重層を形成する。この状態は電源が外されても維持され、化学反応を利用することなく蓄電状態を維持する。放電時には吸着していた陽イオン並びに陰イオンがそれぞれの電極から脱離する。具体的には、電子(e)が正極12に戻り、それにつれて正孔(h)がなくなっていき、これに伴い、陽イオン、陰イオンが電解液中に再び拡散する。このように、充放電の全過程にわたって、キャパシタ材料には何の変化も伴わないため、化学反応による発熱や劣化がなく、長寿命を保つことができる。 As shown in FIG. 7, the electric double layer capacitor 10 is charged by applying a voltage by connecting a power source 14 between two activated carbon electrodes 12 and 13 immersed in an electrolyte solution 11. During charging, electrolyte ions are adsorbed on the electrode surface. Specifically, the positive electrode 12 attracts positive ions ( ) in the electrolytic solution 11 to holes (h + ), and the negative electrode 13 attracts positive ions (+) in the electrolytic solution 11 to electrons (e ). The holes (h + ) and the anions (−) and the electrons (e ) and the cations (+) are aligned with a minimum distance of about several tens to form an electric double layer. This state is maintained even when the power supply is removed, and the charged state is maintained without using a chemical reaction. The cations and anions adsorbed at the time of discharge are desorbed from the respective electrodes. Specifically, the electrons (e ) return to the positive electrode 12, and as a result, holes (h + ) disappear. Along with this, cations and anions diffuse again into the electrolyte. In this way, since the capacitor material is not changed during the entire charging and discharging process, heat generation and deterioration due to a chemical reaction are not caused, and a long life can be maintained.

電気二重層キャパシタは、一般的に二次電池に比べて(1)高速での充放電が可能、(2)充放電サイクルの可逆性が高い、(3)サイクル寿命が長い、(4)電極や電解質に重金属を用いていないので環境に優しい、といった特徴を有する。これらの特徴は、電気二重層キャパシタが重金属を用いておらず、またイオンの物理的吸脱離によって作動し、化学種の電子移動反応を伴わないことに由来する。   Electric double layer capacitors generally have (1) high-speed charge / discharge, (2) high reversibility of charge / discharge cycles, (3) long cycle life, and (4) electrodes compared to secondary batteries. And because it does not use heavy metals in the electrolyte, it is environmentally friendly. These characteristics are derived from the fact that the electric double layer capacitor does not use heavy metal, operates by physical adsorption / desorption of ions, and does not involve an electron transfer reaction of chemical species.

電気二重層キャパシタに蓄電されるエネルギー(E)は、充電電圧(V)の二乗と電気二重層容量(C)の積に比例するため(E=CV/2)、エネルギー密度の改善には容量並びに充電電圧の向上が有効である。電気二重層キャパシタの充電電圧は通常、2.5V程度に抑えられている。これは、3V以上の電圧で充電すると電極並びに電解液の電気分解が始まることで容量が低下し、電気二重層キャパシタが劣化してしまうからであると説明されている。 Energy (E) which is charged to the electric double layer capacitor is proportional to the product of the square and the electric double layer capacity of the charging voltage (V) (C) (E = CV 2/2), the improvement of the energy density Improvement of capacity and charging voltage is effective. The charging voltage of the electric double layer capacitor is normally suppressed to about 2.5V. It is explained that this is because when the battery is charged at a voltage of 3 V or more, the electrode and the electrolyte begin to electrolyze, the capacity is reduced and the electric double layer capacitor is deteriorated.

上記課題を解決するための研究として、炭素に異種元素がドープされた電極材料のEDLC特性が注目されている。例えば、非特許文献1では、炭素ナノ細孔体に窒素をドープすることによりEDLCの容積を向上させることが報告されている。窒素ドープによりEDLCの容積が向上する理由として、(1)細孔表面の濡れ性が向上する、(2)ドープされた窒素が表面官能基となり疑似容量(酸化還元容量)を発揮して容量が上乗せされる、(3)ドープされた窒素が炭素中のキャリア濃度を増加させることで空間電荷層容量が増加する、などの機構が提唱されている。また、特許文献1には、活性炭に窒素をドープすると高電圧充電に対する耐久性が改善できることが記載されている。これは、窒素ドープによって電極上での電気分解反応が抑制されるためと考えられる。   As a research for solving the above-mentioned problems, attention has been paid to the EDLC characteristics of electrode materials in which different elements are doped in carbon. For example, Non-Patent Document 1 reports that the volume of EDLC is improved by doping carbon nanopores with nitrogen. The reason why the volume of EDLC is improved by nitrogen doping is as follows: (1) wettability of the pore surface is improved, (2) doped nitrogen becomes a surface functional group and exhibits pseudo capacity (redox capacity) Mechanisms have been proposed, such as adding (3) doped nitrogen to increase the carrier concentration in carbon and thereby increasing the space charge layer capacity. Patent Document 1 describes that when activated carbon is doped with nitrogen, durability against high voltage charging can be improved. This is considered because the electrolysis reaction on the electrode is suppressed by nitrogen doping.

EDLCの容積を向上させるために、窒素以外の元素をドープした活性炭については充分に研究が行われていない。非特許文献2には、ポリチオフェンをKOH賦活(アルカリ賦活)することで硫黄ドープ活性炭が調製されることが報告されている。この文献では、活性炭中の硫黄原子はXPS S2p3/2スペクトルで164eV及び169eVの結合エネルギーを示す結合状態であり、それぞれ、C−S−C(サルファイド)結合及びC−SO−C(スルフォン)結合に相当する。ただし、この硫黄ドープ活性炭については、EDLC特性など応用面での評価はされていない。 In order to improve the volume of EDLC, activated carbon doped with elements other than nitrogen has not been sufficiently studied. Non-Patent Document 2 reports that a sulfur-doped activated carbon is prepared by KOH activation (alkali activation) of polythiophene. In this document, the sulfur atom in the activated carbon is in a bonded state having a binding energy of 164 eV and 169 eV in the XPS S2p 3/2 spectrum, which is a C—S—C (sulfide) bond and a C—SO 2 —C (sulfone), respectively. ) Corresponds to a bond. However, this sulfur-doped activated carbon has not been evaluated in terms of application such as EDLC characteristics.

特開2008−141116号公報(要約及び明細書段落[0009])JP 2008-141116 A (Summary and paragraph [0009] of the specification)

山田能正、棚池修、白石壮志,「PTFEの脱フッ素化による多孔質炭素の調製と電気二重層キャパシタへの応用」,炭素材料学会,2004,No.215,P.285−294Nomasa Yamada, Osamu Tanaike, Soshi Shiraishi, “Preparation of Porous Carbon by Defluorination of PTFE and Application to Electric Double Layer Capacitors”, Carbon Materials Society of Japan, 2004, No. 215, P.I. 285-294 Marta Sevilla, Antonio B. Fuertes, Highly porous S-doped carbons, Microporous and Mesoporous Materials, 158, 318-323 (2012)Marta Sevilla, Antonio B. Fuertes, Highly porous S-doped carbons, Microporous and Mesoporous Materials, 158, 318-323 (2012)

しかしながら、非特許文献2では、C−S−C(サルファイド)結合が存在すると報告されているが、サルファイド結合では、中心の硫黄原子と隣接する片方の炭素原子から見れば両者間は単結合であり、賦活時の高温(600〜800℃)でサルファイド結合は分解してしまい、活性炭の状態ではサルファイド結合は存在しないと考えられる。また、非特許文献2で活性炭の原料として用いられるポリチオフェンは高価であり、より廉価な原料が求められている。例えば、ポリチオフェンに比べて廉価なエボナイトを原料として用いた活性炭についての報告はなされていない。更に、本発明者らの検討によると、エボナイト又はエボナイト炭素化物をKOH賦活しても硫黄は活性炭にドープされないことが判明しており、他の製造方法が求められている。   However, in Non-Patent Document 2, it is reported that a C—S—C (sulfide) bond exists. However, in the sulfide bond, a single bond is formed between the two when viewed from one carbon atom adjacent to the central sulfur atom. Yes, the sulfide bond is decomposed at a high temperature (600 to 800 ° C.) at the time of activation, and it is considered that the sulfide bond does not exist in the activated carbon state. In addition, polythiophene used as a raw material for activated carbon in Non-Patent Document 2 is expensive, and a cheaper raw material is required. For example, there has been no report on activated carbon using ebonite, which is less expensive than polythiophene, as a raw material. Further, according to the study by the present inventors, it has been found that even if ebonite or ebonite carbonized product is activated by KOH, sulfur is not doped into activated carbon, and other production methods are required.

本発明の目的は、3V以上の高電圧充電に対する耐久性が優れた電気二重層キャパシタに好適な蓄電デバイスの電極用活性炭及びこの製造方法を提供することにある。   An object of the present invention is to provide an activated carbon for an electrode of an electricity storage device suitable for an electric double layer capacitor excellent in durability against high voltage charging of 3 V or more, and a method for producing the same.

本発明の第1の観点は、硫黄がドープされた活性炭において、比表面積が1500〜1700m/gの範囲にあり、ミクロ孔容積が0.6〜0.8ml/gの範囲にあり、平均ミクロ孔幅が0.95〜1.15nmの範囲にあり、炭素に対する硫黄の原子比が0.05〜0.06の範囲にある蓄電デバイス用活性炭である。 The first aspect of the present invention is that, in the activated carbon doped with sulfur, the specific surface area is in the range of 1500-1700 m 2 / g, the micropore volume is in the range of 0.6-0.8 ml / g, and the average The activated carbon for an electricity storage device has a micropore width in the range of 0.95 to 1.15 nm and an atomic ratio of sulfur to carbon in the range of 0.05 to 0.06.

本発明の第2の観点は、第1の観点の活性炭を電極として用いた電気二重層キャパシタである。   A second aspect of the present invention is an electric double layer capacitor using the activated carbon of the first aspect as an electrode.

本発明の第3の観点は、エボナイト粉末を大気圧雰囲気下、室温から200〜300℃の範囲まで昇温し、大気圧雰囲気下、前記昇温した温度で1〜3時間保持することにより不融化を行う工程と、前記不融化したエボナイト粉末を、不活性ガス雰囲気下、700〜900℃の範囲まで昇温し、不活性ガス雰囲気下、前記昇温した温度で0.5〜2時間保持することにより前記不融化エボナイト粉末を炭素化処理して炭素化エボナイトを得る工程と、前記炭素化エボナイトを不活性ガス雰囲気下、800〜950℃の範囲まで昇温し、賦活収率が45〜55%の範囲になるように二酸化炭素流通下、前記昇温した温度で保持することにより前記炭素化物を賦活処理して、炭素に対する硫黄の原子比が0.05〜0.06の範囲にある活性炭を得る工程とを含むことを特徴とする蓄電デバイス用活性炭の製造方法である。   The third aspect of the present invention is that the ebonite powder is heated by raising the temperature of the ebonite powder from room temperature to a range of 200 to 300 ° C. in an atmospheric pressure atmosphere, and maintaining the elevated temperature in the atmospheric pressure atmosphere for 1 to 3 hours. The melting step and the infusible ebonite powder are heated to a range of 700 to 900 ° C. in an inert gas atmosphere and held at the elevated temperature for 0.5 to 2 hours in an inert gas atmosphere. A step of carbonizing the infusible ebonite powder to obtain carbonized ebonite; and heating the carbonized ebonite to a range of 800 to 950 ° C. in an inert gas atmosphere, and an activation yield of 45 to 45%. The carbonized product is activated by holding at the elevated temperature under the flow of carbon dioxide so as to be in the range of 55%, and the atomic ratio of sulfur to carbon is in the range of 0.05 to 0.06. Activated carbon A method for producing activated carbon for an electricity storage device which comprises a that step.

本発明の蓄電デバイス用活性炭は、硫黄がドープされた活性炭において、比表面積が1500〜1700m/gの範囲にあり、ミクロ孔容積が0.6〜0.8ml/gの範囲にあり、平均ミクロ孔幅が0.95〜1.15nmの範囲にあり、炭素に対する硫黄の原子比が0.05〜0.06の範囲にあることを特徴とする。上記活性炭を用いることで、ドープされた硫黄は電極上での電気分解の抑制効果があるため、3V以上の高電圧充電に対する耐久性が優れた電気二重層キャパシタを製造することができる。また、3V以上の高電圧充電に対する耐久性が向上することにより、電気二重層キャパシタの安全性が高まるだけでなく、エネルギー密度も改善され、電気二重層キャパシタの普及が加速されるという効果も期待される。 The activated carbon for an electricity storage device of the present invention is an activated carbon doped with sulfur, having a specific surface area in the range of 1500-1700 m 2 / g, a micropore volume in the range of 0.6-0.8 ml / g, and an average The micropore width is in the range of 0.95 to 1.15 nm, and the atomic ratio of sulfur to carbon is in the range of 0.05 to 0.06. By using the activated carbon, doped sulfur has an effect of suppressing electrolysis on the electrode, and thus an electric double layer capacitor excellent in durability against high voltage charging of 3 V or more can be manufactured. In addition, the durability against high-voltage charging of 3 V or more is improved, so that not only the safety of the electric double layer capacitor is increased, but also the energy density is improved and the spread of the electric double layer capacitor is expected to be accelerated. Is done.

更に、本発明の蓄電デバイス用活性炭では、親銅元素である硫黄原子が活性炭の細孔側壁に組み込まれているので、銅イオン、水銀イオン、銅イオン等の特定のカチオンに対して強い吸着性を示すことが予想される。そのため、水処理用の活性炭として使用されることが期待される。   Furthermore, in the activated carbon for power storage devices of the present invention, the sulfur atom, which is a parent copper element, is incorporated in the pore side wall of the activated carbon, so it has strong adsorptivity for specific cations such as copper ions, mercury ions, copper ions, Is expected to show. Therefore, it is expected to be used as activated carbon for water treatment.

本発明の蓄電デバイスの電極用活性炭の製造方法を示す図である。It is a figure which shows the manufacturing method of the activated carbon for electrodes of the electrical storage device of this invention. 実施例で使用した電気二重層キャパシタ評価用の二極式セルの構造を示す図である。It is a figure which shows the structure of the bipolar cell for electric double layer capacitor evaluation used in the Example. 実施例及び比較例の活性炭の77Kでの窒素吸脱着等温線を示す図である。It is a figure which shows the nitrogen adsorption-desorption isotherm at 77K of the activated carbon of an Example and a comparative example. 実施例の活性炭及びエボナイト炭素化物のX線光電子分光法による分析結果を示す図である。It is a figure which shows the analysis result by the X-ray photoelectron spectroscopy of the activated carbon and ebonite carbonized material of an Example. 実施例及び比較例の活性炭の電気二重層キャパシタの耐久試験前の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve before the endurance test of the electric double layer capacitor of the activated carbon of an Example and a comparative example. 実施例及び比較例の活性炭の電気二重層キャパシタの耐久試験後の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve after the endurance test of the electric double layer capacitor of the activated carbon of an Example and a comparative example. 一般的な電気二重層キャパシタの充放電を示す原理図である。It is a principle figure which shows charging / discharging of a general electric double layer capacitor.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

図1に示すように、本発明の蓄電デバイスの電極用活性炭の製造方法は、エボナイト粉末を大気圧雰囲気下、室温から200〜300℃の範囲まで昇温し、大気圧雰囲気下、前記昇温した温度で1〜3時間保持することにより不融化を行う工程と、前記不融化したエボナイト粉末を、不活性ガス雰囲気下、700〜900℃の範囲まで昇温し、不活性ガス雰囲気下、前記昇温した温度で0.5〜2時間保持することにより前記不融化エボナイト粉末を炭素化処理して炭素化エボナイトを得る工程と、前記炭素化エボナイトを不活性ガス雰囲気下、800〜950℃の範囲まで昇温し、賦活収率が45〜55%の範囲になるように二酸化炭素流通下、前記昇温した温度で保持することにより前記炭素化物を賦活処理する工程とを有することを特徴とする。   As shown in FIG. 1, the method for producing activated carbon for electrodes of an electricity storage device of the present invention raises the temperature of ebonite powder from room temperature to a range of 200 to 300 ° C. in an atmospheric pressure atmosphere. The step of infusibilizing by holding at the temperature for 1 to 3 hours, and heating the infusible ebonite powder to a range of 700 to 900 ° C. in an inert gas atmosphere, The step of carbonizing the infusible ebonite powder by holding the temperature at a raised temperature for 0.5 to 2 hours to obtain carbonized ebonite; and the carbonized ebonite at 800 to 950 ° C. in an inert gas atmosphere. And the step of activating the carbonized product by maintaining at the elevated temperature under a carbon dioxide stream so that the activation yield is in the range of 45 to 55%. To.

本発明の製造に用いられるエボナイトは、生ゴムを長時間加硫して架橋したもので、ボーリングの玉や万年筆の軸などに使われている。エボナイトの構造はポリイソプレンの高分子鎖に硫黄原子を架橋した構造であると考えられ、硫黄含有量は20〜40質量%の範囲である。エボナイトの推定構造を次に示す。   The ebonite used in the production of the present invention is obtained by vulcanizing raw rubber for a long time and crosslinking, and is used for a bowling ball or a fountain pen shaft. The structure of ebonite is considered to be a structure in which sulfur atoms are cross-linked to the polymer chain of polyisoprene, and the sulfur content is in the range of 20 to 40% by mass. The estimated structure of ebonite is shown below.

(a)不融化処理
本製造方法の原材料であって、活性炭電極の前駆体であるエボナイトは、株式会社日興エボナイト製造所製のエボナイト粉末を用いる。まず、エボナイト粉末を熱処理炉に入れる。熱処理炉には横型管状電気炉を使用する。炉内を大気圧雰囲気とした熱処理炉を加熱、室温から200〜300℃、好ましくは240〜260℃の範囲まで昇温速度5℃/分で昇温し、大気圧雰囲気下、前記昇温した温度で1〜3時間、好ましくは2時間保持することにより不融化を行う。熱処理後、電気炉を室温まで徐冷する。上記条件の熱処理を施すことにより、不融化したエボナイト粉末を得る。不融化するために昇温する温度を上記範囲に規定したのは、下限値未満では不融化不十分で炭素化収率が低下するという不具合があり、上限を超えると酸化が進みすぎて不融化収率が低下するという不具合があるからである。
(A) Infusibilization treatment Ebonite, which is a raw material of this production method and is a precursor of the activated carbon electrode, uses an ebonite powder manufactured by Nikko Ebonite Manufacturing Co., Ltd. First, ebonite powder is put into a heat treatment furnace. A horizontal tubular electric furnace is used as the heat treatment furnace. A heat treatment furnace having an atmospheric pressure atmosphere in the furnace was heated, and the temperature was raised from room temperature to 200 to 300 ° C., preferably 240 to 260 ° C. at a heating rate of 5 ° C./min, and the temperature was raised in an atmospheric pressure atmosphere. Infusibilization is performed by holding at temperature for 1 to 3 hours, preferably 2 hours. After the heat treatment, the electric furnace is gradually cooled to room temperature. An infusible ebonite powder is obtained by heat treatment under the above conditions. The reason for setting the temperature to rise in order to infusibilize within the above range is that if it is less than the lower limit, infusibilization is insufficient and the carbonization yield decreases. This is because there is a problem that the yield decreases.

(b)炭素化処理
次に、上記不融化したエボナイト粉末を熱処理炉に入れた状態で、炉内を不活性ガス雰囲気とした熱処理炉を加熱し、室温から700〜900℃、好ましくは750〜850℃の範囲まで昇温速度5℃/分で昇温し、不活性ガス雰囲気下、前記昇温した温度で0.5〜2時間保持し熱処理する。熱処理後、電気炉を室温まで徐冷する。上記条件の熱処理を施すことにより、前記不融化したエボナイト粉末を炭素化処理してエボナイト炭素化物を得る。不活性ガスには、窒素、アルゴン、ヘリウム等のガスを用いる。炭素化処理するために昇温する温度を上記範囲に規定したのは、下限値未満では炭素化が不十分である不具合があり、上限値を超えると次工程の賦活がされにくい不具合があるからである。
(B) Carbonization treatment Next, in a state where the infusibilized ebonite powder is placed in a heat treatment furnace, the heat treatment furnace is heated in an inert gas atmosphere inside the furnace, and is heated from room temperature to 700 to 900 ° C, preferably 750 to 700 ° C. The temperature is raised to a range of 850 ° C. at a rate of temperature rise of 5 ° C./min, and heat treatment is performed in an inert gas atmosphere at the raised temperature for 0.5 to 2 hours. After the heat treatment, the electric furnace is gradually cooled to room temperature. By performing the heat treatment under the above conditions, the infusible ebonite powder is carbonized to obtain an ebonite carbonized product. As the inert gas, a gas such as nitrogen, argon, or helium is used. The reason why the temperature to be heated for carbonization treatment is defined in the above range is that there is a problem that carbonization is insufficient if it is less than the lower limit value, and there is a problem that activation of the next process is difficult if the upper limit value is exceeded. It is.

(c)賦活化処理
更に、上記炭素化物を熱処理炉に入れた状態で不活性ガス雰囲気下、熱処理炉を室温から800〜950℃、好ましくは850〜900℃の範囲まで、昇温速度10℃/分で昇温する。次に、不活性ガスの導入を止め、二酸化炭素ガスを導入する。次に、賦活収率が45〜55%の範囲、好ましく47〜53%になるように、二酸化炭素ガス流通下、前記昇温した温度で保持する。なお、二酸化炭素以外に水蒸気でも同等の賦活が行える。
(C) Activation treatment Further, the heat treatment furnace is heated from room temperature to 800 to 950 ° C., preferably from 850 to 900 ° C. in an inert gas atmosphere in a state where the carbonized material is put in the heat treatment furnace, and the heating rate is 10 ° C. Raise temperature at / min. Next, the introduction of the inert gas is stopped and the carbon dioxide gas is introduced. Next, the temperature is kept at the above-mentioned elevated temperature under carbon dioxide gas circulation so that the activation yield is in the range of 45 to 55%, preferably 47 to 53%. In addition to carbon dioxide, the same activation can be performed with water vapor.

ここで、賦活収率は下記の式で表される、賦活処理による試料質量の変化率である。   Here, the activation yield is the rate of change of the sample mass due to the activation treatment, represented by the following formula.

賦活収率(%)= (賦活後の試料の質量/賦活前の試料の質量) × 100%
前記炭素化物を賦活処理するために昇温する温度を上記範囲に規定したのは、下限値未満では賦活化が十分に行われず、上限値を超えると収率の極度の低下の不具合があるからである。賦活収率を上記範囲に規定したのは、下限値未満では生産性が低すぎるからであり、上限値を超えると十分な比表面積の活性炭が得られず初期容量及び耐久性が劣るからである。賦活処理を二酸化炭素ガス並びに水蒸気雰囲気下で行うのは、ミクロ孔が発達しやすいからである。
Activation yield (%) = (mass of sample after activation / mass of sample before activation) × 100%
The reason why the temperature to be heated to activate the carbonized product is defined in the above range is that activation is not sufficiently performed if the temperature is less than the lower limit value, and if the upper limit value is exceeded, there is a problem of extreme decrease in yield. It is. The reason why the activation yield is defined in the above range is that productivity is too low below the lower limit value, and activated carbon having a sufficient specific surface area cannot be obtained when the upper limit value is exceeded, resulting in poor initial capacity and durability. . The reason why the activation treatment is performed in a carbon dioxide gas and water vapor atmosphere is that micropores are easily developed.

(e)電極用活性炭の特性と用途
本発明のガス賦活方法により得られた蓄電デバイスの電極用活性炭は、比表面積が1500〜1700m/gの範囲にあり、ミクロ孔容積が0.6〜0.8ml/gの範囲にあり、平均ミクロ孔幅が0.95〜1.15nmの範囲にある。電極用活性炭の比表面積を上記範囲に規定したのは、下限値未満では十分な容量を確保できないからであり、上限値を超えると電極かさ密度が低下し、体積比容量が低下する不具合があるからである。ミクロ孔容積を上記範囲に規定したのは、下限値未満では十分な容量を確保出来ないからであり、上限値を超えると電極かさ密度が低下し、体積比容量が低下する不具合があるからである。平均ミクロ孔幅を上記範囲に規定したのは、下限値未満では電解質イオンがミクロ孔内に吸着できない不具合があるからであり、上限値を超えると電極かさ密度が低下し、体積比容量が低下する不具合があるからである。本発明により得られた蓄電デバイスの電極用活性炭は、電気二重層キャパシタに好適に用いられる。本発明により、3V以上の高電圧充電に対する耐久性が優れた電気二重層キャパシタに好適な蓄電デバイスの電極用活性炭を製造することができる。また、本発明のガス賦活方法により得られた蓄電デバイスの電極用活性炭は、好ましくは、比表面積が1550〜1650m/gの範囲にあり、ミクロ孔容積が0.65〜0.75ml/gの範囲にあり、平均ミクロ孔幅が1.0〜1.1nmの範囲にある。上記活性炭により、体積比容量に優れているだけでなく、高い容量維持率を示し、3.2Vという高電圧での充電に対して極めて優れた耐久性を有する電気二重層キャパシタを製造することができる。
(E) Characteristics and use of activated carbon for electrodes The activated carbon for electrodes of an electricity storage device obtained by the gas activation method of the present invention has a specific surface area in the range of 1500 to 1700 m 2 / g and a micropore volume of 0.6 to It is in the range of 0.8 ml / g, and the average micropore width is in the range of 0.95 to 1.15 nm. The reason why the specific surface area of the activated carbon for the electrode is defined in the above range is that sufficient capacity cannot be secured if it is less than the lower limit value, and if the upper limit value is exceeded, the electrode bulk density decreases and the volume specific capacity decreases. Because. The reason why the micropore volume is defined in the above range is that a sufficient capacity cannot be secured if it is less than the lower limit value, and if the upper limit value is exceeded, the electrode bulk density decreases and the volume specific capacity decreases. is there. The reason why the average micropore width is defined within the above range is that electrolyte ions cannot be adsorbed in the micropores if the value is less than the lower limit value. If the upper limit value is exceeded, the electrode bulk density decreases and the volume specific capacity decreases. This is because there is a problem to do. The activated carbon for an electrode of an electricity storage device obtained by the present invention is suitably used for an electric double layer capacitor. According to the present invention, an activated carbon for an electrode of an electricity storage device suitable for an electric double layer capacitor excellent in durability against high voltage charging of 3 V or more can be produced. Moreover, the activated carbon for electrodes of an electricity storage device obtained by the gas activation method of the present invention preferably has a specific surface area in the range of 1550 to 1650 m 2 / g and a micropore volume of 0.65 to 0.75 ml / g. The average micropore width is in the range of 1.0 to 1.1 nm. With the activated carbon, it is possible to produce an electric double layer capacitor that not only has an excellent volume specific capacity but also exhibits a high capacity retention rate and has extremely excellent durability against charging at a high voltage of 3.2 V. it can.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例>
まず、硫黄含有量が25質量%のエボナイト粉末(株式会社日興エボナイト製造所製)を熱処理炉に入れ、炉内を大気圧雰囲気下、昇温速度5℃/分で室温から250℃まで昇温し、大気圧雰囲気下2時間保持してエボナイト粉末を不融化した。次に、この不融化したエボナイト粉末を窒素雰囲気下昇温速度5℃/分で室温から800℃まで昇温した後、窒素雰囲気下1時間保持してエボナイト炭素化物(EC)を調製した。次に、このエボナイト炭素化物を窒素雰囲気下、昇温速度10℃/分で室温から850℃まで昇温した後、二酸化炭素ガスに切り替え、二酸化炭素ガスを流通させて850℃で12時間保持することにより賦活処理を行って硫黄ドープ活性炭(EC−12h)を得た。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example>
First, an ebonite powder having a sulfur content of 25% by mass (manufactured by Nikko Ebonite Manufacturing Co., Ltd.) is placed in a heat treatment furnace, and the temperature inside the furnace is increased from room temperature to 250 ° C. at a heating rate of 5 ° C./min. Then, the ebonite powder was infusible by maintaining in an atmospheric pressure atmosphere for 2 hours. Next, the infusible ebonite powder was heated from room temperature to 800 ° C. at a heating rate of 5 ° C./min in a nitrogen atmosphere, and then held for 1 hour in a nitrogen atmosphere to prepare an ebonite carbonized product (EC). Next, the ebonite carbonized product is heated from room temperature to 850 ° C. in a nitrogen atmosphere at a heating rate of 10 ° C./min, then switched to carbon dioxide gas, and carbon dioxide gas is circulated and held at 850 ° C. for 12 hours. Thus, activation treatment was performed to obtain sulfur-doped activated carbon (EC-12h).

<比較例1>
4時間保持することにより賦活処理した以外、実施例と同じエボナイト粉末を用い、実施例と同様にして硫黄ドープ活性炭(EC−4h)を得た。
<Comparative Example 1>
Sulfur-doped activated carbon (EC-4h) was obtained in the same manner as in the example using the same ebonite powder as in the example except that the activation treatment was performed by holding for 4 hours.

<比較例2>
8時間保持することにより賦活処理した以外、実施例と同じエボナイト粉末を用い、実施例と同様にして、硫黄ドープ活性炭(EC−8h)を得た。
<Comparative example 2>
Sulfur-doped activated carbon (EC-8h) was obtained in the same manner as in the example using the same ebonite powder as in the example except that the activation treatment was performed by holding for 8 hours.

<比較例3>
フェノール樹脂繊維を炭素化し、これを水蒸気賦活して調製した活性炭素繊維(AC)を用意し、メノウ乳鉢で粉砕した。
<Comparative Example 3>
Activated carbon fibers (AC) prepared by carbonizing phenol resin fibers and activating them with steam were prepared and pulverized in an agate mortar.

<比較試験1及び評価>
実施例及び比較例1〜3で得られた活性炭の物性を測定した。その結果を以下の図3及び表1に示す。
<Comparative test 1 and evaluation>
The physical properties of the activated carbon obtained in Examples and Comparative Examples 1 to 3 were measured. The results are shown in FIG. 3 and Table 1 below.

・ 窒素吸脱着測定
実施例及び比較例1〜3で得られた活性炭について、比表面積/細孔分布測定装置(商品名:BELSORP28SA、日本ベル株式会社製)を用いて、77Kにおける窒素吸脱着測定をそれぞれ行った。測定の前処理は、真空下、200℃で2時間20分熱処理することで行った
Nitrogen adsorption / desorption measurement About the activated carbon obtained in Examples and Comparative Examples 1-3, nitrogen adsorption / desorption measurement at 77K using a specific surface area / pore distribution measuring device (trade name: BELSORP28SA, manufactured by Nippon Bell Co., Ltd.) Went to each. The pretreatment for measurement was performed by heat treatment at 200 ° C. for 2 hours and 20 minutes under vacuum.

図3に、各試料の吸脱着等温線を示す。黒色あるいは灰色塗りのマーカーは吸着等温線、白抜きのマーカーは脱着等温線を表す。実施例中に記載されたエボナイト炭素化物、並びに比較例1、3については典型的なI型吸着等温線を示し、ミクロ孔主体の多孔質炭素であることが判明した。実施例及び比較例2は等温線にヒステリシスが確認されたが、その程度は小さく、基本的にはI型等温線を示したため、ミクロ孔主体の細孔構造を有すると言える。   FIG. 3 shows the adsorption / desorption isotherm of each sample. A black or gray marker represents an adsorption isotherm, and a white marker represents a desorption isotherm. The ebonite carbonized material described in the examples and Comparative Examples 1 and 3 showed typical type I adsorption isotherms, and were found to be porous carbon mainly composed of micropores. In the example and comparative example 2, hysteresis was confirmed in the isotherm, but the degree thereof was small and basically showed an I-type isotherm. Therefore, it can be said that it has a pore structure mainly composed of micropores.

・ BET比表面積
実施例及び比較例1〜3で得られた活性炭について、吸着等温線の相対圧0〜0.05の領域でのBETプロットからBET比表面積を算出した。
-BET specific surface area About the activated carbon obtained by the Example and Comparative Examples 1-3, the BET specific surface area was computed from the BET plot in the area | region of the relative pressure 0-0.05 of an adsorption isotherm.

・ メソ孔容積、ミクロ孔容積及び平均ミクロ孔幅
実施例及び比較例1〜3で得られた活性炭について、DH法からメソ孔容積、DR法からミクロ孔容積及び平均ミクロ孔幅を求めた。なお、ここでいうミクロ孔とは2nm未満、メソ孔とは2〜50nmの範囲をいう。
-Mesopore volume, micropore volume, and average micropore width For the activated carbon obtained in Examples and Comparative Examples 1 to 3, the mesopore volume was determined from the DH method, and the micropore volume and average micropore width were determined from the DR method. In addition, the micropore here is less than 2 nm, and the mesopore is in the range of 2 to 50 nm.

・ エネルギー分散X線分析(Energy Dispersive X−ray Spectroscopy:EDS)
実施例及び比較例1〜3で得られた活性炭について、EDS検出器を装備した走査型電子顕微鏡(Scanning Electron Microscope、以下、SEMという。)(商品名:JSM−6510A、日本電子株式会社製)により、硫黄含有量(硫黄/炭素原子比)を評価した。
・ Energy Dispersive X-ray Spectroscopy (EDS)
About the activated carbon obtained in Examples and Comparative Examples 1 to 3, a scanning electron microscope (hereinafter referred to as SEM) equipped with an EDS detector (trade name: JSM-6510A, manufactured by JEOL Ltd.) The sulfur content (sulfur / carbon atom ratio) was evaluated.

・ X線光電子分光法(X−ray Photoelectron Spectroscopy:XPS)
エボナイト炭素化物及び実施例で得られた活性炭について、X線光電子分光分析装置(商品名:AXIS−NOVA、株式会社島津製作所製)を用いてXPS分析を行い、硫黄の化学結合状態を調べた。線源として、モノクロ化したAlKα線を用いた。
X-ray photoelectron spectroscopy (XPS)
The ebonite carbonized product and the activated carbon obtained in the examples were subjected to XPS analysis using an X-ray photoelectron spectrometer (trade name: AXIS-NOVA, manufactured by Shimadzu Corporation) to examine the chemical bonding state of sulfur. A monochromatic AlKα ray was used as the radiation source.

表1に、窒素吸脱着測定により求めた細孔構造パラメーターを示す。表から明らかなように、エボナイト炭素化物のCO賦活により、賦活時間の増加とともに賦活収率が減少し、細孔構造が発達することが分かる。賦活処理を12時間行った実施例の活性炭は比表面積が1600m/gを超えており、高度にミクロ孔が発達した活性炭であると言える。 Table 1 shows the pore structure parameters determined by nitrogen adsorption / desorption measurement. As is apparent from the table, it can be seen that the activation yield decreases with the increase of the activation time and the pore structure develops due to the CO 2 activation of the ebonite carbonized product. The activated carbon of the Example which performed the activation process for 12 hours has a specific surface area exceeding 1600 m < 2 > / g, and can be said to be the activated carbon with which the micropore developed highly.

エボナイト炭素化物及び実施例のS2pスペクトルを図4に示す。165eV及び164eV付近にピークが観察された。これらのピークは、文献(G.DoMazetis, M.Raoarum, B.D.James, J.Liesegang, P.J.Pigram, N.Brack, and R.Glaisher, Energy & Fuels, 20, 1556-1564 (2006))を参考にすると、それぞれS2p1/2,S2p3/2のチオフェン型硫黄に帰属する。従って、エボナイト炭素化物及び賦活物中にはチオフェン類似の構造を有する硫黄原子が存在し、それ以外の結合状態の硫黄原子は存在しないと推定される。チオフェンの分子構造を次に示す。 FIG. 4 shows the S2p spectra of the ebonite carbonized product and the examples. Peaks were observed around 165 eV and 164 eV. These peaks are based on literature (G.DoMazetis, M.Raoarum, BDJames, J.Liesegang, PJPigram, N.Brack, and R.Glaisher, Energy & Fuels, 20, 1556-1564 (2006)). It belongs to thiophene type sulfur of S2p 1/2 and S2p 3/2 , respectively. Therefore, it is presumed that sulfur atoms having a thiophene-like structure are present in the ebonite carbonized product and the activated material, and other bonded sulfur atoms are not present. The molecular structure of thiophene is shown below.

<比較試験2及び評価>
(電気二重層キャパシタ用電極の作製)
実施例及び比較例1〜3で得られた活性炭とともに、導電性補助剤としてアセチレンブラックを、バインダとしてポリテトラフルオロエチレン(PTFE)系粘結材をそれぞれ用意した。30mgの上記活性炭にアセチレンブラック及びPTFE系粘結材を添加し混合した。混合割合は炭素材料が85質量%、アセチレンブラックが10質量%、PTFE系粘結材が5質量%となるように配合を調整した。この混合物をIR錠剤成型器を用いて、プレス機で約6MPaで20分加圧して直径13mm、厚さ約0.5mmのディスク状に成形することにより、ディスク状活性炭を得た。
<Comparative test 2 and evaluation>
(Production of electrode for electric double layer capacitor)
Along with the activated carbon obtained in Examples and Comparative Examples 1 to 3, acetylene black was prepared as a conductive auxiliary agent and polytetrafluoroethylene (PTFE) based binder was prepared as a binder. Acetylene black and PTFE binder were added to 30 mg of the activated carbon and mixed. The mixing ratio was adjusted such that the carbon material was 85 mass%, the acetylene black was 10 mass%, and the PTFE binder was 5 mass%. This mixture was pressed using an IR tablet molding machine at a pressure of about 6 MPa for 20 minutes and formed into a disk shape having a diameter of 13 mm and a thickness of about 0.5 mm to obtain a disk-shaped activated carbon.

次に、集電体としてメッシュ状アルミニウムを用意し、このメッシュ状アルミニウムに実施例及び比較例1〜3で得られたディスク状の活性炭を重ね圧着することにより、活性炭と集電体とを一体化させて、電極をそれぞれ作成した。   Next, mesh-shaped aluminum is prepared as a current collector, and the activated carbon and the current collector are integrated by laminating and pressing the disk-shaped activated carbon obtained in Examples and Comparative Examples 1 to 3 on the mesh-shaped aluminum. Each electrode was prepared.

具体的には、メッシュ状アルミニウムとしてのアルミニウムラス(日金加工株式会社製、LW:SW:W=2:1:0.2)に実施例及び比較例1〜3で得られたディスク状活性炭の電極を重ね、プレス機を用いて約2MPaにて10分加圧して圧着した。   Specifically, the disk-shaped activated carbon obtained in Examples and Comparative Examples 1 to 3 on aluminum lath (manufactured by Nichikin Processing Co., Ltd., LW: SW: W = 2: 1: 0.2) as mesh-like aluminum The electrodes were stacked and pressed using a press machine at about 2 MPa for 10 minutes for pressure bonding.

(電気二重層キャパシタ用二極式セルの作製)
電気二重層キャパシタの容量測定及び耐久試験を行うために、図2に示す構造を有するアルミニウム製密閉式二極式セルを用いた。この二極式セルは、電気配線を有する正極側アルミニウム製ボディ21上に、正極側集電体22−正極側電極23−セパレータ24−テフロン(登録商標)ガイド25−負極側電極26−負極側集電体27の順に重ね、両電極間に電解液28を含浸させる。そして、重ね合わせた負極側集電体27上にスプリング29を備えた電極押さえ31、電気配線を有する負極側アルミニウム製ボディ32を載せ、正極側アルミニウム製ボディ21と負極側アルミニウム製ボディ32とで挟み込んだ構造を有する。電気二重層キャパシタの電解液には、1.0M濃度のトリエチルメチルアンモニウムテトラフルオロボレート((C)CHNBF)を電解質塩として含むプロピレンカーボネート溶液を用いた。この電解液は、電気二重層キャパシタの有機系電解液として一般的である。
(Production of bipolar cell for electric double layer capacitor)
In order to perform the capacitance measurement and the durability test of the electric double layer capacitor, an aluminum sealed bipolar cell having the structure shown in FIG. 2 was used. This bipolar cell has a positive electrode side current collector 22-a positive electrode side electrode 23-a separator 24-a Teflon (registered trademark) guide 25-a negative electrode side electrode 26-a negative electrode side on a positive electrode side aluminum body 21 having electrical wiring. The current collector 27 is stacked in this order, and the electrolyte solution 28 is impregnated between the electrodes. Then, an electrode holder 31 provided with a spring 29 and a negative electrode side aluminum body 32 having electric wiring are placed on the superimposed negative electrode side current collector 27, and the positive electrode side aluminum body 21 and the negative electrode side aluminum body 32 are combined. It has a sandwiched structure. As an electrolytic solution for the electric double layer capacitor, a propylene carbonate solution containing 1.0 M triethylmethylammonium tetrafluoroborate ((C 2 H 5 ) 3 CH 3 NBF 4 ) as an electrolyte salt was used. This electrolytic solution is generally used as an organic electrolytic solution for an electric double layer capacitor.

また、電解液の含浸は、活性炭電極を熱真空乾燥器で200℃において2時間乾燥後、アルゴングローブボックス内に移し、30分間電解液を保持することにより行った。   In addition, the impregnation with the electrolytic solution was performed by drying the activated carbon electrode at 200 ° C. for 2 hours with a thermal vacuum dryer and then transferring the activated carbon electrode into an argon glove box and holding the electrolytic solution for 30 minutes.

(耐久試験)
電気二重層キャパシタの耐久性評価のための容量測定は、40℃において定電流法(電流密度:80mA/g;測定電圧範囲:0〜2.5V)により行った。まず、5サイクル目の容量を初期容量とした。次に、容量測定後、70℃においてセルに3.2Vの電圧を100時間印加することにより耐久試験を行った。続いて、耐久試験後、再び40℃に戻し、容量を定電流法(電流密度:80mA/g:測定電圧範囲:0〜2.5V)により求めた。なお、5サイクル目の容量を終止容量とした。そして耐久試験前後の容量の比(終止容量と初期容量の比)を容量維持率とした。図5に実施例及び比較例1〜3の活性炭を用いた電気二重層キャパシタの耐久試験前の充放電曲線を、図6に耐久試験後の充放電曲線を、それぞれ示す。また、表2に、初期容量及び容量維持率を示す。
(An endurance test)
The capacitance measurement for evaluating the durability of the electric double layer capacitor was performed at 40 ° C. by a constant current method (current density: 80 mA / g; measurement voltage range: 0 to 2.5 V). First, the capacity at the fifth cycle was set as the initial capacity. Next, after the capacity measurement, a durability test was performed by applying a voltage of 3.2 V to the cell at 70 ° C. for 100 hours. Subsequently, after the durability test, the temperature was again returned to 40 ° C., and the capacity was determined by a constant current method (current density: 80 mA / g: measurement voltage range: 0 to 2.5 V). The capacity at the fifth cycle was defined as the end capacity. The ratio of the capacity before and after the durability test (the ratio between the final capacity and the initial capacity) was defined as the capacity retention rate. FIG. 5 shows a charge / discharge curve before an endurance test of the electric double layer capacitor using the activated carbons of Examples and Comparative Examples 1 to 3, and FIG. 6 shows a charge / discharge curve after the endurance test. Table 2 shows the initial capacity and capacity retention rate.

図5,6から明らかなように、実施例も比較例1〜3もともに、耐久試験前には、キャパシタに特有な直線的な充放電曲線が示された。しかし、耐久試験後には、比較例1の場合には耐久試験後の充放電曲線の変化は大きく、放電に要する時間が減少した。これは、耐久試験によって容量が低下したことを意味する。   As is clear from FIGS. 5 and 6, both the examples and the comparative examples 1 to 3 showed a linear charge / discharge curve specific to the capacitor before the durability test. However, after the endurance test, in the case of Comparative Example 1, the change in the charge / discharge curve after the endurance test was large, and the time required for discharge decreased. This means that the capacity was reduced by the durability test.

表2から、実施例では、体積比容量に優れているだけでなく、高い容量維持率を示し、3.2Vという高電圧での充電に対して極めて優れた耐久性を有することが明らかになった。   From Table 2, it is clear that in the examples, not only is the volume specific capacity excellent, but also a high capacity retention rate and extremely excellent durability against charging at a high voltage of 3.2V. It was.

本発明の方法により製造された硫黄がドープされた蓄電デバイスの電極用活性炭は、電気二重層キャパシタ等の蓄電デバイスの電極に用いられる。   The activated carbon for an electrode of an electricity storage device doped with sulfur produced by the method of the present invention is used for an electrode of an electricity storage device such as an electric double layer capacitor.

10 電気二重層キャパシタ
11 電解液
12 正極
13 負極
14 電源
21 正極側アルミニウム製ボディ
22 正極側集電体
23 正極側電極
24 セパレータ
25 テフロン(登録商標)ガイド
26 負極側電極
27 負極側集電体
28 電解液
29 スプリング
31 電極押さえ
32 負極側アルミニウム製ボディ
DESCRIPTION OF SYMBOLS 10 Electric double layer capacitor 11 Electrolytic solution 12 Positive electrode 13 Negative electrode 14 Power supply 21 Positive electrode side aluminum body 22 Positive electrode side current collector 23 Positive electrode side electrode 24 Separator 25 Teflon (registered trademark) guide 26 Negative electrode side electrode 27 Negative electrode side current collector 28 Electrolyte 29 Spring 31 Electrode holder 32 Negative side aluminum body

Claims (3)

硫黄がドープされた活性炭において、比表面積が1500〜1700m/gの範囲にあり、ミクロ孔容積が0.6〜0.8ml/gの範囲にあり、平均ミクロ孔幅が0.95〜1.15nmの範囲にあり、炭素に対する硫黄の原子比が0.05〜0.06の範囲にある、蓄電デバイス用活性炭。 In the activated carbon doped with sulfur, the specific surface area is in the range of 1500-1700 m 2 / g, the micropore volume is in the range of 0.6-0.8 ml / g, and the average micropore width is 0.95-1. An activated carbon for an electricity storage device in a range of .15 nm and an atomic ratio of sulfur to carbon in a range of 0.05 to 0.06. 請求項1記載の活性炭を電極として用いた電気二重層キャパシタ。   An electric double layer capacitor using the activated carbon according to claim 1 as an electrode. エボナイト粉末を大気圧雰囲気下、室温から200〜300℃の範囲まで昇温し、大気圧雰囲気下、前記昇温した温度で1〜3時間保持することにより不融化を行う工程と、
前記不融化したエボナイト粉末を、不活性ガス雰囲気下、700〜900℃の範囲まで昇温し、不活性ガス雰囲気下、前記昇温した温度で0.5〜2時間保持することにより前記不融化エボナイト粉末を炭素化処理して炭素化エボナイトを得る工程と、前記炭素化エボナイトを不活性ガス雰囲気下、800〜950℃の範囲まで昇温し、賦活収率が45〜55%の範囲になるように二酸化炭素流通下、前記昇温した温度で保持することにより前記炭素化物を賦活処理して、炭素に対する硫黄の原子比が0.05〜0.06の範囲にある活性炭を得る工程とを含むことを特徴とする蓄電デバイス用活性炭の製造方法。
Ebonite powder is heated from room temperature to a range of 200 to 300 ° C. in an atmospheric pressure atmosphere, and infusibilized by holding at the elevated temperature in the atmospheric pressure atmosphere for 1 to 3 hours;
The infusibilized ebonite powder is heated to 700-900 ° C. in an inert gas atmosphere and held at the raised temperature in an inert gas atmosphere for 0.5-2 hours. A step of carbonizing ebonite powder to obtain carbonized ebonite, and heating the carbonized ebonite to a range of 800 to 950 ° C. in an inert gas atmosphere, the activation yield is in the range of 45 to 55%. And the step of activating the carbonized product by holding at the elevated temperature under the flow of carbon dioxide to obtain activated carbon having an atomic ratio of sulfur to carbon in the range of 0.05 to 0.06. A method for producing activated carbon for an electricity storage device, comprising:
JP2012257398A 2012-11-26 2012-11-26 Activated carbon for power storage device doped with sulfur and method for producing the same Active JP6006624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012257398A JP6006624B2 (en) 2012-11-26 2012-11-26 Activated carbon for power storage device doped with sulfur and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012257398A JP6006624B2 (en) 2012-11-26 2012-11-26 Activated carbon for power storage device doped with sulfur and method for producing the same

Publications (3)

Publication Number Publication Date
JP2014105119A true JP2014105119A (en) 2014-06-09
JP2014105119A5 JP2014105119A5 (en) 2015-11-19
JP6006624B2 JP6006624B2 (en) 2016-10-12

Family

ID=51026920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012257398A Active JP6006624B2 (en) 2012-11-26 2012-11-26 Activated carbon for power storage device doped with sulfur and method for producing the same

Country Status (1)

Country Link
JP (1) JP6006624B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960416A (en) * 2020-09-07 2020-11-20 合肥工业大学 Method for preparing sulfur-doped carbon material from biomass
JP2021120331A (en) * 2020-01-30 2021-08-19 国立大学法人広島大学 Spherical carbon particle and method of producing the same, and electricity storage device using spherical carbon particle
CN114105122A (en) * 2020-08-27 2022-03-01 中国石油化工股份有限公司 Sulfur-doped carbon material and preparation method and application thereof
CN114122427A (en) * 2020-08-27 2022-03-01 中国石油化工股份有限公司 Platinum-carbon catalyst and preparation method and application thereof
CN114426266A (en) * 2020-09-24 2022-05-03 中国石油化工股份有限公司 Sulfur-nitrogen doped carbon material and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49131992A (en) * 1972-08-03 1974-12-18
JPH0881210A (en) * 1994-09-13 1996-03-26 Mitsubishi Gas Chem Co Inc Carbon material having high specific surface area and its production
JPH08225682A (en) * 1994-12-19 1996-09-03 Sumitomo Rubber Ind Ltd Tire tread rubber composition
JPH11222732A (en) * 1997-12-04 1999-08-17 Petoca Ltd Mesophase pitch-based activated carbon fiber and electric double layer capacitor using the same
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
JP2007091511A (en) * 2005-09-28 2007-04-12 Sumitomo Bakelite Co Ltd Carbon material, negative-electrode material for secondary battery using the same, and non-aqueous electrolyte secondary battery
JP2011502096A (en) * 2007-10-31 2011-01-20 コーニング インコーポレイテッド High energy density ultracapacitor
JP2011051828A (en) * 2009-09-01 2011-03-17 Toyota Central R&D Labs Inc Method for producing carbon porous body and electricity storage device
JP2012121796A (en) * 2010-11-23 2012-06-28 Hutchinson Sa Novel sulfur-modified monolithic porous carbon-based material, preparation method therefor, and use thereof in energy storage and discharge

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49131992A (en) * 1972-08-03 1974-12-18
JPH0881210A (en) * 1994-09-13 1996-03-26 Mitsubishi Gas Chem Co Inc Carbon material having high specific surface area and its production
JPH08225682A (en) * 1994-12-19 1996-09-03 Sumitomo Rubber Ind Ltd Tire tread rubber composition
JPH11222732A (en) * 1997-12-04 1999-08-17 Petoca Ltd Mesophase pitch-based activated carbon fiber and electric double layer capacitor using the same
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
JP2007091511A (en) * 2005-09-28 2007-04-12 Sumitomo Bakelite Co Ltd Carbon material, negative-electrode material for secondary battery using the same, and non-aqueous electrolyte secondary battery
JP2011502096A (en) * 2007-10-31 2011-01-20 コーニング インコーポレイテッド High energy density ultracapacitor
JP2011051828A (en) * 2009-09-01 2011-03-17 Toyota Central R&D Labs Inc Method for producing carbon porous body and electricity storage device
JP2012121796A (en) * 2010-11-23 2012-06-28 Hutchinson Sa Novel sulfur-modified monolithic porous carbon-based material, preparation method therefor, and use thereof in energy storage and discharge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016019231; Marta Sevilla: 'Highly porous S-doped carbons' Microporous and Mesoporous Materials 158(2012), 20120228, 318-323 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120331A (en) * 2020-01-30 2021-08-19 国立大学法人広島大学 Spherical carbon particle and method of producing the same, and electricity storage device using spherical carbon particle
JP7343861B2 (en) 2020-01-30 2023-09-13 国立大学法人広島大学 Spherical carbon particles, method for producing the same, and electricity storage device using spherical carbon particles
CN114105122A (en) * 2020-08-27 2022-03-01 中国石油化工股份有限公司 Sulfur-doped carbon material and preparation method and application thereof
CN114122427A (en) * 2020-08-27 2022-03-01 中国石油化工股份有限公司 Platinum-carbon catalyst and preparation method and application thereof
CN114122427B (en) * 2020-08-27 2023-06-09 中国石油化工股份有限公司 Platinum-carbon catalyst and preparation method and application thereof
CN114105122B (en) * 2020-08-27 2023-08-15 中国石油化工股份有限公司 Sulfur-doped carbon material and preparation method and application thereof
CN111960416A (en) * 2020-09-07 2020-11-20 合肥工业大学 Method for preparing sulfur-doped carbon material from biomass
CN114426266A (en) * 2020-09-24 2022-05-03 中国石油化工股份有限公司 Sulfur-nitrogen doped carbon material and preparation method and application thereof

Also Published As

Publication number Publication date
JP6006624B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
Dong et al. High Volumetric Capacitance, Ultralong Life Supercapacitors Enabled by Waxberry‐Derived Hierarchical Porous Carbon Materials
Miao et al. Poly (ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors
Roy et al. Preparation of hierarchical porous activated carbon from banana leaves for high‐performance supercapacitor: effect of type of electrolytes on performance
Zhang et al. In situ encapsulation of iron complex nanoparticles into biomass‐derived heteroatom‐enriched carbon nanotubes for high‐performance supercapacitors
Senthilkumar et al. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte
Ferrero et al. Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors
Zhang et al. Facile synthesis of hierarchically porous N/P codoped carbon with simultaneously high-level heteroatom-doping and moderate porosity for high-performance supercapacitor electrodes
Sun et al. Nitrogen‐doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors
An et al. Synthesis of hierarchically porous nitrogen‐doped carbon nanosheets from agaric for high‐performance symmetric supercapacitors
Gandla et al. High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels
Long et al. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors
Gao et al. Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor
Wen et al. Synthesis of phosphorus‐doped graphene and its wide potential window in aqueous supercapacitors
Chen et al. A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated N-doped carbon nanosheet architecture for use in supercapacitors
Chen et al. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose
Peng et al. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes
Ren et al. Biomass-derived three-dimensional porous N-doped carbonaceous aerogel for efficient supercapacitor electrodes
Luan et al. Porous carbon@ MnO2 and nitrogen-doped porous carbon from carbonized loofah sponge for asymmetric supercapacitor with high energy and power density
Kim et al. Study of the structure-properties relations of carbon spheres affecting electrochemical performances of EDLCs
Lu et al. The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes
Tammela et al. Asymmetric supercapacitors based on carbon nanofibre and polypyrrole/nanocellulose composite electrodes
Zeng et al. Nitrogen‐Doped Hierarchically Porous Carbon Materials with Enhanced Performance for Supercapacitor
Zhang et al. N-doped crumpled graphene: bottom-up synthesis and its superior oxygen reduction performance
Ba et al. Biosourced foam‐like activated carbon materials as high‐performance supercapacitors
US10037855B2 (en) Ultracapacitor with a novel doped carbon

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6006624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250