JP2001325831A - Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film - Google Patents

Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film

Info

Publication number
JP2001325831A
JP2001325831A JP2000140873A JP2000140873A JP2001325831A JP 2001325831 A JP2001325831 A JP 2001325831A JP 2000140873 A JP2000140873 A JP 2000140873A JP 2000140873 A JP2000140873 A JP 2000140873A JP 2001325831 A JP2001325831 A JP 2001325831A
Authority
JP
Japan
Prior art keywords
resin
conductive
metal
conductive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000140873A
Other languages
Japanese (ja)
Inventor
Masashi Takei
正史 武居
Takuya Tonomura
卓也 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2000140873A priority Critical patent/JP2001325831A/en
Publication of JP2001325831A publication Critical patent/JP2001325831A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a metal colloid solution having proper dispersing stability even with an increase in metal content, a conductive ink prepared by using the metal colloidal solution, a conductive coating having an improved conductivity, and a conductive coating forming a base film. SOLUTION: The metal colloid solution comprises a solid containing particles as the main component consisting of a metal component and an organic component, and a solvent. The metal component consists of one or more kind of metal selected from among a group of gold, silver, copper, platinum, palladium, rhodium, ruthenium, iridium and osmium, with the electrical conductivity of 10 mS/cm or smaller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶液状態では低粘
度で分散性が良いので貯蔵安定性に優れ、取扱いが容易
であり、塗布、乾燥後は優れた導電性を有する被膜が得
られるので、ブラウン管の電磁波遮蔽用、建材又は自動
車の赤外線遮蔽用、電子機器や携帯電話の静電気帯電防
止剤用、曇ガラスの熱線用、回路基板やICカードの配
線、樹脂に導電性を付与するためのコーティング用、ス
ルーホール又は回路自体等に好適に用いられる金属コロ
イド液、その製造方法、金属コロイド液を用いてなる導
電性インク、導電性被膜及び導電性被膜を形成する際に
設けられる導電性被膜形成用基底塗膜に関する。
BACKGROUND OF THE INVENTION The present invention provides a film having excellent storage stability and ease of handling because it has low viscosity and good dispersibility in a solution state, and provides a coating having excellent conductivity after coating and drying. For shielding electromagnetic waves of cathode ray tubes, for shielding infrared rays of construction materials or automobiles, for antistatic agents of electronic equipment and mobile phones, for heat rays of frosted glass, for wiring of circuit boards and IC cards, and for imparting conductivity to resins Metal colloid liquid suitably used for coating, through hole or circuit itself, method for producing the same, conductive ink using metal colloid liquid, conductive film, and conductive film provided when forming conductive film It relates to a base coat for formation.

【0002】[0002]

【従来の技術】回路基板上に形成する電極等に用いられ
るコーティング剤は、保管時には貯蔵安定性が要求さ
れ、塗布時には取り扱い性が要求される。また、被膜状
態では導電性や基材との密着性等が要求される。この分
野では、従来より、銀や他の金属粒子を樹脂成分や有機
溶媒で練り込んだ金属ペーストや、導電性インクと称さ
れるものを、ディスペンサーやスクリーン印刷で塗布す
ることが多い。
2. Description of the Related Art Coating agents used for electrodes and the like formed on circuit boards are required to have storage stability during storage and handleability during application. Further, in the state of a film, conductivity, adhesion to a substrate, and the like are required. In this field, a metal paste in which silver or other metal particles are kneaded with a resin component or an organic solvent, or a so-called conductive ink has been often applied by a dispenser or screen printing.

【0003】しかし、従来の金属ペーストや導電性イン
クは、高粘度で取扱いにくく、塗りにくいために精細な
用途に向かず、乾燥時又は焼成時の溶剤臭が強いという
問題がある。更に、それらが大気中に揮発しやすいの
で、環境に悪影響を及ぼす可能性が強く、また、被膜強
度を高める目的や、基材との密着性を良好にする目的で
フェノール樹脂、ガラスフリット等の添加剤を多量に含
有するために導電性が損なわれやすく、これらの添加剤
は、金属粒子とのなじみが悪いので、均一に混合させる
ために長時間の分散工程を必要とした。
However, conventional metal pastes and conductive inks are problematic in that they have high viscosity and are difficult to handle and are difficult to apply, so they are not suitable for fine uses, and have a strong solvent odor during drying or baking. Furthermore, since they are easily volatilized in the atmosphere, they have a strong possibility of adversely affecting the environment.In addition, phenol resins, glass frit, etc. are used for the purpose of increasing the film strength and improving the adhesion to the substrate. Since a large amount of the additive is contained, the conductivity is apt to be impaired, and these additives have poor compatibility with the metal particles. Therefore, a long-time dispersion step is required for uniform mixing.

【0004】ディスプレイ用透明導電膜の分野では、化
学還元法によって製造した銀コロイドを使用する例があ
るが、従来の化学還元法によって製造した銀コロイド
は、加熱焼成後の導電率が10-2〜102 S/cm程度
であって、高い導電性を必要とする回路基板用としては
使用しづらい。
In the field of transparent conductive films for displays, there is an example of using silver colloid produced by a chemical reduction method. However, a silver colloid produced by a conventional chemical reduction method has a conductivity after heating and firing of 10 -2. Since it is about 10 2 S / cm, it is difficult to use it for circuit boards requiring high conductivity.

【0005】回路基板用の導電性被膜は、少なくとも1
3 S/cm程度の導電率が必要であり、このために
は、金属以外の含有物をできるだけ少なくするととも
に、被膜状態での金属粒子同士の密着性を上げること
や、コーティング剤自身の被膜密着性や被膜強度を上げ
る必要があった。
[0005] At least one conductive coating for a circuit board is provided.
A conductivity of about 0 3 S / cm is required. For this purpose, the content other than metal is reduced as much as possible, the adhesion between metal particles in a coated state is increased, and the coating of the coating agent itself is formed. It was necessary to increase adhesion and coating strength.

【0006】また、高粘度の金属ペーストでは問題にな
らないが、低粘度のインクにおいては分散安定性の問題
が必ず生じる。従来の化学還元法で製造した金属コロイ
ドでは、金属含量を上げると沈殿が生じてしまい、常に
攪拌する必要があるので工業的には不利である。一方、
金属含量を下げすぎると、必要な厚みを出すために何度
も重ね塗る必要が生じるので、これも不利である。従っ
て、金属含量を上げても分散安定性の良い金属コロイド
を製造する必要があった。
Although high viscosity metal pastes do not pose a problem, low viscosity inks necessarily cause dispersion stability problems. The metal colloid produced by the conventional chemical reduction method is disadvantageous industrially because if the metal content is increased, precipitation occurs, and it is necessary to constantly stir. on the other hand,
Too low a metal content is also disadvantageous, as it requires repeated coatings to achieve the required thickness. Therefore, it is necessary to produce a metal colloid having good dispersion stability even when the metal content is increased.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記に鑑
み、金属含有量を上げても分散安定性が良い金属コロイ
ド液、その金属コロイド液を用いて製造される導電性イ
ンク、導電性に優れる導電性被膜、及び、導電性被膜形
成用基底塗膜を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a metal colloid liquid having a good dispersion stability even when the metal content is increased, a conductive ink produced using the metal colloid liquid, and a conductive ink. An object of the present invention is to provide an excellent conductive film and a base film for forming a conductive film.

【0008】[0008]

【課題を解決するための手段】第一の本発明は、金属成
分と有機成分とからなる粒子を主成分とする固形分と、
溶媒とからなる金属コロイド液であって、上記金属成分
は、金、銀、銅、白金、パラジウム、ロジウム、ルテニ
ウム、イリジウム及びオスミウムよりなる群より選ばれ
る1種以上の金属からなり、電導度が10mS/cm以
下である金属コロイド水溶液である。第二の本発明は、
第一の本発明の金属コロイド液を用いてなる導電性イン
クである。第三の本発明は、第二の本発明の導電性イン
クを基材上に塗布し、乾燥することにより形成される導
電性被膜であって、導電率が1×103 S/cm以上で
ある導電性被膜である。第四の本発明は、第三の本発明
の導電性被膜を基材上に形成する際に、あらかじめ基材
上に設けられる塗膜であって、その上に導電性インクが
塗布されて上記導電性被膜が形成される導電性被膜形成
用基底塗膜である。
Means for Solving the Problems A first aspect of the present invention is to provide a solid content mainly composed of particles comprising a metal component and an organic component;
A metal colloid liquid comprising a solvent, wherein the metal component comprises one or more metals selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, ruthenium, iridium and osmium; It is an aqueous metal colloid solution of 10 mS / cm or less. The second invention is
A conductive ink using the metal colloid liquid of the first aspect of the present invention. The third present invention is a conductive film formed by applying the conductive ink of the second present invention on a substrate and drying, and having a conductivity of 1 × 10 3 S / cm or more. It is a conductive film. The fourth invention is a coating film provided on a substrate in advance when the conductive film of the third invention is formed on a substrate, and a conductive ink is applied on the coating film. This is a base coating film for forming a conductive film on which a conductive film is formed.

【0009】以下に、第一の本発明を詳述する。第一の
本発明の金属コロイド液は、金属成分と有機成分とから
なる粒子(以下、金属コロイド粒子という)を主成分と
する固形分と、溶媒とからなる。第一の本発明の金属コ
ロイド液において、上記金属コロイド粒子は有機成分を
含むものであるので、溶液中での粒子の分散安定性が高
い。そのため、金属コロイド液の金属含量を上げても金
属コロイド粒子が凝集しにくく、良好な分散性が保たれ
る。
Hereinafter, the first present invention will be described in detail. The metal colloid liquid of the first aspect of the present invention comprises a solid containing particles composed of a metal component and an organic component (hereinafter, referred to as metal colloid particles) as main components, and a solvent. In the metal colloid liquid of the first aspect of the present invention, since the metal colloid particles contain an organic component, the dispersion stability of the particles in the solution is high. Therefore, even if the metal content of the metal colloid liquid is increased, the metal colloid particles are less likely to aggregate, and good dispersibility is maintained.

【0010】第一の本発明の金属コロイド液において、
上記金属コロイド粒子の金属成分は、金、銀、銅、白
金、パラジウム、ロジウム、ルテニウム、イリジウム及
びオスミウムからなる群より選ばれる1種以上の金属よ
りなる。上記金属のなかでも、銀、銅、白金、パラジウ
ムが好ましい。
In the first metal colloid liquid of the present invention,
The metal component of the metal colloid particles is at least one metal selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, ruthenium, iridium and osmium. Among the above metals, silver, copper, platinum and palladium are preferred.

【0011】また、第一の本発明の金属コロイド液は、
銀とその他の金属との混合コロイド液であることが好ま
しい。銀を用いることにより、その金属コロイド液を用
いて形成される被膜の導電率が良好となるが、電子材料
として銀を用いると、マイグレーションの問題を考慮す
る必要がある。銀とその他の金属とからなる混合コロイ
ド液とすることにより、マイグレーションが起こりにく
くなる。なお、上記その他の金属とは、上記の金、銅、
白金、パラジウム、ロジウム、ルテニウム、イリジウ
ム、オスミウムである。なかでも、銅、白金、パラジウ
ムが好ましい。
Further, the metal colloid liquid of the first present invention comprises:
It is preferably a mixed colloidal liquid of silver and another metal. The use of silver improves the conductivity of the film formed using the metal colloid solution, but when silver is used as the electronic material, it is necessary to consider the problem of migration. By using a mixed colloidal liquid composed of silver and other metals, migration hardly occurs. In addition, the above-mentioned other metals are the above-mentioned gold, copper,
Platinum, palladium, rhodium, ruthenium, iridium and osmium. Among them, copper, platinum and palladium are preferred.

【0012】上記のような混合コロイドとする場合、金
属コロイド液中の銀とその他の金属との比率としては、
銀とその他の金属との重量比が99:1〜30:70で
あることが好ましい。銀の比率が99重量%を超える
と、マイグレーション性を解決することが困難となる。
銀の比率が30重量%未満であると、得られる金属コロ
イド液の導電性が低下することがある。より好ましく
は、銀とその他の金属との重量比が、95:5〜40:
60である。更に好ましくは、銀とその他の金属とが重
量比で90:10〜60:40である。
In the case of the above-mentioned mixed colloid, the ratio of silver to other metals in the metal colloid solution is as follows:
It is preferable that the weight ratio of silver to other metals is 99: 1 to 30:70. If the proportion of silver exceeds 99% by weight, it becomes difficult to solve the migration property.
When the proportion of silver is less than 30% by weight, the conductivity of the obtained metal colloid liquid may be reduced. More preferably, the weight ratio of silver to the other metal is from 95: 5 to 40:
60. More preferably, the weight ratio of silver to other metals is 90:10 to 60:40.

【0013】第一の本発明において、上記有機成分とし
ては、例えば、分散剤として用いられる有機物が挙げら
れる。上記分散剤としては、適当な溶媒に溶解し、分散
効果を示すものであれは特に限定されず、例えば、クエ
ン酸三ナトリウム、クエン酸三カリウム、クエン酸三リ
チウム、りんご酸二ナトリウム、酒石酸二ナトリウム、
グリコール酸ナトリウム等のイオン性化合物;ドデシル
ベンゼンスルホン酸ナトリウム、オレイン酸ナトリウ
ム、ポリオキシエチレンアルキルエーテル、パーフルオ
ロアルキルエチレンオキシド付加物等の界面活性剤;ゼ
ラチン、アラビアゴム、アルブミン、ポリエチレンイミ
ン、ポリビニルセルロース類、アルカンチオール類等の
高分子等を挙げることができる。これらは単独で用いて
もよく、2種類以上を併用してもよい。
In the first aspect of the present invention, examples of the organic component include an organic substance used as a dispersant. The dispersing agent is not particularly limited as long as it dissolves in a suitable solvent and exhibits a dispersing effect. Examples thereof include trisodium citrate, tripotassium citrate, trilithium citrate, disodium malate, and ditartrate. sodium,
Ionic compounds such as sodium glycolate; surfactants such as sodium dodecylbenzenesulfonate, sodium oleate, polyoxyethylene alkyl ether, perfluoroalkylethylene oxide adduct; gelatin, gum arabic, albumin, polyethylene imine, polyvinyl cellulose And polymers such as alkanethiols. These may be used alone or in combination of two or more.

【0014】第一の本発明の金属コロイド液において、
上記金属成分と有機成分とからなる粒子の形態としては
特に限定されず、例えば、上記金属成分からなる粒子の
表面に有機成分が付着しているもの、上記金属成分から
なる粒子をコアとして、その表面を有機成分で被覆され
ているもの、金属成分と有機成分とが均一に混合されて
なる粒子等が挙げられる。なかでも、上記金属成分から
なる粒子をコアとして、その表面を有機成分で被覆され
ているもの、金属成分と有機成分とが均一に混合されて
なる粒子が好ましい。
In the first metal colloid liquid of the present invention,
The form of the particles composed of the metal component and the organic component is not particularly limited.For example, those in which an organic component is attached to the surface of the particles composed of the metal component, the particles composed of the metal component as a core, Examples thereof include those whose surfaces are coated with an organic component, and particles obtained by uniformly mixing a metal component and an organic component. Of these, particles having the above-mentioned metal component as a core and the surface thereof coated with an organic component, and particles obtained by uniformly mixing the metal component and the organic component are preferable.

【0015】第一の本発明において、上記金属コロイド
粒子中の有機成分量としては、1〜30重量%が好まし
い。上記金属コロイド粒子中の有機成分量が1重量%未
満であると、得られる金属コロイド液の貯蔵安定性が悪
くなる傾向があり、30重量%を超えると、得られる金
属コロイド液を用いてなる導電性被膜の導電率が悪くな
る傾向がある。より好ましくは、2〜20重量%であ
る。なお、第一の本発明の金属コロイド液において、上
記金属コロイド粒子の「有機成分」とは、金属成分とと
もに実質的に粒子を構成する有機物のことであり、金属
中に最初から不純物として含まれる微量有機物、後述す
る製造過程で混入した微量の有機物が金属成分に付着し
たもの、洗浄過程で除去しきれなかった残留還元剤、残
留分散剤等の有機物が微量、金属成分に付着したもの等
は含まれない。また、第一の本発明の金属コロイド液に
おいて、上記「微量」とは、具体的には、金属コロイド
粒子中1重量%未満をいう。
In the first aspect of the present invention, the amount of the organic component in the metal colloid particles is preferably 1 to 30% by weight. When the amount of the organic component in the metal colloid particles is less than 1% by weight, the storage stability of the obtained metal colloid tends to deteriorate, and when it exceeds 30% by weight, the obtained metal colloid is used. The conductivity of the conductive coating tends to deteriorate. More preferably, it is 2 to 20% by weight. In the metal colloid liquid of the first aspect of the present invention, the “organic component” of the metal colloid particles is an organic substance that substantially forms particles together with the metal component, and is included in the metal as an impurity from the beginning. A trace amount of organic matter, a trace amount of organic matter mixed in the manufacturing process described below adhered to the metal component, a trace amount of organic matter such as a residual reducing agent and a residual dispersant that could not be completely removed in the washing process, a material adhered to the metal component, etc. Not included. In the first metal colloid liquid of the present invention, the “trace amount” specifically means less than 1% by weight in the metal colloid particles.

【0016】第一の本発明の金属コロイド液に用いられ
る上記溶媒は、水及び/又は水溶性溶剤が好ましい。上
記溶媒に水及び/又は水溶性溶剤を用いることにより、
得られる金属コロイド液を製造される導電性インクを乾
燥時、又は、焼成時に溶剤臭が強くなく、環境にも悪影
響が少ない。
The solvent used in the metal colloid solution of the first invention is preferably water and / or a water-soluble solvent. By using water and / or a water-soluble solvent for the solvent,
When the conductive ink for producing the obtained metal colloid liquid is dried or baked, the solvent odor is not strong and the environment is not adversely affected.

【0017】第一の本発明の金属コロイド液は、上記金
属コロイド粒子を主成分とする固形分と、溶媒とからな
るので、電導度を10mS/cm以下とすることができ
る。従来の金属コロイド液は、存在する電解質成分の濃
度に敏感に反応して凝集沈降し、貯蔵安定性が損なわれ
ることがあったが、電導度が10mS/cm以下である
と、この影響を充分に排除することができ、ガラス容器
中の保管によるアルカリ分の流出や、空気中の炭酸ガス
の溶解による経時的な電解質濃度の上昇による貯蔵安定
性の悪化を防止することができる。更に、金属コロイド
液の電導度が10mS/cm以下であると、金属コロイ
ド液の分散安定性が高いので、固形分濃度が高い金属コ
ロイド液の作製が容易となり、容積を減ずることができ
るので、流通や運搬時の取り扱いが容易である。高濃度
の金属コロイド液は、後で適当な溶媒を用いて、使用に
最適な濃度に調整することができる。
Since the metal colloid liquid of the first invention comprises a solid containing the above-mentioned metal colloid particles as a main component and a solvent, the electric conductivity can be reduced to 10 mS / cm or less. The conventional metal colloid solution reacts sensitively to the concentration of the existing electrolyte component to cause coagulation and sedimentation, and storage stability may be impaired. However, if the conductivity is 10 mS / cm or less, this effect is sufficiently reduced. It is possible to prevent the outflow of alkali due to storage in a glass container and the deterioration of storage stability due to an increase in electrolyte concentration over time due to dissolution of carbon dioxide in air. Further, when the conductivity of the metal colloid liquid is 10 mS / cm or less, the dispersion stability of the metal colloid liquid is high, so that it is easy to prepare a metal colloid liquid having a high solid content, and the volume can be reduced. Easy handling during distribution and transportation. The high-concentration metal colloid solution can be adjusted to an optimum concentration for use later using an appropriate solvent.

【0018】また、第一の本発明の金属コロイド液にお
いては、上記金属コロイド粒子を主成分とする固形分
(以下、単に固形分ともいう)の濃度が1〜70重量%
であることが好ましい。ここで、上記固形分とは、金属
コロイド水溶液から大部分の水をシリカゲル等により取
り除いた後、70℃以下の温度で乾燥させたときに残存
する固形分をいい、通常、この固形分は、金属コロイド
粒子、残留分散剤及び残留還元剤等からなる。
In the metal colloid liquid of the first aspect of the present invention, the concentration of the solid content mainly composed of the metal colloid particles (hereinafter, simply referred to as solid content) is 1 to 70% by weight.
It is preferred that Here, the solid content refers to a solid content remaining after drying most of the metal colloid aqueous solution at a temperature of 70 ° C. or less after removing most of the water using silica gel or the like. It consists of metal colloid particles, a residual dispersant, a residual reducing agent and the like.

【0019】上記固形分の濃度が1重量%未満である
と、金属の含有量が少なすぎるので、得られる金属コロ
イド液を用いて導電性被膜を形成する際、必要な厚みを
出すために何度も重ね塗る必要が生じ工業的に不利であ
る。上記固形分の濃度が70重量%を超えると、粘性が
上昇し取扱にくくなるので、これも工業的に不利であ
る。上記固形分の濃度は、3〜50重量%がより好まし
い。
If the solid content is less than 1% by weight, the metal content is too low, so that when forming a conductive film using the obtained metal colloid solution, it is difficult to obtain a necessary thickness. Repeated application is required, which is industrially disadvantageous. If the concentration of the solids exceeds 70% by weight, the viscosity increases and it becomes difficult to handle, which is also industrially disadvantageous. The concentration of the solid content is more preferably 3 to 50% by weight.

【0020】また、第一の本発明の金属コロイド液にお
いて、上記固形分の熱重量分析による室温〜500℃ま
での加熱減量は、1〜25重量%であることが好まし
い。上記固形分を500℃まで加熱すると、上記有機成
分、残留分散剤、残留還元剤等が酸化分解され、大部分
のものはガス化されて消失する。残留分散剤や残留還元
剤の量は、僅かであると考えられるので、500℃まで
の加熱による減量は、ほぼ固形分中の有機成分の量に相
当すると考えてよい。
In the metal colloid liquid of the first aspect of the present invention, the heat loss from room temperature to 500 ° C. by the thermogravimetric analysis of the solid content is preferably 1 to 25% by weight. When the solid content is heated to 500 ° C., the organic components, the residual dispersant, the residual reducing agent, and the like are oxidatively decomposed, and most of them are gasified and disappear. Since the amounts of the residual dispersing agent and the residual reducing agent are considered to be insignificant, the loss by heating up to 500 ° C. may be considered to substantially correspond to the amount of the organic component in the solid content.

【0021】上記固形分の熱重量分析による室温〜50
0℃までの加熱減量が、1〜25重量%である金属コロ
イド水溶液は、分散安定性に優れており、また、有機成
分等の導電性を悪化させる原因となる成分の量も適切で
あるので、導電性に優れた導電性被膜を形成することが
できる。
Room temperature to 50 by thermogravimetric analysis of the solid content
A metal colloid aqueous solution having a heating loss to 0 ° C. of 1 to 25% by weight is excellent in dispersion stability, and the amount of a component such as an organic component which causes deterioration in conductivity is also appropriate. In addition, a conductive film having excellent conductivity can be formed.

【0022】上記固形分の加熱減量が、1重量%未満で
あると、金属成分に対する有機成分の量が少ないので金
属コロイド粒子の充分な分散性が得られないことがあ
り、25重量%を超えると、金属成分に対する有機成分
の量が多すぎるので、得られる導電性被膜の導電性がか
なり悪くなることがある。有機成分の量が多い場合、成
膜後に加熱焼成して有機成分を分解消失させることで導
電性をある程度改善することができるが、導電性被膜に
ひび割れ等が起こり易くなるので好ましくない。上記固
形分の加熱減量は、より好ましくは、1〜10重量%で
ある。
When the weight loss on heating of the solid content is less than 1% by weight, sufficient dispersibility of the metal colloid particles may not be obtained because the amount of the organic component relative to the metal component is small, and it exceeds 25% by weight. In addition, since the amount of the organic component relative to the metal component is too large, the conductivity of the obtained conductive coating may be considerably deteriorated. When the amount of the organic component is large, the conductivity can be improved to some extent by decomposing and eliminating the organic component by heating and baking after film formation, but it is not preferable because cracks and the like easily occur in the conductive film. The heating loss of the solid content is more preferably 1 to 10% by weight.

【0023】更に、第一の本発明の金属コロイド液にお
いて、上記金属コロイド粒子の平均粒子径は、1〜40
0nmであることが好ましい。上記金属コロイド粒子の
粒子径が1nm未満であっても、良好な導電性インクは
得られるが、一般的にそのような微粒子の製造はコスト
高で実用的でない。400nmを超えると、金属コロイ
ド粒子の分散安定性が経時的に変化しやすい。上記金属
コロイド粒子の平均粒子径は、より好ましくは、1〜7
0nmである。
Further, in the metal colloid liquid of the first invention, the metal colloid particles have an average particle diameter of 1 to 40.
It is preferably 0 nm. Even if the metal colloid particles have a particle size of less than 1 nm, a good conductive ink can be obtained, but the production of such fine particles is generally expensive and impractical. If it exceeds 400 nm, the dispersion stability of the metal colloid particles tends to change with time. The average particle diameter of the metal colloid particles is more preferably 1 to 7
0 nm.

【0024】本発明の金属コロイド液を製造する方法と
しては、例えば、まず上記金属コロイド粒子を含む溶液
を作製し、次いで、その溶液の洗浄を行う方法等が挙げ
られる。上記金属コロイド粒子を含む溶液を作製する方
法としては、化学還元法による方法であれば特に限定さ
れず、例えば、上記分散剤を用いて溶液中に分散させた
金属塩(金属イオン)を、何らかの方法により還元させ
ればよい。
The method for producing the metal colloid liquid of the present invention includes, for example, a method of first preparing a solution containing the above-mentioned metal colloid particles, and then washing the solution. The method for producing the solution containing the metal colloid particles is not particularly limited as long as it is a method by a chemical reduction method. For example, a metal salt (metal ion) dispersed in a solution using the dispersant may be any method. It may be reduced by a method.

【0025】上記金属塩としては、適当な溶媒中に溶解
でき、何らかの手段で還元できるものであれば特に限定
されず、例えば、硝酸銀、硫酸銀、塩化銀、酸化銀、酢
酸銀、亜硝酸銀、塩素酸銀、硫化銀等の銀塩;塩化金
酸、塩化金カリウム、塩化金ナトリウム等の金塩;塩化
白金酸、塩化白金、酸化白金、塩化白金酸カリウム等の
白金塩;硝酸パラジウム、酢酸パラジウム、塩化パラジ
ウム、酸化パラジウム、硫酸パラジウム等のパラジウム
塩、その他の白金属塩等を挙げることができる。これら
は単独で用いてもよく、2種類以上を併用してもよい。
The above-mentioned metal salt is not particularly limited as long as it can be dissolved in an appropriate solvent and can be reduced by any means. For example, silver nitrate, silver sulfate, silver chloride, silver oxide, silver acetate, silver nitrite, Silver salts such as silver chlorate and silver sulfide; gold salts such as chloroauric acid, potassium potassium chloride and sodium gold chloride; platinum salts such as chloroplatinic acid, platinum chloride, platinum oxide and potassium chloroplatinate; palladium nitrate and acetic acid Examples include palladium salts such as palladium, palladium chloride, palladium oxide, and palladium sulfate, and other white metal salts. These may be used alone or in combination of two or more.

【0026】上記金属塩を還元させる方法としては特に
限定されず、還元剤を用いて還元させてもよく、UV等
の光、電子線、熱エネルギーを用いて還元させてもよ
い。上記還元剤としては適当な溶媒に溶解し、上記塩類
を還元させることができるものであれば特に限定され
ず、例えば、ジメチルアミノエタノール、メチルジエタ
ノールアミン、トリエタノールアミン、フェニドン、ヒ
ドラジン等のアミン化合物;水酸化ホウ素ナトリウム、
ヨウ化水素、水素ガス等の水素化合物;一酸化炭素、亜
硫酸等の酸化物;硫酸第一鉄、塩化鉄、フマル酸鉄、乳
酸鉄、シュウ酸鉄、硫化鉄、酢酸錫、塩化錫、二リン酸
錫、シュウ酸錫、酸化錫、硫酸錫等の低原子価金属塩;
ホルムアルデヒド、ハイドロキノン、ピロガロール、タ
ンニン、タンニン酸、サリチル酸、D−グルコース等の
糖等の有機化合物等を挙げることができる。また、これ
らの化合物を使用する際には、光や熱を加えて還元反応
を促進させてもよい。
The method for reducing the metal salt is not particularly limited, and the metal salt may be reduced using a reducing agent, or may be reduced using light such as UV, an electron beam, or heat energy. The reducing agent is not particularly limited as long as it can be dissolved in a suitable solvent and can reduce the salts, and examples thereof include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; Sodium borohydride,
Hydrogen compounds such as hydrogen iodide and hydrogen gas; oxides such as carbon monoxide and sulfurous acid; ferrous sulfate, iron chloride, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, and tin chloride Low valent metal salts such as tin phosphate, tin oxalate, tin oxide, tin sulfate;
Organic compounds such as formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, and sugars such as D-glucose can be mentioned. When these compounds are used, light or heat may be applied to promote the reduction reaction.

【0027】上記金属塩、分散剤及び還元剤を用いて金
属コロイド粒子を含む溶液を製造する方法としては、例
えば、上記金属塩を純水等に溶かして金属塩溶液を調製
し、その金属塩溶液を徐々に分散剤と還元剤とが溶解し
た水溶液中に滴下する方法等を挙げることができる。
As a method for producing a solution containing metal colloid particles using the above metal salt, dispersant and reducing agent, for example, a metal salt solution is prepared by dissolving the above metal salt in pure water or the like, A method of gradually dropping a solution into an aqueous solution in which a dispersant and a reducing agent are dissolved can be exemplified.

【0028】上記のようにして得られた金属コロイド粒
子を含む溶液中には、金属コロイド粒子の他に、還元剤
の残留物や分散剤が存在しており、液全体の電解質濃度
が高くなっている。このような状態の液は、電導度が高
いので、金属コロイド粒子の凝析が起こり、沈殿しやす
い。上記金属コロイドを含む溶液を洗浄して余分な電解
質を取り除くことにより、電導度が10mS/cm以下
の金属コロイド液を得ることができる。
In the solution containing the metal colloid particles obtained as described above, in addition to the metal colloid particles, a residue of a reducing agent and a dispersing agent are present, so that the electrolyte concentration of the whole liquid becomes high. ing. Since the liquid in such a state has a high electric conductivity, coagulation of the metal colloid particles occurs, and the liquid tends to precipitate. By washing the solution containing the metal colloid to remove excess electrolyte, a metal colloid liquid having an electric conductivity of 10 mS / cm or less can be obtained.

【0029】上記洗浄の方法としては、例えば、得られ
た金属コロイド粒子を含む液を一定期間静置し、生じた
上澄み液を取り除いた上で、純水を加えて再度攪拌し、
更に一定期間静置して生じた上澄み液を取り除く工程を
幾度か繰り返す方法、上記の静置の代わりに遠心分離を
行う方法、限外濾過装置やイオン交換装置等により脱塩
する方法等を挙げることができる。なかでも、脱塩する
方法が好ましい。また、脱塩等により電導度を10mS
/cm以下とした液は、適宜濃縮してもよい。
As a washing method, for example, the liquid containing the obtained metal colloid particles is allowed to stand for a certain period of time, the resulting supernatant is removed, pure water is added, and the mixture is stirred again.
Furthermore, a method of repeating the process of removing the supernatant liquid generated by standing for a certain period of times several times, a method of performing centrifugation instead of the above-mentioned standing, a method of desalting with an ultrafiltration device, an ion exchange device, and the like are given. be able to. Above all, a desalting method is preferable. In addition, the conductivity is set to 10 mS by desalination or the like.
/ Cm or less may be appropriately concentrated.

【0030】また、複数の金属からなる混合コロイド液
を作製する方法としては特に限定されず、例えば、銀と
その他の金属とからなる混合コロイド液を作製する場合
には、上記の方法にて、銀コロイド液とその他の金属の
コロイド液とを別々に作製し、その後混合して混合コロ
イド液としてもよく、銀イオン溶液とその他の金属イオ
ン溶液とを混合し、その後に還元してもよい。
The method for preparing a mixed colloid liquid composed of a plurality of metals is not particularly limited. For example, when preparing a mixed colloid liquid composed of silver and another metal, the above method is used. A silver colloid solution and another metal colloid solution may be separately prepared and then mixed to form a mixed colloid solution, or a silver ion solution and another metal ion solution may be mixed and then reduced.

【0031】以下に、第二の本発明を詳述する。第二の
本発明は、第一の本発明の金属コロイド液を用いてなる
導電性インクである。第二の本発明の導電性インクは、
第一の本発明の金属コロイド液を用いているので、良好
な導電性を有する導電性被膜を形成することができる。
Hereinafter, the second present invention will be described in detail. The second invention is a conductive ink using the metal colloid liquid of the first invention. The conductive ink of the second present invention,
Since the metal colloid liquid of the first aspect of the present invention is used, a conductive film having good conductivity can be formed.

【0032】また、第二の本発明の導電性インクは、上
記金属コロイド液に造膜助剤を添加してなることが好ま
しい。上記造膜助剤は、コロイド粒子となじみがよいの
で、コロイド粒子間に均一に存在して、コロイド粒子を
均一に分散させる。そのため、導電性インクが溶液状態
では、貯蔵安定性を高める効果がある。上記導電性イン
クを塗布して導電性被膜とした際には、コロイド粒子と
なじみがよいので、強い被膜を作って強度を高める効果
があり、また、コロイドを均一に被膜中に分散させるの
で、導電性のバラツキが少ない、均一な被膜を製造する
ことができ、更に、基材との密着性を向上させることが
できる。即ち、上記造膜助剤は、少量で効果的な被膜強
度を出すことができ、しかも良好な導電性を損なうこと
が少ない。
The conductive ink of the second aspect of the present invention is preferably formed by adding a film-forming aid to the above-mentioned metal colloid solution. Since the film-forming aid is well compatible with the colloid particles, it is uniformly present between the colloid particles and uniformly disperses the colloid particles. Therefore, when the conductive ink is in a solution state, there is an effect of improving storage stability. When the above-mentioned conductive ink is applied to form a conductive film, it is well compatible with the colloid particles, so there is an effect of increasing the strength by forming a strong film, and since the colloid is uniformly dispersed in the film, It is possible to produce a uniform coating with little variation in conductivity, and to further improve the adhesion to a substrate. That is, the above-mentioned film-forming auxiliary can provide an effective film strength with a small amount, and hardly impairs good conductivity.

【0033】第二の本発明の導電性インクに用いられる
上記造膜助剤としては、適当な溶媒に溶解し、金属コロ
イド粒子と優れた被膜を形成するものであれば特に限定
されず、例えば、ポリエステル系樹脂、ブロックドイソ
シアネート等のポリウレタン系樹脂、ポリアクリレート
系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹
脂、メラミン系樹脂等を挙げることができる。
The film-forming aid used in the conductive ink of the second invention is not particularly limited as long as it dissolves in an appropriate solvent and forms an excellent film with metal colloid particles. And polyester resins, polyurethane resins such as blocked isocyanates, polyacrylate resins, polyacrylamide resins, polyether resins, and melamine resins.

【0034】上記金属コロイド液の溶媒が水及び/又は
水溶性用剤である場合には、上記造膜助剤は、水性樹脂
であることが好ましい。上記水性樹脂としては特に限定
されず、例えば、水性ポリウレタン系樹脂、水性ポリエ
ステル系樹脂等の強制エマルジョン樹脂、セルロース系
樹脂、アクリレート系樹脂、ポリビニルアルコール系樹
脂、セルロース系樹脂、水性ポリアニリン系樹脂、ブロ
ックドイソシアネート等のポリウレタン系樹脂、メラミ
ン系樹脂等を挙げることができる。これらは単独で用い
てもよく、2種類以上を併用してもよい。
When the solvent of the metal colloid liquid is water and / or a water-soluble agent, the film forming aid is preferably an aqueous resin. The aqueous resin is not particularly limited, for example, aqueous polyurethane resin, forced emulsion resin such as aqueous polyester resin, cellulose resin, acrylate resin, polyvinyl alcohol resin, cellulose resin, aqueous polyaniline resin, block Examples thereof include polyurethane resins such as doisocyanate, and melamine resins. These may be used alone or in combination of two or more.

【0035】なかでも、上記水性樹脂としては、ポリウ
レタン系樹脂、メラミン系樹脂、強制エマルジョン樹脂
が好ましい。これらは単独で用いてもよく、2種類以上
を併用してもよい。また、上記ポリウレタン系樹脂、メ
ラミン系樹脂を用いる場合には、ブロックドイソシアネ
ート又はメラミン系樹脂と、活性水素基を有する高分子
とを併用することが好ましい。上記水性樹脂のなかで
も、活性水素基を有する高分子を併用するブロックドイ
ソシアネート、活性水素基を有する高分子を併用するメ
ラミン系樹脂、強制エマルジョン樹脂がより好ましい。
これらは単独で用いてもよく、2種類以上を併用しても
よい。上記のような樹脂からなる水性樹脂は、溶液状態
で極めて安定であり、加熱して乾燥、硬化することによ
って容易に耐水性のよい被膜を得ることができる。
Of these, polyurethane resins, melamine resins, and forced emulsion resins are preferred as the aqueous resin. These may be used alone or in combination of two or more. When the above-mentioned polyurethane resin or melamine resin is used, it is preferable to use a blocked isocyanate or melamine resin together with a polymer having an active hydrogen group. Among the above aqueous resins, a blocked isocyanate using a polymer having an active hydrogen group in combination, a melamine resin using a polymer having an active hydrogen group in combination, and a forced emulsion resin are more preferable.
These may be used alone or in combination of two or more. The aqueous resin composed of the resin as described above is extremely stable in a solution state, and a coating having good water resistance can be easily obtained by heating and drying and curing.

【0036】上記ブロックドイソシアネートとしては特
に限定されず、例えば、ジフェニルメタンジイソシアネ
ート、水素化ジフェニルメタンジイソシアネート、ヘキ
サメチレンジイソシアネート、イソフォロンジイソシア
ネート等を、例えば、オキシム類、アルコール類、フェ
ノール類、ラクタム類等でブロックしたもの等を挙げる
ことができる。これらは単独で用いてもよく、2種類以
上を併用してもよい。
The above-mentioned blocked isocyanate is not particularly limited. For example, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate and the like are blocked with oximes, alcohols, phenols, lactams and the like. And the like. These may be used alone or in combination of two or more.

【0037】上記メラミン系樹脂としては特に限定され
ず、例えば、アルキル基型メラミン、メチロール基型メ
ラミン、イミノ基型メラミン等を挙げることができる。
これらは単独で用いてもよく、2種類以上を併用しても
よい。
The melamine resin is not particularly restricted but includes, for example, alkyl group melamine, methylol group melamine, imino group melamine and the like.
These may be used alone or in combination of two or more.

【0038】上記強制エマルジョン樹脂としては特に限
定されず、例えば、水性ポリウレタン系樹脂、水性ポリ
エステル系樹脂等を挙げることができる。これらは単独
で用いてもよく、2種類以上を併用してもよい。
The forced emulsion resin is not particularly restricted but includes, for example, aqueous polyurethane resins and aqueous polyester resins. These may be used alone or in combination of two or more.

【0039】上記活性水素基を有する高分子としては特
に限定されず、例えば、水酸基を有するポリオキシテト
ラメチレングリコール、ポリオキシプロピレングリコー
ル、ポリオキシエチレングリコール、ポリビニルアルコ
ール等の水酸基を有する高分子;ポリエチレンイミン、
ポリアクリルアミド等のアミノ基を有する高分子等を挙
げることができる。これらは単独で用いられてもよく、
2種類以上が併用されてもよい。
The polymer having an active hydrogen group is not particularly limited. For example, a polymer having a hydroxyl group such as polyoxytetramethylene glycol, polyoxypropylene glycol, polyoxyethylene glycol, or polyvinyl alcohol having a hydroxyl group; polyethylene Imin,
A polymer having an amino group such as polyacrylamide can be used. These may be used alone,
Two or more types may be used in combination.

【0040】第二の本発明の導電性インクにおいて、上
記造膜助剤の添加量としては、上記金属コロイド液中の
固形分100重量部に対して、1〜100重量部である
ことが好ましい。上記造膜助剤の添加量が、上記金属コ
ロイド液中の固形分100重量部に対して100重量部
を超えると、導電性が悪化することがある。1重量部未
満であると、造膜助剤を添加した効果がみられない。よ
り好ましくは、1〜50重量部である。
In the conductive ink according to the second aspect of the present invention, the amount of the film-forming auxiliary added is preferably 1 to 100 parts by weight based on 100 parts by weight of the solid content in the metal colloid solution. . If the amount of the film-forming auxiliary exceeds 100 parts by weight based on 100 parts by weight of the solid content in the metal colloid solution, the conductivity may be deteriorated. If the amount is less than 1 part by weight, the effect of adding the film-forming aid is not observed. More preferably, it is 1 to 50 parts by weight.

【0041】上記金属コロイド液に造膜助剤を添加する
方法としては特に限定されず、上記金属コロイド液に直
接添加してもよく、造膜助剤を水溶性溶剤等に溶解して
造膜助剤溶液を作製し、金属コロイド液に添加してもよ
い。
The method for adding a film-forming aid to the above-mentioned metal colloid solution is not particularly limited, and may be directly added to the above-mentioned metal colloid solution, or by dissolving the film-forming aid in a water-soluble solvent or the like. An auxiliary solution may be prepared and added to the metal colloid solution.

【0042】以下に、第三の本発明を詳述する。第三の
本発明は、第二の本発明の導電性インクを基材上に塗布
し、乾燥することにより形成される導電性被膜であっ
て、導電率が1×103 S/cm以上である導電性被膜
である。上記導電率が1×103 S/cm未満である
と、導電性が要求される用途、即ち、回路基板上に形成
する電極等に用いることが困難となる。上記導電率は、
1×104 S/cm以上であることが好ましい。
Hereinafter, the third present invention will be described in detail. The third present invention is a conductive film formed by applying the conductive ink of the second present invention on a substrate and drying, and having a conductivity of 1 × 10 3 S / cm or more. It is a conductive film. When the conductivity is less than 1 × 10 3 S / cm, it becomes difficult to use the composition for applications requiring conductivity, that is, for electrodes formed on a circuit board. The conductivity is
It is preferably at least 1 × 10 4 S / cm.

【0043】第三の本発明の導電性被膜において、上記
基材としては特に限定されず、例えば、アルミナ焼結
体、フェノール樹脂、ガラスエポキシ樹脂、ガラス等か
らなる基板;ガラス、樹脂、セラミック等からなる建
材;樹脂やセラミック等で表面が形成された電子機器等
を挙げることができる。また、その形状としては、例え
ば、板状、フィルム状等を挙げることができる。
In the conductive film according to the third aspect of the present invention, the base material is not particularly limited, and may be, for example, a substrate made of alumina sintered body, phenol resin, glass epoxy resin, glass, etc .; glass, resin, ceramic, etc. And electronic equipment having a surface formed of resin, ceramic, or the like. In addition, examples of the shape include a plate shape and a film shape.

【0044】上記基材上に上記導電性インクを塗布する
方法としては特に限定されないが、例えば、ディップイ
ング、スクリーン印刷、スプレー方式、バーコート法、
スピンコート法、刷毛による方法等を挙げることができ
る。
The method for applying the conductive ink on the substrate is not particularly limited, and examples thereof include dip, screen printing, spraying, bar coating, and the like.
Examples of the method include a spin coating method and a brush method.

【0045】第三の本発明の導電性被膜を製造する際
に、層基材上に塗布された導電性インクを乾燥させる方
法としては、加熱が好ましい。導電性被膜を製造時に、
上記導電性インクを加熱・焼成することにより、得られ
る導電性被膜の導電性を一層高めることができる。ま
た、加熱方法としては特に限定されず、例えば、誘電加
熱法、高周波加熱法等を挙げることができる。また、第
三の本発明の導電性被膜は、第二の本発明の導電性イン
クを用いてなるので、被膜強度が強い。
Heating is preferred as a method for drying the conductive ink applied on the layer substrate when the conductive film of the third invention is produced. When manufacturing the conductive coating,
By heating and baking the conductive ink, the conductivity of the obtained conductive coating can be further enhanced. The heating method is not particularly limited, and examples thereof include a dielectric heating method and a high-frequency heating method. Further, since the conductive film of the third invention is formed using the conductive ink of the second invention, the film strength is high.

【0046】以下に、第四の本発明を詳述する。第四の
本発明は、第三の本発明の導電性被膜を基材上に形成す
る際に、あらかじめ基材上に設けられる塗膜であって、
その上に導電性インクが塗布されて上記導電性被膜が形
成される導電性被膜形成用基底塗膜である。
Hereinafter, the fourth present invention will be described in detail. The fourth invention is a coating film that is previously provided on the substrate when the conductive film of the third invention is formed on the substrate,
A conductive coating-forming base coating film on which a conductive ink is applied to form the conductive coating.

【0047】基材上に、導電性インクを塗布する場合、
通常は、基材上に直接導電性インクを塗布し、加熱等に
より乾燥することにより導電性被膜を形成する。しか
し、基材として、上記の通り様々な基材を用いるので、
基材の種類によっては表面張力が高くてうまく塗れない
場合がある。このような場合には導電性インクに界面活
性剤を添加する方法が極めて一般的であるが、非導電性
有機物の添加は導電性を低下させる。
When a conductive ink is applied on a substrate,
Normally, a conductive film is formed by directly applying a conductive ink on a substrate and drying it by heating or the like. However, since various substrates are used as described above,
Depending on the type of the base material, it may not be applied well due to high surface tension. In such a case, a method of adding a surfactant to the conductive ink is quite common, but the addition of a non-conductive organic substance lowers the conductivity.

【0048】そこで、上記導電性インクを基板上に塗布
する前に、あらかじめ基材表面に、基材と導電性被膜と
の両方に親和性を有する導電性被膜形成用基底塗膜(以
下、基底塗膜という)を塗布し、この基底塗膜上に上記
導電性インクを塗布して、導電性被膜を形成することが
好ましい。上記基底塗膜は、上記導電性被膜と上記基材
との間に位置し、両者の接着層として機能するので、基
材との密着性に優れた導電性被膜を形成することができ
る。
Therefore, before applying the conductive ink on a substrate, a base coating film for forming a conductive film (hereinafter referred to as a base film) having an affinity for both the base material and the conductive film is formed on the base material surface in advance. It is preferable to apply a conductive film on the base coating film to form a conductive film. The base coating film is located between the conductive film and the substrate and functions as an adhesive layer between the two, so that a conductive film having excellent adhesion to the substrate can be formed.

【0049】第四の本発明の基底塗膜は、塗布の簡便さ
から、樹脂からなることが好ましい。上記樹脂としては
特に限定されず、例えば、ポリエステル系樹脂、ブロッ
クドイソシアネート等のポリウレタン系樹脂、ポリアク
リレート系樹脂、ポリアクリルアミド系樹脂、ポリエー
テル系樹脂、メラミン系樹脂等を挙げることができる。
The fourth base coating film of the present invention is preferably made of a resin from the viewpoint of simplicity of application. The resin is not particularly restricted but includes, for example, polyester resins, polyurethane resins such as blocked isocyanates, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins and the like.

【0050】また、上記樹脂は、水性樹脂であることが
好ましい。塗布する金属コロイド液が水性の場合には、
基底塗膜も水性であると、塗布装置の共通化が図れる。
上記水性樹脂としては特に限定されず、例えば、水性ポ
リウレタン系樹脂、水性ポリエステル系樹脂等の強制エ
マルジョン樹脂、アクリレート系樹脂、ポリビニルアル
コール系樹脂、セルロース系樹脂、水性ポリアニリン系
樹脂、ブロックドイソシアネート等のポリウレタン系樹
脂、メラミン系樹脂、イオン性高分子、ポリアニリン系
樹脂等を挙げることができる。これらは単独で用いても
よく、2種類以上を併用してもよい。
The resin is preferably an aqueous resin. When the metal colloid liquid to be applied is aqueous,
If the base coating film is also water-based, a common coating device can be used.
The aqueous resin is not particularly limited, for example, aqueous polyurethane resin, forced emulsion resin such as aqueous polyester resin, acrylate resin, polyvinyl alcohol resin, cellulose resin, aqueous polyaniline resin, blocked isocyanate and the like Examples thereof include polyurethane resins, melamine resins, ionic polymers, and polyaniline resins. These may be used alone or in combination of two or more.

【0051】なかでも、上記水性樹脂は、ポリウレタン
性樹脂、メラミン系樹脂、強制エマルジョン樹脂、イオ
ン性高分子、ポリアニリン系樹脂からなることが好まし
い。これらは単独で用いてもよく、2種類以上を併用し
てもよい。
In particular, the aqueous resin is preferably made of a polyurethane resin, a melamine resin, a forced emulsion resin, an ionic polymer, or a polyaniline resin. These may be used alone or in combination of two or more.

【0052】また、上記ポリウレタン系樹脂、メラミン
系樹脂を用いる場合には、ブロックドイソシアネート又
はメラミン系樹脂と、活性水素基を有する高分子とを併
用することが好ましい。上記活性水素基を有する高分子
としては、例えば、第二の本発明で用いられたものと同
じもの等を挙げることができる。上記水性樹脂のなかで
も、活性水素基を有する高分子を併用するブロックドイ
ソシアネート、活性水素基を有する高分子を併用するメ
ラミン系樹脂、強制エマルジョン樹脂がより好ましい。
これらは単独で用いてもよく、2種類以上を併用しても
よい。上記のような樹脂からなる水性樹脂は、溶液状態
で極めて安定であり、加熱して乾燥、硬化することによ
って容易に耐水性のよい基底塗膜を得ることができる。
上記ブロックドイソシアネート、メラミン系樹脂、強制
エマルジョン樹脂としては、例えば、第二の本発明で用
いられたものと同じもの等を挙げることができる。
When the above-mentioned polyurethane resin or melamine resin is used, it is preferable to use a blocked isocyanate or melamine resin together with a polymer having an active hydrogen group. Examples of the polymer having an active hydrogen group include the same polymers as those used in the second invention. Among the above aqueous resins, a blocked isocyanate using a polymer having an active hydrogen group in combination, a melamine resin using a polymer having an active hydrogen group in combination, and a forced emulsion resin are more preferable.
These may be used alone or in combination of two or more. The aqueous resin composed of the resin as described above is extremely stable in a solution state, and a base film having good water resistance can be easily obtained by heating and drying and curing.
Examples of the above-mentioned blocked isocyanate, melamine-based resin and forced emulsion resin include the same as those used in the second invention.

【0053】上記イオン性高分子を用いると、得られる
基底塗膜の接着力を更に上げることができる。塗布され
る導電性インク中において、金属コロイド粒子は、一般
に溶媒中で帯電しているので、基底塗膜の樹脂の一部又
は全部に上記イオン性高分子を用いると、得られる基底
塗膜と導電性被膜との接着力がより強固になる。上記イ
オン性高分子としては特に限定されず、例えば、カルボ
キシル金属コロイド液、スルホン基を含むアニオン性樹
脂;四級アミノ基を含むカチオン性樹脂等を挙げること
ができる。
When the ionic polymer is used, the adhesive strength of the obtained base coating film can be further increased. In the conductive ink to be applied, the metal colloid particles are generally charged in a solvent, so if the ionic polymer is used for part or all of the resin of the base coating, the obtained base coating and Adhesion with the conductive film becomes stronger. The ionic polymer is not particularly limited, and examples thereof include a carboxyl metal colloid solution, an anionic resin containing a sulfone group; and a cationic resin containing a quaternary amino group.

【0054】上記ポリアニリン系樹脂を用いると、得ら
れる基底塗膜の導電性を上げることができる。上記基底
塗膜は、特に導電性を示すものではないが、上記基底塗
膜を構成する樹脂の一部又は全部に上記ポリアニリン系
樹脂を用いると、導電性を有するものとなる。
When the above-mentioned polyaniline-based resin is used, the conductivity of the obtained base coating film can be increased. The base coating film does not particularly exhibit conductivity, but becomes conductive when the polyaniline-based resin is used for part or all of the resin constituting the base coating film.

【0055】また、第四の本発明の基底塗膜は、コロイ
ド吸着剤を含有してなることが好ましい。上記樹脂に上
記コロイド吸着剤を混合させることにより、基底塗膜
と、その上に形成される導電性被膜との密着性が向上す
る。
Further, the base coating film of the fourth invention preferably contains a colloid adsorbent. By mixing the above resin with the above colloid adsorbent, the adhesion between the base coating film and the conductive coating film formed thereon is improved.

【0056】上記コロイド吸着剤としては、基底塗膜を
構成する樹脂等と混ざりやすく、金属コロイド粒子を吸
着することができるものであれば特に限定されず、例え
ば、シリカ、酸化チタン、酸化錫、炭酸カルシウム、炭
酸マグネシウム、金、銀等の金属微粉末等を挙げること
ができる。これらは単独で用いてもよく、2種類以上を
併用してもよい。また、上記コロイド吸着剤の形状とし
ては特に限定されないが、比表面積が極めて大きい微粒
子等が好適に用いられる。上記のようなコロイド吸着剤
は、表面に金属コロイド粒子を吸着するので、基底塗膜
と導電性被膜との密着性を向上させることができる。
The colloid adsorbent is not particularly limited as long as it is easily mixed with the resin constituting the base coating film and can adsorb the metal colloid particles. For example, silica, titanium oxide, tin oxide, Examples thereof include fine metal powders such as calcium carbonate, magnesium carbonate, gold, and silver. These may be used alone or in combination of two or more. The shape of the colloid adsorbent is not particularly limited, but fine particles having an extremely large specific surface area are preferably used. Since the above-mentioned colloid adsorbent adsorbs metal colloid particles on the surface, it is possible to improve the adhesion between the base coat and the conductive coat.

【0057】上記のような水性樹脂等を基材上に塗布
し、乾燥させることにより、第四の本発明の基底塗膜が
形成される。上記基材としては、第三の本発明の導電性
被膜の説明において対象とした基材と同様のものを挙げ
ることができ、その形状も同様のものを挙げることがで
きる。
The above-mentioned aqueous resin or the like is coated on a substrate and dried to form the fourth base coating film of the present invention. Examples of the substrate include those similar to the substrate targeted in the description of the conductive coating of the third aspect of the present invention, and examples thereof include the same shape.

【0058】上記基材上に上記水性樹脂などからなる基
底塗膜を塗布する方法としては特に限定されず、第三の
本発明の導電性被膜の説明において導電性インクを塗布
する際に用いた方法と同様の方法を用いることができ
る。上記基底塗膜上に導電性インクを塗布し、加熱する
ことにより、基材との密着性に優れた導電性被膜を形成
することができる。
The method of applying the base coat composed of the aqueous resin or the like on the base material is not particularly limited, and the method used for applying the conductive ink in the description of the conductive coat of the third invention is used. A method similar to the method can be used. By applying a conductive ink on the base coating film and heating the conductive ink, a conductive film having excellent adhesion to a substrate can be formed.

【0059】第一の本発明の金属コロイド液は、上述の
ような構成からなるので、金属コロイド粒子の分散安定
性が高く、金属コロイド粒子を主成分とする固形分濃度
を高くしても、貯蔵安定性に優れている。第二の本発明
の導電性インクは、第一の本発明の金属コロイド液を用
いてなるので、高い導電性を有する。また、造膜助剤を
添加することにより、導電性を損なうことなく、金属コ
ロイド粒子の分散性を更に向上させることができ、均一
な被膜を製造することができる。第三の本発明の導電性
被膜は、第二の本発明の導電性インクを用いてなるの
で、被膜強度が強く、均一で導電性が良好である。ま
た、第四の本発明の基底塗膜は、接着性に優れるので、
上記基底塗膜の上に導電性被膜を形成することにより、
更に基材との密着性に優れた導電性被膜を製造すること
ができる。
Since the metal colloid liquid of the first aspect of the present invention has the above-described structure, the dispersion stability of the metal colloid particles is high, and even if the solid content mainly composed of the metal colloid particles is increased, Excellent storage stability. The conductive ink according to the second aspect of the present invention has high conductivity because it uses the metal colloid liquid of the first aspect of the present invention. Further, by adding a film-forming aid, the dispersibility of the metal colloid particles can be further improved without impairing the conductivity, and a uniform coating can be produced. Since the conductive film of the third aspect of the present invention is formed by using the conductive ink of the second aspect of the present invention, the strength of the film is strong, uniform and good in conductivity. In addition, the base coating film of the fourth invention is excellent in adhesiveness,
By forming a conductive coating on the base coating,
Further, it is possible to produce a conductive film having excellent adhesion to a substrate.

【0060】[0060]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0061】実施例1 (1)銀コロイド液の製造 分散剤としてクエン酸三ナトリウム二水和物(和光純薬
工業社製 試薬特級)6.82gと還元剤として硫酸第
一鉄七水和物(和光純薬工業社製 試薬特級)3.23
gとを溶解させた水溶液約20mLを室温下にマグネテ
ィックスターラーで攪拌しながら、0.986gの硝酸
銀(和光純薬工業社製、試薬特級)を含む水溶液1.5
mLを滴下させて銀コロイド液を製造した。
Example 1 (1) Production of silver colloid liquid 6.82 g of trisodium citrate dihydrate (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersant and ferrous sulfate heptahydrate as a reducing agent (Wako Pure Chemical Industries Co., Ltd. reagent grade) 3.23
g of an aqueous solution containing 0.986 g of silver nitrate (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) while stirring with a magnetic stirrer about 20 mL of an aqueous solution in which g was dissolved.
mL was added dropwise to produce a silver colloid solution.

【0062】(2)銀コロイド液の洗浄 得られた銀コロイド液を一晩静置して、生じた上澄み液
をイオン交換水に置換した。この操作を2度繰り返し
た。
(2) Washing of silver colloid solution The obtained silver colloid solution was allowed to stand overnight, and the resulting supernatant was replaced with ion-exchanged water. This operation was repeated twice.

【0063】(3)銀コロイド液の脱塩 洗浄した銀コロイド液を、倉敷紡績社製、セントリカッ
トU−10に入れて、遠心分離器で3000rpm×3
0分間限外濾過を行った。上澄みの導電率は、東亜電波
工業社製、CM−20Sで測定した。上澄み液をイオン
交換水に置換して同様の操作を繰り返し、所定の電導度
になるまで限外濾過を行った。
(3) Desalting of the silver colloid solution The washed silver colloid solution was put into Centricut U-10 manufactured by Kurashiki Spinning Co., Ltd., and centrifuged at 3000 rpm × 3.
Ultrafiltration was performed for 0 minutes. The conductivity of the supernatant was measured by CM-20S manufactured by Toa Denpa Kogyo. The same operation was repeated by replacing the supernatant with ion-exchanged water, and ultrafiltration was performed until a predetermined conductivity was reached.

【0064】(4)導電性被膜の形成 得られた銀コロイド液を市販のアルミナ焼結板上に刷毛
で塗布して、導電性被膜を形成した。導電性被膜の厚み
は、キーエンス社製、レーザフォーカス変位計LT−V
201を用いて、塗布部と未塗布部との差から求めた。
塗布後、150℃で30分間加熱して被膜を乾燥させ
た。後に、250℃で10分間加熱して被膜を焼成させ
た。
(4) Formation of Conductive Film The obtained silver colloid solution was applied on a commercially available alumina sintered plate with a brush to form a conductive film. The thickness of the conductive film is a laser focus displacement meter LT-V manufactured by Keyence Corporation.
Using 201, it was determined from the difference between the coated part and the uncoated part.
After coating, the coating was dried by heating at 150 ° C. for 30 minutes. Thereafter, the coating was baked by heating at 250 ° C. for 10 minutes.

【0065】(5)評価方法 得られた銀コロイド液及び導電性被膜について、下記の
方法にて評価した。結果を表1に示した。 (粒径)銀コロイド液の稀薄溶液をSEM観察して、又
は、大塚電子社製の動的光散乱測定機DLS−700を
用いて測定した。
(5) Evaluation method The obtained silver colloid solution and the conductive film were evaluated by the following methods. The results are shown in Table 1. (Particle size) The dilute silver colloid solution was measured by SEM observation or by using a dynamic light scattering analyzer DLS-700 manufactured by Otsuka Electronics Co., Ltd.

【0066】(固形分濃度の計算)銀コロイド液を自然
乾燥させたときの重量変化から計算した。
(Calculation of solid content concentration) The calculation was made from the change in weight when the silver colloid solution was naturally dried.

【0067】(加熱減量の測定)自然乾燥させた銀コロ
イド液の乾燥物について、セイコー電子工業社製のTG
/DTA300を用いて、室温〜500℃までの減量分
を求めた。
(Measurement of Loss on Heating) The dried product of the silver colloid solution which had been naturally dried was subjected to TG manufactured by Seiko Instruments Inc.
Using / DTA300, the weight loss from room temperature to 500 ° C. was determined.

【0068】(導電率の測定)横河M&C社製の携帯型
ダブルブリッジ2769を用いて測定した。 (導電性被膜の密度)変位計で求めた被膜の厚みと塗布
重量とから計算した。
(Measurement of Conductivity) The conductivity was measured using a portable double bridge 2769 manufactured by Yokogawa M & C. (Density of conductive film) It was calculated from the thickness of the film and the applied weight obtained by the displacement meter.

【0069】実施例2 実施例1の洗浄工程後、同様の方法で複数の銀コロイド
液を調製した。脱塩工程において、限外濾過を行った
後、イオン交換水の代わりに洗浄後の銀コロイド液を加
えて更に限外濾過を行い、この方法を繰り返すことによ
り固形分濃度が実施例1で作製した銀コロイド液の14
倍の銀コロイド液を作製した。この銀コロイド液を用い
て、実施例1と同様にして導電性被膜を作製した。実施
例1と同様に評価を行い、結果を表1に示した。
Example 2 After the washing step of Example 1, a plurality of silver colloid solutions were prepared in the same manner. In the desalting step, after performing ultrafiltration, a silver colloid solution after washing was added in place of ion-exchanged water, and ultrafiltration was further performed. By repeating this method, the solid concentration was made in Example 1. 14 of colloidal silver solution
A double silver colloid solution was prepared. Using this silver colloid solution, a conductive film was produced in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0070】実施例3 実施例1の硫酸第一鉄七水和物を5.82gとし、分散
剤と還元剤とを溶解した溶液の液量を100mLとし、
硝酸銀水溶液の代わりに塩化金(III)酸四水和物
(和光純薬工業社製、試薬特級)2.39gを含む水溶
液3mLを用いたこと以外は、実施例1と同様にして金
コロイド液を作製した。この金コロイド液を用いて、実
施例1と同様にして導電性被膜を作製した。実施例1と
同様に評価を行い、結果を表1に示した。
Example 3 The ferrous sulfate heptahydrate of Example 1 was adjusted to 5.82 g, and the volume of the solution in which the dispersant and the reducing agent were dissolved was adjusted to 100 mL.
A gold colloid solution was prepared in the same manner as in Example 1 except that 3 mL of an aqueous solution containing 2.39 g of chloroauric acid (III) tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) was used instead of the aqueous silver nitrate solution. Was prepared. Using this gold colloid solution, a conductive film was produced in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0071】実施例4 実施例1の硫酸第一鉄七水和物を3.88gとし、分散
剤と還元剤とを溶解した溶液の液量を100mLとし、
硝酸銀水溶液の代わりに硝酸銅(II)三水和物(和光
純薬工業社製、特級)1.40gを含む水溶液3mLを
用いたこと以外は実施例1と同様にして銅コロイド液を
作製した。この銅コロイド液を用いて、実施例1と同様
にして導電性被膜を作製した。実施例1と同様に評価を
行い、結果を表1に示した。
Example 4 The ferrous sulfate heptahydrate of Example 1 was adjusted to 3.88 g, and the volume of the solution in which the dispersant and the reducing agent were dissolved was adjusted to 100 mL.
A copper colloid solution was prepared in the same manner as in Example 1, except that 3 mL of an aqueous solution containing 1.40 g of copper (II) nitrate trihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of the aqueous silver nitrate solution. . Using this copper colloid solution, a conductive film was produced in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0072】実施例5 実施例1の硫酸第一鉄七水和物を3.88gとし、分散
剤と還元剤とを溶解した溶液の液量を50mLとし、硝
酸銀水溶液の代わりに硝酸パラジウム(II)(和光純
薬工業社製、特級)1.34gを含む水溶液3mLを用
いたこと以外は実施例1と同様にしてパラジウムコロイ
ド液を作製した。このパラジウムコロイド液を用いて、
実施例1と同様にして導電性被膜を作製した。実施例1
と同様に評価を行い、結果を表1に示した。
Example 5 The ferrous sulfate heptahydrate of Example 1 was adjusted to 3.88 g, the volume of the solution in which the dispersant and the reducing agent were dissolved was adjusted to 50 mL, and palladium nitrate (II) was used instead of the aqueous silver nitrate solution. A palladium colloid liquid was prepared in the same manner as in Example 1 except that 3 mL of an aqueous solution containing 1.34 g (manufactured by Wako Pure Chemical Industries, Ltd.) was used. Using this palladium colloid solution,
A conductive film was produced in the same manner as in Example 1. Example 1
The evaluation was performed in the same manner as described above, and the results are shown in Table 1.

【0073】実施例6 実施例1で作製した銀コロイド液と実施例5で作製した
パラジウムコロイド液とを重量比で9対1の比率でよく
混合して、銀/パラジウム混合コロイド液を作製した。
この銀/パラジウム混合コロイド液を用いて、実施例1
と同様にして導電性被膜を作製した。実施例1と同様に
評価を行い、結果を表1に示した。
Example 6 The silver colloid liquid prepared in Example 1 and the palladium colloid liquid prepared in Example 5 were mixed well at a weight ratio of 9: 1 to prepare a silver / palladium mixed colloid liquid. .
Example 1 was prepared using this silver / palladium mixed colloid solution.
In the same manner as in the above, a conductive film was produced. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0074】実施例7 実施例1で作製した銀コロイド液と実施例5で作製した
パラジウムコロイド液とを重量比で6対4の比率でよく
混合して、銀/パラジウム混合コロイド液を作製した。
この銀/パラジウム混合コロイド液を用いて、実施例1
と同様にして導電性被膜を作製した。実施例1と同様に
評価を行い、結果を表1に示した。
Example 7 The silver colloid liquid prepared in Example 1 and the palladium colloid liquid prepared in Example 5 were mixed well at a weight ratio of 6: 4 to prepare a silver / palladium mixed colloid liquid. .
Example 1 was prepared using this silver / palladium mixed colloid solution.
In the same manner as in the above, a conductive film was produced. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0075】実施例8 実施例1の硫酸第一鉄七水和物を2.52gとし、硝酸
銀水溶液の代わりに硝酸銀0.69gと硝酸パラジウム
(II)0.40gとを含む水溶液3mLを用いたこと
以外は、実施例1と同様にして銀/パラジウムコロイド
液を作製した。この銀/パラジウム混合コロイド液を用
いて、実施例1と同様にして導電性被膜を作製した。実
施例1と同様に評価を行い、結果を表1に示した。
Example 8 The ferrous sulfate heptahydrate of Example 1 was used in an amount of 2.52 g, and an aqueous solution containing 0.69 g of silver nitrate and 0.40 g of palladium (II) nitrate was used instead of the aqueous solution of silver nitrate. Except for this, a silver / palladium colloid liquid was prepared in the same manner as in Example 1. Using this silver / palladium mixed colloid solution, a conductive film was produced in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0076】実施例9 還元剤として、硫酸第一鉄七水和物の代わりに、タンニ
ン酸(和光純薬工業社製)2gを用いて、水溶液の量を
約300mLとしたこと以外は、実施例1と同様にして
導電性被膜を作製した。実施例1と同様に評価を行い、
結果を表1に示した。
Example 9 The procedure of Example 9 was repeated, except that 2 g of tannic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ferrous sulfate heptahydrate as the reducing agent, and the amount of the aqueous solution was adjusted to about 300 mL. A conductive coating was produced in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1,
The results are shown in Table 1.

【0077】実施例10 脱塩工程で銀コロイド液の電導度を9mS/cmとした
こと以外は、実施例9と同様にして導電性被膜を作製し
た。実施例1と同様に評価を行い、結果を表1に示し
た。
Example 10 A conductive film was prepared in the same manner as in Example 9 except that the conductivity of the silver colloid solution was changed to 9 mS / cm in the desalting step. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0078】実施例11 脱塩工程で銀コロイド液の電導度を0.05mS/cm
としたこと以外は、実施例9と同様にして導電性被膜を
作製した。実施例1と同様に評価を行い、結果を表1に
示した。
Example 11 In the desalting step, the conductivity of the silver colloid solution was set to 0.05 mS / cm.
A conductive coating was prepared in the same manner as in Example 9, except that Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0079】比較例1 実施例1において、脱塩工程で銀コロイド液の電導度を
11mS/cmとしたこと以外は、同様にして銀コロイ
ド液を作製した。この銀コロイド液を用いて、実施例1
と同様にして導電性被膜を作製した。また、実施例1と
同様に評価を行い、結果を表1に示した。
Comparative Example 1 A silver colloid solution was prepared in the same manner as in Example 1, except that the conductivity of the silver colloid solution was changed to 11 mS / cm in the desalting step. Example 1 was prepared using this silver colloid solution.
In the same manner as in the above, a conductive film was produced. The evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0080】比較例2 平均粒径0.29μmの銀粒子(昭栄化学工業社製、A
g−025)を5gとり、イオン交換水100mLを加
えた。室温下でマグネティックスターラーで30分間攪
拌した後、超音波処理を30分間行い、銀コロイド水溶
液を作製した。また、実施例1と同様に評価を行い、結
果を表1に示した。
Comparative Example 2 Silver particles having an average particle size of 0.29 μm (A
g-025) was taken in an amount of 5 g, and 100 mL of ion-exchanged water was added. After stirring with a magnetic stirrer at room temperature for 30 minutes, ultrasonic treatment was performed for 30 minutes to prepare a silver colloid aqueous solution. The evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0081】比較例3 銀粒子を、平均粒径0.4μmの銀/パラジウム=80
/20の粒子(昭栄化学工業社製、Pd−620A)に
変えた以外は、比較例2と同様に操作を行い、銀/パラ
ジウムコロイド液を作製した。また、実施例1と同様に
評価を行い、結果を表1に示した。
Comparative Example 3 Silver / palladium particles having an average particle diameter of 0.4 μm = 80
/ 20 particles (manufactured by Shoei Chemical Industry Co., Ltd., Pd-620A), and the same operation as in Comparative Example 2 was carried out to prepare a silver / palladium colloid liquid. The evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0082】[0082]

【表1】 [Table 1]

【0083】表1より、実施例1〜11で得られた金属
コロイド液は、導電率が10mS/cm以下であるの
で、固形分濃度が高い金属コロイド液であっても分散安
定性が高く、貯蔵安定性に優れていた。また、形成され
た導電性被膜は、導電率が高かった。比較例1で得られ
た金属コロイド液は、固形分濃度が低く、導電性インク
として使用することができなかった。また、比較例2、
3で作製した金属コロイド液は、コロイド粒子に実質的
に有機成分が含まれていないので、粒径が大きくなり、
貯蔵安定性が悪かった。
According to Table 1, the metal colloid liquids obtained in Examples 1 to 11 have a conductivity of 10 mS / cm or less. Therefore, even if the metal colloid liquid has a high solid content, the dispersion stability is high. Excellent storage stability. The formed conductive film had high conductivity. The metal colloid liquid obtained in Comparative Example 1 had a low solid content concentration and could not be used as a conductive ink. Comparative Example 2,
Since the metal colloid liquid prepared in 3 has substantially no organic components in the colloid particles, the particle diameter increases,
Storage stability was poor.

【0084】実施例12 (1)銀コロイド液の製造 実施例1と同様に操作を行い、銀コロイド液を製造し
た。
Example 12 (1) Production of a silver colloid liquid The same operation as in Example 1 was carried out to produce a silver colloid liquid.

【0085】(2)銀コロイド液の洗浄 実施例1と同様に操作を行った。 (3)銀コロイド液の脱塩 洗浄した銀コロイド液を、倉敷紡績社製、セントリカッ
トU−10に入れて、遠心分離で3000rpm×30
分間限外濾過を行った。上澄みの導電率は、東亜電波工
業社製、CM−20Sで測定した。更にイオン交換水を
加えて全量を9mLとし、同様の操作を繰り返し、所定
の電導度になるまで限外濾過を行った。
(2) Washing of silver colloid solution The same operation as in Example 1 was performed. (3) Desalting of silver colloid solution The washed silver colloid solution was put into Centricut U-10 manufactured by Kurashiki Boseki Co., Ltd., and centrifuged at 3000 rpm × 30.
Ultrafiltration was performed for minutes. The conductivity of the supernatant was measured by CM-20S manufactured by Toa Denpa Kogyo. Further, ion-exchanged water was added to make the total amount 9 mL, and the same operation was repeated, and ultrafiltration was performed until a predetermined conductivity was reached.

【0086】(4)銀コロイドの遠心分離 脱塩した銀コロイド液を、遠心分離器で3000rpm
×30分間遠心分離し、沈降した部分を除いて、最終的
に銀コロイド液を得た。
(4) Centrifugation of silver colloid The desalted silver colloid solution was centrifuged at 3000 rpm.
The mixture was centrifuged for 30 minutes, and the sedimented portion was removed to finally obtain a silver colloid solution.

【0087】(5)造膜助剤の添加 銀コロイド液に、一液架橋型ノニオン性ウレタン系ポリ
マーである第一工業製薬社製、エラストロンBN−69
を、樹脂固形分が5重量%になるように添加した。
(5) Addition of a film-forming auxiliary A one-part crosslinkable nonionic urethane polymer, Elastron BN-69, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., was added to the silver colloid solution.
Was added so that the resin solid content was 5% by weight.

【0088】(6)導電性被膜の形成 造膜助剤として樹脂成分を添加した銀コロイド液を市販
のアルミナ焼結板上に刷毛で塗布して、導電性被膜を形
成した。導電性被膜の厚みは、キーエンス社製、レーザ
フォーカス変位計LT−V201で塗布部と未塗布部と
の差から求めた。塗布後、150℃で30分間加熱して
被膜を乾燥させた。後に、250℃で10分間加熱し
て、被膜を焼成させた。
(6) Formation of Conductive Film A silver colloid solution containing a resin component as a film-forming aid was applied to a commercially available alumina sintered plate with a brush to form a conductive film. The thickness of the conductive film was determined from the difference between the coated portion and the non-coated portion using a laser focus displacement meter LT-V201 manufactured by Keyence Corporation. After coating, the coating was dried by heating at 150 ° C. for 30 minutes. Thereafter, the coating was heated at 250 ° C. for 10 minutes to sinter the coating.

【0089】(7)評価方法 得られた銀コロイド液及び導電性被膜について、下記の
方法にて評価した。結果を表2に示した。 (導電率の測定)横河M&C社製の携帯型ダブルブリッ
ジ2769を用いて測定した。 (導電性被膜の密度)段差計で求めた厚みと塗布重量と
から計算した。 (被膜強度)形成した導電性被膜を爪で強く擦ったとき
の状態を観察した 評価基準 ○:ほとんど傷がつかない △:若干傷がつく ×:非常に傷がつきやすい
(7) Evaluation Method The obtained silver colloid solution and the conductive film were evaluated by the following methods. The results are shown in Table 2. (Measurement of conductivity) The conductivity was measured using a portable double bridge 2769 manufactured by Yokogawa M & C. (Density of Conductive Film) Calculated from the thickness obtained by the step meter and the applied weight. (Coating strength) Observation of the state when the formed conductive coating was strongly rubbed with nails Evaluation criteria ○: hardly scratched △: slightly scratched ×: very easily scratched

【0090】実施例13 実施例12で作製した銀コロイド液に、一液架橋型ノニ
オン性ウレタン系ポリマーである第一工業製薬社製、エ
ラストロンBN−69を、樹脂固形分が30重量%にな
るように添加したこと以外は、実施例12と同様に操作
を行って導電性被膜を作製した。また、得られた導電性
被膜について実施例12と同様にして評価を行い、結果
を表2に示した。
Example 13 The one-part crosslinkable nonionic urethane polymer Elastron BN-69 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was added to the silver colloid solution prepared in Example 12, and the resin solid content became 30% by weight. A conductive coating was prepared in the same manner as in Example 12, except that the addition was carried out as described above. The obtained conductive film was evaluated in the same manner as in Example 12, and the results are shown in Table 2.

【0091】実施例14 実施例12で作製した銀コロイド液に、一液架橋型アニ
オン性ウレタン系ポリマーである第一工業製薬社製、エ
ラストロンBN−27を、樹脂固形分が5重量%になる
ように添加したこと以外は、実施例12と同様に操作を
行って導電性被膜を作製した。また、得られた導電性被
膜について実施例12と同様にして評価を行い、結果を
表2に示した。
Example 14 The one-part crosslinkable anionic urethane polymer Elastron BN-27 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was added to the silver colloid solution prepared in Example 12, and the resin solid content became 5% by weight. A conductive coating was prepared in the same manner as in Example 12, except that the addition was carried out as described above. The obtained conductive film was evaluated in the same manner as in Example 12, and the results are shown in Table 2.

【0092】実施例15 三井サイテック社製、サイメル385と、日本触媒社
製、エポミンSP−003とを固形分比率3/7に混合
した一液架橋型メラミン系ポリマーを、樹脂固形分が5
重量%になるように実施例12で作製した銀コロイド液
に添加したこと以外は、実施例12と同様に操作を行っ
て導電性被膜を作製した。また、得られた導電性被膜に
ついて実施例12と同様にして評価を行い、結果を表2
に示した。
Example 15 A one-component crosslinked melamine-based polymer obtained by mixing Cymel 385 manufactured by Mitsui Cytec Co., Ltd. and Epomin SP-003 manufactured by Nippon Shokubai Co., Ltd. at a solid content ratio of 3/7 was mixed with a resin solid content of 5%.
A conductive coating was prepared in the same manner as in Example 12, except that the silver salt was added to the silver colloid solution prepared in Example 12 so as to be in% by weight. The obtained conductive coating was evaluated in the same manner as in Example 12, and the results were shown in Table 2.
It was shown to.

【0093】実施例16 実施例12で作製した銀コロイド液に、ポリエステル系
エマルジョンである東亞合成社製、アロンメルトPES
−1055A30を、樹脂固形分が5重量%になるよう
に添加したこと以外は、実施例12と同様に操作を行っ
て導電性被膜を作製した。また、得られた導電性被膜に
ついて実施例12と同様にして評価を行い、結果を表2
に示した。
Example 16 The silver colloid solution prepared in Example 12 was mixed with a polyester emulsion, Alonmelt PES, manufactured by Toagosei Co., Ltd.
A conductive coating was prepared in the same manner as in Example 12, except that -1055A30 was added so that the resin solid content was 5% by weight. The obtained conductive coating was evaluated in the same manner as in Example 12, and the results were shown in Table 2.
It was shown to.

【0094】実施例17 実施例12で作製した銀コロイド液に、造膜助剤として
樹脂成分を添加しなかったこと以外は、実施例12と同
様に操作を行って導電性被膜を作製した。また、得られ
た導電性被膜について実施例12と同様にして評価を行
い、結果を表2に示した。
Example 17 A conductive film was prepared in the same manner as in Example 12, except that no resin component was added as a film-forming auxiliary to the silver colloid solution prepared in Example 12. The obtained conductive film was evaluated in the same manner as in Example 12, and the results are shown in Table 2.

【0095】比較例4 比較例2で作製した銀コロイド液に、一液架橋型ノニオ
ン性ウレタン系ポリマーである第一工業製薬社製、エラ
ストロンBN−69を、樹脂固形分が5重量%になるよ
うに添加したこと以外は、実施例12と同様に操作を行
って導電性被膜を作製した。また、得られた導電性被膜
について実施例12と同様にして評価を行い、結果を表
2に示した。
Comparative Example 4 Elastron BN-69, a one-part crosslinkable nonionic urethane-based polymer manufactured by Daiichi Kogyo Seiyaku Co., Ltd., was added to the silver colloid solution prepared in Comparative Example 2, and the resin solid content became 5% by weight. A conductive coating was prepared in the same manner as in Example 12, except that the addition was carried out as described above. The obtained conductive film was evaluated in the same manner as in Example 12, and the results are shown in Table 2.

【0096】比較例5 造膜助剤として樹脂成分を添加しなかったこと以外は、
比較例4と同様に操作を行って導電性被膜を作製した。
また、得られた導電性被膜について実施例12と同様に
して評価を行い、結果を表2に示した。
Comparative Example 5 Except that no resin component was added as a film-forming auxiliary,
The same operation as in Comparative Example 4 was performed to form a conductive film.
The obtained conductive film was evaluated in the same manner as in Example 12, and the results are shown in Table 2.

【0097】比較例6 比較例3で作製した銀コロイド液に、一液架橋型ノニオ
ン性ウレタン系ポリマーである第一工業製薬社製、エラ
ストロンBN−69を、樹脂固形分が5重量%になるよ
うに添加したこと以外は、実施例12と同様に操作を行
って導電性被膜を作製した。また、得られた導電性被膜
について実施例12と同様にして評価を行い、結果を表
2に示した。
Comparative Example 6 Elastron BN-69, a one-part crosslinkable nonionic urethane polymer manufactured by Daiichi Kogyo Seiyaku Co., Ltd., was added to the silver colloid solution prepared in Comparative Example 3, and the resin solid content became 5% by weight. A conductive coating was prepared in the same manner as in Example 12, except that the addition was carried out as described above. The obtained conductive film was evaluated in the same manner as in Example 12, and the results are shown in Table 2.

【0098】比較例7 造膜助剤として樹脂成分を添加しなかったこと以外は、
比較例6と同様に操作を行って導電性被膜を作製した。
また、得られた導電性被膜について実施例12と同様に
して評価を行い、結果を表2に示した。
Comparative Example 7 Except that no resin component was added as a film-forming auxiliary,
The same operation as in Comparative Example 6 was performed to produce a conductive film.
The obtained conductive film was evaluated in the same manner as in Example 12, and the results are shown in Table 2.

【0099】[0099]

【表2】 [Table 2]

【0100】表2より、実施例12〜16で作製された
導電性インクを用いて作製された導電性被膜は、被膜強
度が強く、かつ、導電率が良好であった。造膜助剤を添
加しなかった実施例17の導電性インクを用いて作製さ
れた導電性被膜は、被膜強度がやや弱かったが、導電率
は良好であった。比較例4〜7で作製した導電性被膜
は、導電率が悪く、また、造膜助剤を添加しない場合、
被膜強度が非常に弱かった。
As shown in Table 2, the conductive films prepared using the conductive inks prepared in Examples 12 to 16 had high film strength and good conductivity. The conductive film produced using the conductive ink of Example 17 to which no film-forming auxiliary was added had a slightly low film strength, but good conductivity. The conductive films prepared in Comparative Examples 4 to 7 have poor conductivity, and when no film-forming aid is added,
The coating strength was very weak.

【0101】実施例18 (1)銀コロイド液の製造 実施例1と同様に操作を行い、銀コロイド液を製造し
た。
Example 18 (1) Production of a silver colloid liquid The same operation as in Example 1 was carried out to produce a silver colloid liquid.

【0102】(2)銀コロイド液の洗浄 実施例1と同様に操作を行った。 (3)銀コロイド液の脱塩 洗浄した銀コロイド液を、倉敷紡績社製、セントリカッ
トU−10に入れて、遠心分離で3000rpm×30
分間限外濾過を行った。上澄みの導電率は、東亜電波工
業社製、CM−20Sで測定した。更にイオン交換水を
加えて全量を9mLとし、同様の操作を繰り返し、所定
の導電率になるまで限外濾過を行った。
(2) Washing of silver colloid solution The same operation as in Example 1 was performed. (3) Desalting of silver colloid solution The washed silver colloid solution was put into Centricut U-10 manufactured by Kurashiki Boseki Co., Ltd., and centrifuged at 3000 rpm × 30.
Ultrafiltration was performed for minutes. The conductivity of the supernatant was measured by CM-20S manufactured by Toa Denpa Kogyo. Further, ion-exchanged water was added to make the total amount 9 mL, and the same operation was repeated, and ultrafiltration was performed until a predetermined conductivity was reached.

【0103】(4)銀コロイドの遠心分離 脱塩した銀コロイド液を、遠心分離器で3000rpm
×30分間遠心分離し、沈降した部分を除いて、最終的
に銀コロイド液を得た。
(4) Centrifugation of silver colloid The desalted silver colloid solution was centrifuged at 3000 rpm.
The mixture was centrifuged for 30 minutes, and the sedimented portion was removed to finally obtain a silver colloid solution.

【0104】(5)導電性被膜の形成 市販のアルミナ焼結板上に、基底塗膜として一液架橋型
ノニオン性ウレタン系ポリマーである第一工業製薬社
製、エラストロンBN−69を刷毛で塗布して自然乾燥
させた後、上記で作製した銀コロイド液を刷毛で塗布し
た。塗布後、150℃で30分間加熱して導電性被膜を
乾燥させた。
(5) Formation of Conductive Coating Elastron BN-69, a one-part crosslinkable nonionic urethane-based polymer manufactured by Daiichi Kogyo Seiyaku Co., Ltd., is applied as a base coating film on a commercially available alumina sintered plate with a brush. After drying naturally, the silver colloid solution prepared above was applied with a brush. After the application, the conductive film was dried by heating at 150 ° C. for 30 minutes.

【0105】(6)評価方法 形成した導電性被膜について、下記の方法にて評価し
た。結果を表3に示した。 (基材との接着性)導電性被膜を室温まで放冷させた
後、市販のセロテープを導電性被膜の上に貼り、指先で
強く押しつけた後、基材と90°の角度で引き剥がし、
導電性被膜が剥がれるかどうかを見た。 評価基準 ○:剥離なし ×:剥離が見られた
(6) Evaluation Method The formed conductive film was evaluated by the following method. The results are shown in Table 3. (Adhesion with substrate) After the conductive film was allowed to cool to room temperature, a commercially available cellophane tape was stuck on the conductive film, pressed strongly with a fingertip, and peeled off from the substrate at an angle of 90 °.
It was checked whether the conductive film was peeled off. Evaluation criteria ○: No peeling ×: Peeling was observed

【0106】実施例19 基底塗膜として、三井サイテック社製、サイメル385
と、日本触媒社製、エポミンSP−003とを固形分比
率3/7に混合した一液架橋型メラミンポリマーを塗布
したこと以外は、実施例18と同様にして導電性被膜を
作製した。また、作製した導電性被膜について、実施例
18と同様に評価を行い、結果を表3に示した。
Example 19 As a base coating film, Cymel 385 manufactured by Mitsui Cytec Co., Ltd.
A conductive film was prepared in the same manner as in Example 18, except that a one-component crosslinked melamine polymer obtained by mixing Epomin SP-003 manufactured by Nippon Shokubai with a solid content ratio of 3/7 was applied. In addition, the produced conductive film was evaluated in the same manner as in Example 18, and the results are shown in Table 3.

【0107】実施例20 基底塗膜として、ポリエステル系エマルジョンである東
亞合成社製、アロンメルトPES−1055A30を塗
布したこと以外は、実施例18と同様にして導電性被膜
を作製した。作製した導電性被膜について、実施例18
と同様に評価を行い、結果を表3に示した。
Example 20 A conductive film was prepared in the same manner as in Example 18, except that a polyester emulsion, Alonmelt PES-1055A30, manufactured by Toagosei Co., Ltd. was applied as a base film. About the produced conductive film, Example 18
The evaluation was performed in the same manner as described above, and the results are shown in Table 3.

【0108】実施例21 基底塗膜として、一液架橋型アニオン性ウレタン系ポリ
マーである第一工業製薬社製、エラストロンBN−27
を塗布したこと以外は、実施例18と同様にして導電性
被膜を作製した。作製した導電性被膜について、実施例
18と同様に評価を行い、結果を表3に示した。
Example 21 Elastron BN-27, a one-part crosslinkable anionic urethane polymer manufactured by Daiichi Kogyo Seiyaku Co., Ltd., was used as the base coating film.
A conductive coating was prepared in the same manner as in Example 18, except that was applied. The prepared conductive film was evaluated in the same manner as in Example 18, and the results are shown in Table 3.

【0109】実施例22 基底塗膜として、ポリアニオン系ポリマーである日本触
媒社製、TX−CP−SA228Cを塗布したこと以外
は、実施例18と同様にして導電性被膜を作製した。作
製した導電性被膜について、実施例18と同様に評価を
行い、結果を表3に示した。
Example 22 A conductive film was prepared in the same manner as in Example 18, except that TX-CP-SA228C, a polyanionic polymer manufactured by Nippon Shokubai Co., Ltd., was applied as the base film. The prepared conductive film was evaluated in the same manner as in Example 18, and the results are shown in Table 3.

【0110】実施例23 基底塗膜として、エラストロンBN−69にシリカ微粉
末であるトクヤマ社製、ファインシールT−32を固形
分で5重量%添加してよく混合したものを塗布したこと
以外は、実施例18と同様にして導電性被膜を作製し
た。作製した導電性被膜について、実施例18と同様に
評価を行い、結果を表3に示した。
Example 23 As a base coating film, a material obtained by adding 5% by weight of a solid content, Fine Seal T-32 manufactured by Tokuyama Co., Ltd. as a silica fine powder to Elastron BN-69 and mixing well was applied. In the same manner as in Example 18, a conductive film was produced. The prepared conductive film was evaluated in the same manner as in Example 18, and the results are shown in Table 3.

【0111】実施例24 基底塗膜として、エラストロンBN−69に酸化チタン
微粉末と酸化錫粉末との混合物である石原産業社製、E
T−300Wを固形分で5重量%添加してよく混合した
ものを塗布したこと以外は、実施例18と同様にして導
電性被膜を作製した。作製した導電性被膜について、実
施例18と同様に評価を行い、結果を表3に示した。
Example 24 As a base coating film, Elastron BN-69 was a mixture of titanium oxide fine powder and tin oxide powder, manufactured by Ishihara Sangyo Co., Ltd.
A conductive coating was produced in the same manner as in Example 18, except that T-300W was added in an amount of 5% by weight in terms of solid content and mixed well. The prepared conductive film was evaluated in the same manner as in Example 18, and the results are shown in Table 3.

【0112】実施例25 基底塗膜として、エラストロンBN−69に炭酸カルシ
ウム微粉末である白石工業社製、カルライト−KTを固
形分で5重量%添加してよく混合したものを塗布したこ
と以外は、実施例18と同様にして導電性被膜を作製し
た。作製した導電性被膜について、実施例18と同様に
評価を行い、結果を表3に示した。
Example 25 As a base coating film, a material obtained by adding 5% by weight of a solid content of Callite-KT (Shiraishi Kogyo Co., Ltd.), a fine powder of calcium carbonate, to Elastron BN-69 and mixing well was applied. In the same manner as in Example 18, a conductive film was produced. The prepared conductive film was evaluated in the same manner as in Example 18, and the results are shown in Table 3.

【0113】比較例8 実施例18において、基底塗膜を設けなかったこと以外
は、同様にして導電性被膜を作製した。作製した導電性
被膜について、実施例18と同様に評価を行い、結果を
表3に示した。
Comparative Example 8 A conductive film was prepared in the same manner as in Example 18, except that the base film was not provided. The prepared conductive film was evaluated in the same manner as in Example 18, and the results are shown in Table 3.

【0114】[0114]

【表3】 [Table 3]

【0115】表3より、基底塗膜を形成した実施例18
〜25で得られた導電性被膜は、基材との密着性が良好
であった。基底塗膜を形成せず、基板に直接形成した比
較例8の導電性被膜は、実施例18〜25と比較して基
板との密着性が劣っていた。
From Table 3, it can be seen that Example 18 in which the base coating film was formed.
The conductive coatings obtained in Nos. To 25 had good adhesion to the substrate. The conductive film of Comparative Example 8 formed directly on the substrate without forming the base coating film had poor adhesion to the substrate as compared with Examples 18 to 25.

【0116】[0116]

【発明の効果】本発明の金属コロイド液は、上述の構成
からなるので、金属含有量を上げても分散安定性に優れ
ているので、貯蔵安定性に優れている。また、この金属
コロイド液を用いて形成した導電性被膜は、導電性に優
れる。
The metal colloid liquid of the present invention has the above-mentioned structure, and therefore has excellent dispersion stability even when the metal content is increased, and therefore has excellent storage stability. Further, the conductive film formed using the metal colloid liquid has excellent conductivity.

【0117】本発明の導電性被膜は、上述の構成からな
るので、基材との密着性に優れ、高い導電性が要求され
る用途、例えば、回路基板上に形成する電極等に好適に
用いることができる。
Since the conductive film of the present invention has the above-described structure, it has excellent adhesion to the substrate and is suitably used for applications requiring high conductivity, for example, electrodes formed on circuit boards. be able to.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09D 5/24 C09D 5/24 11/00 11/00 161/28 161/28 175/04 175/04 C23C 30/00 C23C 30/00 Z Fターム(参考) 4D075 AE03 CA22 DA06 DB02 DB13 DC02 DC12 DC19 EA02 EA06 EA12 EB32 EB38 EC10 4J038 BA012 BA022 BA192 CE021 CG141 CG171 DA131 DA161 DF001 DF012 DG001 DG301 DJ001 DJ012 HA066 HA216 HA286 HA446 JA27 JA45 JA48 JC02 JC13 KA06 KA09 KA12 MA07 MA08 MA10 NA12 NA20 NA26 PB09 4J039 AB01 AB02 AB07 AD06 AD10 AD12 AE03 AE04 AE06 AE07 AE09 AE10 BA06 BA13 BA16 BA21 BA29 BA30 BA33 BA35 BA39 BC07 BC13 BC19 BC54 BE12 BE22 BE29 CA06 CA07 EA24 EA43 EA44 FA02 FA04 FA06 GA10 4K044 AA13 BA08 BA21 BB01 BC14 CA53 5G301 DA03 DA05 DA06 DA11 DA12 DA42 DA59 DD02 DD05 DD06──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09D 5/24 C09D 5/24 11/00 11/00 161/28 161/28 175/04 175/04 C23C 30/00 C23C 30/00 ZF term (reference) 4D075 AE03 CA22 DA06 DB02 DB13 DC02 DC12 DC19 EA02 EA06 EA12 EB32 EB38 EC10 4J038 BA012 BA022 BA022 CE1921 CG141 CG171 DA131 DA161 DF001 DF012 DG001 DG301 JA001 HA012 JC02 JC13 KA06 KA09 KA12 MA07 MA08 MA10 NA12 NA20 NA26 PB09 4J039 AB01 AB02 AB07 AD06 AD10 AD12 AE03 AE04 AE06 AE07 AE09 AE10 BA06 BA13 BA16 BA21 BA29 BA30 BA33 BA35 BA39 BC07 BC13 BC19 BC54 BE02 BE22 BE29 FA06 FA04 4K044 AA13 BA08 BA21 BB01 BC14 CA53 5G301 DA03 DA05 DA06 DA11 DA12 DA42 DA59 DD02 DD05 DD06

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 金属成分と有機成分とからなる粒子を主
成分とする固形分と、溶媒とからなる金属コロイド液で
あって、前記金属成分は、金、銀、銅、白金、パラジウ
ム、ロジウム、ルテニウム、イリジウム及びオスミウム
からなる群より選ばれる1種以上の金属よりなり、電導
度が10mS/cm以下であることを特徴とする金属コ
ロイド水溶液。
1. A metal colloid liquid comprising a solvent and a solid content mainly composed of particles comprising a metal component and an organic component, and wherein the metal component is gold, silver, copper, platinum, palladium or rhodium. , A metal colloid aqueous solution comprising at least one metal selected from the group consisting of ruthenium, iridium and osmium, and having an electric conductivity of 10 mS / cm or less.
【請求項2】 溶媒は、水及び/又は水溶性溶剤である
ことを特徴とする請求項1記載の金属コロイド液。
2. The metal colloid liquid according to claim 1, wherein the solvent is water and / or a water-soluble solvent.
【請求項3】 請求項1又は2記載の金属コロイド液を
用いてなることを特徴とする導電性インク。
3. A conductive ink comprising the metal colloid liquid according to claim 1 or 2.
【請求項4】 造膜助剤を添加してなることを特徴とす
る請求項3記載の導電性インク。
4. The conductive ink according to claim 3, wherein a film-forming aid is added.
【請求項5】 造膜助剤は、水性樹脂であることを特徴
とする請求項4記載の導電性インク。
5. The conductive ink according to claim 4, wherein the film-forming auxiliary is an aqueous resin.
【請求項6】 水性樹脂は、ポリウレタン系樹脂、メラ
ミン系樹脂及び強制乳化エマルジョン樹脂からなる群よ
り選択される1種以上の樹脂からなることを特徴とする
請求項5記載の導電性インク。
6. The conductive ink according to claim 5, wherein the aqueous resin comprises at least one resin selected from the group consisting of a polyurethane resin, a melamine resin, and a forced emulsion resin.
【請求項7】 請求項3、4、5又は6記載の導電性イ
ンクを基材上に塗布し、乾燥することにより形成される
導電性被膜であって、導電率が1×103 S/cm以上
であることを特徴とする導電性被膜。
7. A conductive film formed by applying the conductive ink according to claim 3, 4, 5 or 6 on a substrate and drying the conductive ink, wherein the conductivity is 1 × 10 3 S /. cm or more.
【請求項8】 導電率は、1×104 S/cm以上であ
ることを特徴とする請求項7記載の導電性被膜。
8. The conductive film according to claim 7, wherein the conductivity is 1 × 10 4 S / cm or more.
【請求項9】 請求項7又は8記載の導電性被膜を基材
上に形成する際に、あらかじめ基材上に設けられる塗膜
であって、その上に導電性インクが塗布されて前記導電
性被膜が形成されることを特徴とする導電性被膜形成用
基底塗膜。
9. The conductive film according to claim 7, wherein said conductive film is provided on a substrate in advance when said conductive film is formed on said substrate, and a conductive ink is applied thereon. A base coat for forming a conductive film, wherein a base coat is formed.
【請求項10】 樹脂からなることを特徴とする請求項
9記載の導電性被膜形成用基底塗膜。
10. The base coating film for forming a conductive film according to claim 9, comprising a resin.
【請求項11】 樹脂は、水性樹脂であることを特徴と
する請求項10記載の導電性被膜形成用基底塗膜。
11. The base coat for forming a conductive coat according to claim 10, wherein the resin is an aqueous resin.
【請求項12】 水性樹脂は、ポリウレタン系樹脂、メ
ラミン系樹脂、強制乳化エマルジョン樹脂、イオン性高
分子及びポリアニリン系樹脂からなる群より選択される
1種以上の樹脂からなることを特徴とする請求項11記
載の導電性被膜形成用基底塗膜。
12. The aqueous resin comprises at least one resin selected from the group consisting of a polyurethane resin, a melamine resin, a forced emulsion resin, an ionic polymer and a polyaniline resin. Item 12. A base coating film for forming a conductive film according to Item 11.
【請求項13】 コロイド吸着剤を含有してなることを
特徴とする請求項9、10、11又は12記載の導電性
被膜形成用基底塗膜。
13. The base coating film for forming a conductive film according to claim 9, which comprises a colloid adsorbent.
JP2000140873A 2000-05-12 2000-05-12 Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film Pending JP2001325831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000140873A JP2001325831A (en) 2000-05-12 2000-05-12 Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000140873A JP2001325831A (en) 2000-05-12 2000-05-12 Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film

Publications (1)

Publication Number Publication Date
JP2001325831A true JP2001325831A (en) 2001-11-22

Family

ID=18648083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000140873A Pending JP2001325831A (en) 2000-05-12 2000-05-12 Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film

Country Status (1)

Country Link
JP (1) JP2001325831A (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318545A (en) * 2002-04-22 2003-11-07 Sony Corp Multilayer printed wiring board and its manufacturing method
JPWO2002094954A1 (en) * 2001-05-21 2004-09-09 日本ペイント株式会社 Method for producing metal colloid high concentration solution
JP2005530005A (en) * 2002-06-13 2005-10-06 ナノパウダーズ インダストリーズ リミテッド Method for producing nano-coating and nano-ink having conductivity and transparency, and nano-powder coating and ink produced by this production method
JP2005531679A (en) * 2002-07-03 2005-10-20 ナノパウダーズ インダストリーズ リミテッド Low temperature sintered conductive nano ink and method for producing the same
JP2006032326A (en) * 2004-06-17 2006-02-02 Mitsubishi Materials Corp Paste for thin film electrode, and manufacturing method of thin film electrode and thin film element
JP2006036933A (en) * 2004-07-27 2006-02-09 Bando Chem Ind Ltd Composite substrate and method for producing printed circuit board by using the same
JP2006210197A (en) * 2005-01-28 2006-08-10 Sumitomo Electric Ind Ltd Metal coating film and its formation method
WO2006126614A1 (en) * 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. Paste-like silver composition, method for producing same, method for producing solid silver, solid silver, bonding method, and method for manufacturing circuit board
US7166152B2 (en) 2002-08-23 2007-01-23 Daiwa Fine Chemicals Co., Ltd. Pretreatment solution for providing catalyst for electroless plating, pretreatment method using the solution, and electroless plated film and/or plated object produced by use of the method
JP2007200775A (en) * 2006-01-27 2007-08-09 Bando Chem Ind Ltd Metal fine particle-dispersed body and conductive material using metal fine particle-dispersed body
WO2008001518A1 (en) * 2006-06-30 2008-01-03 Mitsubishi Materials Corporation Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method
JP2008135417A (en) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp Method of forming electrode in solar cell, and the solar cell using electrode obtained by the same
JP2008135416A (en) * 2005-11-11 2008-06-12 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
JP2008135190A (en) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp Composition for electrode formation of solar cell, forming method of electrode, and solar cell using electrode obtained by forming method
JP2008235847A (en) * 2007-02-23 2008-10-02 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the forming method
JP2009500802A (en) * 2005-07-01 2009-01-08 ナショナル ユニバーシティー オブ シンガポール Conductive composite material
JP2009515023A (en) * 2005-11-09 2009-04-09 アドバンスト ナノ プロダクツ カンパニーリミテッド Metal ink, and electrode forming method and substrate using the same
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JP2010189681A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Method for producing oxidation resistant copper nanoparticle, and joining method using the same
EP2329902A1 (en) 2004-06-25 2011-06-08 Mitsubishi Materials Corporation Metal colloid particles, metal colloid and use of the colloid
EP2341118A1 (en) * 2002-09-24 2011-07-06 E. I. du Pont de Nemours and Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
JP2011527089A (en) * 2008-07-02 2011-10-20 アプライド・ナノテック・ホールディングス・インコーポレーテッド Metal paste and ink
US8062553B2 (en) 2006-12-28 2011-11-22 E. I. Du Pont De Nemours And Company Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith
US8153029B2 (en) 2006-12-28 2012-04-10 E.I. Du Pont De Nemours And Company Laser (230NM) ablatable compositions of electrically conducting polymers made with a perfluoropolymeric acid applications thereof
JP2012147014A (en) * 2005-11-11 2012-08-02 Mitsubishi Materials Corp Composition for forming electrode of solar cell and formation method of the electrode, and solar cell using electrode obtained by the formation method
US8241526B2 (en) 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives
JP2012231171A (en) * 2005-11-15 2012-11-22 Mitsubishi Materials Corp Method for formation of solar battery electrode, and solar battery with electrode produced by the method
US8318046B2 (en) 2002-09-24 2012-11-27 E I Du Pont De Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
US8338512B2 (en) 2002-09-24 2012-12-25 E I Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and method for use thereof
US8404160B2 (en) 2007-05-18 2013-03-26 Applied Nanotech Holdings, Inc. Metallic ink
US8409476B2 (en) 2005-06-28 2013-04-02 E I Du Pont De Nemours And Company High work function transparent conductors
US8422197B2 (en) 2009-07-15 2013-04-16 Applied Nanotech Holdings, Inc. Applying optical energy to nanoparticles to produce a specified nanostructure
JP2013140991A (en) * 2006-10-11 2013-07-18 Mitsubishi Materials Corp Composition for electrode formation and method for forming electrode by using the composition
US8491819B2 (en) 2006-12-29 2013-07-23 E I Du Pont De Nemours And Company High work-function and high conductivity compositions of electrically conducting polymers
US8506849B2 (en) 2008-03-05 2013-08-13 Applied Nanotech Holdings, Inc. Additives and modifiers for solvent- and water-based metallic conductive inks
US8585931B2 (en) 2002-09-24 2013-11-19 E I Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
KR20140001921A (en) * 2010-10-25 2014-01-07 바이엘 인텔렉쳐 프로퍼티 게엠베하 Metal sol containing doped silver nanoparticles
US8641926B2 (en) 2003-04-22 2014-02-04 E I Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
US8642392B2 (en) 2009-01-23 2014-02-04 Nichia Corporation Semiconductor device and production method therefor
US8647979B2 (en) 2009-03-27 2014-02-11 Applied Nanotech Holdings, Inc. Buffer layer to enhance photo and/or laser sintering
US8679898B2 (en) 2009-01-23 2014-03-25 Nichia Corporation Semiconductor device and production method therefor
USRE44853E1 (en) 2005-06-28 2014-04-22 E I Du Pont De Nemours And Company Buffer compositions
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US8765022B2 (en) 2004-03-17 2014-07-01 E I Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US8836130B2 (en) 2009-01-23 2014-09-16 Nichia Corporation Light emitting semiconductor element bonded to a base by a silver coating
US8845933B2 (en) 2009-04-21 2014-09-30 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
US8945426B2 (en) 2009-03-12 2015-02-03 E I Du Pont De Nemours And Company Electrically conductive polymer compositions for coating applications
US8945427B2 (en) 2009-04-24 2015-02-03 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
US8968608B2 (en) 2008-01-17 2015-03-03 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US9011728B2 (en) 2009-07-21 2015-04-21 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, and light-emitting device
WO2015118907A1 (en) * 2014-02-07 2015-08-13 石原ケミカル株式会社 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
JP2016164225A (en) * 2015-03-06 2016-09-08 コニカミノルタ株式会社 Electric conductive ink
JP2016164845A (en) * 2015-03-06 2016-09-08 コニカミノルタ株式会社 Conductive component and production method thereof, and circuit board, electrode substrate and reflector that include the same
US9598776B2 (en) 2012-07-09 2017-03-21 Pen Inc. Photosintering of micron-sized copper particles
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
JP2017149942A (en) * 2016-02-25 2017-08-31 三ツ星ベルト株式会社 Ink composition and image formation method therewith

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002094954A1 (en) * 2001-05-21 2004-09-09 日本ペイント株式会社 Method for producing metal colloid high concentration solution
JP2003318545A (en) * 2002-04-22 2003-11-07 Sony Corp Multilayer printed wiring board and its manufacturing method
US8217276B2 (en) 2002-04-22 2012-07-10 Sony Corporation Multilayer printed circuit board and method of manufacturing multilayer printed circuit board
JP2005530005A (en) * 2002-06-13 2005-10-06 ナノパウダーズ インダストリーズ リミテッド Method for producing nano-coating and nano-ink having conductivity and transparency, and nano-powder coating and ink produced by this production method
JP2005531679A (en) * 2002-07-03 2005-10-20 ナノパウダーズ インダストリーズ リミテッド Low temperature sintered conductive nano ink and method for producing the same
US7166152B2 (en) 2002-08-23 2007-01-23 Daiwa Fine Chemicals Co., Ltd. Pretreatment solution for providing catalyst for electroless plating, pretreatment method using the solution, and electroless plated film and/or plated object produced by use of the method
US8318046B2 (en) 2002-09-24 2012-11-27 E I Du Pont De Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
US8585931B2 (en) 2002-09-24 2013-11-19 E I Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
US8455865B2 (en) 2002-09-24 2013-06-04 E I Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US8338512B2 (en) 2002-09-24 2012-12-25 E I Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and method for use thereof
US8784692B2 (en) 2002-09-24 2014-07-22 E I Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
EP2341118A1 (en) * 2002-09-24 2011-07-06 E. I. du Pont de Nemours and Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US8641926B2 (en) 2003-04-22 2014-02-04 E I Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
US8765022B2 (en) 2004-03-17 2014-07-01 E I Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
JP4670497B2 (en) * 2004-06-17 2011-04-13 三菱マテリアル株式会社 Thin film electrode paste and method for manufacturing thin film electrode and thin film element
JP2006032326A (en) * 2004-06-17 2006-02-02 Mitsubishi Materials Corp Paste for thin film electrode, and manufacturing method of thin film electrode and thin film element
US8709296B2 (en) 2004-06-25 2014-04-29 Mitsubishi Materials Corporation Metal colloidal particles, metal colloid and use of metal colloid
EP2329902A1 (en) 2004-06-25 2011-06-08 Mitsubishi Materials Corporation Metal colloid particles, metal colloid and use of the colloid
JP4557620B2 (en) * 2004-07-27 2010-10-06 バンドー化学株式会社 Composite base material and method for producing printed wiring board using the same
JP2006036933A (en) * 2004-07-27 2006-02-09 Bando Chem Ind Ltd Composite substrate and method for producing printed circuit board by using the same
JP2006210197A (en) * 2005-01-28 2006-08-10 Sumitomo Electric Ind Ltd Metal coating film and its formation method
US7767115B2 (en) 2005-03-18 2010-08-03 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JPWO2006126614A1 (en) * 2005-05-25 2008-12-25 ニホンハンダ株式会社 Pasty silver composition, its production method, solid silver production method, solid silver, adhesion method and circuit board production method
WO2006126614A1 (en) * 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. Paste-like silver composition, method for producing same, method for producing solid silver, solid silver, bonding method, and method for manufacturing circuit board
USRE44853E1 (en) 2005-06-28 2014-04-22 E I Du Pont De Nemours And Company Buffer compositions
US8409476B2 (en) 2005-06-28 2013-04-02 E I Du Pont De Nemours And Company High work function transparent conductors
KR101423204B1 (en) * 2005-07-01 2014-07-25 내셔널 유니버시티 오브 싱가포르 An electrically conductive composite
JP2015122310A (en) * 2005-07-01 2015-07-02 ナショナル ユニヴァーシティー オブ シンガポール Preparation method of conductive composite material, conductive composite material, and device including the conductive composite material
JP2009500802A (en) * 2005-07-01 2009-01-08 ナショナル ユニバーシティー オブ シンガポール Conductive composite material
JP2009515023A (en) * 2005-11-09 2009-04-09 アドバンスト ナノ プロダクツ カンパニーリミテッド Metal ink, and electrode forming method and substrate using the same
JP2008135416A (en) * 2005-11-11 2008-06-12 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
JP2012147014A (en) * 2005-11-11 2012-08-02 Mitsubishi Materials Corp Composition for forming electrode of solar cell and formation method of the electrode, and solar cell using electrode obtained by the formation method
JP2008135417A (en) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp Method of forming electrode in solar cell, and the solar cell using electrode obtained by the same
JP2012231171A (en) * 2005-11-15 2012-11-22 Mitsubishi Materials Corp Method for formation of solar battery electrode, and solar battery with electrode produced by the method
JP2008135190A (en) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp Composition for electrode formation of solar cell, forming method of electrode, and solar cell using electrode obtained by forming method
JP2007200775A (en) * 2006-01-27 2007-08-09 Bando Chem Ind Ltd Metal fine particle-dispersed body and conductive material using metal fine particle-dispersed body
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
WO2008001518A1 (en) * 2006-06-30 2008-01-03 Mitsubishi Materials Corporation Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method
KR101394704B1 (en) 2006-06-30 2014-05-16 미쓰비시 마테리알 가부시키가이샤 Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method
US9620668B2 (en) 2006-06-30 2017-04-11 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9312404B2 (en) 2006-06-30 2016-04-12 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
KR101485304B1 (en) 2006-06-30 2015-01-23 미쓰비시 마테리알 가부시키가이샤 Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method
JP2013140991A (en) * 2006-10-11 2013-07-18 Mitsubishi Materials Corp Composition for electrode formation and method for forming electrode by using the composition
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
US8062553B2 (en) 2006-12-28 2011-11-22 E. I. Du Pont De Nemours And Company Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith
US8153029B2 (en) 2006-12-28 2012-04-10 E.I. Du Pont De Nemours And Company Laser (230NM) ablatable compositions of electrically conducting polymers made with a perfluoropolymeric acid applications thereof
US8491819B2 (en) 2006-12-29 2013-07-23 E I Du Pont De Nemours And Company High work-function and high conductivity compositions of electrically conducting polymers
JP2008235846A (en) * 2007-02-23 2008-10-02 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming the electrode, and solar cell using electrode obtained by forming method
JP2008235847A (en) * 2007-02-23 2008-10-02 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the forming method
US10020409B2 (en) 2007-04-19 2018-07-10 Mitsubishi Materials Corporation Method for producing a conductive reflective film
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US8404160B2 (en) 2007-05-18 2013-03-26 Applied Nanotech Holdings, Inc. Metallic ink
US8241526B2 (en) 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives
US10573795B2 (en) 2008-01-17 2020-02-25 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US11652197B2 (en) 2008-01-17 2023-05-16 Nichia Corporation Method for producing an electronic device
US10950770B2 (en) 2008-01-17 2021-03-16 Nichia Corporation Method for producing an electronic device
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US8968608B2 (en) 2008-01-17 2015-03-03 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US8506849B2 (en) 2008-03-05 2013-08-13 Applied Nanotech Holdings, Inc. Additives and modifiers for solvent- and water-based metallic conductive inks
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
JP2011527089A (en) * 2008-07-02 2011-10-20 アプライド・ナノテック・ホールディングス・インコーポレーテッド Metal paste and ink
US8642392B2 (en) 2009-01-23 2014-02-04 Nichia Corporation Semiconductor device and production method therefor
US8836130B2 (en) 2009-01-23 2014-09-16 Nichia Corporation Light emitting semiconductor element bonded to a base by a silver coating
US9018664B2 (en) 2009-01-23 2015-04-28 Nichia Corporation Semiconductor device and production method therefor
US8679898B2 (en) 2009-01-23 2014-03-25 Nichia Corporation Semiconductor device and production method therefor
US8927341B2 (en) 2009-01-23 2015-01-06 Nichia Corporation Semiconductor device and production method therefor
JP2010189681A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Method for producing oxidation resistant copper nanoparticle, and joining method using the same
US8945426B2 (en) 2009-03-12 2015-02-03 E I Du Pont De Nemours And Company Electrically conductive polymer compositions for coating applications
US9131610B2 (en) 2009-03-27 2015-09-08 Pen Inc. Buffer layer for sintering
US8647979B2 (en) 2009-03-27 2014-02-11 Applied Nanotech Holdings, Inc. Buffer layer to enhance photo and/or laser sintering
US8845933B2 (en) 2009-04-21 2014-09-30 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
US8945427B2 (en) 2009-04-24 2015-02-03 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
US8422197B2 (en) 2009-07-15 2013-04-16 Applied Nanotech Holdings, Inc. Applying optical energy to nanoparticles to produce a specified nanostructure
US9011728B2 (en) 2009-07-21 2015-04-21 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, and light-emitting device
JP2014503682A (en) * 2010-10-25 2014-02-13 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Metal particle sol containing doped silver nanoparticles
EP2632583B1 (en) * 2010-10-25 2018-02-21 Clariant International Ltd Metal sol containing doped silver nanoparticles
KR20140001921A (en) * 2010-10-25 2014-01-07 바이엘 인텔렉쳐 프로퍼티 게엠베하 Metal sol containing doped silver nanoparticles
KR101935767B1 (en) * 2010-10-25 2019-01-08 바이엘 인텔렉쳐 프로퍼티 게엠베하 Metal particle sol comprising doped silver nanoparticles
US9598776B2 (en) 2012-07-09 2017-03-21 Pen Inc. Photosintering of micron-sized copper particles
CN105121701A (en) * 2014-02-07 2015-12-02 石原化学株式会社 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
WO2015118907A1 (en) * 2014-02-07 2015-08-13 石原ケミカル株式会社 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
CN105121701B (en) * 2014-02-07 2018-09-28 石原化学株式会社 Electroless copper water system copper colloid catalyst liquid and electroless copper plating method
JP2016164845A (en) * 2015-03-06 2016-09-08 コニカミノルタ株式会社 Conductive component and production method thereof, and circuit board, electrode substrate and reflector that include the same
JP2016164225A (en) * 2015-03-06 2016-09-08 コニカミノルタ株式会社 Electric conductive ink
JP2017149942A (en) * 2016-02-25 2017-08-31 三ツ星ベルト株式会社 Ink composition and image formation method therewith

Similar Documents

Publication Publication Date Title
JP2001325831A (en) Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film
JP3796476B2 (en) Conductive ink
JP2002245854A (en) Colloidal solution of metal, and manufacturing method of the same
TWI342246B (en) Silver powder and method for producing same
KR100480863B1 (en) Copper fine powder and method for preparing the same
JP5000332B2 (en) Conductive ink
EP3015195A1 (en) Flake-like silver powder, conductive paste, and method for producing flake-like silver powder
JP5606439B2 (en) Conductive ink and method for producing substrate with conductive film using the same
KR20180056811A (en) Low-temperature sintered silver nanoparticle composition and electronic articles formed using the same
JP4428085B2 (en) Method for producing copper fine particles
WO2007000833A1 (en) Method for electrically conductive circuit formation
US4719145A (en) Catalytic process and systems
KR102035115B1 (en) Conductive coated composite body and method for producing same
JP2006193594A (en) Conductive ink and its use
US20150111992A1 (en) Barium sulfate composite particle, resin composition comprising the same, and production method thereof
JP2011082025A (en) Conductive paste
JP2007211155A (en) Coating film, coating material, and manufacturing method of coating film
WO2018221181A1 (en) Electroconductive ink and method of manufacturing electroconductive substrate
JP2003342621A (en) Method for manufacturing copper powder and copper powder obtained thereby
JP2005019028A (en) Metal colloid liquid, and conductive ink using it
JP2007326970A (en) Resin composition for forming coating film and coating film containing the same and method for forming coating film
JP2014067566A (en) Conductive paste
JP2006161145A (en) Silver powder and method for producing the same
JP2016154139A (en) Conductive particle powder, method for producing conductive particle powder, conductive material and connection structure
JP2018081817A (en) Insulation-coated electrically conductive particle, anisotropic electrically conductive adhesive using the same and connection structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414