JP5123835B2 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP5123835B2
JP5123835B2 JP2008313837A JP2008313837A JP5123835B2 JP 5123835 B2 JP5123835 B2 JP 5123835B2 JP 2008313837 A JP2008313837 A JP 2008313837A JP 2008313837 A JP2008313837 A JP 2008313837A JP 5123835 B2 JP5123835 B2 JP 5123835B2
Authority
JP
Japan
Prior art keywords
steering
unit
control
motor
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008313837A
Other languages
English (en)
Other versions
JP2010137621A (ja
Inventor
繁規 滝本
憲雄 山崎
昌人 湯田
山中  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008313837A priority Critical patent/JP5123835B2/ja
Publication of JP2010137621A publication Critical patent/JP2010137621A/ja
Application granted granted Critical
Publication of JP5123835B2 publication Critical patent/JP5123835B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、車両用の電動パワーステアリング装置に関する。
従来から、電動パワーステアリング装置において、運転者の操向ハンドルの操舵力を軽減するために電動パワーステアリング用のモータ(以下、「EPS(Electric Power Steering)モータ」と称する)による操舵補助力を制御するだけでなく、車両の走行状態がアンダステア状態と判定したときに切り込み側に転舵輪(前側左右の車輪、つまり前輪)を操舵するようにEPSモータを制御したり(特許文献1参照)、車両の走行状態がオーバステア状態と判定したときに切り戻し側に転舵輪を操舵するようにEPSモータを制御したり(特許文献2参照)、スプリットμ路面での制動時や発進加速時に車両の走行安定性を向上するように制御したり(特許文献3)、車両の旋回走行時に発生するヨーレートに応じて、運転者に操向ハンドルを介して付与する操舵抵抗力を制御したり(特許文献4参照)、カント路走行時に進路維持のために運転者に負担を掛けないように、車体流れを抑制するようにEPSモータを制御したり(特許文献5参照)するマルチアクティブ制御の電動パワーステアリング装置の技術が公知である。
特開2000−128010号公報 特開平11−152057号公報 特開2005−349914号公報 特開2008−221869号公報 特開2007−168617号公報
しかしながら、前記したようなマルチアクティブ制御の電動パワーステアリング装置においては、複数のアクティブ制御が同時に作用して干渉することがあり、運転者に操向ハンドルの良好な操作感覚を与えない場合があった。また、アンダステア状態やオーバステア状態の車両走行の限界状態からの離脱補助等の車両挙動の安定性の制御と、カント路における車体流れの抑制制御等の運転者の負担軽減のための制御との間に干渉が生じた場合には、車両挙動の安定性の観点から問題を生じる可能性があった。
本発明は、前記した従来の課題を解決するものであり、車両挙動の安定性の制御と、運転者の負担軽減のための制御との間で、調和をとって車両挙動の安定性を良好とする電動パワーステアリング装置を提供することを目的とする。
前記課題を解決するために、請求項1に記載の発明は、転舵輪に舵角を与える操舵系に操舵補助力を付加するモータと、操向ハンドルの操舵トルクを検出する操舵トルク検出手段と、少なくとも操舵トルク検出手段の出力にもとづいて操舵補助力をモータに発生させるための制御手段とを備える電動パワーステアリング装置であって、
制御手段は、車両のアンダステア状態を抑制すべくモータを制御するアンダステア制御手段、車両のオーバステア状態を抑制すべくモータを制御するオーバステア制御手段、及び左右の車輪の接する路面の摩擦係数が異なる路面において、制動したときの車両挙動を抑制すべくモータを制御するスプリットμ制御手段のうちの少なくとも1つを含んで構成される第1制御部と、転舵輪への外乱が入力されたときの操向ハンドルのハンドル取られを抑制すべくモータを制御する外乱抑制制御手段、及びカント路の走行における車体流れを抑制すべくモータを制御する車体流れ制御手段のうちの少なくとも1つを含んで構成される第2制御部と、を有し、第1制御部が作動してモータを制御している場合には、第2制御部がモータを制御する出力のゲインを低下させることを特徴とする。
請求項1に記載の発明によれば、車両挙動の安定性の向上のための第1制御部が作動してモータを制御している場合には、運転者の負担軽減のための第2制御部がモータを制御する出力のゲインを低下させるので、第1制御部の制御と第2制御部の制御とが干渉する方向の場合でも、車両挙動の安定性の向上を優先した電動パワーステアリングのアクティブ制御を行うことができる。
請求項2に記載の発明は、請求項1に記載の発明の構成に加え、第1制御部は、アンダステア制御手段と、操向ハンドルを中立位置へ戻すようにモータを制御するハンドル戻し制御手段と、を少なくとも含んで構成され、ハンドル戻し制御手段が出力するハンドル戻し制御量と、アンダステア制御手段が出力するアンダステア制御量の値の切り込み方向に大きい方の制御量を選択してモータを制御することを特徴とする。
請求項2に記載の発明によれば、ハンドル戻し制御手段が出力するハンドル戻し制御量と、アンダステア制御手段が出力するアンダステア制御量の値の大きい方の制御量を選択してモータを制御するので、例えば、車両がアンダステア状態にあると検出してアンダステア制御手段が、操向ハンドルの切り込み方向にアクティブ制御を行っているときに、ハンドル戻し制御手段が操向ハンドルを中立位置に戻す制御(切り戻し方向の操向ハンドルからの操舵抵抗力を小さくする、または、切り戻し方向に操舵補助力を出力する制御)の出力を出していても、アンダステア制御手段が出力する切り込み方向の制御量を選択してモータを制御するので、両者の干渉を防止でき、車両挙動の安定性を向上させることができる。
本発明によれば、車両挙動の安定性の制御と、運転者の負担軽減のための制御との間で、調和をとって車両挙動の安定性を良好とする電動パワーステアリング装置を提供することができる。
以下に、本発明の実施形態に係る電動パワーステアリング装置について図を参照しながら詳細に説明する。
《全体概要》
先ず、図1を参照しながら本発明に係る実施形態の電動パワーステアリング装置を適用した車両の全体概要について説明する。
図1は、本発明に係る実施形態の電動パワーステアリング装置を適用した車両の全体概念図である。
車両1は、例えば、エンジンEとトランスミッションTMを車両前部に横置きし、前側左右の車輪(転舵輪)3,3を駆動する前輪駆動車両である。図1において、電動パワーステアリング装置9は、操向ハンドル6が設けられたステアリングシャフトと、ピニオン軸とが、図示省略の中間シャフトとユニバーサルジョイント(自在継手)によって連結され、また、ピニオン軸の下端部に設けられたピニオンギアは、車幅方向に往復運動可能なラック軸8のラック歯に噛合し、ラック軸8の両端には、タイロッドを介して前側左右の車輪3,3が連結されている。この構成により、電動パワーステアリング装置9は、操向ハンドル6の操作時に車両の進行方向を変えることができる。
電動パワーステアリング装置9は、操向ハンドル6による手動操舵力を軽減するための操舵補助力及び操向ハンドル6に操舵抵抗力を供給する電動パワーステアリング用のモータ7(以下、「EPSモータ7」と称する)を備えており、このEPSモータ7の出力軸に設けられたウォームギアが、ピニオン軸に設けられたウォームホイールギアに噛合している。EPSモータ7としては、例えば、直流モータが用いられている。
また、電動パワーステアリング装置9は、制御装置(制御手段)15(以下、「ECU15」と称する)、EPSモータ7を駆動するモータ駆動回路25、ピニオン軸に加えられる操舵トルクを検出する操舵トルクセンサ(操舵力検出手段)ST、操舵トルクセンサSTの出力を増幅する図示省略の差動増幅回路、操向ハンドル6の操作量であるハンドル操作角を検出するハンドル操作角センサSAH等を備えている。
モータ駆動回路25は、例えば、H型ブリッジ回路のような複数のスイッチング素子を備え、ECU15のEPS制御部23からのDUTY信号を用いて、矩形波電流を生成し、EPSモータ7を駆動する電源回路である。また、モータ駆動回路25は、図示省略のモータ電流センサを用いてモータ電流を検出する機能や、図示省略のモータ電圧センサを用いてモータ電圧を検出する機能を備えている。
EPSモータ7にはモータ回転角センサSAMが設けられ、EPSモータ7のモータ回転角を検出し、角度信号を出力するものである。
これら操舵トルクセンサST、ハンドル操作角センサSAH、モータ電流センサ、モータ電圧センサ、モータ回転角センサSAMからの各信号はECU15に出力される。
さらに、車両1には、ヨーレートを検出するヨーレートセンサSY、横方向加速度を検出する横GセンサSGS、前後方向加速度を検出する前後GセンサSGFR、各車輪3の車輪速を検出する車輪速センサSWVを備えており、これらのセンサからの信号はECU15に出力される。
また、車両1には、エンジンEを制御するエンジンECU11が設けられ、ECU15と通信回線、例えば、CAN(Controller Area Network)通信で接続されている。
エンジンECU11及びECU15は、例えば、CPU、ROM、RAM等を含むマイクロコンピュータと、マイクロコンピュータに各種信号を入力するための入力インタフェース回路、マイクロコンピュータからの出力信号を出力するための出力インタフェース回路等を含んで構成されている。
《ECU15の機能構成》
本実施形態におけるECU15は、各車輪3に設けられたブレーキ装置4を油圧回路である制動ユニット5を介して制動制御するVSA(Vehicle Stability Assist)制御部22と、EPSモータ7を制御するEPS制御部23を含んで構成されている。
(VSA制御部の概要)
VSA制御部22は、制動時の車輪ロックを防止するABS(Anti-lock Brake System)機能や、加速時の車輪空転防止機能に加えて、車両の横滑り抑制機能をつかさどっている。
車両の横滑り抑制機能には、例えば、(1)車両の旋回運動時に操向ハンドル6の急激な切り過ぎ等によって起こりがちな後側左右の車輪(後輪)3,3のスリップによる車両1の巻き込みに対して、旋回方向外側の前側の車輪3のブレーキ装置4への制動制御によって旋回方向外向きのモーメントを発生させ、同時に前側左右の車輪3,3のコーナリングフォースを低減して、スピンモーメントを減少することで車両挙動を安定化させるオーバステア制御機能、(2)旋回加速時のアクセルペダルの踏み過ぎ等によって起こりがちな駆動輪(前側左右の車輪)スリップによる軌跡の旋回方向外側へのはらみに対して、CAN通信を介してエンジンECU11に信号を出力してエンジンEのトルクを低減させ、旋回方向内側の前側の車輪3のブレーキ装置4の制動制御により前側左右の車輪3,3のサイドフォースを確保し、旋回方向内向きモーメントを発生させることで、旋回方向外側へのはらみを抑制する加速アンダステア制御機能、(3)発進時等に、左右輪で路面状況が異なる場合に、エンジントルクが低μ路側の車輪3に伝達されてしまい、大きな駆動力を得ることができないため、低μ路側の車輪3のブレーキ装置4を制動制御し、高μ路側の車輪3にエンジントルクを伝達することで、より強い発進・加速力を得る発進制御機能がある。
このようなVSA制御部22における制御のため、図示しないブレーキペダルセンサ、マスターシリンダ油圧センサ、各車輪3のブレーキ装置4への出力油圧を検出するブレーキ油圧センサ等からの各信号、各車輪3の車輪速センサSWVからの信号、横GセンサSGSからの信号、ヨーレートセンサSYからの信号、ハンドル操作角センサSAHからの信号が用いられる。特に、従動輪である後側左右の車輪3,3の車輪速センサSWV,SWVが、車輪3の回転速度を単位時間あたりのパルス数として検出したものを、ECU15のマイクロコンピュータで平均値計算をして、車速VSに換算して、VSA制御部22、EPS制御部23において用いる。
なお、ハンドル操作角センサSAHからハンドル操作角θHを示す信号や、ヨーレートセンサSYからヨーレートγを示す信号は、ECU15の前記した入力インタフェース回路に含まれるローパスフィルタ(略してLPFと表現することもある)で雑音処理して用いられる。
また、VSA制御部22において用いられたり、取得されたりしたデータはEPS制御部23に出力されて、EPS制御部23における前側左右の車輪3,3のアクティブ操舵の制御等に適宜利用される。
例えば、運転者の制動操作時にVSA制御部22において左右輪のスリップ比をチェックしてスプリットμ路と判定した場合は、左右路面μ差を示す情報(以下、「路面μ差情報」と称する)、例えば、右車輪のブレーキ油圧PBR、左車輪のブレーキ油圧PBLをEPS制御部23に出力し、スプリットμ路におけるアクティブ操舵の制御に用いられる。
《EPS制御部》
次に、図2から図9に示す制御機能ブロック構成図にもとづいてECU15のEPS制御部23における制御機能について説明する。図2は、EPS制御部の制御機能ブロック構成図である。
EPS制御部23は、図2に示すように操舵トルクTSと車速に応じて、EPSモータ7が出力すべき操舵補助力の目標電流値ITBを出力するベース電流算出部31を有している。ベース電流算出部31は、公知のものであり、車速VSと操舵トルクTSをパラメータとした目標電流値ITBの二次元マップを有しており、車速VSが小さいときは、操舵トルクTSに応じて大きな操舵補助力を出力し、車速VSが大きくなるほど操舵補助力を弱くして、運転者に操向ハンドル6の操作を重く感じさせるようにする。
EPS制御部23は、前記した電動パワーステアリング装置9が有している基本的なベース電流算出部31の機能以外に以下の機能を有している。
EPS制御部23は、ベース電流算出部31の他に、車両挙動の安定性向上のために、例えば、ハンドル操作角θHの変化から操向ハンドル6の切り戻し操作を検出して、切り戻し操作を容易にする、例えば、切り戻し操作時の操向ハンドル6から運転者が受ける操舵抵抗を小さく制御する、または、積極的に中立位置に戻すようにEPSモータ7を制御するハンドル戻し制御部(ハンドル戻し制御手段)32、ハンドル操作角θHと車速VSに応じた規範ヨーレートγTA(図4参照)を算出して、それとヨーレートセンサSγからの実際のヨーレートγとを比較して、アンダステア状態と判定したとき、EPSモータ7に切り込み方向の出力制御をするアンダステア制御部(アンダステア制御手段)33、ハンドル操作角θHと車速VSに応じた規範ヨーレートγTB(図5参照)を算出して、それとヨーレートセンサSγからの実際のヨーレートγとを比較して、オーバステア状態と判定したとき、EPSモータ7に切り戻し方向の出力制御をするオーバステア制御部(オーバステア制御手段)34、車両1の旋回走行中のヨーレートγに応じた反力を操向ハンドル6に与えるようにEPSモータ7を制御するヨーレート反力制御部35、VSA制御部22においてスプリットμ路を検出したときに、VSA制御部22からの前記した路面μ差情報に応じて車体のヨーモーメントを打ち消すように前側左右の車輪3,3をアクティブ制御で操舵させるべくEPSモータ7を制御するスプリットμ制御部(スプリットμ制御手段)36を有している。
これら、ハンドル戻し制御部32、アンダステア制御部33、オーバステア制御部34、ヨーレート反力制御部35、スプリットμ制御部36は、請求項に記載の「第1制御部」に対応し、車両の旋回走行時の車両挙動の安定性に係るEPSモータ7の制御機能をつかさどる機能部である。
EPS制御部23は、この他に運転者の操向ハンドル6の操作負担を軽減するために、例えば、次の2つの機能部、前側左右の車輪3,3からのキックバックによって運転者が操向ハンドル6の取られ(ハンドル取られ)を受けたとき、操向ハンドル6の保持のための運転者の負担を軽減するようにEPSモータ7を制御する外乱抑制制御部(外乱抑制制御手段)37と、カント路において車体が流れるのを阻止しようとして操向ハンドル6の保持のための運転者の負担を軽減するようにEPSモータ7を制御する車体流れ制御部(車体流れ制御手段)38を有している。
外乱抑制制御部37と車体流れ制御部38は、請求項に記載の「第2制御部」に対応し、操向ハンドル6操作時の運転者の負担軽減に係るEPSモータ7の制御機能をつかさどる機能部である。
図2に示すように、ハンドル戻し制御部32からのハンドル戻し制御の補正電流値ΔIHR *と、アンダステア制御部33からのアンダステア抑制制御の補正電流値ΔIUS *とが、高値選択部39に入力され、高値選択部39において補正電流値ΔIHR *、ΔIUS *のうち、切り込み側のより高い補正電流値が選択されて、加算部47に出力される。
そして、加算部47では、オーバステア制御部34からの補正電流値ΔIOS *、ヨーレート反力制御部35からの補正電流値ΔIY *、スプリットμ制御部36からの補正電流値ΔISμ*も加算される。
また、補正電流値ΔIUS *、補正電流値ΔIOS *、補正電流値ΔIY *、補正電流値ΔISμ*は、加算部41に加算されて、第1総和補正電流値ΔIt1が算出され、第1総和補正電流値ΔIt1の絶対値に応じて、第2総和ゲイン補正値算出部43においてゲインGt2が取得される。取得されたゲインGt2は乗算部45に出力される。
ここで、第2総和ゲイン補正値算出部43は、図2に示すように第1総和補正電流値ΔIt1の絶対値が所定の第1の閾値を超えると、ゲインGt2を急速に低減して、所定の第2の閾値を超えるとゲインGt2をゼロとする。
外乱抑制制御部37からの外乱抑制制御の補正電流値ΔIDis *及び車体流れ制御部38からの車体流れ抑制制御の補正電流値ΔICant *は、加算部42で加算されて第2総和補正電流値ΔIt2が算出され、乗算部45においてゲインGt2と乗算されて、そのゲインGt2で補正された第2総和補正電流値ΔIt2が加算部47に出力される。
加算部47で加算された各補正電流値の総和結果は、加算部48において目標電流値ITBと加算されて、モータ駆動回路25に補正された目標電流値として入力される。その結果、EPSモータ7は、単に、操舵トルクTSや車速VSに応じた操舵補助力の出力制御に寄与するだけでなく、ハンドル戻し制御、アンダステア制御、オーバステア制御、ヨーレート反力制御、スプリットμ制御、外乱抑制制御、車体流れ抑制制御等、車両挙動の安定性向上や、運転者の負担軽減のアクティブ制御をも行うような構成になっている。
以下に、EPS制御部23の前記した各機能部の機能ブロック構成について説明する。
(ハンドル戻し制御部)
まず、ハンドル戻し制御部32について説明する。
図3は、図2におけるハンドル戻し制御部の詳細な機能ブロック構成図である。ハンドル戻し制御部32は、ハンドル戻し補正電流算出部51、ゲイン補正値算出部52,53,54、乗算部55,56,57、切り戻し判別ゲイン切替部58を含んで構成されている。
ハンドル戻し補正電流算出部51は、ハンドル操作角θHをパラメータとした一次元マップを有し、図3に示すようにハンドル操作角θHが左右方向所定の閾値範囲内では、補正電流値ΔIHRをゼロとし、ハンドル操作角θHが左右方向所定の閾値範囲以上のときに、徐々に増加して、所定値で飽和する切り戻し方向の補正電流値ΔIHRを乗算部55に出力する。
ちなみに、ハンドル操作角θHが右側方向の操作角の場合を正とし、中立状態をゼロとし、左側方向の操作角の場合を負とする。また、後記するモータ回転角速度ωMや操舵トルクTSも、右側方向への転舵の場合に正、左側方向への転舵の場合に負と定義する。
図3においては、ハンドル戻し補正電流算出部51のマップはハンドル操作角θHの絶対値で表示してある。
ゲイン補正値算出部52は、EPSモータ7のモータ回転角センサSAMからのモータ回転角θMがECU15のEPS制御部23において時間微分されて得られたモータ回転角速度ωMをパラメータとした一次元マップ用いて、ゲインGHR1を算出する。ゲインGHR1は、図3に示すようにモータ回転角速度ωMが左右方向所定の閾値範囲内では、ゲインGHR1を一定値とし、モータ回転角速度ωMが左右方向所定の閾値範囲以上のときに、徐々に減少してゼロとなる。ゲイン補正値算出部52から出力されたゲインGHR1は乗算部55に出力され、補正電流値ΔIHRに乗じられ、その結果は乗算部56に出力される。
ちなみに、図3においては、ゲイン補正値算出部52のマップはモータ回転角速度ωMの絶対値で表示してある。
ゲイン補正値算出部53は、車速VSをパラメータとした一次元マップを用いて、ゲインGHR2を算出する。ゲインGHR2は、図3に示すように車速VSの値の増加に応じてゼロから徐々に増加し、車速VSの所定値以上で一定値に飽和する。ゲイン補正値算出部53から出力されたゲインGHR2は乗算部56に出力され、乗算部55で補正された補正電流値ΔIHRにさらに乗じられ、その結果は乗算部57に出力される。
この補正は、車速VSが所定値までの範囲では、車速VSが大きくなるほど中立位置への切り戻し方向に対する操舵抵抗力を低減、または、中立位置への戻し操作を促進するように操舵補助力を出力するように補正電流値ΔIHRを出力し、車速VSが所定以上では一定値の中立位置への切り戻し方向に対する操舵抵抗力、または、中立位置への戻し操作を促進するように一定値の操舵補助力を出力するように補正電流値ΔIHRを補正するものである。
ゲイン補正値算出部54は、操舵トルクTSをパラメータとした一次元マップ用いて、ゲインGHR3を算出する。ゲインGHR3は、図3に示すように操舵トルクTSの値が左右方向所定の閾値範囲内では、ゲインGHR3を一定値とし、操舵トルクTSが左右方向所定の閾値範囲以上のときに、徐々に減少してゼロとなる。ゲイン補正値算出部54から出力されたゲインGHR3は乗算部57に出力され、乗算部56で補正された補正電流値ΔIHRにさらに乗じられ、その結果は切り戻し判別ゲイン切替部58に出力される。
ちなみに、図3においては、ゲイン補正値算出部54のマップは操舵トルクTSの絶対値で表示してある。
切り戻し判別ゲイン切替部58は、ハンドル操作角θHとモータ回転角速度ωMとにもとづいて、電動パワーステアリング装置9が切り戻し状態か、切り込み状態かを判別し、切り戻し状態の場合はゲインを1.0とし、切り込み状態の場合はゲインを0.0とし、乗算部57から入力された補正された補正電流値ΔIHRにそのゲインを乗じて補正電流値ΔIHR *として高値選択部39(図2参照)に出力する。
なお、切り戻し判別ゲイン切替部58における電動パワーステアリング装置9が切り戻し状態か、切り込み状態かの判別は、ハンドル操作角θHとモータ回転角速度ωMの積の符号が正のとき切り込み状態であり、負のとき切り戻し状態であると容易に判別できる。
(アンダステア制御)
次に、アンダステア制御部33について説明する。
図4は、図2におけるアンダステア制御部の詳細な機能ブロック構成図である。アンダステア制御部33は、規範ヨーレート算出部61、減算部62、アンダステア補正電流算出部63(以下、「U/S補正電流算出部63」と称する)、ゲイン補正値算出部64、乗算部65、アンダステア修正判別ゲイン切替部66を含んで構成されている。
規範ヨーレート算出部61は、公知のものでありハンドル操作角θHと車速VSにもとづいて予め記憶されているハンドル操作角θHと車速VSをパラメータとした二次元マップにもとづいて規範ヨーレートγTAを算出する。算出された規範ヨーレートγTAは減算部62、U/S補正電流算出部63及びアンダステア修正判別ゲイン切替部66に入力される。そして、減算部62において規範ヨーレートγTAに対してヨーレートセンサSYからのヨーレートγを減算し、ヨーレート偏差Δγが得られ、U/S補正電流算出部63に入力される。U/S補正電流算出部63では、規範ヨーレートγTAが示す旋回方向を示すヨーレート符号またはハンドル操作角θHの符号と、ヨーレート偏差Δγの符号にもとづいて、車両の旋回状態がアンダステア状態であるか否かを判定し、アンダステア状態と判定したとき、ヨーレート偏差Δγに応じた補正電流値ΔIUSを切り込み方向の符号を付して乗算部65に出力する。アンダステア状態でない場合には、補正電流値ΔIUSをゼロとして乗算部65に出力する。
U/S補正電流算出部63は、ヨーレート偏差Δγの絶対値をパラメータとした一次元マップを有し、図4に示すようにヨーレート偏差Δγが左右方向所定の閾値範囲内では、ゼロからヨーレート偏差Δγに応じて徐々に増加して、所定値で飽和するアンダステア抑制制御の補正電流値ΔIUSを乗算部65に出力する。
ゲイン補正値算出部64は、車速VSをパラメータとした一次元マップを用いて、ゲインGUSを算出する。ゲインGUSは、図4に示すように車速VSの値の増加に応じてゼロから徐々に増加し、車速VSの所定値以上で一定値に飽和する。ゲイン補正値算出部64から出力されたゲインGUSは乗算部65に出力され、U/S補正電流算出部63から出力された補正電流値ΔIUSに乗じられ、その結果はアンダステア修正判別ゲイン切替部66に出力される。
アンダステア修正判別ゲイン切替部66は、規範ヨーレート算出61で算出された規範ヨーレートγTAと操舵トルクTSにもとづいて、操舵トルクTSの向きと規範ヨーレートγTAの向きから、運転者の操向ハンドル6の操作方向がアンダステア状態を解消する、つまり、切り込み方向の操作を行っているか否かを判別し、切り込み方向の操作を行っていると判別した場合はゲインを1.0とし、切り戻し方向の操作を行っていると判別した場合はゲインを0.0とし、乗算部65から入力された補正された補正電流値ΔIUSにそのゲインを乗じて補正電流値ΔIUS *として高値選択部39(図2参照)に出力するとともに、加算部41に出力する。
そして、高値選択部39において、運転者が切り戻し方向の操作をしている状態で、ハンドル戻し制御部32が出力するハンドル戻し制御の補正電流値(ハンドル戻し制御量)ΔIHR *と、アンダステア制御部33が出力するアンダステア状態を抑制すべく切り込み方向の補正電流値(アンダステア制御量)ΔIUS *のうちの、切り込み方向に大きい方の補正電流値を選択して加算部47に出力し、EPSモータ7を制御する。
例えば、車両がアンダステア状態にあると検出してアンダステア制御部33が、操向ハンドル6の切り込み方向にアクティブ制御を行っているときに、ハンドル戻し制御部32が操向ハンドル6を中立位置に戻す制御(切り戻し方向の操向ハンドル6の操作に対する操舵抵抗力を小さくする、または、切り戻し方向に操舵補助力を出力する制御)の補正電流値ΔIHR *を出力していても、高値選択部39(図2参照)においてアンダステア制御部33が出力する切り込み方向の補正電流値ΔIUS *を選択してEPSモータ7を制御するので、両者の干渉を防止でき、車両挙動の安定性を向上することができる。
(オーバステア制御)
次に、オーバステア制御部34について説明する。
図5は、図2におけるオーバステア制御部の詳細な機能ブロック構成図である。オーバステア制御部34は、要求ヨーレート算出部71、規範ヨーレート限界値算出部72、規範ヨーレート決定部73、減算部74、オーバステア補正電流算出部75(以下、「O/S補正電流算出部75」と称する)、乗算部76、ゲイン補正値算出部77を含んで構成されている。
要求ヨーレート算出部71は、公知でありハンドル操作角θHと車速VSにもとづいて予め記憶されているハンドル操作角θHと車速VSをパラメータとした二次元マップにもとづいて要求ヨーレートγRを算出する。算出された要求ヨーレートγRは規範ヨーレート決定部73に入力される。また、規範ヨーレート限界値算出部72は、車速VS及び横GセンサSGSからの横加速度AS(図5中、横G_ASと表示)にもとづいて、具体的には予め記憶されている車速VSと横G_ASをパラメータとした二次元マップにもとづいて規範ヨーレートの限界値を算出し、規範ヨーレート決定部73に入力する。
規範ヨーレート決定部73は、要求ヨーレート算出部71で算出された要求ヨーレートγRよりも規範ヨーレート限界値算出部72で算出された規範ヨーレートの限界値の方が絶対値的に小さい場合は、規範ヨーレートの限界値を規範ヨーレートγTBとし、逆に、要求ヨーレートγRの方が規範ヨーレートの限界値よりも絶対値的に同じまたは小さい場合には、要求ヨーレートγRを規範ヨーレートγTBとして減算部74に出力する。
減算部74において規範ヨーレートγTBに対してヨーレートセンサSYからのヨーレートγを減算し、ヨーレート偏差Δγが得られ、O/S補正電流算出部75に入力される。O/S補正電流算出部75では、規範ヨーレートγTBが示す旋回方向を示すヨーレートの符号またはハンドル操作角θHの符号と、ヨーレート偏差Δγの符号にもとづいて、車両の旋回状態がオーバステア状態であるか否かを判定し、オーバステア状態と判定したとき、ヨーレート偏差Δγに応じた補正電流値ΔIOSを切り戻し方向の符号を付して乗算部76に出力する。アンダステア状態でない場合には、補正電流値ΔIOSをゼロとして乗算部76に出力する。
O/S補正電流算出部75は、ヨーレート偏差Δγの絶対値をパラメータとした一次元マップを有し、図5に示すようにヨーレート偏差Δγが左右方向所定の閾値範囲内では、ゼロであり、左右方向所定の閾値範囲を超えたときヨーレート偏差Δγに応じて徐々に増加して、所定値で飽和するオーバステア抑制制御の補正電流値ΔIOSを乗算部76に出力する。
ゲイン補正値算出部77は、車速VSをパラメータとした一次元マップを用いて、ゲインGOSを算出する。ゲインGOSは、図5に示すように車速VSの所定の低速範囲内では一定値であり、所定の低速範囲を超えると車速VSの増加に応じて一定値から徐々に減少し所定の車速以上でゼロになる。ゲイン補正値算出部77から出力されたゲインGOSは乗算部76に出力され、O/S補正電流算出部75から出力された補正電流値ΔIOSに乗じられ、その結果は補正電流値ΔIOS *として加算部41,47(図2参照)に出力される。
なお、図5において点線枠で示した要求ヨーレート算出部71、規範ヨーレート限界値算出部72、規範ヨーレート決定部73、減算部74を含むオーバステア状態量算出部34aは、必ずしもEPS制御部23に含まれている必要は無く、VSA制御部22に含まれていて、VSA制御部22から出力されるヨーレート偏差Δγまたは他のオーバステア状態量を示すパラメータがオーバステア制御部34に入力され、そのオーバステア状態量を示すパラメータに応じたオーバステア抑制制御の補正電流値ΔIOSを、マップを用いてO/S補正電流算出部75で算出するようにしても良い。
(ヨーレート反力制御部)
次に、ヨーレート反力制御部35について説明する。図6は、図2におけるヨーレート反力制御部の詳細な機能ブロック構成図である。
ヨーレート反力制御部35は、ヨーレート反力補正電流算出部81、ゲイン補正値算出部82、ヨーレート反力補正電流算出部83、ゲイン補正値算出部84、乗算部85,86、往き戻り判定部87を含んで構成されている。
ヨーレート反力補正電流算出部81は、ヨーレートγをパラメータとした一次元マップを用いて、往き側、つまり、切り込み操作状態に対するヨーレート反力制御の補正電流値ΔIYGを算出する。補正電流値ΔIYGは、図6に示すようにヨーレートγが左右方向所定の閾値範囲内ではゼロであり、左右方向所定の閾値範囲を超えたときヨーレートγに応じて徐々に増加して、所定値で飽和するように算出される。そして、ヨーレート反力補正電流算出部81は、切り込み操作に対する操舵抵抗力を操向ハンドル6に付加する方向に補正電流値ΔIYGの符号の補正電流を乗算部85に出力する。
ゲイン補正値算出部82は、車速VSをパラメータとした一次元マップを用いて、ゲインGYGを算出する。ゲインGYGは、図6に示すように車速VSの値の増加に応じてゼロから徐々に増加し、車速VSの所定値以上で一定値に飽和する。ゲイン補正値算出部82から出力されたゲインGYGは乗算部85に出力され、ヨーレート反力補正電流算出部81から出力された補正電流値ΔIYGに乗じられ、その結果は往き戻り判定部87に出力される。
ヨーレート反力補正電流算出部83は、ヨーレートγをパラメータとした一次元マップを用いて、戻し側、つまり、切り戻し操作状態に対するヨーレート反力制御の補正電流値ΔIYBを算出する。補正電流値ΔIYBは、図6に示すようにヨーレートγが左右方向所定の閾値範囲内ではゼロであり、左右方向所定の閾値範囲を超えたときヨーレートγに応じて徐々に増加して、所定値で飽和するように算出される。そして、ヨーレート反力補正電流算出部83は、切り戻し操作に対する操舵抵抗力を操向ハンドル6に付加する方向に補正電流値ΔIYBの符号の補正電流を乗算部86に出力する。
ゲイン補正値算出部84は、車速VSをパラメータとした一次元マップを用いて、ゲインGYBを算出する。ゲインGYBは、図6に示すように車速VSの値の増加に応じてゼロから徐々に増加し、車速VSの所定値以上で一定値に飽和する。ゲイン補正値算出部84から出力されたゲインGYBは乗算部86に出力され、ヨーレート反力補正電流算出部83から出力された補正電流値ΔIYBに乗じられ、その結果は往き戻り判定部87に出力される。
ちなみに、図6においては、ヨーレート反力補正電流算出部81,83のマップはヨーレートγの絶対値で表示してある。
また、ヨーレート反力補正電流算出部81とヨーレート反力補正電流算出部83の補正電流値ΔIYG,ΔIYBは、絶対値的にはΔIYGの方がΔIYBより大きくなるように設定することが操向ハンドル6から運転者が受ける操舵抵抗力による操舵感覚としては好ましい。
往き戻り判定部87では、ヨーレートγと操舵トルクTSとから、運転者の操舵操作が切り込み操作状態であるか切り戻し状態であるかを判定し、切り込み操作状態と判定したときは、乗算部85で補正された補正電流値ΔIYGをヨーレート反力制御の補正電流値ΔIY *として、切り戻し操作状態と判定したときは、乗算部86で補正された補正電流値ΔIYBをヨーレート反力制御の補正電流値ΔIY *として、加算部41,47(図2参照)に出力する。
(スプリットμ制御部)
次に、スプリットμ制御部36について説明する。図7は、図2におけるスプリットμ制御部の詳細な機能ブロック構成図である。
スプリットμ制御部36は、路面左右μ差算出部91、スプリットμ補正電流算出部92、ゲイン補正値算出部93、乗算部94を含んで構成されている。
路面左右μ差算出部91は、例えば、VSA制御部22(図1参照)から入力された制動操作時の、例えば、前側左右の車輪のブレーキ油圧PBL,PBR(図7では、単に、「左車輪ブレーキ油圧PBL」、「右車輪ブレーキ油圧PBR」と表示)を路面μ差情報として取得する。前記したようにVSA制御部22は、油圧回路である制動ユニット5から各車輪3のブレーキ装置4へのブレーキ油圧を制御するときにブレーキ油圧を検出しているので、左右の車輪の路面μに差があるとき、VSA制御部22におけるABS機能の動作によりブレーキ油圧PBL,PBRに差が生じ、それを路面μ差情報として用いることができる。路面左右μ差算出部91は、ブレーキ油圧PBL,PBRの差分を算出して、スプリットμ補正電流算出部92に出力する。
スプリットμ補正電流算出部92は、ブレーキ左右油圧差ΔPをパラメータとした一次元マップを用いて、スプリットμ制御の補正電流値ΔISμを算出する。補正電流値ΔISμは、図7に示すようにブレーキ左右油圧差ΔPが絶対値の所定の閾値範囲内ではゼロであり、絶対値の所定の閾値範囲を超えたときブレーキ左右油圧差ΔPに応じて徐々に増加して、所定値で飽和するように算出される。そして、スプリットμ補正電流算出部92は、ブレーキ油圧PBL,PBRの大きい方向に車体のモーメントが発生するのを打ち消す方向に対応する操舵力を操舵系に付加する方向のスプリットμ制御の補正電流値ΔISμの符号の補正電流を乗算部94に出力する。
ゲイン補正値算出部93は、車速VSをパラメータとした一次元マップを用いて、ゲインGSμを算出する。ゲインGSμは、図7に示すように車速VSの値の増加に応じてゼロから徐々に増加し、車速VSの所定値以上で一定値に飽和する。ゲイン補正値算出部93から出力されたゲインGSμは乗算部94に出力され、スプリットμ補正電流算出部92から出力された補正電流値ΔISμに乗じられ、その結果は加算部41,47(図2参照)に出力される。
ちなみに、図7においては、スプリットμ補正電流算出部92のマップはブレーキ左右油圧差ΔPの絶対値で表示してある。
なお、本実施形態のスプリットμ制御部36は、路面μ差情報としてVSA制御部22を介して、前側左右の車輪3,3のブレーキ装置4,4のブレーキ油圧PBL,PBRを用いることとしたがそれに限定されるものではない。路面μ差情報としてVSA制御部22から前側左右の車輪3,3のスリップ率を取得して用いても良い。
(外乱抑制制御部)
次に、外乱抑制制御部37について説明する。図8は、図2における外乱抑制制御部の詳細な機能ブロック構成図である。
外乱抑制制御部37は、方向判別部101,102、ハンドル取られ判定部103、変動トルク算出部104、電流変換部105(図8中、「ゲイン」と表示)、前後G係数算出部106、乗算部107、スイッチ部108を含んで構成されている。
方向判別部101は、ハンドル操作角θHを時間微分して、ハンドル操作角θHの変化方向を判別し、判別結果をハンドル取られ判定部103へ出力する。方向判別部102は、操舵トルクTSを時間微分して、操舵トルクTSの変化方向を判別し、判別結果をハンドル取られ判定部103へ出力する。
ハンドル取られ判定部103は、方向判別部101,102から入力されたハンドル操作角θHの変化方向と操舵トルクTSの変化方向とが同じか否かを判定し、その判定結果に応じてハンドル取られの外乱抑制制御をオン/オフするスイッチ部108を制御する。
詳述すると、ハンドル取られ判定部103は、ハンドル操作角θHの変化方向と操舵トルクTSの変化方向とが異なると判定した場合には、ハンドル取られ状態と推定して、スイッチ部108をオンとし、ハンドル操作角θHの変化方向と操舵トルクTSの変化方向とが同じと判定した場合は、ハンドル取られ状態ではないと推定して、スイッチ部108をオフとする。
変動トルク算出部104は、操舵トルクTSの信号に対してハイパスフィルタ処理を行うことにより、操舵トルクTSの信号の低周波成分をカットし、高周波成分のみを電流変換部105へ出力する。この操舵トルクTSの高周波成分は、外乱入力によって生じたトルク変化ということができる。そして、操舵トルクTSの高周波成分におけるピーク・ツー・ピークの振幅(以下、「トルク変動」と称する)を取得し、電流変換部105に出力する。
電流変換部105は、変動トルク算出部104から入力されたトルク変動に所定のゲインを乗じ、トルク変動の逆方向の符号の外乱抑制制御の補正電流値ΔIDisに変換し、乗算部107に出力する。
前後G係数算出部106は、前後加速度AFR(図8中、前後G_AFRと表示)の一次元マップを用いて、補正係数αを算出し、乗算部107に出力する。補正係数αを算出するマップは、例えば、前後加速度AFRが−1G以下では、1よりも大きい第1の所定値の補正係数αを示し、前後加速度AFRが−1Gから−0.75Gの間では、補正係数αは第1の所定値からα=1の第2の所定値まで直線的に減少し、前後加速度AFRが−0.75Gから+0.25Gまでの間では、補正係数α=1となり、前後加速度AFRが+0.25Gから+0.5Gの間では、補正係数αはα=1の第2の所定値から第1の所定値からまで直線的に増大し、前後加速度AFRが+0.5G以上では、補正係数αは第1の所定値を保つ。
ちなみに、前記した、例えば、「−1G」は重力加速度を単位とした車両の減速状態の加速度を意味し、例えば、「+0.5G」は重力加速度を単位とした車両の加速状態の加速度を意味する。
乗算部107は、電流変換部105から入力された補正電流値ΔIDisに、前後G係数算出部106から出力された補正係数αを乗じてその結果をスイッチ部108に出力する。スイッチ部108がオンの場合、乗算部107で補正された補正電流値ΔIDisが加算部42に補正電流値ΔIDis *として出力される。スイッチ部108がオフの場合は、乗算部107で補正された補正電流値ΔIDisは、加算部42に出力されない。
(車体流れ制御部)
次に、車体流れ制御部38について説明する。図9は、図2における車体流れ制御部の詳細な機能ブロック構成図である。
車体流れ制御部38は、車体流れ判定部111、車体流れ補正電流算出部112、スイッチ部113、ゲイン補正値算出部114、乗算部115、フェード・イン・アウト処理部116を含んで構成されている。
車体流れ判定部111は、ハンドル操作角θHと操舵トルクTSとヨーレートγの信号にもとづき、車体流れ阻止操舵状態にあるか否かを判定する。本実施形態では、次の(1)〜(3)の3つの条件を同時に満足する状態が一定時間継続した場合に、車体流れ判定部111は車体流れ阻止操舵状態にあると判定する。
(1)ヨーレートγがゼロ近傍で安定している。
(2)操舵トルクTSが中立点から左右一方向に所定値以上の操舵トルクTSを示している。
(3)ハンドル操作角θHが中立点から左右一方向に所定値以上のハンドル操作角θHを示している。
つまり、車体流れ判定部111は、車両1(図1参照)にヨーレートγが殆ど発生していないのに、運転者が操向ハンドル6を一定の方向に回転させ、かつ、所定値以上の操舵トルクTSを加え続ける状態が一定時間継続したときに、車体流れに抗して車両を直進させる操舵を運転者が行っている状態(すなわち、車体流れ阻止操舵状態)であると判定する。
換言すると、前記(1)〜(3)の3つの条件を満たしても、一定時間継続しないときや、前記(1)〜(3)の条件のいずれか1つでも満たしていないときには、車体流れ判定部111は車体流れ阻止操舵状態でないと判定する。本実施形態では上記(1)〜(3)の3条件と継続性を課すことによって、車体流れ阻止操舵状態の判定の正確性を期している。ただし、簡易的な方法として、前記(2)と(3)のいずれか一方と(1)の条件とを同時に満足する状態が一定時間継続した場合に車体流れ阻止操舵状態であると判定することも可能である。
車体流れ補正電流算出部112は、ハンドル操作角θHの絶対値にもとづき、ハンドル操作角θHをパラメータとした一次元マップを用いて、ハンドル操作角θHの絶対値に応じた車体流れ抑制の補正電流値ΔICantを算出して、運転者がハンドル操作角θHを維持する保舵力を軽減する方向の符号を付してスイッチ部113に出力する。このとき、補正電流値ΔICantは、ハンドル操作角θHの絶対値が所定の閾値範囲0.0〜θ1ではゼロであり、ハンドル操作角θHの絶対値がθ1〜θ2では直線的に増加し、ハンドル操作角θHの絶対値がθ2以上では所定値に飽和する。
スイッチ部113は、車体流れ判定部111が車体流れ阻止操舵状態であると判定した場合にオンされ、補正電流値ΔICantを乗算部115に出力し、車体流れ阻止操舵状態でないと判定した場合にオフされ、補正電流値ΔICantを乗算部115に出力しない。つまり、補正電流値ΔICantとしてゼロを乗算部115に出力する。
ゲイン補正値算出部114は、車速VSにもとづき、車速VSをパラメータにした一次元マップを用いて、車速VSに応じたゲインGCantを算出する。ゲインGCantは、図9に示すように車速VSが0.0から閾値V1まではゼロであり、車速VSが閾値V1〜所定値V2の区間では直線的に第1の所定値まで増大し、車速VSが所定値V2〜V3の区間では前記第1の所定値を保ち、車速VSが所定値V3〜V4の区間では前記第1の所定値から第2の所定値まで減少し、車速VSが所定値V4以上では前記第2の所定値を保つ。
乗算部115は、スイッチ部113から入力される補正電流値ΔICantにゲイン補正値算出部114から入力されたゲインGCantを乗じて、その結果をフェード・イン・アウト処理部116に出力する。フェード・イン・アウト処理部116は、乗算部115で補正された補正電流値ΔICantの値がゼロから±の有意の値に変化したとき、所定時間をかけて徐々に補正電流値ΔICantに移行するように処理し、車体流れ抑制制御の補正電流値ΔICant *として、加算部42に出力する。また、フェード・イン・アウト処理部116は、乗算部115で補正された補正電流値ΔICantの値が±の有意の値からゼロに変化したとき、所定時間をかけて徐々に補正電流値ΔICantの値をゼロに移行するように処理し、車体流れ抑制制御の補正電流値ΔICant *として、加算部42に出力する。
フェード・イン・アウト処理部116により徐々に補正電流値ΔICant *値を移行させるのは、瞬時に車体流れ抑制制御の補正電流値ΔICant *をゼロから所定値、または、所定値からゼロに切り換えると、運転者に与える操舵感覚が悪化するからである。
なお、車体流れ補正電流算出部112において、ハンドル操作角θHに応じた一次元マップを用いた補正電流値ΔICantとしたが、それに限定されることは無く、操舵トルクTSをゼロにするように補正電流値ΔICantを算出するようにしても良い。
本実施形態によれば、車両挙動の安定性を向上するようにEPSモータ7をアクティブ制御する補正電流値を発生させるアンダステア制御部33、オーバステア制御部34、ヨーレート反力制御部35、スプリットμ制御部36からの各補正電流値ΔIUS *,ΔIOS *,ΔIY *,ΔISμ*が加算部41で加算されて、第1総和補正電流値ΔIt1が算出され、ΔIt1の絶対値の大きさに応じて第2総和ゲイン補正値算出部43においてゲインGt2が算出される。このとき第1総和補正電流値ΔIt1の絶対値が所定の第1の閾値を超えると、ゲインGt2を急速に低減して、所定の第2の閾値を超えるとゲインGt2をゼロとするので、外乱抑制制御、車体流れ抑制制御等の運転者の負担軽減のアクティブ制御と、前記した第1総和補正電流値ΔIt1に係る車両挙動の安定性を向上するアクティブ制御とが干渉しあうことを防止できる。その結果、運転者の操舵感覚に違和感を与えることを防止できる。そして、車両挙動の安定性の向上を優先した電動パワーステアリング装置9のアクティブ制御を行うことができる。
本発明に係る実施形態の電動パワーステアリング装置を適用した車両の全体概念図である。 EPS制御部の制御機能ブロック構成図である。 図2におけるハンドル戻し制御部の詳細な機能ブロック構成図である。 図2におけるアンダステア制御部の詳細な機能ブロック構成図である。 図2におけるオーバステア制御部の詳細な機能ブロック構成図である。 図2におけるヨーレート反力制御部の詳細な機能ブロック構成図である。 図2におけるスプリットμ制御部の詳細な機能ブロック構成図である。 図2における外乱抑制制御部の詳細な機能ブロック構成図である。 図2における車体流れ制御部の詳細な機能ブロック構成図である。
符号の説明
1 車両
3 車輪
4 ブレーキ装置
5 制動ユニット
6 操向ハンドル
7 EPSモータ(モータ)
8 ラック軸
9 電動パワーステアリング装置
11 エンジンECU
15 ECU(制御手段)
22 VSA制御部
23 EPS制御部
25 モータ駆動回路
31 ベース電流算出部
32 ハンドル戻し制御部(ハンドル戻し制御手段、第1制御部)
33 アンダステア制御部(アンダステア制御手段、第1制御部)
34 オーバステア制御部(オーバステア制御手段、第1制御部)
34a オーバステア状態量算出部
35 ヨーレート反力制御部(第1制御部)
36 スプリットμ制御部(スプリットμ制御手段、第1制御部)
37 外乱抑制制御部(外乱抑制制御手段、第2制御部)
38 車体流れ制御部(車体流れ制御手段、第2制御部)
39 高値選択部
41,42,47,48 加算部
43 第2総和ゲイン補正値算出部
45,55,56,57,65,76,85,86,94,107,115 乗算部
51 ハンドル戻し補正電流算出部
52,53,54、64,77,82,84,93,114 ゲイン補正値算出部
58 切り戻し判別ゲイン切替部
61 規範ヨーレート算出部
62,74 減算部
63 アンダステア補正電流算出部
66 アンダステア修正判別ゲイン切替部
71 要求ヨーレート算出部
72 規範ヨーレート限界値算出部
73 規範ヨーレート決定部
75 オーバステア補正電流算出部
81,83 ヨーレート反力補正電流算出部
87 往き戻り判定部
91 差算出部
92 スプリットμ補正電流算出部
101,102 方向判別部
103 ハンドル取られ判定部
104 変動トルク算出部
105 電流変換部
106 前後G係数算出部
108,113 スイッチ部
111 車体流れ判定部
112 車体流れ補正電流算出部
116 フェード・イン・アウト処理部
E エンジン
AM モータ回転角センサ
AH ハンドル操作角センサ
GFR 前後Gセンサ
GS 横Gセンサ
T 操舵トルクセンサ(操舵トルク検出手段)
WV 車輪速センサ
Y ヨーレートセンサ
TM トランスミッション

Claims (2)

  1. 転舵輪に舵角を与える操舵系に操舵補助力を付加するモータと、操向ハンドルの操舵トルクを検出する操舵トルク検出手段と、少なくとも前記操舵トルク検出手段の出力にもとづいて操舵補助力を前記モータに発生させるための制御手段とを備える電動パワーステアリング装置であって、
    前記制御手段は、
    車両のアンダステア状態を抑制すべく前記モータを制御するアンダステア制御手段、車両のオーバステア状態を抑制すべく前記モータを制御するオーバステア制御手段、及び左右の車輪の接する路面の摩擦係数が異なる路面において、制動したときの車両挙動を抑制すべく前記モータを制御するスプリットμ制御手段のうちの少なくとも1つを含んで構成される第1制御部と、
    前記転舵輪への外乱が入力されたときの前記操向ハンドルの取られを抑制すべく前記モータを制御する外乱抑制制御手段、及びカント路の走行における車体流れを抑制すべく前記モータを制御する車体流れ制御手段のうちの少なくとも1つを含んで構成される第2制御部と、を有し、
    前記第1制御部が作動して前記モータを制御している場合には、前記第2制御部が前記モータを制御する出力のゲインを低下させることを特徴とする電動パワーステアリング装置。
  2. 前記第1制御部は、前記アンダステア制御手段と、前記操向ハンドルを中立位置へ戻すように前記モータを制御するハンドル戻し制御手段と、を少なくとも含んで構成され、
    該ハンドル戻し制御手段が出力するハンドル戻し制御量と、前記アンダステア制御手段が出力するアンダステア制御量の値の切り込み方向に大きい方の制御量を選択して前記モータを制御することを特徴とする請求項1に記載の電動パワーステアリング装置。
JP2008313837A 2008-12-10 2008-12-10 電動パワーステアリング装置 Expired - Fee Related JP5123835B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313837A JP5123835B2 (ja) 2008-12-10 2008-12-10 電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313837A JP5123835B2 (ja) 2008-12-10 2008-12-10 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2010137621A JP2010137621A (ja) 2010-06-24
JP5123835B2 true JP5123835B2 (ja) 2013-01-23

Family

ID=42348143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313837A Expired - Fee Related JP5123835B2 (ja) 2008-12-10 2008-12-10 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP5123835B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440630B2 (ja) * 2011-04-25 2014-03-12 三菱自動車工業株式会社 車両統合制御装置
EP2703253B1 (en) * 2011-04-27 2015-09-30 Honda Motor Co., Ltd. Vehicle steering device
KR101316160B1 (ko) * 2011-11-16 2013-10-08 현대자동차주식회사 스플리트 노면에서의 abs 감속 제어 방법 및 그 시스템
JP6220687B2 (ja) * 2014-02-04 2017-10-25 Kyb株式会社 電動パワーステアリング装置
DE112015001321T5 (de) 2014-03-19 2016-12-15 Hitachi Automotive Systems, Ltd. Elektrische Servolenkungsvorrichtung und Steuervorrichtung für eine elektrische Servolenkungsvorrichtung
JP6143802B2 (ja) 2015-02-02 2017-06-07 本田技研工業株式会社 車両走行制御装置
JP6554006B2 (ja) * 2015-09-28 2019-07-31 本田技研工業株式会社 車両用操舵装置
KR102262132B1 (ko) * 2017-03-27 2021-06-10 현대자동차주식회사 차량용 조향 제어방법
JP6754466B2 (ja) * 2019-05-13 2020-09-09 本田技研工業株式会社 車両用操舵装置
JP7255388B2 (ja) * 2019-06-25 2023-04-11 株式会社アドヴィックス 制動制御装置
CN114771643B (zh) * 2022-04-11 2024-06-04 中国第一汽车股份有限公司 在车辆转向助力不足时利用电控制动***进行转向的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914224B2 (ja) * 2004-09-24 2007-05-16 三菱電機株式会社 車両用操舵装置
JP4419997B2 (ja) * 2006-08-28 2010-02-24 トヨタ自動車株式会社 電動パワーステアリング装置
JP5279182B2 (ja) * 2006-10-31 2013-09-04 株式会社アドヴィックス 車両の制御装置
JP4924068B2 (ja) * 2007-02-01 2012-04-25 トヨタ自動車株式会社 操舵支援装置

Also Published As

Publication number Publication date
JP2010137621A (ja) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5123835B2 (ja) 電動パワーステアリング装置
US8494721B2 (en) Vehicle integrated control apparatus
JP5431745B2 (ja) 車両の運動制御装置
JP2004082862A (ja) 電動式パワーステアリング装置
JP2007331570A (ja) 電動ステアリング制御装置
JP2008307910A (ja) 電動パワーステアリング装置の制御装置
JP2006231947A (ja) 反力装置の制御方法
JP4404693B2 (ja) 車両用操舵装置
WO2009131116A1 (ja) 車体流れ抑制装置
JP2007168641A (ja) 可変舵角操舵装置及びその方法、並びにその可変舵角操舵装置を搭載した自動車
JP5194430B2 (ja) 車両の4輪操舵制御装置
JP5034725B2 (ja) 電動パワーステアリング装置の制御装置
JP2009090842A (ja) 車両用制御装置
JP2008037132A (ja) 電動パワーステアリング装置
JP5272570B2 (ja) 舵角制御装置及び舵角制御方法
JP4601650B2 (ja) 車両挙動状態推定装置
JP6868173B2 (ja) 車両制御装置、車両制御方法および電動パワーステアリング装置
JP5167086B2 (ja) 電動パワーステアリング装置
JP2005001481A (ja) 電動パワーステアリング装置
JP5194429B2 (ja) 車両の4輪操舵制御装置
JP4675655B2 (ja) 反力装置の制御方法
JP4909937B2 (ja) 電動パワーステアリング装置
JP4630039B2 (ja) 車両の操舵制御装置
US20100138111A1 (en) Acceleration computing apparatus and electric power steering apparatus
JP4062754B2 (ja) 車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees