JP5112973B2 - Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same - Google Patents

Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same Download PDF

Info

Publication number
JP5112973B2
JP5112973B2 JP2008170773A JP2008170773A JP5112973B2 JP 5112973 B2 JP5112973 B2 JP 5112973B2 JP 2008170773 A JP2008170773 A JP 2008170773A JP 2008170773 A JP2008170773 A JP 2008170773A JP 5112973 B2 JP5112973 B2 JP 5112973B2
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
carbon
precursor acrylic
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008170773A
Other languages
Japanese (ja)
Other versions
JP2010007216A (en
Inventor
宏実 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2008170773A priority Critical patent/JP5112973B2/en
Publication of JP2010007216A publication Critical patent/JP2010007216A/en
Application granted granted Critical
Publication of JP5112973B2 publication Critical patent/JP5112973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭素繊維前駆体アクリル系繊維用油剤組成物、並びに該炭素繊維前駆体アクリル系繊維用油剤組成物を用いて得られた炭素繊維前駆体アクリル系繊維束及びその製造方法に関する。   The present invention relates to a carbon fiber precursor acrylic fiber oil composition, a carbon fiber precursor acrylic fiber bundle obtained by using the carbon fiber precursor acrylic fiber oil composition, and a method for producing the same.

従来、炭素繊維束の製造方法として、炭素繊維前駆体製造工程で得られたアクリル系繊維などからなる炭素繊維前駆体繊維束(以下、「前駆体繊維束」と呼ぶことがある。)を、焼成工程にて200〜400℃の酸素存在雰囲気下で加熱して耐炎化繊維束に転換させ(耐炎化処理)、その後1000℃以上の不活性雰囲気下で炭素化させる(炭素化処理)方法が知られている。
この方法で得られた炭素繊維束は、優れた機械的物性を有していることから、特に複合材料の強化繊維として工業的に広く用いられている。
Conventionally, as a method for producing a carbon fiber bundle, a carbon fiber precursor fiber bundle (hereinafter sometimes referred to as a “precursor fiber bundle”) made of acrylic fiber or the like obtained in a carbon fiber precursor production process is used. There is a method of heating in a 200-400 ° C. oxygen-existing atmosphere to convert to a flame-resistant fiber bundle (flame-proofing treatment) and then carbonizing in an inert atmosphere at 1000 ° C. or higher (carbonization treatment). Are known.
Since the carbon fiber bundle obtained by this method has excellent mechanical properties, it is widely used industrially particularly as a reinforcing fiber for composite materials.

近年、炭素繊維の需要は増加傾向にあり、その用途拡大が見込まれている。そこで、炭素繊維のコストダウンと生産能力の大幅増を行う必要がある。そのためには、炭素繊維束の前駆体繊維束を構成する単繊維数を増加させて前駆体繊維束の総繊度を大きくし、設備あたりの生産性を向上させることが最も有効である。   In recent years, the demand for carbon fiber has been increasing, and its application is expected to expand. Therefore, it is necessary to reduce the cost of carbon fiber and greatly increase the production capacity. For that purpose, it is most effective to increase the total fineness of the precursor fiber bundle by increasing the number of single fibers constituting the precursor fiber bundle of the carbon fiber bundle and to improve the productivity per equipment.

ところで、通常の炭素繊維束の製造方法では、紡糸原液を凝固浴に導いて凝固糸とし、その後乾燥・緻密化するなどして前駆体繊維束を得る際に、繊維束を複数のロールを用いて搬送することにより、繊維束をガイドしたり延伸したりする。しかし、このとき前駆体繊維束の総繊度を大きくしようとすると、現行の設備では、特にロール上で隣接錘間の前駆体繊維束が接触し易くなる傾向にある。従って、前駆体繊維束同士の干渉・混繊が発生し、その単繊維に損傷、糸切れ、毛羽及び接着などが生じる。また、乾燥・緻密化後の前駆体繊維束は延伸処理を施すことがあり、延伸処理時の延伸斑によって、炭素繊維束に繊度斑が生じ品質が低下する傾向にある。
更に、以上のようにして得られた前駆体繊維束の単繊維の損傷や毛羽を発端として、続く耐炎化処理時に、搬送用ロールに前駆体繊維束が巻きつくなどのトラブルが発生してしまう。
By the way, in the usual method for producing a carbon fiber bundle, a plurality of rolls are used for the fiber bundle when the precursor fiber bundle is obtained by introducing the spinning solution into a coagulation bath to obtain a coagulated yarn, and then drying and densifying the fiber bundle. The fiber bundle is guided or stretched by being conveyed. However, when trying to increase the total fineness of the precursor fiber bundle at this time, the current equipment tends to make the precursor fiber bundle between adjacent weights more likely to come into contact with each other on the roll. Accordingly, interference / mixing between the precursor fiber bundles occurs, and damage, yarn breakage, fluff, adhesion, and the like occur in the single fiber. Further, the precursor fiber bundle after drying and densification may be subjected to stretching treatment, and the fineness unevenness is generated in the carbon fiber bundle due to the stretch spots during the stretching treatment, and the quality tends to be lowered.
Furthermore, troubles such as wrapping of the precursor fiber bundle around the transport roll may occur during the subsequent flame resistance treatment, starting from single fiber damage or fuzz of the precursor fiber bundle obtained as described above. .

これらの諸問題を回避するために、各ロール幅を長尺化し、隣接錘間の前駆体繊維束の間隔を広くする方法が考えられる。しかしながら、この方法では、駆動部まで含めた大掛かりな設備改造が必要な他、生産初期に行う前駆体繊維束の導糸作業やトラブル発生時の対応が困難になるなどの問題が発生すると予測される。
従って、現行の設備条件で、上記諸問題を解決することが望まれる。
In order to avoid these various problems, a method of increasing the width of each roll and widening the interval between the precursor fiber bundles between adjacent weights can be considered. However, with this method, it is expected that problems such as the need for extensive equipment modification including the drive unit and the difficulty in handling the precursor fiber bundle performed in the initial stage of production and the handling of troubles will occur. The
Therefore, it is desired to solve the above problems under the current equipment conditions.

現行の設備条件で、前駆体繊維束同士の干渉・混繊を回避するためには、前駆体繊維束の集束性を向上させ、ロール上における前駆体繊維束の幅を小さくすることが最も有効な手段であると考えられる。   In order to avoid interference / mixing between the precursor fiber bundles under the current equipment conditions, it is most effective to improve the convergence of the precursor fiber bundles and reduce the width of the precursor fiber bundles on the roll. It is considered to be a safe means.

そこで、特許文献1では、前駆体繊維束を搬送する際に溝付きのロールを用いて強制的に前駆体繊維束を集束させる方法、気体を繊維束に流通させることにより交絡処理をする方法が提示されている。
しかしながら、総繊度が大きい前駆体繊維束の幅を溝付きのロールを用いて制御した場合、繊維束割れ、及び繊維束端部の単糸切れが発生し、気体を繊維束に流通させる交絡処理では斜行単糸が発生するなどして、前駆体繊維束の形態が悪化するという問題がある。また、溝付きロールは通常のロールと比して、接触時の圧着によるダメージを与えやすく、前駆体繊維束中の単繊維同士が接着しやすいなどの問題もある。
Therefore, in Patent Document 1, there is a method for forcibly concentrating the precursor fiber bundle using a grooved roll when conveying the precursor fiber bundle, and a method for performing an entanglement process by circulating a gas through the fiber bundle. Presented.
However, when the width of the precursor fiber bundle having a large total fineness is controlled using a roll with a groove, the fiber bundle cracking and the single yarn breakage at the end of the fiber bundle occur, and the entanglement process for circulating gas to the fiber bundle Then, there exists a problem that the form of a precursor fiber bundle deteriorates, for example by the occurrence of skew single yarn. In addition, a grooved roll is more likely to be damaged by pressure bonding at the time of contact than a normal roll, and there is a problem that single fibers in a precursor fiber bundle are likely to be bonded to each other.

そこで、特許文献2及び3では、通常のロールを用いて前駆体繊維束を集束させる方法として、炭素繊維前駆体製造工程で、その繊維表面にアミノ変性シリコーンを含有する油剤を付与することで、前駆体繊維束の集束性を向上させる方法が提示されている。
しかしながら、アミノ変性シリコーンを付与した場合、耐炎化処理時にアミノ変性シリコーンが飛散、分解してしまうため、集束効果が維持できない問題があり、耐炎化処理後の集束性が十分ではなかった。
Therefore, in Patent Documents 2 and 3, as a method of focusing the precursor fiber bundle using a normal roll, in the carbon fiber precursor manufacturing process, by applying an oil containing amino-modified silicone to the fiber surface, Methods have been proposed to improve the convergence of the precursor fiber bundle.
However, when amino-modified silicone is applied, the amino-modified silicone is scattered and decomposed during the flameproofing treatment, so that there is a problem that the focusing effect cannot be maintained, and the focusing property after the flameproofing treatment is not sufficient.

ところで特許文献4には、油剤にラウリルアルコールエチレンオキサイド付加物または高級脂肪酸ラウリルアルコールエチレンオキサイド付加物を含有させて、帯電防止効果を付与できることが記載されている。
しかしながら、帯電防止効果を有するウリルアルコールエチレンオキサイド付加物は界面活性作用を有しており、油剤処理槽が泡立ちやすい。特に、前駆体繊維束の総繊度を大きくした場合、油剤処理槽の泡立ちがより大きくなる傾向にあり、泡によって油剤の付与が阻害され、油剤処理を充分に行うことができないという問題がある
特開平9−273032号公報 特開2000−199183号公報 特開2004−131876号公報 特公平7−49607号公報
By the way, Patent Document 4 describes that an antistatic effect can be imparted by adding lauryl alcohol ethylene oxide adduct or higher fatty acid lauryl alcohol ethylene oxide adduct to an oil agent.
However, the uryl alcohol ethylene oxide adduct having an antistatic effect has a surface active action, and the oil agent treatment tank tends to foam. In particular, when the total fineness of the precursor fiber bundle is increased, foaming of the oil treatment tank tends to be larger, and there is a problem that the application of the oil is inhibited by the foam and the oil treatment cannot be performed sufficiently.
Japanese Patent Laid-Open No. 9-273032 JP 2000-199183 A JP 2004-131876 A Japanese Examined Patent Publication No. 7-49607

本発明は、上記事情を鑑みてなされたもので、帯電防止効果を付与しながらも油剤処理を阻害することがなく、現行の設備条件において炭素繊維前駆体アクリル系繊維束の集束性を向上し、その繊維束幅を小さくすることが可能な炭素繊維前駆体アクリル系繊維用油剤組成物と、該油剤組成物を用いて得られる炭素繊維前駆体アクリル系繊維束及びその製造方法を目的とする。   The present invention has been made in view of the above circumstances, and does not hinder oil treatment while imparting an antistatic effect, and improves the convergence of the carbon fiber precursor acrylic fiber bundle under the current equipment conditions. An object of the present invention is to provide an oil agent composition for a carbon fiber precursor acrylic fiber capable of reducing the fiber bundle width, a carbon fiber precursor acrylic fiber bundle obtained by using the oil agent composition, and a method for producing the same. .

本発明者らが鋭意検討した結果、導電性を有する炭素系微粒子を炭素繊維前駆体アクリル繊維用油剤組成物に用いることにより、これを用いた炭素繊維前駆体アクリル系繊維束の品質と生産性を向上させることが可能であることを見出した。   As a result of intensive studies by the present inventors, by using carbon-based fine particles having conductivity in an oil agent composition for a carbon fiber precursor acrylic fiber, the quality and productivity of the carbon fiber precursor acrylic fiber bundle using the carbon fiber precursor acrylic fiber bundle It was found that it is possible to improve.

即ち、本発明の炭素繊維前駆体アクリル系繊維用油剤組成物は、導電性を有する炭素系微粒子を含有することを特徴とする。
なお、前記炭素系微粒子がカーボンブラックであることが好ましい。
That is, the carbon fiber precursor acrylic fiber oil composition of the present invention is characterized by containing conductive carbon fine particles.
The carbon-based fine particles are preferably carbon black.

本発明の炭素繊維前駆体アクリル系繊維用油剤組成物は、シリコーンを含有することが好ましい。
なお、前記シリコーンがアミノ変性シリコーンであることが好ましい。
The carbon fiber precursor acrylic fiber oil composition of the present invention preferably contains silicone.
The silicone is preferably an amino-modified silicone.

本発明の炭素繊維前駆体アクリル系繊維用油剤組成物は、炭素系微粒子を5〜30質量%、アミノ変性シリコーンを20〜60質量%含有することが好ましい。
また、本発明の炭素繊維前駆体アクリル系繊維用油剤組成物は、ノニオン系乳化剤を10〜50質量%含有することが好ましい。
また、前記ノニオン系乳化剤は、プロピレンオキサイド単位とエチレンオキサイド単位からなる共重合型ポリエーテルであることが好ましい。
The carbon fiber precursor acrylic fiber oil composition of the present invention preferably contains 5 to 30% by mass of carbon-based fine particles and 20 to 60% by mass of amino-modified silicone.
Moreover, it is preferable that the carbon fiber precursor acrylic-based oil agent composition of the present invention contains 10 to 50% by mass of a nonionic emulsifier.
Moreover, it is preferable that the said nonionic emulsifier is a copolymerization type polyether which consists of a propylene oxide unit and an ethylene oxide unit.

本発明の炭素繊維前駆体アクリル系繊維束は、前記炭素繊維前駆体アクリル系繊維用油剤組成物が、乾燥質量に対して0.5〜2質量%付着しているものであると好ましい。   The carbon fiber precursor acrylic fiber bundle of the present invention is preferably such that the carbon fiber precursor acrylic fiber oil composition is attached in an amount of 0.5 to 2 mass% with respect to the dry mass.

本発明の炭素繊維前駆体アクリル系繊維束の製造方法は、前記炭素繊維前駆体アクリル系繊維用油剤組成物を水中に分散させて平均粒子径0.05〜5μmのミセルを形成させた水系分散液を、水膨潤状態の炭素繊維前駆体アクリル系繊維束に付与させる油剤処理と、水系分散液を付与した炭素繊維前駆体アクリル系繊維束を乾燥緻密化する乾燥緻密化処理を有することを特徴とする。   The method for producing a carbon fiber precursor acrylic fiber bundle of the present invention is a water dispersion in which the oil agent composition for carbon fiber precursor acrylic fiber is dispersed in water to form micelles having an average particle size of 0.05 to 5 μm. An oil agent treatment for imparting a liquid to a water-swelled carbon fiber precursor acrylic fiber bundle, and a dry densification treatment for drying and densifying the carbon fiber precursor acrylic fiber bundle provided with an aqueous dispersion And

本発明の炭素繊維前駆体アクリル系繊維用油剤組成物によれば、帯電防止効果を付与しながらも油剤処理を阻害することがなく、現行の設備条件において炭素繊維前駆体アクリル系繊維束の集束性を向上し、その繊維束幅を小さくすることができる。
また、本発明の炭素繊維前駆体アクリル系繊維束は、総繊度を大きくすることができ、炭素繊維の生産性のよいものである。
更に、炭素繊維前駆体アクリル系繊維束の製造方法によれば、製造過程が阻害されにくいため、品質を保持しながら生産性を上げることが可能である。
According to the oil agent composition for carbon fiber precursor acrylic fiber of the present invention, it is possible to focus the carbon fiber precursor acrylic fiber bundle under the current equipment conditions without impairing the oil agent treatment while providing an antistatic effect. The fiber bundle width can be reduced.
In addition, the carbon fiber precursor acrylic fiber bundle of the present invention can increase the total fineness, and has good carbon fiber productivity.
Furthermore, according to the method for producing the carbon fiber precursor acrylic fiber bundle, the production process is hardly hindered, so that the productivity can be increased while maintaining the quality.

[炭素繊維前駆体アクリル系繊維用油剤組成物]
(炭素系微粒子)
本発明の炭素繊維前駆体アクリル系繊維用油剤組成物(以下、「油剤組成物」という。)は、導電性を有する炭素系微粒子を含有することを特徴とする。
導電性を有する炭素系微粒子は、炭素質物質よりなる微粒子であれば特に制限は無く、例えばカーボンブラック(アセチレンブラック、ファーネスブラック、チャネルブラック及びサーマルブラックなど)、カーボンナノチューブ、フラーレン、カーボンナノホーン、カーボンナノワイヤー、カーボンナノコイル、天然黒鉛(鱗状黒鉛、鱗片状黒鉛及び土状黒鉛など)、人工黒鉛、活性炭粉末、無煙炭粉末などが挙げられる。
中でも導電性と分散性が良好なことからカーボンブラック、カーボンナノチューブ、活性炭粉末が好ましく、特にカーボンブラックが好ましい。
[Carbon Fiber Precursor Acrylic Fiber Oil Composition]
(Carbon-based fine particles)
The carbon fiber precursor acrylic oil composition (hereinafter referred to as “oil composition”) of the present invention contains carbon-based fine particles having conductivity.
The conductive carbon-based fine particles are not particularly limited as long as they are fine particles made of a carbonaceous material. For example, carbon black (acetylene black, furnace black, channel black, thermal black, etc.), carbon nanotube, fullerene, carbon nanohorn, carbon Examples thereof include nanowires, carbon nanocoils, natural graphite (such as scale-like graphite, scale-like graphite, and earth-like graphite), artificial graphite, activated carbon powder, and anthracite powder.
Of these, carbon black, carbon nanotube, and activated carbon powder are preferable because of their good conductivity and dispersibility, and carbon black is particularly preferable.

炭素系微粒子は、平均一次粒子径が1〜1000nmのものが好ましく、10〜500nmのものがより好ましく、10〜100nmのものが更に好ましい。
炭素系微粒子は炭素繊維前駆体アクリル系繊維束(以下、「前駆体繊維束」という。)の単繊維内部に浸透しない方が好ましい。しかし、炭素系微粒子の平均一次粒子径が1nm未満である場合、単繊維内部に浸透し易いため好ましくない。
また、油剤組成物を分散させた水系分散液が安定であるためには平均粒子径が細かいことが好ましい。しかし、平均粒子径が1000nmを超えると、水系分散液が不安定となる傾向にある。
The carbon-based fine particles preferably have an average primary particle diameter of 1 to 1000 nm, more preferably 10 to 500 nm, and still more preferably 10 to 100 nm.
It is preferable that the carbon-based fine particles do not penetrate into the single fiber of the carbon fiber precursor acrylic fiber bundle (hereinafter referred to as “precursor fiber bundle”). However, when the average primary particle diameter of the carbon-based fine particles is less than 1 nm, it is not preferable because it easily penetrates into the single fiber.
In order to stabilize the aqueous dispersion in which the oil agent composition is dispersed, it is preferable that the average particle diameter is small. However, when the average particle diameter exceeds 1000 nm, the aqueous dispersion tends to be unstable.

炭素系微粒子はその表面が表面処理されていることが好ましい。
表面処理方法としては特に制限はなく、酸素存在雰囲気下で昇温する気相酸化、硝酸や重クロム酸カリウム水溶液による液相酸化など既知の処理方法から適宜選択することができる。
炭素系微粒子の表面を以上のような方法で表面改質して親水化すると、本発明の油剤組成物を分散させた水系分散液の分散性及び安定性が向上する傾向にある。
The surface of the carbon-based fine particles is preferably surface-treated.
The surface treatment method is not particularly limited, and can be appropriately selected from known treatment methods such as vapor phase oxidation in which the temperature is raised in an oxygen-existing atmosphere, and liquid phase oxidation with nitric acid or a potassium dichromate aqueous solution.
When the surface of the carbon-based fine particles is surface-modified by the above-described method to make it hydrophilic, the dispersibility and stability of the aqueous dispersion in which the oil agent composition of the present invention is dispersed tend to be improved.

油剤組成物における炭素系微粒子の含量は、5〜30質量%であることが好ましく、5〜20質量%であることがより好ましく、5〜10質量%であることが更に好ましい。
炭素系微粒子の含量が5質量%以上であれば、前駆体繊維束に油剤組成物を付与した際、隣接する粒子同士が接しやすく、導電性が得やすい傾向にある。従って、前駆体繊維束および耐炎化処理後の繊維束に集束性を付与でき、各工程における繊維束幅を小さくすることができる。
一方、炭素系微粒子の含量30質量%以下であれば、本発明の油剤組成物の安定性が得られ、該油剤組成物を分散させた水系分散液の分散性を維持できる傾向にある。
The content of carbon-based fine particles in the oil composition is preferably 5 to 30% by mass, more preferably 5 to 20% by mass, and still more preferably 5 to 10% by mass.
When the content of the carbon-based fine particles is 5% by mass or more, when the oil agent composition is applied to the precursor fiber bundle, adjacent particles tend to come into contact with each other and conductivity tends to be easily obtained. Therefore, it is possible to impart convergence to the precursor fiber bundle and the fiber bundle after the flameproofing treatment, and the fiber bundle width in each step can be reduced.
On the other hand, when the content of carbon-based fine particles is 30% by mass or less, the stability of the oil composition of the present invention is obtained, and the dispersibility of the aqueous dispersion in which the oil composition is dispersed tends to be maintained.

(シリコーン)
本発明の油剤組成物は、シリコーンを含有していることが好ましい。
このシリコーンは前駆体繊維束との馴染みやすさから、アミノ変性シリコーンであることがより好ましい。
油剤組成物に用いるアミノ変性シリコーンに特に制限はなく、例えば、1級側鎖アミノ変性タイプ、1,2級側鎖アミン変性タイプ、両末端アミノ変性タイプのいずれでもよい。より熱的に安定で好ましいアミノ変性シリコーンとしては、1級側鎖アミンの構造で、25℃における動粘度が100〜1000mm/s、アミノ当量が4000〜6000g/molのものが挙げられる。
(silicone)
The oil agent composition of the present invention preferably contains silicone.
This silicone is more preferably an amino-modified silicone from the viewpoint of easy compatibility with the precursor fiber bundle.
There is no restriction | limiting in particular in the amino modification silicone used for an oil agent composition, For example, any of a primary side chain amino modification type, a 1,2 side chain amine modification type, and a both terminal amino modification type may be sufficient. A more thermally stable and preferred amino-modified silicone includes a structure having a primary side chain amine, a kinematic viscosity at 25 ° C. of 100 to 1000 mm 2 / s, and an amino equivalent of 4000 to 6000 g / mol.

油剤組成物におけるシリコーンの含量は、20〜60質量%であることが好ましく、20〜50質量%であることがより好ましく、30〜50質量%であることが更に好ましい。
また、シリコーンのうちアミノ変性シリコーンを用いた場合、特にその含量が20〜60質量%であることが好ましく、20〜50質量%であることがより好ましく、30〜50質量%であることが更に好ましい。
シリコーンを用いると、各工程においてロールで搬送される前駆体繊維束を、保護できる傾向にある。つまり、各工程においてロールで搬送される前駆体繊維束の単繊維に損傷、糸切れ、毛羽及び接着などを生じ難くすることができる。
シリコーンの含量が20質量%未満(又は、アミノ変性シリコーンの含量が20質量%未満)の場合、前駆体繊維束を保護しにくい傾向にある。
一方、シリコーンの含量が60質量%を超えると(又は、アミノ変性シリコーンの含量が60質量%を超える)、前駆体繊維束の単繊維表面の被膜が厚くなり、カーボンブラックなどが被膜内に埋まりやすくなるため、導電性を得にくい傾向にある。
The silicone content in the oil composition is preferably 20 to 60% by mass, more preferably 20 to 50% by mass, and still more preferably 30 to 50% by mass.
Moreover, when amino-modified silicone is used among silicones, the content is particularly preferably 20 to 60% by mass, more preferably 20 to 50% by mass, and further preferably 30 to 50% by mass. preferable.
When silicone is used, the precursor fiber bundle conveyed by a roll in each step tends to be protected. That is, damage, thread breakage, fluff, adhesion, and the like can be made difficult to occur in the single fiber of the precursor fiber bundle conveyed by the roll in each step.
When the silicone content is less than 20% by mass (or the amino-modified silicone content is less than 20% by mass), the precursor fiber bundle tends to be difficult to protect.
On the other hand, when the silicone content exceeds 60% by mass (or the amino-modified silicone content exceeds 60% by mass), the coating on the single fiber surface of the precursor fiber bundle becomes thick and carbon black or the like is embedded in the coating. Since it becomes easy, there exists a tendency for it to be difficult to obtain electroconductivity.

(ノニオン系乳化剤)
本発明の油剤組成物は、ノニオン系乳化剤を含有していることが好ましい。
ノニオン系乳化剤としては、例えば、高級アルコ−ルエチレンオキサイド付加物、アルキルフェノ−ルエチレンオキサイド付加物、脂肪族エチレンオキサイド付加物、多価アルコ−ル脂肪族エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪族アミドエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、エチレンオキサイド単位とプロピレンオキサイド単位からなる共重合型ポリエーテルなどエチレンオキサイド付加型ノニオン系界面活性剤や、グリセロ−ルの脂肪族エステル、ペンタエリスト−ルの脂肪族エステル、ソルビト−ルの脂肪族エステル、ソルビタンの脂肪族エステル、ショ糖の脂肪族エステル、多価アルコ−ルのアルキルエ−テル、アルカノ−ルアミン類の脂肪酸アミドなどの多価アルコ−ル系ノニオン系界面活性剤が挙げられる。
中でも、エチレンオキサイド単位とプロピレンオキサイド単位からなる共重合型ポリエーテルが、耐炎化処理において、分解・低分子化して気体となり、炉内流通ガスと共に系外へ排出されて繊維束に残存しないことから好ましい。
(Nonionic emulsifier)
The oil agent composition of the present invention preferably contains a nonionic emulsifier.
Nonionic emulsifiers include, for example, higher alcohol ethylene oxide adducts, alkylphenol ethylene oxide adducts, aliphatic ethylene oxide adducts, polyhydric alcohol aliphatic ester ethylene oxide adducts, higher alkylamine ethylenes. Oxide adducts, aliphatic amide ethylene oxide adducts, fat and oil ethylene oxide adducts, copolymerized polyethers composed of ethylene oxide units and propylene oxide units, ethylene oxide addition type nonionic surfactants, and glycerol fats Aliphatic esters, aliphatic esters of pentaerythrol, aliphatic esters of sorbitol, aliphatic esters of sorbitan, aliphatic esters of sucrose, alkyl ethers of polyhydric alcohols, fatty acids of alkanolamines Amides etc. Polyhydric alcohol - le type nonionic surface active agents.
Among these, copolymerized polyethers composed of ethylene oxide units and propylene oxide units are decomposed and reduced in molecular weight in the flameproofing treatment, and become gas, and are discharged out of the system together with the gas flowing in the furnace and do not remain in the fiber bundle. preferable.

油剤組成物におけるノニオン系乳化剤の含量は、10〜50質量%であることが好ましく、10〜30質量%であることがより好ましい。
ノニオン系乳化剤の含量が10質量%以上であれば、乳化しやすく、後に得られる水系分散液の安定性が得られやすい。一方、50質量%以下であれば、油剤組成物の水系分散液に前駆体繊維束を入れた際、油剤組成物由来の気泡が発生し難く、油剤処理をし易い傾向にある。
The content of the nonionic emulsifier in the oil composition is preferably 10 to 50% by mass, and more preferably 10 to 30% by mass.
If the content of the nonionic emulsifier is 10% by mass or more, it is easy to emulsify and the stability of the aqueous dispersion obtained later is easily obtained. On the other hand, if it is 50 mass% or less, when the precursor fiber bundle is put into the aqueous dispersion of the oil composition, bubbles derived from the oil composition are hardly generated and the oil treatment tends to be easy.

また、本発明の油剤組成物を前駆体繊維束に付着させる設備や使用環境によって、油剤処理の安定性や油剤組成物の安定性、付着特性を向上させるために、消泡剤、防腐剤、抗菌剤、浸透剤などの添加物を、本発明における油剤組成物に適宜配合することができる。   Moreover, in order to improve the stability of the oil agent treatment, the stability of the oil agent composition, and the adhesion characteristics depending on the equipment and use environment for attaching the oil agent composition of the present invention to the precursor fiber bundle, Additives such as antibacterial agents and penetrants can be appropriately blended in the oil composition of the present invention.

[炭素繊維前駆体アクリル系繊維束の製造方法]
以下、本発明の前駆体繊維束の製造方法について説明する。
<炭素繊維前駆体製造工程>
(紡糸)
本発明の前駆体繊維束には、公知技術により紡糸されたアクリル系繊維束を用いることができる。
好ましいアクリル系繊維束の例として、アクリロニトリル系重合体を紡糸して得られるアクリル繊維束が挙げられる。
[Method for producing carbon fiber precursor acrylic fiber bundle]
Hereinafter, the manufacturing method of the precursor fiber bundle of this invention is demonstrated.
<Carbon fiber precursor production process>
(spinning)
An acrylic fiber bundle spun by a known technique can be used for the precursor fiber bundle of the present invention.
An example of a preferable acrylic fiber bundle is an acrylic fiber bundle obtained by spinning an acrylonitrile polymer.

アクリロニトリル系重合体は、アクリロニトリルを主な単量体とし、これを重合して得られる重合体である。なお、アクリロニトリル系重合体は、アクリロニトリルの単独重合体だけでなく、主成分であるアクリロニトリルに加えて他の単量体も用いたアクリロニトリル系共重合体であっても差し支えない。   The acrylonitrile-based polymer is a polymer obtained by polymerizing acrylonitrile as a main monomer. The acrylonitrile-based polymer is not limited to an acrylonitrile homopolymer, but may be an acrylonitrile-based copolymer using other monomers in addition to the main component acrylonitrile.

アクリロニトリル系共重合体におけるアクリロニトリル単量体単位の含有量は、96.0〜98.5 質量%であることがより好ましい。
アクリロニトリル単量体単位が96.0質量%以上の場合、炭素繊維に転換するための、次の焼成工程で単繊維の熱融着を招きにくく、炭素繊維の優れた品質および性能を維持できるので好ましい。更にこの場合、共重合体自体の耐熱性が低くなりにくく、炭素繊維前駆体製造工程における、アクリル系繊維束の乾燥処理、あるいは加熱ローラーや加圧水蒸気による延伸処理を行う際も、単繊維間の接着を回避できる傾向にある。
一方、アクリロニトリル単量体単位が98.5質量%以下の場合には、溶剤への溶解性が低下することが紡糸原液の安定性を維持できると共に、得られる共重合体の析出凝固性が高くなりすぎず、アクリル系繊維束の安定した製造が可能となるので好ましい。
The content of the acrylonitrile monomer unit in the acrylonitrile-based copolymer is more preferably 96.0 to 98.5% by mass.
When the acrylonitrile monomer unit is 96.0% by mass or more, it is difficult to cause thermal fusion of single fibers in the next firing step for conversion to carbon fibers, and the excellent quality and performance of carbon fibers can be maintained. preferable. Furthermore, in this case, the heat resistance of the copolymer itself is not easily lowered, and when performing the drying treatment of the acrylic fiber bundle in the carbon fiber precursor production process or the drawing treatment with a heating roller or pressurized steam, There is a tendency to avoid adhesion.
On the other hand, when the acrylonitrile monomer unit is 98.5% by mass or less, the solubility in the solvent can be lowered, and the stability of the spinning dope can be maintained, and the resulting copolymer has high precipitation solidification properties. This is preferable because the acrylic fiber bundle can be stably manufactured without becoming too much.

アクリロニトリル以外の単量体としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができる。
特に、アクリル酸、メタクリル酸、イタコン酸、または、これらのアルカリ金属塩もしくはアンモニウム塩、アクリルアミド等の単量体から選択すると、耐炎化処理を促進できるので好ましく、これらは1種又は2種以上用いることができる。中でも、アクリル酸、メタクリル酸、イタコン酸等のカルボキシル基含有ビニル系単量体がより好ましい。
特に、アクリロニトリル系共重合体において、カルボキシル基含有ビニル系単量体単位が0.5〜2.0質量%含有されていることが好ましく、この範囲内であれば効率的に耐炎化処理を促進することが可能である。
As the monomer other than acrylonitrile, a vinyl monomer copolymerizable with acrylonitrile can be appropriately selected.
In particular, it is preferable to select from acrylic acid, methacrylic acid, itaconic acid, or a monomer such as an alkali metal salt or ammonium salt thereof, acrylamide, or the like because the flame resistance treatment can be promoted. be able to. Among these, carboxyl group-containing vinyl monomers such as acrylic acid, methacrylic acid, and itaconic acid are more preferable.
In particular, in the acrylonitrile copolymer, it is preferable that the carboxyl group-containing vinyl monomer unit is contained in an amount of 0.5 to 2.0% by mass. Within this range, the flameproofing treatment is efficiently promoted. Is possible.

紡糸の際には、アクリロニトリル系重合体を、溶剤に溶解し紡糸原液とする。
このときの溶剤には、ジメチルアセトアミドあるいはジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤、または塩化亜鉛やチオシアン酸ナトリウム等の無機化合物水溶液等、公知のものから適宜選択して使用することができる。中でも、生産性向上の観点から凝固速度が早いジメチルアセトアミド、ジメチルスルホキシドおよびジメチルホルムアミドが好ましく、ジメチルアセトアミドがより好ましい。
At the time of spinning, the acrylonitrile polymer is dissolved in a solvent to form a spinning dope.
The solvent used here can be appropriately selected from known solvents such as organic solvents such as dimethylacetamide, dimethylsulfoxide, dimethylformamide, and aqueous inorganic compounds such as zinc chloride and sodium thiocyanate. Of these, dimethylacetamide, dimethylsulfoxide and dimethylformamide, which have a high coagulation rate from the viewpoint of improving productivity, are preferable, and dimethylacetamide is more preferable.

なお、緻密な凝固糸を得るためには、紡糸原液中のアクリロニトリル系重合体の濃度がある程度以上になるように調製することが好ましい。
具体的には、紡糸原液中のアクリロニトリル系重合体の濃度が、17質量%以上であることが好ましく、19質量%以上であることがより好ましい。一方、紡糸原液は適正な粘度や流動性を必要としており、このため、アクリロニトリル系重合体の濃度が25質量%以下であることが好ましい。
In order to obtain a dense coagulated yarn, it is preferable to prepare such that the concentration of the acrylonitrile-based polymer in the spinning dope becomes a certain level or more.
Specifically, the concentration of the acrylonitrile-based polymer in the spinning dope is preferably 17% by mass or more, and more preferably 19% by mass or more. On the other hand, the spinning dope requires an appropriate viscosity and fluidity. Therefore, the concentration of the acrylonitrile polymer is preferably 25% by mass or less.

紡糸方法は、上記の紡糸原液を直接凝固浴中に紡出する湿式紡糸法、空気中で凝固する乾式紡糸法、および一旦空気中に紡出した後に浴中凝固させる乾湿式紡糸法など公知の紡糸方法を適宜採用できるが、より高い性能を有する炭素繊維束を得るには湿式紡糸法または乾湿式紡糸法が好ましい。   Spinning methods are known, such as a wet spinning method in which the above-mentioned spinning solution is directly spun into a coagulation bath, a dry spinning method in which the solution is coagulated in air, and a dry and wet spinning method in which the solution is once coagulated in the air and then coagulated in the bath. A spinning method can be appropriately employed, but a wet spinning method or a dry-wet spinning method is preferable for obtaining a carbon fiber bundle having higher performance.

湿式紡糸法または乾湿式紡糸法による紡糸賦形は、上記の紡糸原液を円形断面の孔を有するノズルより凝固浴中に紡出することで行うことができる。凝固浴としては、上記の紡糸原液に用いられる溶剤を含む水溶液を用いるのが溶剤回収の容易さの観点から好ましい。
凝固浴として溶剤を含む水溶液を用いる場合、水溶液中の溶剤濃度は、50〜85質量%が好ましく、凝固浴の温度は10〜60℃が好ましい。溶剤濃度が上記範囲内であり、且つ凝固浴の温度が上記範囲内であるとき、ボイドがなく緻密な構造で、高性能な炭素繊維束が得られ易く、更には、延伸性が確保でき生産性に優れる傾向にある。
The spinning shaping by the wet spinning method or the dry-wet spinning method can be performed by spinning the above spinning solution into a coagulation bath from a nozzle having a circular cross-sectional hole. As the coagulation bath, it is preferable to use an aqueous solution containing a solvent used in the above-mentioned spinning dope from the viewpoint of easy solvent recovery.
When using the aqueous solution containing a solvent as a coagulation bath, the solvent concentration in the aqueous solution is preferably 50 to 85% by mass, and the temperature of the coagulation bath is preferably 10 to 60 ° C. When the solvent concentration is within the above range and the temperature of the coagulation bath is within the above range, a high-performance carbon fiber bundle can be easily obtained with a dense structure without voids, and further, stretchability can be secured and produced. It tends to be excellent.

(延伸処理)
アクリロニトリル系重合体を溶剤に溶解し紡糸原液とし、これを凝固浴中に吐出して繊維化して得た凝固糸は、更に凝固浴中または延伸浴中での浴中延伸を行い、延伸処理をすることができる。あるいは、一部空中延伸した後に、浴中延伸をしてもよく、延伸処理の前後あるいは延伸処理と同時に水洗を行って水膨潤状態にある前駆体繊維束を得ると好ましい。
なお、浴中延伸は通常50〜98℃の水浴中で1回あるいは2回以上の多段に分割するなどして行うと好ましい。
延伸処理においては、空中延伸及び浴中延伸による合計延伸倍率が2〜10倍になるよう延伸することが、後に得られる炭素繊維束の性能の点から好ましい。
(Extension process)
A coagulated yarn obtained by dissolving an acrylonitrile polymer in a solvent to form a spinning dope and discharging it into a coagulation bath to be fiberized is further stretched in a coagulation bath or in a stretching bath and subjected to a stretching treatment. can do. Alternatively, it may be stretched in the bath after being partially stretched in the air, and it is preferable to obtain a precursor fiber bundle in a water-swollen state by washing with water before or after the stretching process or simultaneously with the stretching process.
The stretching in the bath is usually preferably carried out in a water bath at 50 to 98 ° C. by dividing it into multiple stages once or twice.
In the stretching treatment, it is preferable from the viewpoint of the performance of the carbon fiber bundle obtained later that the total stretching ratio by air stretching and bath stretching is 2 to 10 times.

(油剤処理)
油剤処理においては、本発明の油剤組成物を水中に分散させて平均粒子径0.05〜5μmのミセルを形成させた水系分散液を、紡糸と延伸処理を経て得た水膨潤状態の前駆体繊維束に付与させる。
(Oil treatment)
In the oil treatment, a water-swelled precursor obtained by spinning and stretching an aqueous dispersion in which the oil composition of the present invention is dispersed in water to form micelles having an average particle size of 0.05 to 5 μm. It is given to the fiber bundle.

水系分散液は、本発明の油剤組成物を水中に分散させたものであり、水に、ノニオン系乳化剤を分散した後、攪拌しながらアミノ変性シリコーンと炭素系微粒子を添加することで調製される。
各成分の水中分散は、プロペラ攪拌、ホモミキサー、ホモジナイザー等を使って行うことができる。更に、炭素系微粒子を高分散させるために200MPa以上に加圧可能な超高圧ホモジナイザーを用いることが好ましい。
The aqueous dispersion is obtained by dispersing the oil composition of the present invention in water, and is prepared by dispersing a nonionic emulsifier in water and then adding amino-modified silicone and carbon-based fine particles while stirring. .
Dispersion of each component in water can be performed using a propeller stirrer, a homomixer, a homogenizer, or the like. Furthermore, it is preferable to use an ultrahigh pressure homogenizer capable of pressurizing to 200 MPa or more in order to highly disperse the carbon-based fine particles.

水系分散液において油剤組成物は、平均粒子径0.05〜5.0μmのミセルを形成しており、該水系分散液はW/O型水系分散液であることが好ましい。
ミセルの平均粒子径がこの範囲内であるとき、前駆体繊維束の表面に均一に油剤を付与することが可能となる。
なお、上記のW/O型水系乳化溶液に存在するミセルの平均粒子径は、レーザ回折/散乱式粒度分布測定装置(LA−910、株式会社堀場製作所製)を用いて測定することができる。
In the aqueous dispersion, the oil composition forms micelles having an average particle size of 0.05 to 5.0 μm, and the aqueous dispersion is preferably a W / O type aqueous dispersion.
When the average particle diameter of the micelle is within this range, the oil agent can be uniformly applied to the surface of the precursor fiber bundle.
In addition, the average particle diameter of the micelle which exists in said W / O type | system | group aqueous emulsion solution can be measured using a laser diffraction / scattering type particle size distribution measuring apparatus (LA-910, the Horiba Ltd. make).

このとき、水系分散液における油剤組成物の濃度は2〜40質量%であると好ましく、10〜30質量%であるとより好ましく、20〜30質量%であると更に好ましい。
濃度が40質量%より高くなると、水系分散液が不安定となり乳化の破壊が起こりやすくなる。一方、2質量%より低い場合には、必要な量の油剤組成物を水膨潤状態にある前駆体繊維束に付与することが困難になる。
At this time, the concentration of the oil composition in the aqueous dispersion is preferably 2 to 40% by mass, more preferably 10 to 30% by mass, and still more preferably 20 to 30% by mass.
When the concentration is higher than 40% by mass, the aqueous dispersion becomes unstable and the emulsion is easily broken. On the other hand, when it is lower than 2% by mass, it becomes difficult to apply a necessary amount of the oil composition to the precursor fiber bundle in a water-swollen state.

本発明の油剤組成物を水膨潤状態の前駆体繊維束に付与する際、上記水系分散液に更にイオン交換水を加えて所定の濃度に希釈して用いると好ましい。尚、所定の濃度とは油剤処理時の前駆体繊維束の状態によって調整される。所定の濃度とした分散液を、以下「油剤処理液」という。   When applying the oil agent composition of the present invention to a precursor fiber bundle in a water-swelled state, it is preferable to add ion exchange water to the aqueous dispersion and dilute to a predetermined concentration. The predetermined concentration is adjusted according to the state of the precursor fiber bundle during the oil agent treatment. Hereinafter, the dispersion having a predetermined concentration is referred to as “oil treatment liquid”.

油剤処理液を水膨潤状態の前駆体繊維束に付着させる方法としては、ローラーの下部を油剤付与液に浸漬させ、そのローラーの上部に前駆体繊維束を接触させるローラー付着法、ポンプで一定量の油剤付与液をガイドから吐出し、そのガイド表面に前駆体繊維束を接触させるガイド付着法、ノズルから一定量の油剤付与液を前駆体繊維束に噴射するスプレー付着法、油剤付与液の中に前駆体繊維束を浸漬した後にローラー等で絞って余分な油剤付与液を除去するディップ付着法等の公知の方法を用いることができる。
中でも、均一付着の観点から、前駆体繊維束に十分に油剤処理液を浸透させ、余分な処理液を除去するディップ付着法を用いると好ましい。また、より均一に付着するためには油剤処理を2つ以上の多段にし、繰り返し付与することも有効である。
As a method of attaching the oil treatment liquid to the precursor fiber bundle in the water-swollen state, the lower part of the roller is immersed in the oil agent application liquid, and the precursor fiber bundle is brought into contact with the upper part of the roller. The guide adhesion method of discharging the oil application liquid from the guide and bringing the precursor fiber bundle into contact with the guide surface, the spray adhesion method of spraying a predetermined amount of the oil application liquid from the nozzle onto the precursor fiber bundle, and the oil application liquid A known method such as a dip attachment method in which the precursor fiber bundle is dipped in and then squeezed with a roller or the like to remove an excess oil agent application liquid can be used.
Among these, from the viewpoint of uniform adhesion, it is preferable to use a dip adhesion method in which the oil agent treatment liquid is sufficiently permeated into the precursor fiber bundle to remove excess treatment liquid. Moreover, in order to adhere more uniformly, it is also effective to apply the oil agent treatment in two or more stages and repeatedly apply it.

(乾燥・緻密化処理)
本発明の油剤組成物が付着した前駆体繊維束は、乾燥により、乾燥・緻密化されると好ましい。乾燥・緻密化の温度は、前駆体繊維束のガラス転移温度を超えた温度で行う必要があるが、実質的には含水状態から乾燥状態によって異なることもある。例えば、温度が100〜200℃程度の加熱ローラーによる方法を用いることができる。このとき加熱ローラーの個数は、1個でも複数個でもよい。
(Drying and densification treatment)
The precursor fiber bundle to which the oil composition of the present invention is attached is preferably dried and densified by drying. The drying / densification temperature needs to be higher than the glass transition temperature of the precursor fiber bundle, but it may be substantially different depending on the dry state from the water-containing state. For example, a method using a heating roller having a temperature of about 100 to 200 ° C. can be used. At this time, the number of heating rollers may be one or more.

(加圧水蒸気延伸処理)
前駆体繊維束は乾燥後、加圧水蒸気延伸を行うと、得られる繊維の緻密性や配向度をさらに高めることができるため好ましい。
加圧水蒸気延伸とは、加圧水蒸気雰囲気中で延伸を行う方法であって、高倍率の延伸が可能であることから、より高速で安定な紡糸が行えると同時に、得られる繊維の緻密性や配向度向上にも寄与する。
本発明では、この加圧水蒸気延伸において、加圧水蒸気延伸装置直前の加熱ローラーの温度を120〜200℃、加圧水蒸気延伸における水蒸気圧力の変動率を0.5%以下に制御することが好ましい。このようにすることにより、前駆体繊維束になされる延伸倍率の変動及びそれによって発生する総繊度の変動を抑制することができる。なお、加熱ローラーの温度が120℃未満の場合は、前駆体繊維束の温度が十分に上がらず延伸性が低下する。一方、200℃を越えると軟化して単繊維間の融着が起こる上に、大気中の酸素と反応し繊維に損傷を与える可能性がある。
(Pressurized steam stretching process)
The precursor fiber bundle is preferably subjected to pressurized steam drawing after drying because the denseness and orientation degree of the resulting fiber can be further increased.
Pressurized steam stretching is a method of stretching in a pressurized steam atmosphere. Since high-strength stretching is possible, high-speed and stable spinning can be performed, and at the same time, the density and orientation of the resulting fiber can be increased. Contributes to improvement.
In the present invention, in this pressurized steam stretching, it is preferable to control the temperature of the heating roller immediately before the pressurized steam stretching apparatus to 120 to 200 ° C. and the variation rate of the steam pressure in the pressurized steam stretching to 0.5% or less. By doing in this way, the fluctuation | variation of the draw ratio made to a precursor fiber bundle and the fluctuation | variation of the total fineness produced | generated by it can be suppressed. In addition, when the temperature of a heating roller is less than 120 degreeC, the temperature of a precursor fiber bundle does not fully rise, but a drawability falls. On the other hand, when the temperature exceeds 200 ° C., the fibers soften to cause fusion between single fibers, and may react with oxygen in the atmosphere to damage the fibers.

加圧水蒸気延伸における水蒸気の圧力は、加熱ローラーによる延伸の抑制や加圧水蒸気延伸法の特徴が明確に現れるようにするため、200kPa・g(ゲージ圧)以上が好ましい。この水蒸気圧は、処理時間との兼ね合いで適宜調節することが好ましいが、高圧にすると水蒸気の漏れが増大する場合があるので、工業的には600kPa・g程度以下が好ましい。   The pressure of the water vapor in the pressurized steam stretching is preferably 200 kPa · g (gauge pressure) or more so that the stretching of the heated roller is suppressed and the characteristics of the pressurized steam stretching method appear clearly. The water vapor pressure is preferably adjusted as appropriate in consideration of the treatment time. However, when the pressure is increased, water vapor leakage may increase, and therefore, industrially, about 600 kPa · g or less is preferable.

以上の各処理を経た前駆体繊維束は、室温のロールを通し、常温の状態まで冷却した後にワインダーでボビンに巻き取られる、或いはケンスに振込まれて収納されると好ましい。
なお、得られた前駆体繊維束は、この後焼成工程(耐炎化処理や炭素化処理)に移され、炭素繊維束となる。
The precursor fiber bundle that has undergone each of the above treatments is preferably passed through a roll at room temperature, cooled to room temperature, and then wound around a bobbin with a winder, or transferred into a can and stored.
In addition, the obtained precursor fiber bundle is moved to a post-firing process (flame-proofing treatment or carbonization treatment) to become a carbon fiber bundle.

[炭素繊維前駆体アクリル系繊維束]
以上の各処理によって得られた本発明の前駆体繊維束において、本発明の油剤組成物が前駆体繊維束の乾燥質量に対して0.5〜2質量%であることが好ましく、1〜1.5質量%であることがさらに好ましい。
油剤組成物の付着量が0.5質量%未満であると、油剤組成物の本来の機能を十分に発現させることが困難になる場合がある。一方、油剤組成物の付着量が2質量%を越えると、余分に付着した油剤組成物中のアミノ変性シリコーンが、焼成工程において高分子化して単繊維間の接着の誘因となる場合がある。
なお、乾燥質量とは乾燥・緻密化処理の後に得られる前駆体繊維束の質量を示す。
このようにして、本発明の油剤組成物が付与された本発明の前駆体繊維束は、油剤組成物が均一に付着しているため、集束性に優れ、生産性を向上することができるものである。
[Carbon fiber precursor acrylic fiber bundle]
In the precursor fiber bundle of the present invention obtained by the above treatments, the oil agent composition of the present invention is preferably 0.5 to 2% by mass with respect to the dry mass of the precursor fiber bundle, More preferably, it is 5 mass%.
When the adhesion amount of the oil composition is less than 0.5% by mass, it may be difficult to sufficiently develop the original function of the oil composition. On the other hand, when the adhesion amount of the oil composition exceeds 2% by mass, the excessively attached amino-modified silicone in the oil composition may be polymerized in the firing step to cause adhesion between single fibers.
The dry mass refers to the mass of the precursor fiber bundle obtained after the drying / densification treatment.
In this way, the precursor fiber bundle of the present invention to which the oil agent composition of the present invention is applied has excellent convergence and can improve productivity since the oil agent composition is uniformly attached. It is.

以上のように、本発明の油剤組成物は導電性を有する炭素系微粒子含有しているため、各処理における前駆体繊維束の集束性が向上し、これにより前駆体繊維束の品質を低下させることなく、生産性を高めることを可能とした。
このように、本発明の油剤組成物を用いた本発明の前駆体繊維束の製造方法は、操業安定性、高生産性の両効果を兼ね備えている。
また、本発明の油剤組成物を前述の通り適正に付与して製造された前駆体繊維束より得られた炭素繊維束は、様々な構造材料に用いられる繊維強化樹脂複合材料に用いる強化繊維として好適である。
As described above, since the oil agent composition of the present invention contains conductive carbon-based fine particles, the convergence property of the precursor fiber bundle in each treatment is improved, thereby reducing the quality of the precursor fiber bundle. Without increasing productivity.
Thus, the method for producing a precursor fiber bundle of the present invention using the oil composition of the present invention has both effects of operational stability and high productivity.
In addition, carbon fiber bundles obtained from precursor fiber bundles produced by properly applying the oil agent composition of the present invention as described above are used as reinforcing fibers used in fiber reinforced resin composite materials used in various structural materials. Is preferred.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の「部」は質量部を、「%」は質量%を示す。また、本実施例及び比較例における各物性の測定及び評価は以下の方法で行った。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In the examples, “parts” represents mass parts, and “%” represents mass%. Moreover, the measurement and evaluation of each physical property in the present examples and comparative examples were performed by the following methods.

[油剤付着量]
得られた前駆体繊維束を105℃で1時間乾燥させた後、90℃のメチルエチルケトンに8時間浸漬して付着した油剤組成物を溶媒抽出した。
油剤付着量はこの抽出前後の炭素繊維前駆体アクリル繊維束の質量を精秤することで、この差から求めた。
[Oil agent adhesion amount]
The obtained precursor fiber bundle was dried at 105 ° C. for 1 hour, and then immersed in methyl ethyl ketone at 90 ° C. for 8 hours, and the oil agent composition adhered thereto was subjected to solvent extraction.
The oil agent adhesion amount was determined from this difference by precisely weighing the mass of the carbon fiber precursor acrylic fiber bundle before and after this extraction.

[単繊維間融着数]
得られた前駆体繊維束を5mm長に切断し、アセトン中に分散させ、10分間攪拌した後の全単繊維数と融着数を計数し、単繊維100本当たりの融着数を算出して評価した。評価基準は下記の通りである。
○:融着数(個/100本)≦1
×:融着数(個/100本)>1
[Number of fusions between single fibers]
The obtained precursor fiber bundle is cut into a length of 5 mm, dispersed in acetone, and stirred for 10 minutes. The total number of single fibers and the number of fusions are counted, and the number of fusions per 100 single fibers is calculated. And evaluated. The evaluation criteria are as follows.
○: Number of fusions (pieces / 100 pieces) ≦ 1
×: Number of fusions (pieces / 100 pieces)> 1

[帯電圧測定]
帯電圧測定は前駆体繊維束の炭素繊維前駆体製造工程の最終ロール、すなわち前駆体繊維束をボビンに巻き取る直前のロールにさしかかる空走中の繊維に対して測定した。
測定には静電気測定機STATIRON−M(シシド静電気株式会社製)を用いた。
[Electrostatic voltage measurement]
The charged voltage was measured with respect to the unrolled fiber that was approaching the final roll of the precursor fiber bundle carbon fiber precursor manufacturing process, that is, the roll just before the precursor fiber bundle was wound around the bobbin.
For the measurement, a static electricity measuring device STATIRON-M (manufactured by SHISIDO electrostatics Co., Ltd.) was used.

[集束性]
集束性は前駆体繊維束の炭素繊維前駆体製造工程の最終ロール上での状態を目視観察し、下記の基準で評価した。
○:集束しており、繊維束幅が一定で、隣接する繊維束と接触しない。
△:集束しているが、繊維束幅が一定ではない、あるいは繊維束幅が広い。
×:繊維束中に空間があり、集束していない。
[Focusing property]
Convergence was evaluated by visually observing the state of the precursor fiber bundle on the final roll in the carbon fiber precursor production process, and evaluated according to the following criteria.
○: Converging, the fiber bundle width is constant, and it does not contact the adjacent fiber bundle.
Δ: Converged, but fiber bundle width is not constant or fiber bundle width is wide.
X: There is a space in the fiber bundle and it is not focused.

[繊維束幅]
得られた前駆体繊維束に耐炎化処理を施した直後のロール上で、ノギスを用いて繊維束の幅を測定した。10点測定し、その平均値を用いて評価した。
[Fiber bundle width]
The width of the fiber bundle was measured using a caliper on a roll immediately after the obtained precursor fiber bundle was subjected to flameproofing treatment. Ten points were measured and evaluated using the average value.

[実施例1]
油剤組成物を含有する水系分散液を次の方法で調製した。
イオン交換水にプロピレンオキサイドとエチレンオキサイドからなるブロック共重合型ポリエーテル(株式会社ADEKA製、商品名:F−68)と、一般的なアミノ変性シリコーンの合成方法であるアルカリ平衡法によって得られた動粘度が500mm/s(25℃)、アミノ当量が6000g/molである1級側鎖型のアミノ変性シリコ−ンと、カーボンブラック(三菱化学株式会社製、平均一次粒子径23nm、商品名:三菱導電性カーボンブラック#3230B)とを表1に示すように40:50:10の割合で混合攪拌した。
このとき、油剤組成物の濃度が30質量%となるようにした。
また、この状態ではミセルの平均粒子径が5μm程度であるため、さらに高圧ホモジナイザーによって1.0μm以下の平均粒子径とし分散させた。
このエマルションを水系分散液として用いた。
[Example 1]
An aqueous dispersion containing the oil composition was prepared by the following method.
It was obtained by block copolymerization type polyether (trade name: F-68, manufactured by ADEKA Co., Ltd.) composed of propylene oxide and ethylene oxide in ion-exchanged water, and an alkali equilibrium method which is a general synthesis method of amino-modified silicone. Primary side chain amino-modified silicone having a kinematic viscosity of 500 mm 2 / s (25 ° C.) and an amino equivalent of 6000 g / mol, carbon black (manufactured by Mitsubishi Chemical Corporation, average primary particle size of 23 nm, trade name) : Mitsubishi conductive carbon black # 3230B) was mixed and stirred at a ratio of 40:50:10 as shown in Table 1.
At this time, the concentration of the oil agent composition was set to 30% by mass.
Further, in this state, since the average particle diameter of micelles is about 5 μm, it was further dispersed to have an average particle diameter of 1.0 μm or less by a high-pressure homogenizer.
This emulsion was used as an aqueous dispersion.

油剤組成物を付着させるアクリル繊維束は、次の方法で調製した。まず、アクリロニトリル系共重合体(組成比:アクリロニトリル/アクリルアミド/メタクリル酸=96/3/1(質量比))をジメチルアセトアミドに溶解し、紡糸原液を調製した。次に、ジメチルアセトアミド水溶液を満たした凝固浴中に孔径(直径)50μm、孔数50000の紡糸ノズルより紡糸原液を吐出し凝固糸とした。
得られた凝固糸は水洗槽中で脱溶媒するとともに5倍に延伸して水膨潤状態のアクリル繊維束とした。
The acrylic fiber bundle to which the oil agent composition was adhered was prepared by the following method. First, an acrylonitrile-based copolymer (composition ratio: acrylonitrile / acrylamide / methacrylic acid = 96/3/1 (mass ratio)) was dissolved in dimethylacetamide to prepare a spinning dope. Next, the spinning dope was discharged from a spinning nozzle having a pore size (diameter) of 50 μm and a pore number of 50000 into a coagulation bath filled with a dimethylacetamide aqueous solution to obtain a coagulated yarn.
The obtained coagulated yarn was desolvated in a washing tank and stretched 5 times to obtain an acrylic fiber bundle in a water swollen state.

更に、上記水系分散液をイオン交換水で希釈して、油剤組成物濃度が1.5質量%になるように調整した油剤処理液を入れた油剤処理槽に、得られた水膨潤状態にあるアクリル繊維束を導き、油剤組成物を付着させた。
その後、油剤組成物が付着したアクリル繊維束を表面温度180℃の乾燥ロールにて乾燥緻密化した後に、圧力0.2MPaの水蒸気中で3倍延伸を施し、炭素繊維前駆体アクリル繊維束を得た(炭素繊維前駆体製造工程)。
また、得られた炭素繊維前駆体アクリル繊維束を、220〜260℃の温度勾配を有する耐炎化炉に通して、耐炎化処理を施した。
以上、炭素繊維前駆体製造工程を経て得られた炭素繊維前駆体アクリル繊維束と、該炭素繊維前駆体アクリル繊維束を耐炎化処理した直後の繊維束について各評価を行った。結果を表1に示す。
Furthermore, the aqueous dispersion is diluted with ion-exchanged water, and the resulting oil-swelled state is in an oil-treated tank containing an oil-treated liquid that has been adjusted so that the concentration of the oil composition is 1.5% by mass. The acrylic fiber bundle was guided and the oil composition was adhered.
Thereafter, the acrylic fiber bundle to which the oil composition is adhered is dried and densified with a drying roll having a surface temperature of 180 ° C., and then stretched three times in water vapor at a pressure of 0.2 MPa to obtain a carbon fiber precursor acrylic fiber bundle. (Carbon fiber precursor manufacturing process).
Moreover, the obtained carbon fiber precursor acrylic fiber bundle was passed through a flameproofing furnace having a temperature gradient of 220 to 260 ° C. to give a flameproofing treatment.
As mentioned above, each evaluation was performed about the carbon fiber precursor acrylic fiber bundle obtained through the carbon fiber precursor manufacturing process, and the fiber bundle immediately after flame-treating the carbon fiber precursor acrylic fiber bundle. The results are shown in Table 1.

[実施例2〜7]
油剤組成物を構成する成分のうち、表1に示す組成で、炭素系微粒子を以下に示すものに変えた他は、実施例1と同様にして、実施例2〜7を実施した。
また、実施例1と同様にして炭素繊維前駆体製造工程を経て得られた炭素繊維前駆体アクリル繊維束と、該炭素繊維前駆体アクリル繊維束を耐炎化処理した直後の繊維束について各評価を行った。結果を表1に示す。
[Examples 2 to 7]
Examples 2 to 7 were carried out in the same manner as in Example 1 except that the carbon-based fine particles were changed to those shown below in the composition shown in Table 1 among the components constituting the oil agent composition.
Moreover, each evaluation was carried out about the carbon fiber precursor acrylic fiber bundle obtained through the carbon fiber precursor manufacturing process similarly to Example 1, and the fiber bundle immediately after flame-proofing this carbon fiber precursor acrylic fiber bundle. went. The results are shown in Table 1.

なお、実施例2〜7で用いた炭素系微粒子を以下に示す。
実施例2:カーボンブラック(東海カーボン株式会社製、平均一次粒子径70nm、商品名:トーカブラック#3800)
実施例3:カーボンブラック(ケッチェン・ブラック・インターナショナル株式会社製、平均一次粒子径34nm、商品名:カーボンECP600JD)
実施例4:カーボンブラック(東海カーボン株式会社、平均一次粒子径14nm、商品名:トーカブラック#8500/F)
実施例5:カーボンブラック(三菱化学株式会社製、平均一次粒子径500nmに調製、商品名:三菱カーボンブラックMA100B)
実施例6:カーボンブラック(三菱化学株式会社製、平均一次粒子径1000nmに調製、商品名:三菱カーボンブラックMA100B)
実施例7:カーボンナノチューブ(和光純薬工業株式会社製、外径:20〜30nm、長さ:0.5〜2μm)
The carbon-based fine particles used in Examples 2 to 7 are shown below.
Example 2: Carbon black (manufactured by Tokai Carbon Co., Ltd., average primary particle size 70 nm, trade name: Toka Black # 3800)
Example 3: Carbon black (manufactured by Ketjen Black International Co., Ltd., average primary particle size 34 nm, trade name: Carbon ECP600JD)
Example 4: Carbon black (Tokai Carbon Co., Ltd., average primary particle size 14 nm, trade name: Toka Black # 8500 / F)
Example 5: Carbon black (manufactured by Mitsubishi Chemical Corporation, adjusted to an average primary particle size of 500 nm, trade name: Mitsubishi Carbon Black MA100B)
Example 6: Carbon black (manufactured by Mitsubishi Chemical Corporation, adjusted to an average primary particle size of 1000 nm, trade name: Mitsubishi Carbon Black MA100B)
Example 7: Carbon nanotube (manufactured by Wako Pure Chemical Industries, Ltd., outer diameter: 20-30 nm, length: 0.5-2 μm)

[比較例1]
実施例1のカーボンブラックを二酸化ケイ素パウダー(アルドリッチ社製、平均一次粒子径10〜20nm)に替えた油剤組成物を用い、表1に示す組成で、実施例1と同様にして炭素繊維前駆体製造工程を経て得られた炭素繊維前駆体アクリル繊維束と、該炭素繊維前駆体アクリル繊維束を耐炎化処理した直後の繊維束について各評価を行った。結果を表1に示す。
[Comparative Example 1]
A carbon fiber precursor was prepared in the same manner as in Example 1 with the composition shown in Table 1 using an oil composition obtained by replacing the carbon black of Example 1 with silicon dioxide powder (Aldrich, average primary particle size: 10 to 20 nm). Each evaluation was performed on the carbon fiber precursor acrylic fiber bundle obtained through the manufacturing process and the fiber bundle immediately after the carbon fiber precursor acrylic fiber bundle was subjected to flame resistance treatment. The results are shown in Table 1.

[比較例2]
実施例1で用いたポリエーテルと、アミノ変性シリコーンとを表1に示すように50:50の割合で調製した油剤組成物を用い、実施例1と同様にして炭素繊維前駆体製造工程を経て得られた炭素繊維前駆体アクリル繊維束と、該炭素繊維前駆体アクリル繊維束を耐炎化処理した直後の繊維束について各評価を行った。結果を表1に示す。
[Comparative Example 2]
Using the oil agent composition prepared by mixing the polyether used in Example 1 and the amino-modified silicone at a ratio of 50:50 as shown in Table 1, through the carbon fiber precursor manufacturing process in the same manner as in Example 1. Each evaluation was performed about the obtained carbon fiber precursor acrylic fiber bundle and the fiber bundle just after flame-proofing this carbon fiber precursor acrylic fiber bundle. The results are shown in Table 1.

[比較例3]
実施例1で用いたポリエーテルとアミノ変性シリコ−ンに、ポリオキシエチレンビスフェノールAジラウレート(花王株式会社製、商品名:エキセパールBP−DL)を加え、表1に示すように25:25:50の割合で調製した油剤組成物を用いて、実施例1と同様にして炭素繊維前駆体製造工程を経て得られた炭素繊維前駆体アクリル繊維束と、該炭素繊維前駆体アクリル繊維束を耐炎化処理した直後の繊維束について各評価を行った。結果を表1に示す。
[Comparative Example 3]
Polyoxyethylene bisphenol A dilaurate (manufactured by Kao Corporation, trade name: Exepal BP-DL) was added to the polyether and amino-modified silicone used in Example 1, and as shown in Table 1, 25:25:50 The carbon fiber precursor acrylic fiber bundle obtained through the carbon fiber precursor production process in the same manner as in Example 1 and the carbon fiber precursor acrylic fiber bundle made flame resistant using the oil agent composition prepared at a ratio of Each evaluation was performed about the fiber bundle immediately after processing. The results are shown in Table 1.

Figure 0005112973
Figure 0005112973

表1で示されるように、実施例1〜5で得られた炭素繊維前駆体アクリル繊維束は、その単繊維の融着は無く、帯電圧も0kVであり、炭素繊維前駆体製造工程後の集束性が良好で、耐炎化処理後の繊維束幅も小さかった。
また、実施例6及び7は、その単繊維の融着は無く、帯電圧も0kVであり、炭素繊維前駆体製造工程後の集束性が良好であった。なお、実施例6及び7は、水系分散体を調製する際に炭素系微粒子を水中に分散させることが、他の実施例と比較すると困難であり、繊維束幅も他の実施例より広い傾向にあった。しかし、隣接する繊維束との接触は無く、製造工程は安定していた。
As shown in Table 1, the carbon fiber precursor acrylic fiber bundles obtained in Examples 1 to 5 had no fusion of the single fibers, the charged voltage was 0 kV, and after the carbon fiber precursor production process The bundling property was good, and the fiber bundle width after the flameproofing treatment was also small.
In Examples 6 and 7, the single fiber was not fused, the charged voltage was 0 kV, and the convergence after the carbon fiber precursor manufacturing process was good. In Examples 6 and 7, it is difficult to disperse carbon-based fine particles in water when preparing an aqueous dispersion, compared to other examples, and the fiber bundle width tends to be wider than in other examples. It was in. However, there was no contact with adjacent fiber bundles, and the manufacturing process was stable.

比較例1及び2で得られた炭素繊維前駆体アクリル繊維束は、その単繊維の融着の確認されないものであったが、炭素系微粒子を含有していないため、炭素繊維前駆体製造工程後の集束性が悪かった。また耐炎化処理後の繊維束幅も、実施例のいずれと比較しても広かった。
比較例3で得られた炭素繊維前駆体アクリル繊維束は、炭素系微粒子を含有していないために帯電圧も高く、炭素繊維前駆体製造工程後の集束性は著しく悪かった。かつ、シリコーン含有量が少ないために単繊維融着が多くみられた。さらには耐炎化処理の際、ポリオキシエチレンビスフェノールAジラウレートに起因すると思われるタール分が生成し、工程障害となった。また、耐炎化処理後の繊維束の幅も広く、隣接する繊維と接触して毛羽が発生しロールに単糸が取られるなどして、ロールに巻き付きが起こり、工程障害が起きた。
The carbon fiber precursor acrylic fiber bundles obtained in Comparative Examples 1 and 2 were those in which the fusion of the single fibers was not confirmed, but because they did not contain carbon-based fine particles, after the carbon fiber precursor production process The convergence of was bad. Also, the fiber bundle width after the flameproofing treatment was wider than any of the examples.
Since the carbon fiber precursor acrylic fiber bundle obtained in Comparative Example 3 did not contain carbon-based fine particles, the charged voltage was high, and the convergence after the carbon fiber precursor manufacturing process was extremely poor. Moreover, due to the low silicone content, many single fiber fusions were observed. Further, during the flameproofing treatment, a tar component that was thought to be caused by polyoxyethylene bisphenol A dilaurate was generated, which hindered the process. In addition, the width of the fiber bundle after the flameproofing treatment was wide, and fluff was generated in contact with adjacent fibers, and a single yarn was taken on the roll.

本発明では、炭素繊維前駆体アクリル繊維束用油剤組成物に導電性を有する炭素系微粒子を含有させることで、製造工程での集束性を向上させることができる。その結果、従来と同じ製造設備において、各錘間を狭くし高密度で生産することが可能となる。
さらに、従来品より繊維束の総繊度を大きくしたような、いわゆるラージトウも従来と同様の設備で製造することが可能となる。
すなわち、本発明炭素繊維前駆体アクリル繊維用油剤組成物によれば、炭素繊維前駆体アクリル繊維の製造工程を安定させ、その生産性を向上することができる。従って、炭素繊維前駆体アクリル繊維の生産にあたり、コストダウンと生産能力の大幅増が可能となる。
本発明の炭素繊維前駆体アクリル繊維用油剤組成物を適正に付与した炭素繊維前駆体アクリル繊維束から得られた炭素繊維束は、プリプレグ化したのち複合材料に成形することもでき、ゴルフシャフトや釣り竿などのスポーツ用途、さらには構造材料として自動車や航空宇宙用途、また各種ガス貯蔵タンク用途などに好適に用いることができ、有用である。
In this invention, the convergence in a manufacturing process can be improved by making the carbon fiber precursor acrylic fiber bundle oil agent composition contain carbon-based fine particles having conductivity. As a result, in the same manufacturing equipment as in the prior art, it is possible to produce a high density by narrowing the space between the weights.
Furthermore, a so-called large tow having a fiber bundle having a larger total fineness than that of a conventional product can be produced with the same equipment as in the past.
That is, according to the oil composition for carbon fiber precursor acrylic fiber of the present invention, the production process of the carbon fiber precursor acrylic fiber can be stabilized and the productivity can be improved. Therefore, in the production of the carbon fiber precursor acrylic fiber, the cost can be reduced and the production capacity can be greatly increased.
The carbon fiber bundle obtained from the carbon fiber precursor acrylic fiber bundle appropriately provided with the carbon fiber precursor acrylic fiber oil composition of the present invention can be formed into a composite material after prepreg, It is useful because it can be suitably used for sports applications such as fishing rods, as well as automobiles, aerospace applications, and various gas storage tank applications as a structural material.

Claims (9)

導電性を有する炭素系微粒子を含有する炭素繊維前駆体アクリル系繊維用油剤組成物。   An oil agent composition for a carbon fiber precursor acrylic fiber containing carbon-based fine particles having electrical conductivity. 前記炭素系微粒子がカーボンブラックである請求項1に記載の炭素繊維前駆体アクリル系繊維用油剤組成物。   The oil composition for carbon fiber precursor acrylic fibers according to claim 1, wherein the carbon-based fine particles are carbon black. シリコーンを含有する請求項1又は2に記載の炭素繊維前駆体アクリル系繊維用油剤組成物。   The oil composition for carbon fiber precursor acrylic fibers according to claim 1 or 2, comprising silicone. 前記シリコーンがアミノ変性シリコーンである請求項3に記載の炭素繊維前駆体アクリル系繊維用油剤組成物。   The oil composition for carbon fiber precursor acrylic fibers according to claim 3, wherein the silicone is amino-modified silicone. 炭素系微粒子を5〜30質量%、アミノ変性シリコーンを20〜60質量%含有する請求項4に記載の炭素繊維前駆体アクリル系繊維用油剤組成物。   The oil agent composition for carbon fiber precursor acrylic fibers according to claim 4, containing 5 to 30% by mass of carbon-based fine particles and 20 to 60% by mass of amino-modified silicone. ノニオン系乳化剤を10〜50質量%含有する請求項1〜5のいずれかに記載の炭素繊維前駆体アクリル系繊維用油剤組成物。   The oil composition for carbon fiber precursor acrylic fibers according to any one of claims 1 to 5, comprising 10 to 50% by mass of a nonionic emulsifier. 前記ノニオン系乳化剤が、プロピレンオキサイド単位とエチレンオキサイド単位からなる共重合型ポリエーテルである請求項6に記載の炭素繊維前駆体アクリル系繊維用油剤組成物。   The oil composition for carbon fiber precursor acrylic fibers according to claim 6, wherein the nonionic emulsifier is a copolymer-type polyether composed of propylene oxide units and ethylene oxide units. 請求項1〜7のいずれかに記載の炭素繊維前駆体アクリル系繊維用油剤組成物が、乾燥質量に対して0.5〜2質量%付着している炭素繊維前駆体アクリル系繊維束。   The carbon fiber precursor acrylic fiber bundle to which 0.5-2 mass% of the oil agent composition for carbon fiber precursor acrylic fibers in any one of Claims 1-7 has adhered with respect to dry mass. 請求項1〜7のいずれかに記載の炭素繊維前駆体アクリル系繊維用油剤組成物を水中に分散させて平均粒子径0.05〜5μmのミセルを形成させた水系分散液を、水膨潤状態の炭素繊維前駆体アクリル系繊維束に付与させる油剤処理と、
水系分散液を付与した炭素繊維前駆体アクリル系繊維束を乾燥緻密化する乾燥緻密化処理を有する炭素繊維前駆体アクリル系繊維束の製造方法。
An aqueous dispersion obtained by dispersing the carbon fiber precursor acrylic fiber oil composition according to any one of claims 1 to 7 in water to form micelles having an average particle size of 0.05 to 5 µm, in a water-swollen state Oil agent treatment to be imparted to the carbon fiber precursor acrylic fiber bundle of
A method for producing a carbon fiber precursor acrylic fiber bundle having a dry densification treatment for drying and densifying a carbon fiber precursor acrylic fiber bundle to which an aqueous dispersion is applied.
JP2008170773A 2008-06-30 2008-06-30 Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same Expired - Fee Related JP5112973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170773A JP5112973B2 (en) 2008-06-30 2008-06-30 Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170773A JP5112973B2 (en) 2008-06-30 2008-06-30 Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010007216A JP2010007216A (en) 2010-01-14
JP5112973B2 true JP5112973B2 (en) 2013-01-09

Family

ID=41588018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170773A Expired - Fee Related JP5112973B2 (en) 2008-06-30 2008-06-30 Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5112973B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8717053B2 (en) * 2011-11-04 2014-05-06 Keithley Instruments, Inc. DC-AC probe card topology
FR2997097B1 (en) * 2012-10-22 2015-04-10 Arkema France PROCESS FOR PRODUCING CARBON FIBER, PRECURSOR MATERIAL USED BY THE PROCESS AND CARBON FIBER OBTAINED
JP2015101804A (en) * 2013-11-25 2015-06-04 三菱レイヨン株式会社 Acrylic fiber bundle as carbon fiber precursor and method for producing the same
CN104452270A (en) * 2014-12-19 2015-03-25 四川创越炭材料有限公司 Spinning finish for asphalt carbon fiber
JP7018237B1 (en) 2021-12-02 2022-02-10 竹本油脂株式会社 Carbon fiber precursor treatment agent, carbon fiber precursor treatment agent-containing composition, and carbon fiber precursor
CN115896984B (en) * 2022-11-21 2023-12-15 上海丰泽源科技有限公司 Oiling agent for high-performance high-temperature-resistant polyester industrial yarns and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275051A (en) * 1979-01-29 1981-06-23 Union Carbide Corporation Spin size and thermosetting aid for pitch fibers
JP2945415B2 (en) * 1989-07-18 1999-09-06 三菱化学株式会社 Pitch-based carbon fiber treatment agent
JPH0431343A (en) * 1990-05-28 1992-02-03 Nitto Boseki Co Ltd Conductive glass fiber and production thereof
JP4699821B2 (en) * 2005-06-03 2011-06-15 松本油脂製薬株式会社 Acrylic fiber oil for carbon fiber production

Also Published As

Publication number Publication date
JP2010007216A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4856724B2 (en) Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP5112973B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
US10550512B2 (en) Oil agent for carbon-fiber-precursor acrylic fiber, oil agent composition for carbon-fiber-precursor acrylic fiber, oil-treatment-liquid for carbon-fiber-precursor acrylic fiber, and carbon-fiber-precursor acrylic fiber bundle
JPWO2012117514A1 (en) Carbon fiber precursor acrylic fiber bundle to which the oil agent composition is adhered, its manufacturing method, carbon fiber precursor acrylic fiber oil agent composition, and carbon fiber precursor acrylic fiber oil agent composition dispersion
JP2012046855A (en) Acrylic fiber bundle as carbon fiber precursor and method for producing the same
JP5707690B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same
JP5731908B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP5712480B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same
JP4917991B2 (en) Oil agent composition for carbon fiber precursor acrylic fiber
JP2015221957A (en) Carbon fiber precursor acrylic fiber bundle and manufacturing method therefor
JP5968685B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP2018159138A (en) Oil solution composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, carbon fiber, and method for producing carbon fiber precursor acrylic fiber bundle and carbon fiber
JP4400268B2 (en) Oil for carbon fiber precursor
JP5741841B2 (en) Carbon fiber precursor acrylic fiber bundle
JP5862198B2 (en) Carbon fiber precursor acrylic fiber bundle
JP4942502B2 (en) Method for producing flame-resistant fiber bundle
JP5831129B2 (en) Carbon fiber precursor acrylic fiber bundle
JP5872246B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP2016056496A (en) Carbon fiber precursor acrylic fiber bundle
JP5777940B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
TWI461586B (en) Oil composition-adhered, acrylic precursor fiber bundle for carbon fibers and method of manufacturing thereof, oil composition for an acrylic precursor fiber for carbon fibers, and dispersion liquid of an oil composition for an acrylic precursor fiber fo
JP4995754B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same
JP2010043377A (en) Oil composition for acrylic fiber of carbon fiber precursor, acrylic fiber bundle of carbon fiber precursor using the same, and method for producing the same
JP4990195B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same
JP2016017231A (en) Method for producing carbon fiber precursor acrylic fiber bundle and oil agent treatment liquid for carbon fiber precursor acrylic fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees