JP5095051B2 - Method for producing sapphire single crystal substrate for producing electronic device and gallium nitride compound semiconductor film for producing electronic device - Google Patents

Method for producing sapphire single crystal substrate for producing electronic device and gallium nitride compound semiconductor film for producing electronic device Download PDF

Info

Publication number
JP5095051B2
JP5095051B2 JP2001084300A JP2001084300A JP5095051B2 JP 5095051 B2 JP5095051 B2 JP 5095051B2 JP 2001084300 A JP2001084300 A JP 2001084300A JP 2001084300 A JP2001084300 A JP 2001084300A JP 5095051 B2 JP5095051 B2 JP 5095051B2
Authority
JP
Japan
Prior art keywords
electronic device
gallium nitride
compound semiconductor
nitride compound
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001084300A
Other languages
Japanese (ja)
Other versions
JP2002289529A (en
Inventor
泰彦 荒川
隆夫 染谷
勝之 星野
博之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001084300A priority Critical patent/JP5095051B2/en
Publication of JP2002289529A publication Critical patent/JP2002289529A/en
Application granted granted Critical
Publication of JP5095051B2 publication Critical patent/JP5095051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子デバイス作製用サファイア単結晶基板及び電子デバイス作製用窒化ガリウム化合物半導体膜の作製方法に関するものである。
【0002】
【従来の技術】
窒化ガリウム系化合物半導体は、禁制帯幅が大きい等の理由から、青色ないし緑色発光ダイオードに最適であると考えられ、窒化ガリウム系化合物半導体を利用した発光ダイオードは既に実用化されている。さらに、窒化ガリウム系化合物半導体は、発光デバイスのみならず、超高周波・高出力動作トランジスタ等の電子デバイスへの応用が期待されている。
【0003】
窒化ガリウム系化合物半導体を用いたデバイスの実用化を考える場合には、良質のGaN結晶をいかに得るかが重要であるが、窒化ガリウム系化合物半導体の実用化は発光デバイスを中心として展開されてきたことから、GaNの結晶成長についての研究も発光デバイスとの関連で進展してきた。
【0004】
GaNの結晶成長には主としてMOCVD法(有機金属化学気相成長法)が用いられており、エピタキシャル成長基板としてはサファイアのC面(0001)、あるいはA面(11−20)が用いられている。また、エピタキシャル成長をC面あるいはA面のオフ面から構成した手法も存在する。例えば、特開平7−131068号には、発光ダイオードの結晶性及び発光輝度を向上させることを目的とした窒素3族元素化合物半導体発光素子が開示されており、(11−20)に対して、0.5〜2.0度の範囲で傾斜した面を主面とするサファイア基板を用いた発光素子が開示されている。
【0005】
しかしながら、発光ダイオード等の光デバイスとトランジスタ等の電子デバイスとでは、デバイス構造、作製プロセス、用途が相当に異なり、発光デバイスの性能の改善をもって、電子デバイスの性能が改善するかは容易には想像し難い。特に、発光ダイオードでは薄膜平面と垂直方向つまり積層方向に電気が流れるが、トランジスタにおいてはGaN層とAlGaN層の界面にそって電気が流れる。そのため、トランジスタにおいては界面の平坦性あるいはGaN表面の平坦性が極めて重要で、平坦性はデバイスの性能に重大な効果を与えるが、この平坦性は発光ダイオードにおいては、必ずしも重要な指標ではない。したがって、発光効率の改善をもって必ず電子デバイスの性能が向上するとは言えず、しかも、結晶性の向上と平坦性の向上は、必ずしも同時に両立するものではない。
【0006】
【発明が解決しようとする課題】
本発明は、従来の窒化ガリウム系化合物半導体からなる発光素子に係る発明とは異質のものであって、主として電子デバイスに用いられる窒化ガリウム系化合物半導体の結晶性を向上させ、同時に表面の平坦性を改善することを目的とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するべく創案された技術手段は、
電子デバイス作製用の窒化ガリウム化合物半導体をエピタキシャル成長させるためのサファイア単結晶基板であって、
前記窒化ガリウム化合物半導体をエピタキシャル成長させるための表面が、サファイア単結晶のA面をM軸方向に0.25度以上0.75度以下の範囲で傾斜させた面であることを特徴とする、電子デバイス作製用サファイア単結晶基板、及び、
サファイア単結晶基板の表面に窒化ガリウム化合物半導体をエピタキシャル成長させて、電子デバイス作製用の窒化ガリウム化合物半導体膜を作製する方法であって、
前記サファイア単結晶基板の前記表面は、サファイア単結晶のA面をM軸方向に0.25度以上0.75度以下の範囲で傾斜させた面であることを特徴とする、電子デバイス作製用窒化ガリウム化合物半導体膜の作製方法、である。
窒化ガリウム系化合物半導体はGaN,AlGaN,InGaN等を含むものである。
【0008】
C面(0001)サファイアと比較して、A面(11−20)サファイア上へのGaNの成長は通常困難である。この原因は、A面の場合には、傾斜角度と傾斜の方向に極めて敏感なためであることが研究によって新たに見出された。実験の積み重ねによる最適化の結果、結晶性が良く表面が平坦なGaN層が再現性良く得られるようになった。このことは、製品の歩留まりが大幅に改善すること意味する。
【0009】
本発明に係る結晶基板を用いることで得られた窒化ガリウム系化合物半導体層は電子デバイス(一つの好ましい例で言えば、ワイヤレス通信用のトランジスタ)として用いられる。本明細書において、電子デバイスという言葉は、発光ダイオード等の発光デバイスとは区別して用いられる。電子デバイスにはトランジスタ(FET,HEMT等)、光変調器、光スイッチ、光検出器、光導波路、センサー、ダイオード (発光ダイオードではなく、整流素子としてのダイオードや量子効果を利用した共鳴トンネルダイオードなど)、及びこれらの任意の複合体などが含まれる。
【0010】
電子デバイスを構成する半導体の構造としては、例えば、MESFET,MISFET,JFET,HEMT,HBT等が挙げられる。かかる半導体のエピタキシャル成長構造は、ホモエピタキシャル成長(例えば、GaN層同士)、ヘテロエピタキシャル成長(例えば、GaN層とAlGaN層)の双方が有り得るが、例えば、HEMTを構成する場合には、好適にはGaN/AlGaNヘテロ界面を有するヘテロエピタキシャル成長構造が採用される。
【0011】
【発明の実施の形態】
本発明の実施の形態について説明する。図1は実験で用いた有機金属気層成長(MOCVD)装置の要部を示す図であって、反応室にはサセプタが設けてあり、サセプタの上にはサファイア結晶基板が載置される。反応室内には反応ガスを導く導入管が設けてあり、反応室の周囲には高周波電界を印加するための高周波コイルが巻装されている。サセプタ上に設けられるサファイア結晶基板のエピタキシャル成長面はA面であるが、ジャスト面ではなく、A面をM軸方向に微傾斜させたオフ面である。本実験では、本装置を常圧MOCVD装置として用いたが、適宜減圧MOCVD装置として用いてもよい。
【0012】
次に、結晶成長方法および実験条件について説明する。サファイア基板をMOCVD装置に導入し、水素雰囲気下で950℃まで昇温して6分間保持する。次に、490℃まで基板温度を降下させ、25nmの膜厚のGaN低温堆積緩衝層を積層させる。この際のガス流量などの条件は、水素ガス15.9slm(liter/min)、アンモニアガス3.5slmで、Gaの原料としてはトリメチルガリウム(TMG)を用い、その流量は22μmol/min(1分あたり22マイクロ・モル)とした。成長時間は140秒である。尚、低温堆積緩衝層であるいわゆるバッファ層はGaN層には限定されず、例えばAlN層であってもよい。
【0013】
GaN低温堆積緩衝層成長後、基板温度を490℃から1071℃に昇温させ、2.3ミクロンの膜厚のGaN層を積層させた。GaN層成長中のガス流量などの条件は、水素ガス4slm、窒素ガス12slm、アンモニアガス4slmで、TMGの流量は88μmol/minである。成長時間は60分である。成長終了後、基板ヒーターの電源をオフにして、自然冷却させた。
【0014】
実験結果について説明する。図2は、オフ角度に対するX線回折を示す図である。XRDロッキングカーブの半値幅が小さいほど結晶性が良いと考えられ、図2からオフ角が0.25度から0.5度の場合が、最も結晶性が良いと言える。表面の平坦性と結晶性には必ずしも相関はないが、良質のデバイスを実現するためには、結晶性と平坦性の双方が良い方が望ましいとされている。後述する結果から明らかなように、特に、0.25度のオフ基板の場合に、結晶性と平坦性の両方が良好な化合物半導体膜が得られた。
【0015】
図3は、オフ角度に対するPL強度を示す図である。電子デバイスへの応用を考えた場合、PL効率が高いことは必ずしも要求されないが、一般には、発光効率が高いものは、良い結晶であると考えられる。
【0016】
原子スケールで表面の平坦性を考えるには、原子間力顕微鏡(AFM)などで評価すべきである。原子スケールの凹凸と顕微鏡で観察されるミクロンスケールの凹凸には必ずしも相関はない。図4はAFMによる実験結果を示す図である。図4(a)はRMS(凹凸の指標)であり、顕微鏡写真が最も良好なオフ角度0.25度のサンプルでRMSが最も小さくなっている。図4(b)のAFM像は0.25度のサンプルのものであり、原子ステップが観察されている。この表面は、C面上に作成された高品質のサンプルと略同様である。また、RMSの0.13nmの値もC面のベストと略同じである。
【0017】
次にジャスト面および異なるオフ角度(0.25度、0.50度、0.75度)において形成された結晶表面を光学顕微鏡で観察した。ジャスト面では凹凸状の表面が観察され、ジャスト面に比べて、オフ面の方が結晶表面が良好であることがわかった。特に、0.25度オフ基板の場合には良好な観察結果が得られた。顕微鏡観察された表面が良い場合には、ミクロンまたはミリ寸法で均一な結晶が出来ていると考えられる(結晶の場合、ナノ寸法では均一であっても、ミクロン寸法では均一ではないという場合もあり得る。)。したがって、ミクロン寸法、ミリ寸法、インチ寸法で表面が均一であれば、リソグラフィーによるデバイス・プロセスを進める際に、歩留まりが向上されると考えられる。
【0018】
尚、この種の薄膜においては、バルクの移動度は高い方が一般には望ましいと考えられる。しかしながら、通常のデバイス構造では、GaN/AlGaNヘテロ界面に発生する2次電子ガスを用いており、この2次元電子ガスの移動度は、界面の平坦性などで決定され、バルクの移動度にはあまり依存しない。
【0019】
【発明の効果】
本発明によれば、結晶性及び表面の平坦性の双方において良好な窒化ガリウム系化合物半導体薄膜を得ることができ、特に、トランジスタ等の電子デバイスへの有利な応用が可能となった。
【図面の簡単な説明】
【図1】常圧有機金属気層成長(MOCVD)装置を示す図である。
【図2】XRD線幅とオフ角度の関係を示す図である。
【図3】PL強度とオフ角度の関係を示す図である。
【図4】オフ角度が0.25度の場合におけるAFMによる実験結果を示す図であり、(a)はRMSラフネス、(b)はAFM像である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sapphire single crystal substrate for producing an electronic device and a gallium nitride compound semiconductor film for producing an electronic device .
[0002]
[Prior art]
Gallium nitride compound semiconductors are considered to be optimal for blue or green light emitting diodes because of their large forbidden bandwidth, and light emitting diodes using gallium nitride compound semiconductors have already been put into practical use. Furthermore, gallium nitride-based compound semiconductors are expected to be applied not only to light-emitting devices but also to electronic devices such as ultrahigh frequency / high power operation transistors.
[0003]
When considering the practical application of devices using gallium nitride compound semiconductors, it is important how to obtain high-quality GaN crystals, but the practical application of gallium nitride compound semiconductors has been developed mainly for light-emitting devices. Therefore, research on crystal growth of GaN has also progressed in the context of light-emitting devices.
[0004]
MOCVD (organometallic chemical vapor deposition) is mainly used for crystal growth of GaN, and sapphire C-plane (0001) or A-plane (11-20) is used as an epitaxial growth substrate. There is also a technique in which epitaxial growth is configured from the C-plane or A-plane off-plane. For example, Japanese Patent Application Laid-Open No. 7-131068 discloses a nitrogen group 3 element compound semiconductor light-emitting device for the purpose of improving the crystallinity and light emission luminance of a light-emitting diode, and (11-20) A light-emitting element using a sapphire substrate whose main surface is an inclined surface in a range of 0.5 to 2.0 degrees is disclosed.
[0005]
However, optical devices such as light-emitting diodes and electronic devices such as transistors have considerably different device structures, manufacturing processes, and applications, and it is easy to imagine whether the performance of electronic devices will improve with improved performance of light-emitting devices. It is hard to do. In particular, in the light emitting diode, electricity flows in a direction perpendicular to the plane of the thin film, that is, in the stacking direction. In the transistor, electricity flows along the interface between the GaN layer and the AlGaN layer. Therefore, the flatness of the interface or the flatness of the GaN surface is extremely important in the transistor, and the flatness has a significant effect on the performance of the device, but this flatness is not necessarily an important index in the light emitting diode. Therefore, it cannot be said that the performance of the electronic device is necessarily improved by improving the light emission efficiency, and further, the improvement of crystallinity and the improvement of flatness are not necessarily compatible at the same time.
[0006]
[Problems to be solved by the invention]
The present invention is different from the conventional invention related to a light-emitting element made of a gallium nitride compound semiconductor, and improves the crystallinity of a gallium nitride compound semiconductor mainly used in an electronic device, and at the same time flatness of the surface. The purpose is to improve.
[0007]
[Means for Solving the Problems]
Technical means created to solve the above problems are:
A sapphire single crystal substrate for epitaxial growth of a gallium nitride compound semiconductor for electronic device fabrication,
The surface for epitaxially growing the gallium nitride compound semiconductor is a surface obtained by inclining the A-plane of the sapphire single crystal in the range of 0.25 degrees to 0.75 degrees in the M-axis direction. Sapphire single crystal substrate for device fabrication, and
A method of epitaxially growing a gallium nitride compound semiconductor on the surface of a sapphire single crystal substrate to produce a gallium nitride compound semiconductor film for electronic device fabrication,
The surface of the sapphire single crystal substrate is a surface obtained by inclining the A-plane of the sapphire single crystal in the range of 0.25 degrees or more and 0.75 degrees or less in the M-axis direction. A manufacturing method of a gallium nitride compound semiconductor film.
Gallium nitride compound semiconductors include GaN, AlGaN, InGaN, and the like.
[0008]
Compared with C-plane (0001) sapphire, GaN growth on A-plane (11-20) sapphire is usually difficult. In the case of the A plane, this cause is newly found by research that it is extremely sensitive to the inclination angle and the direction of the inclination. As a result of optimization by stacking experiments, a GaN layer with good crystallinity and a flat surface can be obtained with good reproducibility. This means that the product yield is greatly improved.
[0009]
The gallium nitride compound semiconductor layer obtained by using the crystal substrate according to the present invention is used as an electronic device (in one preferable example, a transistor for wireless communication). In this specification, the term electronic device is used in distinction from light-emitting devices such as light-emitting diodes. Electronic devices include transistors (FET, HEMT, etc.), optical modulators, optical switches, photodetectors, optical waveguides, sensors, diodes (not light emitting diodes, diodes as rectifiers, resonant tunneling diodes utilizing quantum effects, etc.) ), And any complexes thereof.
[0010]
Examples of the structure of the semiconductor constituting the electronic device include MESFET, MISFET, JFET, HEMT, HBT, and the like. Such a semiconductor epitaxial growth structure may include both homoepitaxial growth (for example, GaN layers) and heteroepitaxial growth (for example, a GaN layer and an AlGaN layer). For example, when configuring a HEMT, GaN / AlGaN is preferable. A heteroepitaxial growth structure having a heterointerface is employed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described. FIG. 1 is a diagram showing a main part of an organic metal vapor deposition (MOCVD) apparatus used in an experiment, in which a susceptor is provided in a reaction chamber, and a sapphire crystal substrate is placed on the susceptor. An introduction pipe for introducing a reaction gas is provided in the reaction chamber, and a high-frequency coil for applying a high-frequency electric field is wound around the reaction chamber. The epitaxial growth surface of the sapphire crystal substrate provided on the susceptor is the A plane, but it is not a just plane but an off plane in which the A plane is slightly inclined in the M-axis direction. In this experiment, this apparatus was used as a normal pressure MOCVD apparatus, but may be used as a low pressure MOCVD apparatus as appropriate.
[0012]
Next, a crystal growth method and experimental conditions will be described. The sapphire substrate is introduced into the MOCVD apparatus, heated to 950 ° C. in a hydrogen atmosphere, and held for 6 minutes. Next, the substrate temperature is lowered to 490 ° C., and a GaN low-temperature deposition buffer layer having a thickness of 25 nm is laminated. The conditions such as the gas flow rate are as follows: hydrogen gas 15.9 slm (liter / min), ammonia gas 3.5 slm, trimethylgallium (TMG) is used as a Ga source, and the flow rate is 22 μmol / min (1 minute). Per micromole). The growth time is 140 seconds. Note that a so-called buffer layer which is a low temperature deposition buffer layer is not limited to a GaN layer, and may be, for example, an AlN layer.
[0013]
After the growth of the GaN low temperature deposition buffer layer, the substrate temperature was raised from 490 ° C. to 1071 ° C., and a GaN layer having a thickness of 2.3 microns was laminated. The conditions such as the gas flow rate during the growth of the GaN layer are hydrogen gas 4 slm, nitrogen gas 12 slm, and ammonia gas 4 slm, and the flow rate of TMG is 88 μmol / min. The growth time is 60 minutes. After the growth, the substrate heater was turned off and allowed to cool naturally.
[0014]
The experimental results will be described. FIG. 2 is a diagram showing X-ray diffraction with respect to the off-angle. It is considered that the smaller the half width of the XRD rocking curve, the better the crystallinity. From FIG. 2, it can be said that the crystallinity is the best when the off angle is 0.25 to 0.5 degrees. The flatness of the surface and the crystallinity do not necessarily have a correlation, but in order to realize a high-quality device, it is desirable that both the crystallinity and the flatness are good. As will be apparent from the results described later, a compound semiconductor film having good crystallinity and flatness was obtained particularly in the case of an off-substrate of 0.25 degrees.
[0015]
FIG. 3 is a diagram showing the PL intensity with respect to the off angle. When considering application to an electronic device, high PL efficiency is not necessarily required, but generally high emission efficiency is considered to be a good crystal.
[0016]
In order to consider surface flatness on an atomic scale, it should be evaluated with an atomic force microscope (AFM). There is not necessarily a correlation between the atomic scale unevenness and the micron scale unevenness observed with a microscope. FIG. 4 is a diagram showing experimental results by AFM. FIG. 4A shows RMS (unevenness index), and the RMS is the smallest in the sample with the best off-angle 0.25 degree in the micrograph. The AFM image in FIG. 4B is a sample of 0.25 degrees, and atomic steps are observed. This surface is substantially the same as a high quality sample made on the C-plane. Also, the RMS value of 0.13 nm is substantially the same as the C-plane best.
[0017]
Next, the just surface and the crystal surface formed at different off angles (0.25 degrees, 0.50 degrees, and 0.75 degrees) were observed with an optical microscope. An uneven surface was observed on the just surface, and it was found that the crystal surface of the off surface was better than that of the just surface. In particular, in the case of a 0.25 degree off substrate, a good observation result was obtained. When the surface observed under a microscope is good, it is considered that a uniform crystal is formed in micron or millimeter dimensions (in the case of a crystal, it may be uniform in the nano dimension but not uniform in the micron dimension. obtain.). Therefore, if the surface is uniform in micron dimensions, millimeter dimensions, or inch dimensions, it is considered that the yield is improved when the device process by lithography is advanced.
[0018]
In this type of thin film, higher bulk mobility is generally considered desirable. However, the normal device structure uses a secondary electron gas generated at the GaN / AlGaN hetero interface, and the mobility of this two-dimensional electron gas is determined by the flatness of the interface, etc. It doesn't depend too much.
[0019]
【Effect of the invention】
According to the present invention, it is possible to obtain a gallium nitride-based compound semiconductor thin film that is excellent in both crystallinity and surface flatness, and in particular, it is possible to advantageously apply to electronic devices such as transistors.
[Brief description of the drawings]
FIG. 1 shows an atmospheric pressure metal organic vapor deposition (MOCVD) apparatus.
FIG. 2 is a diagram illustrating a relationship between an XRD line width and an off angle.
FIG. 3 is a diagram illustrating a relationship between PL intensity and an off angle.
FIGS. 4A and 4B are diagrams showing experimental results by AFM when the off-angle is 0.25 degrees, where FIG. 4A shows RMS roughness and FIG. 4B shows an AFM image.

Claims (2)

電子デバイス作製用の窒化ガリウム化合物半導体をエピタキシャル成長させるためのサファイア単結晶基板であって、A sapphire single crystal substrate for epitaxial growth of a gallium nitride compound semiconductor for electronic device fabrication,
前記窒化ガリウム化合物半導体をエピタキシャル成長させるための表面が、サファイア単結晶のA面をM軸方向に0.25度以上0.75度以下の範囲で傾斜させた面であることを特徴とする、電子デバイス作製用サファイア単結晶基板。The surface for epitaxially growing the gallium nitride compound semiconductor is a surface obtained by inclining the A-plane of the sapphire single crystal in the range of 0.25 degrees to 0.75 degrees in the M-axis direction. Sapphire single crystal substrate for device fabrication.
サファイア単結晶基板の表面に窒化ガリウム化合物半導体をエピタキシャル成長させて、電子デバイス作製用の窒化ガリウム化合物半導体膜を作製する方法であって、A method of epitaxially growing a gallium nitride compound semiconductor on the surface of a sapphire single crystal substrate to produce a gallium nitride compound semiconductor film for electronic device fabrication,
前記サファイア単結晶基板の前記表面は、サファイア単結晶のA面をM軸方向に0.25度以上0.75度以下の範囲で傾斜させた面であることを特徴とする、電子デバイス作製用窒化ガリウム化合物半導体膜の作製方法。The surface of the sapphire single crystal substrate is a surface obtained by inclining the A-plane of the sapphire single crystal in the range of 0.25 degrees or more and 0.75 degrees or less in the M-axis direction. A method for manufacturing a gallium nitride compound semiconductor film.
JP2001084300A 2001-03-23 2001-03-23 Method for producing sapphire single crystal substrate for producing electronic device and gallium nitride compound semiconductor film for producing electronic device Expired - Fee Related JP5095051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084300A JP5095051B2 (en) 2001-03-23 2001-03-23 Method for producing sapphire single crystal substrate for producing electronic device and gallium nitride compound semiconductor film for producing electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084300A JP5095051B2 (en) 2001-03-23 2001-03-23 Method for producing sapphire single crystal substrate for producing electronic device and gallium nitride compound semiconductor film for producing electronic device

Publications (2)

Publication Number Publication Date
JP2002289529A JP2002289529A (en) 2002-10-04
JP5095051B2 true JP5095051B2 (en) 2012-12-12

Family

ID=18939992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084300A Expired - Fee Related JP5095051B2 (en) 2001-03-23 2001-03-23 Method for producing sapphire single crystal substrate for producing electronic device and gallium nitride compound semiconductor film for producing electronic device

Country Status (1)

Country Link
JP (1) JP5095051B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414261B2 (en) 2003-04-15 2008-08-19 Matsushita Electric Industrial Co., Ltd. Ballistic semiconductor device
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US9221289B2 (en) 2012-07-27 2015-12-29 Apple Inc. Sapphire window
US9232672B2 (en) 2013-01-10 2016-01-05 Apple Inc. Ceramic insert control mechanism
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131068A (en) * 1993-10-29 1995-05-19 Toyoda Gosei Co Ltd Nitrogen-group-iii element compound semiconductor light emitting element
JP3659050B2 (en) * 1998-12-21 2005-06-15 日亜化学工業株式会社 Nitride semiconductor growth method and nitride semiconductor device
JP3896718B2 (en) * 1999-03-02 2007-03-22 日亜化学工業株式会社 Nitride semiconductor
JP4557454B2 (en) * 2000-10-31 2010-10-06 京セラ株式会社 Single crystal sapphire substrate

Also Published As

Publication number Publication date
JP2002289529A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
US7091514B2 (en) Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
JP2704181B2 (en) Method for growing compound semiconductor single crystal thin film
KR100901822B1 (en) Method for preparing substrate for growing gallium nitride and method for preparing gallium nitride substrate
JP2023525597A (en) Nitride epitaxial wafer, manufacturing method thereof, and semiconductor device
US20060175681A1 (en) Method to grow III-nitride materials using no buffer layer
US20030203604A1 (en) Methods of fabricating layered structure and semiconductor device
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
EP2575161B1 (en) Method of growing semiconductor crystal
JP5095051B2 (en) Method for producing sapphire single crystal substrate for producing electronic device and gallium nitride compound semiconductor film for producing electronic device
JP4815569B2 (en) Method for growing gallium nitride crystal on Si substrate crystal
US20140159055A1 (en) Substrates for semiconductor devices
JP2005032823A (en) Method for manufacturing epitaxial wafer for field-effect transistor
CN100369197C (en) Method for preparing graphical substrate in situ by using SIN film
CN213905295U (en) Low-stress GaN film of large-size SiC substrate
CN110797394B (en) Epitaxial structure of high electron mobility transistor and preparation method thereof
JP5814131B2 (en) Structure and manufacturing method of semiconductor substrate
JP3671215B2 (en) Lamination method of indium nitride on sapphire substrate
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP2003178976A (en) Semiconductor device, and method for manufacturing it
JP2004296701A (en) Epitaxial substrate, semiconductor device and method for growing crystal for nitride-based semiconductor
JP2004289005A (en) Epitaxial substrate, semiconductor device, and high electron mobility transistor
JP2002289528A (en) Method for epitaxially growing gallium nitride based compound semiconductor and electronic device comprising gallium nitride based compound semiconductor
CN112687527A (en) Large-size SiC substrate low-stress GaN film and epitaxial growth method thereof
JP2017130539A (en) Nitride semiconductor device, and manufacturing method and manufacturing apparatus of nitride semiconductor device
JP2003224072A (en) Semiconductor structure and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees