JP5062503B2 - Conductive resin sheet - Google Patents

Conductive resin sheet Download PDF

Info

Publication number
JP5062503B2
JP5062503B2 JP2004345425A JP2004345425A JP5062503B2 JP 5062503 B2 JP5062503 B2 JP 5062503B2 JP 2004345425 A JP2004345425 A JP 2004345425A JP 2004345425 A JP2004345425 A JP 2004345425A JP 5062503 B2 JP5062503 B2 JP 5062503B2
Authority
JP
Japan
Prior art keywords
sheet
conductive resin
thermoplastic resin
carbon
resin sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004345425A
Other languages
Japanese (ja)
Other versions
JP2006152132A (en
Inventor
浩之 今井
修 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2004345425A priority Critical patent/JP5062503B2/en
Publication of JP2006152132A publication Critical patent/JP2006152132A/en
Application granted granted Critical
Publication of JP5062503B2 publication Critical patent/JP5062503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

本発明は、導電性と共に強度および破断伸度に優れた導電性樹脂シートに関する。本発明の導電性樹脂シートはキャリアーテープやトレイ、さらには複写機、ファクシミリ、ブリンター等の電子写真装置に用いられる導電性シートとして好適である。 The present invention relates to a conductive resin sheet excellent in strength and breaking elongation as well as conductivity. The conductive resin sheet of the present invention is suitable as a conductive sheet used in carrier tapes and trays, as well as electrophotographic apparatuses such as copying machines, facsimiles, and printers.

従来から、導電性カーボン粉末を多量に含有した樹脂によって形成した導電性樹脂シートが知られている。例えば、カーボンブラックなどの炭素粉末や炭素繊維、これらを混合した導電性樹脂組成物が知られており(特許文献1、2)、また、炭素粉末や炭素繊維に代えてカーボンナノチューブを用いたものや、炭素繊維と共にカーボンナノチューブを配合した導電性樹脂組成物が知られており(特許文献3、4)、これらの樹脂組成物によって導電性シートが形成されている。
特許第3177606号公報 特開2004−225003号公報 特開2004−182842号公報 特開2002−97375号公報
Conventionally, a conductive resin sheet formed of a resin containing a large amount of conductive carbon powder is known. For example, carbon powders such as carbon black, carbon fibers, and conductive resin compositions in which these are mixed are known (Patent Documents 1 and 2), and carbon nanotubes are used instead of carbon powders and carbon fibers. In addition, conductive resin compositions in which carbon nanotubes are blended with carbon fibers are known (Patent Documents 3 and 4), and a conductive sheet is formed of these resin compositions.
Japanese Patent No. 3177606 JP 2004-225003 A JP 2004-182842 A JP 2002-97375 A

従来の導電フィラーを含有する樹脂組成物によって形成された導電性シートは、フィラーの含有量が多いために機械的強度に劣り、しかも伸びが殆どないので二次加工が困難であり、実用性に限界がある。本発明は、従来の導電性樹脂シートにおける上記問題を解決したものであり、高い導電性を有するとともに高い強度と破断伸度を有する導電性樹脂シートを提供する。 A conductive sheet formed of a resin composition containing a conventional conductive filler is inferior in mechanical strength due to a large amount of filler, and has little elongation, making secondary processing difficult and practical. There is a limit. This invention solves the said problem in the conventional conductive resin sheet, and provides the conductive resin sheet which has high electroconductivity and high intensity | strength and breaking elongation.

本発明は以下の導電性樹脂シートに関する。
〔1〕熱可塑性樹脂にカーボンナノファイバーを配合してなる熱可塑性樹脂組成物によって形成した導電性樹脂シートであり、熱可塑性樹脂がポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリメタクリル酸メチル、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール、酢酸セルロース、またはABSの各樹脂であり、体積抵抗値1.0Ωcm以下、DBP吸油量150ml/100g以上、および比表面積250〜280m 2 /gのカーボンナノファイバーを3〜7wt%含有し、該シートの体積抵抗値が10 9 Ωcm以下であって破断伸度が50%以上であり、原熱可塑性樹脂に対する強度比100%以上であることを特徴とする導電性樹脂シート。
〔2〕上記[1]に記載する導電性樹脂シートによって形成された電子部品包装体または電子部品搬送容器。
〔3〕上記[1]に記載する導電性樹脂シートであって、複写機、印刷機、ないしファクシミリに使用される帯電シート、除電シート、転写シート、または定着シート。
The present invention relates to the following conductive resin sheet.
[1] A conductive resin sheet formed by a thermoplastic resin composition obtained by blending carbon nanofibers with a thermoplastic resin, and the thermoplastic resin is polyethylene, polypropylene, polystyrene, polyvinyl chloride, polymethyl methacrylate, polyamide , Polyester, polycarbonate, polyacetal, cellulose acetate, or ABS resin, 3 to 3 carbon nanofibers having a volume resistance of 1.0 Ωcm or less, a DBP oil absorption of 150 ml / 100 g or more, and a specific surface area of 250 to 280 m 2 / g. 7% by weight , the volume resistance of the sheet is 10 9 Ωcm or less, the elongation at break is 50% or more, and the strength ratio to the raw thermoplastic resin is 100% or more. .
[2] An electronic component package or an electronic component transport container formed of the conductive resin sheet according to [1] .
[3] The conductive resin sheet according to the above [1], which is a charged sheet, a charge eliminating sheet, a transfer sheet, or a fixing sheet used in a copying machine, a printing machine, or a facsimile.

本発明の導電性樹脂シートは、カーボンナノファイバーを含有する熱可塑性樹脂組成物によって形成した導電性シートであり、体積抵抗値が109Ωcm以下、および単位面積あたりの破断伸度50%以上であって、原熱可塑性樹脂に対する強度比100%以上であるであるので、高い導電性と共に優れた加工性を有し、本発明の導電性樹脂シートを用いることによって高品質の導電性製品を得ることができる。






The conductive resin sheet of the present invention is a conductive sheet formed of a thermoplastic resin composition containing carbon nanofibers, and has a volume resistance value of 10 9 Ωcm or less and a breaking elongation of 50% or more per unit area. Since the strength ratio with respect to the raw thermoplastic resin is 100% or more, it has excellent workability as well as high conductivity, and a high-quality conductive product is obtained by using the conductive resin sheet of the present invention. be able to.






本発明の導電性樹脂シートは、体積抵抗値1.0Ωcm以下およびDBP吸油量150ml/100g以上のカーボンナノファイバーを含有する熱可塑性樹脂組成物によって形成される。DBP吸油量150ml/100g以上のカーボンナノファイバーは樹脂中で分散性が良く、これを上記含有量の範囲で樹脂に配合することによって樹脂の機械的強度や粘性等を損なうことなく、導電性と共に強度および破断伸度に優れた導電性樹脂シートを得ることができる。
The conductive resin sheet of the present invention is formed of a thermoplastic resin composition containing carbon nanofibers having a volume resistance of 1.0 Ωcm or less and a DBP oil absorption of 150 ml / 100 g or more. Carbon nanofibers with a DBP oil absorption of 150ml / 100g or more have good dispersibility in the resin. By blending this into the resin within the above content range, the conductivity and the mechanical strength of the resin are not impaired. A conductive resin sheet excellent in strength and elongation at break can be obtained.

本発明の導電性樹脂シートは、これを成形したり加工することによって、電子部品包装体、電子部品搬送容器、または複写機、印刷機、ないしファクシミリに使用される帯電、除電、転写、または定着シート等の用途に好適である。 The conductive resin sheet of the present invention is formed, processed, or processed to be charged, neutralized, transferred, or fixed in an electronic component package, an electronic component transport container, or a copying machine, a printing machine, or a facsimile machine. Suitable for applications such as sheets.

本発明の導電性樹脂シートは、カーボンナノファイバーを含有する熱可塑性樹脂組成物によって形成したものである。この熱可塑性樹脂に配合するカーボンナノファイバーは、例えば、直径が数十ナノメータ以下、長さが数百ミクロンメータ以下であるナノサイズの極微細炭素繊維であり、内部が中空構造のカーボンナノチューブに限らず、内部が充填された構造のものを含み、炭素層が単層構造あるいは多層構造の何れの場合も含み、炭素層が螺旋構造に限らず、また炭素層が繊維の軸長方向に伸びた構造に限らず、炭素層が径方向に伸びた構造のものも含む。 The conductive resin sheet of the present invention is formed by a thermoplastic resin composition containing carbon nanofibers. Carbon nanofibers to be blended with this thermoplastic resin are, for example, nano-sized ultrafine carbon fibers having a diameter of several tens of nanometers or less and a length of several hundreds of micrometers or less, and are limited to carbon nanotubes having a hollow structure inside. In addition, including a structure filled inside, the carbon layer includes either a single layer structure or a multilayer structure, the carbon layer is not limited to a spiral structure, and the carbon layer extends in the axial direction of the fiber. Not only the structure but also a structure in which the carbon layer extends in the radial direction is included.

熱可塑性樹脂組成物は、ポリエチレン系、ポリプロピレン系、ポリスチレン系、ポリ塩化ビニル、ポリメタクリル酸メチル、ナイロン(ポリアミド)系、ポリエステル系、ポリカーボネート系、ポリアセタール系、酢酸セルロース、ABS系の樹脂やそれらの混合物などを用いることができる。 Thermoplastic resin compositions include polyethylene, polypropylene, polystyrene, polyvinyl chloride, polymethyl methacrylate, nylon (polyamide), polyester, polycarbonate, polyacetal, cellulose acetate, ABS resins and their A mixture or the like can be used.

本発明の導電性樹脂シートにおいて、引張強度、および破断伸度は、引張試験機を用いて測定したものである。試験片の大きさは、シートを長さ100mm、幅10mmに切り取り測定した。引張強度は断面積あたりの強度に換算した値である。原熱可塑性樹脂に対する強度比とは、同一条件で作成したシートについて、カーボンナノファイバーを含有しない熱可塑性樹脂の引張強度POに対して、同一の熱可塑性樹脂にカーボンナノファイバーを配合してなる熱可塑性樹脂組成物の引張強度PXの比(PX/PO)を%値で示したものである。破断伸度は、試験前の長さL0に対して、破断時の長さLXの比(LX/LO)を%値で示したものである。 In the conductive resin sheet of the present invention, the tensile strength and elongation at break are measured using a tensile tester. The size of the test piece was measured by cutting a sheet into a length of 100 mm and a width of 10 mm. The tensile strength is a value converted into strength per cross-sectional area. The intensity ratio Haranetsu thermoplastic resin, the sheet prepared under the same conditions, with respect to tensile strength P O of the thermoplastic resin containing no carbon nanofiber, by blending the carbon nanofibers in the same thermoplastic resin The ratio (P X / P O ) of the tensile strength P X of the thermoplastic resin composition is shown as a% value. The elongation at break is the ratio (L X / L O ) of the length L X at break to the length L 0 before the test, expressed as a% value.

本発明の導電性樹脂シートは、上記破断伸度が30%以上であって上記強度比100%以上である。好ましくは、体積抵抗値が109Ωcm以下、および上記破断伸度50%以上であって上記強度比100%以上である。一方、熱可塑性樹脂にカーボンブラック等を配合してなる従来の導電性樹脂シートにおいて、実用に適う程度の導電性を有するものの破断伸度は10%以下であり、また原熱可塑性樹脂に対する強度比は概ね80%以下である。従って、本発明の導電性樹脂シートは、従来の導電性樹脂シートよりも強度および加工性が格段に優れている。 The conductive resin sheet of the present invention has a breaking elongation of 30% or more and a strength ratio of 100% or more. Preferably, the volume resistance value is 10 9 Ωcm or less, the breaking elongation is 50% or more, and the strength ratio is 100% or more. On the other hand, in a conventional conductive resin sheet formed by blending carbon black or the like with a thermoplastic resin, the elongation at break is 10% or less, although it has a conductivity suitable for practical use, and the strength ratio with respect to the raw thermoplastic resin Is approximately 80% or less. Therefore, the conductive resin sheet of the present invention is remarkably superior in strength and workability than the conventional conductive resin sheet.

本発明の導電性樹脂シートは、体積抵抗値1.0Ωcm以下およびDBP吸油量150ml/100g以上のカーボンナノファイバーを含有する熱可塑性樹脂組成物によって形成することができる。DBP吸油量が150ml/100gよりも少ないカーボンナノファイバーは樹脂中の分散性が劣り、凝集しやすいので樹脂組成物の導電性が不均一になり、さらに樹脂組成物の加工性が低下するので好ましくない。また、体積抵抗値が1.0Ωcmより大きいカーボンナノファイバーは導電性が不十分である。 The conductive resin sheet of the present invention can be formed of a thermoplastic resin composition containing carbon nanofibers having a volume resistance of 1.0 Ωcm or less and a DBP oil absorption of 150 ml / 100 g or more. Carbon nanofibers with a DBP oil absorption of less than 150 ml / 100 g are preferred because they have poor dispersibility in the resin and tend to aggregate, making the resin composition non-uniform in conductivity and further reducing the processability of the resin composition. Absent. Carbon nanofibers having a volume resistance value greater than 1.0 Ωcm have insufficient conductivity.

体積抵抗値1.0Ωcm以下およびDBP吸油量が150ml/100g以上のカーボンナノファイバーは、触媒を用いた気相成長法において、触媒および原料の混合ガス組成を調整することによって製造することができる。具体的には、例えば、触媒粒子としてFe、Ni、Co、Mn、Cuの酸化物から選ばれた1種または2種以上と、Mg、Ca、Al、Siの酸化物から選ばれた1種または2種以上の混合酸化物粉末を用い、400℃〜800℃の温度で、一酸化炭素または二酸化炭素と水素の混合ガスを上記触媒粒子に接触させて、カーボンナノファイバーを製造する気相成長法において、触媒としてCo酸化物とMg酸化物の混合酸化物あるいは、Mg酸化物にCo酸化物が被覆された複合酸化物を用い、原料混合ガスを一酸化炭素および/または二酸化炭素と水素とし、その混合比をCO/H2=50/50〜99/1に調整し、好ましくは、さらに反応後に連続して反応温度と同一温度下で水素ガスで10分間以上処理することによって、体積抵抗値が低くDBP吸油量が高いカーボンナノファイバーを製造することができる。 Carbon nanofibers having a volume resistance of 1.0 Ωcm or less and a DBP oil absorption of 150 ml / 100 g or more can be produced by adjusting the mixed gas composition of the catalyst and the raw material in the vapor phase growth method using the catalyst. Specifically, for example, the catalyst particles are one or more selected from oxides of Fe, Ni, Co, Mn, and Cu and one selected from oxides of Mg, Ca, Al, and Si. Alternatively, vapor phase growth in which carbon nanofibers are produced by using two or more mixed oxide powders and contacting carbon monoxide or a mixed gas of carbon dioxide and hydrogen with the catalyst particles at a temperature of 400 ° C. to 800 ° C. In this method, a mixed oxide of Co oxide and Mg oxide or a composite oxide in which a Mg oxide is coated with a Co oxide is used as a catalyst, and the raw material mixed gas is carbon monoxide and / or carbon dioxide and hydrogen. The volume ratio is adjusted by adjusting the mixing ratio to CO / H 2 = 50/50 to 99/1, preferably by further treating with hydrogen gas for 10 minutes or more continuously at the same temperature as the reaction temperature after the reaction. value Can ku DBP oil absorption of producing high carbon nanofiber.

本発明において用いるカーボンナノファイバーは、直径5〜100nmおよびアスペクト比10以上であるものが好ましい。このサイズのものは極微細な繊維であるので樹脂中に均一に分散しやすく、かつ互いに接触しやすいので、均一な導電性を得るのに都合が良い。 The carbon nanofibers used in the present invention preferably have a diameter of 5 to 100 nm and an aspect ratio of 10 or more. Since this size is an extremely fine fiber, it is easy to uniformly disperse in the resin and easily come into contact with each other, which is convenient for obtaining uniform conductivity.

また、上記カーボンナノファイバーはBET比表面積400m2/g以下、好ましくは300m2/g以下であるものが良い。BET比表面積がこれより大きいと樹脂との接触面積が過大になり、樹脂の物性が損なわれ、樹脂自体が本来有する強度や混練時ないし成形時の粘度が高くなり、流動性が失われるので好ましくない。 The carbon nanofibers should have a BET specific surface area of 400 m 2 / g or less, preferably 300 m 2 / g or less. If the BET specific surface area is larger than this, the contact area with the resin becomes excessive, the physical properties of the resin are impaired, the inherent strength of the resin itself and the viscosity at the time of kneading or molding are increased, and fluidity is lost. Absent.

本発明の導電性樹脂シートを形成する樹脂組成物のカーボンナノファイバーの含有量は、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2000m2以下が好ましい。実施例1〜5では比表面積250〜280m 2 /gのカーボンナノファイバーを3〜7wt%含有している。カーボンナノファイバーの含有量がこれより多いと引張強度や伸度などの樹脂物性が大きく低下するので好ましくない。

The content of the carbon nanofibers in the resin composition forming the conductive resin sheet of the present invention is 2000 m 2 in terms of the surface area of the carbon nanofibers (carbon content × specific surface area) relative to 100 parts by weight of the thermoplastic resin. The following is preferred. Examples 1 to 5 contain 3 to 7 wt% of carbon nanofibers having a specific surface area of 250 to 280 m 2 / g. If the carbon nanofiber content is higher than this, the resin physical properties such as tensile strength and elongation are greatly lowered, which is not preferable.

上記樹脂組成物は、カーボンナノファイバーと共に、機械的強度等を大きく損なわない範囲内で、カーボンブラックなどの導電性微粒子や難燃剤、分散安定剤などを含有してもよい。 The resin composition may contain conductive fine particles such as carbon black, a flame retardant, a dispersion stabilizer, and the like within a range that does not significantly impair mechanical strength and the like together with the carbon nanofibers.

以下に本発明の実施例を比較例と共に示す。なお、PCシートの作成方法および評価方法は下記のとおりである。また、本発明の導電性樹脂シートにおいて、引張強度および破断伸度は引張試験機を用いて測定した。試験片の大きさは、シートを長さ100mm、幅10mmに切り取り測定した。引張強度は、断面積あたりの強度に換算して計算した。
〔PCシートの作成方法〕:予め所定量のカーボンナノファイバーを含有したPC樹脂コンパウンドを作成し、それを射出押し出しフィルム成形加工で所定の厚みに成形することにより導電性シートを得た。
〔体積抵抗値〕:市販の測定装置(油化電子社製:ロレスタ−AP)を用い、4端子法により体積抵抗を求めた。
Examples of the present invention are shown below together with comparative examples. In addition, the preparation method and evaluation method of a PC sheet are as follows. In the conductive resin sheet of the present invention, the tensile strength and the breaking elongation were measured using a tensile tester. The size of the test piece was measured by cutting a sheet into a length of 100 mm and a width of 10 mm. The tensile strength was calculated in terms of strength per cross-sectional area.
[Preparation Method of PC Sheet]: A PC resin compound containing a predetermined amount of carbon nanofibers was prepared in advance, and formed into a predetermined thickness by injection extrusion film forming process to obtain a conductive sheet.
[Volume resistance value]: Volume resistance was determined by a four-terminal method using a commercially available measuring device (Yureka Electronics Co., Ltd .: Loresta-AP).

本発明の導電性樹脂シートはカーボンナノファイバーの配合量が3〜7重量%であるものは、カーボンブラックを15重量%配合した比較例1よりも体積抵抗値が小さく、導電性に優れている。また、比較例1の破断伸度は5%、引張強度45%であるのに対して、本発明の導電性樹脂シートは破断伸度90〜130、引張強度57〜63であり、伸長性が格段に優れており、引張強度も大きい。さらに、DBP吸油量が少ない従来のカーボンナノフィバーを用いた比較例2はカーボンナノファイバーの配合量が3重量%でシート状に成形することができず、格段に加工性が劣る。 In the conductive resin sheet of the present invention, the carbon nanofiber blending amount of 3 to 7% by weight has a smaller volume resistance than Comparative Example 1 in which carbon black is blended by 15% by weight and is excellent in conductivity. . Further, the breaking elongation of Comparative Example 1 is 5% and the tensile strength is 45%, whereas the conductive resin sheet of the present invention has a breaking elongation of 90 to 130 and a tensile strength of 57 to 63, and has an extensibility. It is remarkably superior and has high tensile strength. Further, Comparative Example 2 using the conventional carbon nanofibre with a small DBP oil absorption amount cannot be formed into a sheet shape with a blending amount of carbon nanofibers of 3% by weight, and the processability is remarkably inferior.

Figure 0005062503
Figure 0005062503



Claims (3)

熱可塑性樹脂にカーボンナノファイバーを配合してなる熱可塑性樹脂組成物によって形成した導電性樹脂シートであり、熱可塑性樹脂がポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリメタクリル酸メチル、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール、酢酸セルロース、またはABSの各樹脂であり、体積抵抗値1.0Ωcm以下、DBP吸油量150ml/100g以上、および比表面積250〜280m 2 /gのカーボンナノファイバーを3〜7wt%含有し、該シートの体積抵抗値が10 9 Ωcm以下であって破断伸度が50%以上であり、原熱可塑性樹脂に対する強度比100%以上であることを特徴とする導電性樹脂シート。 It is a conductive resin sheet formed by a thermoplastic resin composition formed by blending carbon nanofibers in a thermoplastic resin, and the thermoplastic resin is polyethylene, polypropylene, polystyrene, polyvinyl chloride, polymethyl methacrylate, polyamide, polyester, Polycarbonate, polyacetal, cellulose acetate, or ABS resin, containing 3 to 7 wt% of carbon nanofibers with a volume resistance of 1.0 Ωcm or less, a DBP oil absorption of 150 ml / 100 g or more, and a specific surface area of 250 to 280 m 2 / g The conductive resin sheet is characterized in that the volume resistance value of the sheet is 10 9 Ωcm or less, the elongation at break is 50% or more, and the strength ratio to the raw thermoplastic resin is 100% or more. 請求項1に記載する導電性樹脂シートによって形成された電子部品包装体または電子部品搬送容器。 An electronic component package or an electronic component transport container formed by the conductive resin sheet according to claim 1 . 請求項1に記載する導電性樹脂シートであって、複写機、印刷機、ないしファクシミリに使用される帯電シート、除電シート、転写シート、または定着シート。The conductive resin sheet according to claim 1, wherein the sheet is a charged sheet, a charge eliminating sheet, a transfer sheet, or a fixing sheet used in a copying machine, a printing machine, or a facsimile machine.
JP2004345425A 2004-11-30 2004-11-30 Conductive resin sheet Active JP5062503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345425A JP5062503B2 (en) 2004-11-30 2004-11-30 Conductive resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345425A JP5062503B2 (en) 2004-11-30 2004-11-30 Conductive resin sheet

Publications (2)

Publication Number Publication Date
JP2006152132A JP2006152132A (en) 2006-06-15
JP5062503B2 true JP5062503B2 (en) 2012-10-31

Family

ID=36630803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345425A Active JP5062503B2 (en) 2004-11-30 2004-11-30 Conductive resin sheet

Country Status (1)

Country Link
JP (1) JP5062503B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514452B2 (en) * 2008-05-28 2014-06-04 三菱マテリアル株式会社 Conductive resin composition and molded body thereof
JP2010006998A (en) * 2008-06-28 2010-01-14 Mitsubishi Materials Corp Electroconductive resin composition and its use
JP5252713B2 (en) * 2008-12-26 2013-07-31 旭化成ケミカルズ株式会社 Molded body of aromatic polycarbonate resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103525A (en) * 2000-10-03 2002-04-09 Asahi Kasei Corp Hanging packaging film
JP3892389B2 (en) * 2002-12-03 2007-03-14 出光興産株式会社 Thermoplastic resin composition and molded body
JP2004075848A (en) * 2002-08-19 2004-03-11 Asahi Glass Co Ltd Conductive fluoro-copolymer composition and laminate using the same
JP2004115788A (en) * 2002-09-04 2004-04-15 Du Pont Toray Co Ltd Polyimide film and method for producing the same
JP2005206616A (en) * 2002-12-26 2005-08-04 Du Pont Toray Co Ltd Polyimide film, semiconductive film and its use
JP2004292656A (en) * 2003-03-27 2004-10-21 Teijin Dupont Films Japan Ltd Biaxially orientated thermoplastic resin film and laminated biaxially orientated thermoplastic resin film, and magnetic recording medium
JP4897193B2 (en) * 2003-12-18 2012-03-14 旭硝子株式会社 Laminated hose comprising a conductive fluorine-containing copolymer composition
JP4296086B2 (en) * 2003-12-25 2009-07-15 日本ポリプロ株式会社 Propylene resin composition and molded article thereof

Also Published As

Publication number Publication date
JP2006152132A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
EP1623435B1 (en) Conductive thermoplastic composites and methods of making
EP1884537B1 (en) Composite material
CN101081902B (en) Orientation reinforced polymer material and its uses
CN101084260A (en) Conductive thermosets by extrusion
JP5983850B1 (en) Conductive resin composition, molded article and method for producing the same
EP1813649A1 (en) Electroconductive masterbatch and resin composition including the same
JP2003306607A (en) Resin composition and method for producing the same
EP2463342A1 (en) Conductive polyamide resin composition
CN107099078B (en) Conductive resin composition and plastic molded article using same
JP2014221889A (en) Carbon black
JP4565384B2 (en) Method for producing carbon nanofibers with excellent dispersibility in resin
JP2018028031A (en) Conductive resin composition, molded article, and method for producing the same
JP4775887B2 (en) Resin composition
JP4877637B2 (en) Conductive resin
JP5062503B2 (en) Conductive resin sheet
JP5051571B2 (en) Conductive fiber and its use
EP1950252A1 (en) Colored polymer composition
JP2003342476A (en) Conductive resin material
JP6035201B2 (en) Conductive resin composition
JP2010006998A (en) Electroconductive resin composition and its use
JP2010077313A (en) Carbon black composite body and method for producing the same
JP2006152131A (en) Resin composition and use of the same
KR102334670B1 (en) Conductive resin composition and manufacturing method thereof
CN108136375B (en) Method for producing carbon nanofiber composite and carbon nanofiber composite
WO2009069565A1 (en) Molded articles, process for producing the molded articles, and use of the molded articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5062503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250