JP4877637B2 - Conductive resin - Google Patents

Conductive resin Download PDF

Info

Publication number
JP4877637B2
JP4877637B2 JP2006323889A JP2006323889A JP4877637B2 JP 4877637 B2 JP4877637 B2 JP 4877637B2 JP 2006323889 A JP2006323889 A JP 2006323889A JP 2006323889 A JP2006323889 A JP 2006323889A JP 4877637 B2 JP4877637 B2 JP 4877637B2
Authority
JP
Japan
Prior art keywords
conductive resin
resin
carbon nanofibers
carbon
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006323889A
Other languages
Japanese (ja)
Other versions
JP2008138040A (en
Inventor
修 坂谷
浩之 今井
勉 厚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2006323889A priority Critical patent/JP4877637B2/en
Publication of JP2008138040A publication Critical patent/JP2008138040A/en
Application granted granted Critical
Publication of JP4877637B2 publication Critical patent/JP4877637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、引張強度に優れると共に、破断伸度および衝撃強度の低下が少ない導電性樹脂に関する。本発明の導電性樹脂はキャリアーテープやトレイ、さらには複写機、ファクシミリ、ブリンター等の電子写真装置に用いられる導電性樹脂として好適である。   The present invention relates to a conductive resin that is excellent in tensile strength and has little decrease in elongation at break and impact strength. The conductive resin of the present invention is suitable as a conductive resin used in carrier tapes and trays, and electrophotographic apparatuses such as copying machines, facsimiles, and printers.

従来から、導電性カーボン粉末を多量に含有した樹脂によって形成した導電性樹脂が知られている。例えば、カーボンブラックなどの炭素粉末や炭素繊維、これらを混合した導電性樹脂組成物が知られており(特許文献1、2)、また、炭素粉末や炭素繊維に代えてカーボンナノチューブを用いたものや、炭素繊維と共にカーボンナノチューブを配合した導電性樹脂組成物が知られており(特許文献3、4)、これらの樹脂組成物によって導電性シートが形成されている。   Conventionally, a conductive resin formed of a resin containing a large amount of conductive carbon powder is known. For example, carbon powders such as carbon black, carbon fibers, and conductive resin compositions in which these are mixed are known (Patent Documents 1 and 2), and carbon nanotubes are used instead of carbon powders and carbon fibers. In addition, conductive resin compositions in which carbon nanotubes are blended with carbon fibers are known (Patent Documents 3 and 4), and a conductive sheet is formed of these resin compositions.

しかし、従来の導電フィラー含有樹脂組成物によって形成された導電性シートは、フィラーの含有量が多いために機械的強度に劣り、しかも伸びが殆どないので二次加工が困難であり、実用性に限界がある。この欠点を解消するため、親油性の高いカーボンナノファイバーを用いることによって機械的強度を高め、破断伸度の劣化を抑制した導電性樹脂シートが提案されている(特許文献5)。
特許第3177606号公報 特開2004−225003号公報 特開2004−182842号公報 特開2002−97375号公報 特開2006−152132号公報
However, the conductive sheet formed by the conventional conductive filler-containing resin composition is inferior in mechanical strength due to a large amount of filler, and is hardly stretched because it is hardly stretched. There is a limit. In order to eliminate this defect, a conductive resin sheet has been proposed in which mechanical strength is increased by using highly lipophilic carbon nanofibers and deterioration in break elongation is suppressed (Patent Document 5).
Japanese Patent No. 3177606 JP 2004-225003 A JP 2004-182842 A JP 2002-97375 A JP 2006-152132 A

親油性の高いカーボンナノファイバーを用いた導電性樹脂シート(特許文献5)は、導電性に優れており、高い引張強度を有し、破断伸度の低下も少ないが、衝撃強度については改善の余地がある。本発明は高い引張強度を有すると共に破断伸度および衝撃強度の低下が少ない導電性樹脂を提供する。   The conductive resin sheet using the highly lipophilic carbon nanofiber (Patent Document 5) has excellent electrical conductivity, high tensile strength, and little decrease in elongation at break, but improved impact strength. There is room. The present invention provides a conductive resin having a high tensile strength and a small decrease in elongation at break and impact strength.

本発明は以下に示す構成を有することによって上記課題を解決した導電性樹脂とその用途に関する。
(1)カーボンナノファイバーを分散させた熱可塑性樹脂組成物によって形成した導電性樹脂であって、第一族及び第ニ族元素残量が100ppm以下のカーボンナノファイバーを用い、原熱可塑性樹脂に対する衝撃強度の強度比が70%以上であることを特徴とする導電性樹脂。
(2)DBP吸油量150ml/100g以上のカーボンナノファイバーを分散させた熱可塑性樹脂組成物によって形成した導電性樹脂であって、成型品破断伸度が40%以上、原熱可塑性樹脂に対する引張強度比100%以上である上記(1)の導電性樹脂。
(3) 表面抵抗値が103Ω/□以下、引張強度55MPa以上である上記(1)または上記(2)の導電性樹脂シート。
(4)上記(1)〜上記(3)の何れかに記載する導電性を用いた電子部品包装体、電子部品搬送容器、または複写機、印刷機、ないしファクシミリに使用される帯電、除電、転写、または定着シート。
The present invention relates to a conductive resin that has solved the above-described problems by having the following configuration and its use.
(1) A conductive resin formed of a thermoplastic resin composition in which carbon nanofibers are dispersed, wherein carbon nanofibers having a remaining amount of the first group and second group elements of 100 ppm or less are used, and the raw thermoplastic resin is used. A conductive resin having a strength ratio of impact strength of 70% or more.
(2) A conductive resin formed from a thermoplastic resin composition in which carbon nanofibers having a DBP oil absorption of 150 ml / 100 g or more are dispersed, and has a molded product breaking elongation of 40% or more and a tensile strength against the original thermoplastic resin. The conductive resin according to (1), wherein the ratio is 100% or more.
(3) The conductive resin sheet according to (1) or (2) above, having a surface resistance value of 10 3 Ω / □ or less and a tensile strength of 55 MPa or more.
(4) Charging, static elimination used in electronic component packaging, electronic component transport containers, or copiers, printing machines, or facsimiles using the conductivity described in any one of (1) to (3) above. Transfer or fixing sheet.

本発明の導電性樹脂は、第一族及び第ニ族元素残量を100ppm以下に低減したカーボンナノファイバーを用いることによって、原熱可塑性樹脂に対する衝撃強度の強度比を70%以上に高めたものであり、本発明の導電性樹脂シートによれば衝撃に強い導電性樹脂製品を得ることができる。   The conductive resin of the present invention has a strength ratio of impact strength with respect to the raw thermoplastic resin increased to 70% or more by using carbon nanofibers in which the remaining amounts of the first group and second group elements are reduced to 100 ppm or less. Thus, according to the conductive resin sheet of the present invention, a conductive resin product resistant to impact can be obtained.

また、第一族及び第ニ族元素残量を低減すると共に、DBP吸油量150ml/100g以上のカーボンナノファイバーを用いることによって、衝撃強度および破断伸度の低下が少なく、かつ原熱可塑性樹脂に対する引張強度比の高い導電性樹脂を得ることができる。具体的には、原熱可塑性樹脂に対する衝撃強度の強度比を70%以上、および破断伸度40%以上、引張強度比100%以上の導電性樹脂を得ることができる。さらに、体積抵抗値1.0Ωcm以下のカーボンナノファイバーを用い、表面抵抗値が103Ω/□以下の導電性樹脂を得ることができる。 In addition, the carbon nanofibers having a DBP oil absorption amount of 150 ml / 100 g or more are reduced by reducing the remaining amount of the first group and second group elements, so that the impact strength and the elongation at break are small and the raw thermoplastic resin is reduced. A conductive resin having a high tensile strength ratio can be obtained. Specifically, it is possible to obtain a conductive resin having a strength ratio of impact strength with respect to the raw thermoplastic resin of 70% or more, a breaking elongation of 40% or more, and a tensile strength ratio of 100% or more. Furthermore, a conductive resin having a surface resistance value of 10 3 Ω / □ or less can be obtained using carbon nanofibers having a volume resistance value of 1.0 Ωcm or less.

本発明の導電性樹脂は高い導電性と共に優れた加工性を有するので、本発明の導電性樹脂を用いることによって、電子部品包装体、電子部品搬送容器、または複写機、印刷機、ないしファクシミリに使用される帯電、除電、転写、または定着シートなどの製品について、高品質の導電性製品を得ることができる。   Since the conductive resin of the present invention has high conductivity and excellent processability, the use of the conductive resin of the present invention allows the electronic component package, the electronic component transport container, or the copying machine, printing machine, or facsimile to be used. High quality conductive products can be obtained for products such as charging, static elimination, transfer or fixing sheets used.

本発明の導電性樹脂は、カーボンナノファイバーを分散させた熱可塑性樹脂組成物によって形成したものである。このカーボンナノファイバーは、例えば、直径が数十ナノメータ以下、長さが数百ミクロンメータ以下であるナノサイズの極微細炭素繊維であって、内部が中空構造のカーボンナノチューブに限らず、内部が充填された構造のものを含む。   The conductive resin of the present invention is formed by a thermoplastic resin composition in which carbon nanofibers are dispersed. This carbon nanofiber is, for example, a nano-sized ultrafine carbon fiber having a diameter of several tens of nanometers or less and a length of several hundreds of micrometers or less. Including those with a structured structure.

熱可塑性樹脂組成物は、ポリエチレン系、ポリプロピレン系、ポリスチレン系、ポリ塩化ビニル、ポリメタクリル酸メチル、ナイロン(ポリアミド)系、ポリエステル系、ポリカーボネート系、ポリアセタール系、酢酸セルロース、ABS系の樹脂やそれらの混合物などを用いることができる。   Thermoplastic resin compositions include polyethylene, polypropylene, polystyrene, polyvinyl chloride, polymethyl methacrylate, nylon (polyamide), polyester, polycarbonate, polyacetal, cellulose acetate, ABS resins and their A mixture or the like can be used.

本発明の導電性樹脂は、第一族及び第ニ族元素残量が100ppm以下のカーボンナノファイバーを用いる。一般にカーボンナノファイバーの製造工程において、マグネシウムなどの第ニ族元素を含む触媒が使用されるが、不純物の第一族元素やカーボンナノファイバーに残る触媒量が多いと衝撃強度が低下する傾向がみられる。触媒成分である第ニ族元素の残量は100ppm以下が良く、10ppm以下がさらに好ましい。   For the conductive resin of the present invention, carbon nanofibers having a remaining amount of the first group and second group elements of 100 ppm or less are used. In general, a catalyst containing a Group II element such as magnesium is used in the manufacturing process of carbon nanofibers. However, if there is a large amount of impurities remaining in Group I elements or carbon nanofibers, the impact strength tends to decrease. It is done. The remaining amount of the Group II element as the catalyst component is preferably 100 ppm or less, and more preferably 10 ppm or less.

不純物の第一族元素や触媒成分の第ニ族元素を除去するには塩化水素や希硫酸などで洗浄すれば良い。具体的には、例えば、希硫酸にカーボンナノファイバーを投入し、加温下で攪拌して第一族及び第ニ族元素の不純物を溶解させる。その後、濾過洗浄して上記不純物を除去する。処理条件としては、例えば、濃度0.5〜10.0重量%の希硫酸を使用し、処理温度室温〜80℃、処理時間0.5〜6.0時間程度で良い。   In order to remove the first group element of impurities and the second group element of the catalyst component, it may be washed with hydrogen chloride or dilute sulfuric acid. Specifically, for example, carbon nanofibers are added to dilute sulfuric acid and stirred under heating to dissolve impurities of the first group and second group elements. Thereafter, the impurities are removed by filtration and washing. As the treatment conditions, for example, dilute sulfuric acid having a concentration of 0.5 to 10.0% by weight is used, the treatment temperature is room temperature to 80 ° C., and the treatment time is about 0.5 to 6.0 hours.

第一族及び第ニ族元素残量を100ppm以下に低減したカーボンナノファイバーを用いることによって、原熱可塑性樹脂によって形成した樹脂の衝撃強度(SO)に対して、樹脂の衝撃強度(SH)の強度比(SH/SO)が70%以上の導電性樹脂を得ることができる。この衝撃強度の比(SH/SO)は、同一条件で作成した樹脂について、カーボンナノファイバーを含有しない熱可塑性樹脂によって形成した樹脂の衝撃強度SOに対して、同一の熱可塑性樹脂にカーボンナノファイバーを配合した本発明の熱可塑性樹脂組成物によって形成した樹脂の衝撃強度SHの比(SH/SO)を%値で示したものである。なお、衝撃強度は例えばシャルピー衝撃強度である。 By using the carbon nanofibers having reduced first family and Second group elements remaining in 100ppm or less, with respect to the impact strength of the resin formed by Haranetsu thermoplastic resin (S O), impact strength of the resin (S H ) Strength ratio (S H / S O ) of 70% or more can be obtained. This ratio of impact strength (S H / S O ) is the same for the resins made under the same conditions, with respect to the impact strength S O of the resin formed by the thermoplastic resin not containing carbon nanofibers. It illustrates the ratio of the impact strength S H of resin formed of a thermoplastic resin composition of the present invention obtained by blending carbon nanofibers (S H / S O) a percentage value. The impact strength is, for example, Charpy impact strength.

また、上記カーボンナノファイバーは、DBP吸油量150ml/100g以上である親油性の高いカーボンナノファイバーを用いることが好ましい。DBP吸油量が上記範囲よりも少ないカーボンナノファイバーは樹脂中の分散性が劣り、凝集しやすいので樹脂組成物の導電性が不均一になり、さらに樹脂組成物の加工性が低下する。DBP吸油量が上記範囲のカーボンナノファイバーは樹脂中で分散性が良く、樹脂に配合したときに樹脂の機械的強度や粘性等を損なうことなく、導電性と共に強度および破断伸度に優れた導電性樹脂を得ることができる。具体的には、例えば、破断伸度が40%以上、原熱可塑性樹脂に対する引張強度比100%以上の導電性樹脂を得ることができる。   The carbon nanofiber is preferably a highly lipophilic carbon nanofiber having a DBP oil absorption of 150 ml / 100 g or more. Carbon nanofibers having a DBP oil absorption amount less than the above range are poor in dispersibility in the resin and easily aggregate, so that the conductivity of the resin composition becomes non-uniform and the processability of the resin composition is further lowered. Carbon nanofibers with DBP oil absorption in the above range have good dispersibility in the resin, and when blended in the resin, the conductivity and strength and breaking elongation are excellent without impairing the mechanical strength and viscosity of the resin. Can be obtained. Specifically, for example, a conductive resin having a breaking elongation of 40% or more and a tensile strength ratio of 100% or more to the original thermoplastic resin can be obtained.

原熱可塑性樹脂に対する引張強度比とは、同一条件で作成した樹脂試験片について、カーボンナノファイバーを含有しない熱可塑性樹脂によって形成した樹脂試験片の引張強度POに対して、同一の熱可塑性樹脂にカーボンナノファイバーを配合した熱可塑性樹脂組成物によって形成した樹脂試験片の引張強度PXの比(PX/PO)を%値で示したものである。破断伸度は、試験前の長さL0に対して、破断時の長さLXの比(LX/LO)を%値で示したものである。 Tensile strength ratio Haranetsu thermoplastic resin, the resin specimens prepared in the same conditions, with respect to tensile strength P O of the resin specimens were formed by a thermoplastic resin containing no carbon nanofiber, the same thermoplastic resin The ratio (P X / P O ) of the tensile strength P X of a resin test piece formed from a thermoplastic resin composition in which carbon nanofibers are blended is shown as a% value. The elongation at break is the ratio (L X / L O ) of the length L X at break to the length L 0 before the test, expressed as a% value.

また、表面抵抗値が103Ω/□以下の導電性の高い樹脂を得るには体積抵抗値1.0Ωcm以下のカーボンナノファイバーを用いると良い。 In order to obtain a highly conductive resin having a surface resistance value of 10 3 Ω / □ or less, carbon nanofibers having a volume resistance value of 1.0 Ωcm or less are preferably used.

体積抵抗値が低く、かつDBP吸油量が高いカーボンナノチューブは、触媒を用いた気相成長法において、触媒および原料の混合ガス組成を調整することによって製造することができる。具体的には、例えば、触媒粒子としてFe、Ni、Co、Mn、Cuの酸化物から選ばれた1種または2種以上と、Mg、Ca、Al、Siの酸化物から選ばれた1種または2種以上の混合酸化物粉末を用い、400℃〜800℃の温度で、一酸化炭素または二酸化炭素と水素の混合ガスを上記触媒粒子に接触させて、カーボンナノファイバーを製造する気相成長法において、触媒としてCo酸化物とMg酸化物の混合酸化物あるいは、Mg酸化物にCo酸化物が被覆された複合酸化物を用い、原料混合ガスを一酸化炭素および/または二酸化炭素と水素とし、その混合比をCO/H2=50/50〜99/1に調整することによって、体積抵抗値が低く、DBP吸油量が高いカーボンナノチューブを製造することができる。 Carbon nanotubes having a low volume resistivity and a high DBP oil absorption can be produced by adjusting the mixed gas composition of the catalyst and the raw material in the vapor phase growth method using the catalyst. Specifically, for example, the catalyst particles are one or more selected from oxides of Fe, Ni, Co, Mn, and Cu and one selected from oxides of Mg, Ca, Al, and Si. Alternatively, vapor phase growth in which carbon nanofibers are produced by using two or more mixed oxide powders and contacting carbon monoxide or a mixed gas of carbon dioxide and hydrogen with the catalyst particles at a temperature of 400 ° C. to 800 ° C. In this method, a mixed oxide of Co oxide and Mg oxide or a composite oxide in which a Mg oxide is coated with a Co oxide is used as a catalyst, and the raw material mixed gas is carbon monoxide and / or carbon dioxide and hydrogen. By adjusting the mixing ratio to CO / H 2 = 50/50 to 99/1, carbon nanotubes having a low volume resistance value and a high DBP oil absorption can be produced.

本発明の導電性樹脂において、カーボンナノファイバーの含有量は、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2500m2以下が好ましい。カーボンナノファイバーの含有量がこれより多いと引張強度や伸度などの樹脂物性が大きく低下するので好ましくない。 In the conductive resin of the present invention, the content of the carbon nanofibers is preferably 2500 m 2 or less in terms of the surface area of the carbon nanofibers (carbon content × specific surface area) with respect to 100 parts by weight of the thermoplastic resin. If the carbon nanofiber content is higher than this, the resin physical properties such as tensile strength and elongation are greatly lowered, which is not preferable.

本発明の導電性樹脂を形成するカーボンナノファイバー分散樹脂組成物は、機械的強度等を大きく損なわない範囲内で、他の導電性微粒子や難燃剤、分散安定剤などを含有してもよい。   The carbon nanofiber-dispersed resin composition forming the conductive resin of the present invention may contain other conductive fine particles, a flame retardant, a dispersion stabilizer and the like within a range that does not significantly impair mechanical strength and the like.

以下に本発明の実施例を比較例と共に示す。なお、PC樹脂の作成方法および評価方法は下記のとおりである。また、本発明の導電性樹脂において、引張強度および破断伸度は引張試験機を用いて測定した。試験片は、JIS K7113準拠の1号形試験片を作成し測定に用いた。引張強度は、断面積あたりの強度に換算して計算した。
〔PC樹脂試験片の作成方法〕:予め所定量のカーボンナノファイバーを分散させたポリカーボネート樹脂(PC樹脂)コンパウンドを作成し、それを射出圧縮成型及び、熱プレス加工で所定の形に成形することにより各種試験片得た。
〔体積抵抗値〕:抵抗率計(デジタルマルチメーター)を用い、試料に対して100kg/cm2の加圧時の抵抗を測定する。
〔表面抵抗値〕:市販の測定装置(油化電子社製:ロレスタ−AP)を用い、4端子法により体積抵抗を求めた。
〔衝撃強度〕:JIS K7110準拠の試験片を作成し、シャルピー衝撃試験法により測定した。
Examples of the present invention are shown below together with comparative examples. In addition, the preparation method and evaluation method of PC resin are as follows. In the conductive resin of the present invention, the tensile strength and the breaking elongation were measured using a tensile tester. As the test piece, a JIS K7113 compliant type 1 test piece was prepared and used for measurement. The tensile strength was calculated in terms of strength per cross-sectional area.
[Preparation method of PC resin test piece]: A polycarbonate resin (PC resin) compound in which a predetermined amount of carbon nanofibers is dispersed in advance is prepared, and then molded into a predetermined shape by injection compression molding and hot pressing. Thus, various test pieces were obtained.
[Volume resistance value]: A resistance meter (digital multimeter) is used to measure the resistance when a sample is pressurized to 100 kg / cm 2 .
[Surface Resistance Value] Volume resistance was determined by a four-terminal method using a commercially available measuring device (Yureka Electronics Co., Ltd .: Loresta AP).
[Impact strength]: JIS K7110-compliant test pieces were prepared and measured by the Charpy impact test method.

〔実施例1〜2〕
第一族及び第ニ族元素残量2ppmのカーボンナノファイバー(CNF:DBP吸油量250ml/100g)をポリカーボネート樹脂(二種I,II)に分散させた樹脂組成物(CNF量5重量%)を用い、射出圧縮成型及び、熱プレス成型により試験片を調製した。この試験片の、表面抵抗値、引張強度、破断伸度、衝撃強度を測定した。この結果を表1に示した。カーボンナノファイバーを含有しない以外は同様にして調製した試験片について表面抵抗値等を測定した。この結果を比較対象(NA)として表1に示した。
[Examples 1-2]
A resin composition (CNF amount 5% by weight) in which carbon nanofibers (CNF: DBP oil absorption 250 ml / 100 g) having a residual amount of Group 1 and Group 2 elements are dispersed in a polycarbonate resin (Type I, II) A test piece was prepared by injection compression molding and hot press molding. The test piece was measured for surface resistance, tensile strength, elongation at break, and impact strength. The results are shown in Table 1. Surface resistance values and the like were measured for test pieces prepared in the same manner except that no carbon nanofibers were contained. The results are shown in Table 1 as a comparison target (NA).

〔比較例1〜3〕
触媒除去を行わないカーボンナノファイバー(アルカリ土類残量5000ppm)を用いた以外は実施例1〜2と同様にして樹脂シートを調製し、この樹脂シートについて表面抵抗値等を測定した。この結果を比較例1〜2として表1に示した。また、カーボンナノファイバーに代えてカーボンブラックを同量用いた以外は実施例1〜2と同様にして樹脂シートを調製し、この樹脂シートについて表面抵抗値等を測定した。この結果を比較例3として表1に示した。
[Comparative Examples 1-3]
A resin sheet was prepared in the same manner as in Examples 1 and 2 except that carbon nanofibers (alkaline earth residual amount: 5000 ppm) without catalyst removal were used, and the surface resistance value and the like of this resin sheet were measured. The results are shown in Table 1 as Comparative Examples 1-2. A resin sheet was prepared in the same manner as in Examples 1 and 2 except that the same amount of carbon black was used instead of carbon nanofibers, and the surface resistance value and the like of this resin sheet were measured. The results are shown in Table 1 as Comparative Example 3.

表1に示すように、本発明に係る樹脂(実施例1〜2)は、カーボンナノファイバーを含まない樹脂シート(NA)に対してシャルピー衝撃強度が約20%程度しか低下せず、樹脂の有する衝撃強度を大きく損なわずに維持することができる。また、本発明のカーボンナノファイバーを含む樹脂試験片の破断伸度HSは40%以上であり、カーボンナノファイバーを含まない樹脂試験片の破断伸度H0に対する伸度比(HS/H0)は70%以上であり、破断伸度の低下も小さい。一方、引張強度比(PX/PO)は何れも100%以上であり、優れた機械的強度を有する。また、比較例3より、同量のカーボンブラックを入れた時は、破断伸度、衝撃強度が著しく低下し、表面抵抗に関しても、6×1015Ω/□以上で導電性は得られなかった。 As shown in Table 1, the resin according to the present invention (Examples 1 and 2) has a Charpy impact strength that is only about 20% lower than the resin sheet (NA) that does not contain carbon nanofibers. The impact strength possessed can be maintained without significant loss. In addition, the elongation at break H S of the resin test piece containing the carbon nanofibers of the present invention is 40% or more, and the elongation ratio (H S / H) of the resin test piece not containing the carbon nanofibers to the break elongation H 0 . 0 ) is 70% or more, and the decrease in elongation at break is small. On the other hand, the tensile strength ratio (P X / P O ) is 100% or more, and has excellent mechanical strength. Further, from Comparative Example 3, when the same amount of carbon black was added, the elongation at break and impact strength were remarkably lowered, and the surface resistance was not obtained at 6 × 10 15 Ω / □ or more. .

Figure 0004877637
Figure 0004877637

Claims (4)

カーボンナノファイバーを分散させた熱可塑性樹脂組成物によって形成した導電性樹脂であって、第一族及び第ニ族元素残量が100ppm以下のカーボンナノファイバーを用い、原熱可塑性樹脂に対する衝撃強度の強度比が70%以上であることを特徴とする導電性樹脂。 A conductive resin formed by a thermoplastic resin composition in which carbon nanofibers are dispersed, and carbon nanofibers having a residual amount of the first group and second group elements of 100 ppm or less are used, and the impact strength against the raw thermoplastic resin is reduced. A conductive resin having a strength ratio of 70% or more. DBP吸油量150ml/100g以上のカーボンナノファイバーを分散させた熱可塑性樹脂組成物によって形成した導電性樹脂であって、成型品破断伸度が40%以上、原熱可塑性樹脂に対する引張強度比100%以上である請求項1の導電性樹脂。
A conductive resin formed from a thermoplastic resin composition in which carbon nanofibers with a DBP oil absorption of 150 ml / 100 g or more are dispersed, and has a molded product breaking elongation of 40% or more and a tensile strength ratio of 100% with respect to the raw thermoplastic resin. The conductive resin according to claim 1, which is as described above.
表面抵抗値が103Ω/□以下、引張強度55MPa以上である請求項1または2の導電性樹脂。
The conductive resin according to claim 1 or 2, having a surface resistance value of 10 3 Ω / □ or less and a tensile strength of 55 MPa or more.
請求項1〜3の何れかに記載する導電性樹脂を用いた電子部品包装体、電子部品搬送容器、または複写機、印刷機、ないしファクシミリに使用される帯電、除電、転写、または定着シート。 An electronic component package, an electronic component transport container, or a charging, static eliminating, transfer, or fixing sheet used in a copying machine, a printing machine, or a facsimile, using the conductive resin according to claim 1.
JP2006323889A 2006-11-30 2006-11-30 Conductive resin Active JP4877637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323889A JP4877637B2 (en) 2006-11-30 2006-11-30 Conductive resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323889A JP4877637B2 (en) 2006-11-30 2006-11-30 Conductive resin

Publications (2)

Publication Number Publication Date
JP2008138040A JP2008138040A (en) 2008-06-19
JP4877637B2 true JP4877637B2 (en) 2012-02-15

Family

ID=39599867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323889A Active JP4877637B2 (en) 2006-11-30 2006-11-30 Conductive resin

Country Status (1)

Country Link
JP (1) JP4877637B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586926A (en) * 2018-04-23 2018-09-28 江门市三硕新材料有限公司 A kind of high-strength conductive PP/MLLDPE flat filament plastics and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143963A (en) * 2006-12-07 2008-06-26 Nissin Kogyo Co Ltd Carbon fiber composite material
JP2010006998A (en) * 2008-06-28 2010-01-14 Mitsubishi Materials Corp Electroconductive resin composition and its use
CN106661333B (en) * 2014-08-07 2020-10-27 电化株式会社 Conductive polymer material and molded article thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586926A (en) * 2018-04-23 2018-09-28 江门市三硕新材料有限公司 A kind of high-strength conductive PP/MLLDPE flat filament plastics and preparation method thereof
CN108586926B (en) * 2018-04-23 2020-11-17 江门市三硕新材料有限公司 Plastic for high-strength conductive PP/MLLDPE flat filament and preparation method thereof

Also Published As

Publication number Publication date
JP2008138040A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
EP1623435B1 (en) Conductive thermoplastic composites and methods of making
KR101951959B1 (en) Polyamide composition containing electrically conductive carbon
CN101081902B (en) Orientation reinforced polymer material and its uses
JP4877637B2 (en) Conductive resin
Hornbostel et al. Single‐walled carbon nanotubes/polycarbonate composites: Basic electrical and mechanical properties
JP2008290936A (en) Production method of pre-composite based on nanotube, especially carbon nanotube
EP1813649A1 (en) Electroconductive masterbatch and resin composition including the same
JP4654425B2 (en) Carbon nanoprecursor, method for producing the same, carbon nanocomposite and method for producing the same
JP6026353B2 (en) Carbon black
JP4775887B2 (en) Resin composition
US20060078488A1 (en) Carbon material and process for producing the same
EP3546524A1 (en) Silicone rubber composite and preparation method therefor
JP5051571B2 (en) Conductive fiber and its use
JP5062503B2 (en) Conductive resin sheet
JP2010006998A (en) Electroconductive resin composition and its use
JP5326297B2 (en) Carbon nanotube dispersion solution
CN101747597B (en) Conductive batch and conductive single fiber
JP2003342476A (en) Conductive resin material
FI117511B (en) Process for preparing an conductive polymer blend and conductive polymer blend
JP2546793B2 (en) Method for producing granular or powdery carbon fine particles
Bhattacharyya et al. Mechanical properties and morphology of melt‐mixed PA6/SWNT composites: effect of reactive coupling
Lee et al. Influence of carbon nanofiber structure on properties of linear low density polyethylene composites
JP4771250B2 (en) Conductive yarn and its use
WO2009069565A1 (en) Molded articles, process for producing the molded articles, and use of the molded articles
Adhikari et al. Reinforcement on properties of poly (vinyl alcohol) films by embedding functionalized carbon micro coils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111119

R150 Certificate of patent or registration of utility model

Ref document number: 4877637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250