JP5051571B2 - Conductive fiber and its use - Google Patents

Conductive fiber and its use Download PDF

Info

Publication number
JP5051571B2
JP5051571B2 JP2006323890A JP2006323890A JP5051571B2 JP 5051571 B2 JP5051571 B2 JP 5051571B2 JP 2006323890 A JP2006323890 A JP 2006323890A JP 2006323890 A JP2006323890 A JP 2006323890A JP 5051571 B2 JP5051571 B2 JP 5051571B2
Authority
JP
Japan
Prior art keywords
fiber
conductive
weight
contact resistance
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006323890A
Other languages
Japanese (ja)
Other versions
JP2008138304A (en
Inventor
修 坂谷
浩之 今井
勉 厚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2006323890A priority Critical patent/JP5051571B2/en
Publication of JP2008138304A publication Critical patent/JP2008138304A/en
Application granted granted Critical
Publication of JP5051571B2 publication Critical patent/JP5051571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Description

本発明は繊維表面の接触抵抗を低減した導電繊維に関する。好ましくは、引張強度および伸度などの機械的強度に優れ、かつ接触抵抗の小さい導電繊維とその用途に関する。   The present invention relates to a conductive fiber having reduced contact resistance on the fiber surface. Preferably, the present invention relates to a conductive fiber having excellent mechanical strength such as tensile strength and elongation and low contact resistance, and its use.

電子写真複写機、電子写真プリンター等には現像用ブラシや感光ドラムクリーナー用ブラシなど各種のブラシが用いられており、これらのブラシはトナー等の帯電残留を防止するために導電性繊維によって形成されており、より導電性に優れたものが求められている。従来、導電性繊維として、導電性微粒子を配合して比抵抗を低減した樹脂によって形成した繊維が知られているが、環境変化に対する耐久性が低く、また繊維表面に存在する導電性微粒子によって微少な凹凸が形成される、このような繊維で形成したブラシを電子写真用機器の使用すると画像の鮮明度が低下する場合がある(特許文献1)。   Various brushes such as developing brushes and photosensitive drum cleaner brushes are used in electrophotographic copying machines, electrophotographic printers, etc., and these brushes are formed of conductive fibers to prevent residual charging of toner and the like. Therefore, there is a demand for a material having higher conductivity. Conventionally, as a conductive fiber, a fiber formed of a resin in which conductive fine particles are blended to reduce specific resistance is known, but the durability against environmental change is low, and the conductive fine particles present on the fiber surface have a small amount. When a brush formed of such a fiber with unevenness is used in an electrophotographic apparatus, the sharpness of the image may be reduced (Patent Document 1).

また、導電性カーボンブラックを含有する熱可塑性合成重合体からなる芯部と導電性カーボンブラックを含有しない非導電性の鞘部からなり、鞘部はフィラメントの断面積の小さいものが知られている(特許文献2)。この導電性繊維は、鞘部に導電性カーボンブラックを含有しないため、繊維表面の微小な凹凸が少ないが、製造工程が煩雑であり、また導電性も低いと云う問題があった。   Further, a core part made of a thermoplastic synthetic polymer containing conductive carbon black and a non-conductive sheath part not containing conductive carbon black are known, and the sheath part is known to have a small filament cross-sectional area. (Patent Document 2). Since this conductive fiber does not contain conductive carbon black in the sheath portion, there are few fine irregularities on the fiber surface, but there is a problem that the manufacturing process is complicated and the conductivity is low.

さらに、カーボンブラック等の導電性微粒子を含有した熱可塑性樹脂を分割して繊維表面に露出した導電繊維が知られている(特許文献3)。また、カーボンブラック等を含有した樹脂組成物にマグネシウム化合物を添加し、あるいは樹脂組成の粘度等を調整することによって樹脂組成物の紡糸性の改善を試みた導電性フィラメントが知られている(特許文献4、特許文献5)。   Furthermore, a conductive fiber is known in which a thermoplastic resin containing conductive fine particles such as carbon black is divided and exposed on the fiber surface (Patent Document 3). Also known is a conductive filament that attempts to improve the spinnability of the resin composition by adding a magnesium compound to the resin composition containing carbon black or the like, or adjusting the viscosity of the resin composition (patent) Document 4 and Patent document 5).

しかし、樹脂にカーボンブラック等を配合してなる樹脂組成物によって形成した従来の導電性繊維は、導電性を高めるためにカーボンブラックの配合量を多くすると樹脂物性が損なわれる問題があり、高強度であって導電性に優れた繊維を得るのが難しい。カーボンブラックに代えてカーボンナノチューブを用いた導電性繊維も、従来のカーボンナノチューブは樹脂中の分散性が劣るので、この配合量を増やすと引張強度や伸度などの樹脂物性が低下し、紡糸不能になる。一方、親油性の高いカーボンナノチューブを用いることによって引張強度および破断伸度を高めた導電繊維が提案されている(特許文献6)。
特開平09−49116号公報 特開昭52−31450号公報 特開2003−105634号公報 特開2004−183180号公報 特開2004−131899号公報 特開2006−152491号公報
However, conventional conductive fibers formed from a resin composition that contains carbon black or the like in the resin have a problem that the physical properties of the resin are impaired if the amount of carbon black is increased in order to increase the conductivity, resulting in high strength. Therefore, it is difficult to obtain a fiber having excellent conductivity. As for conductive fibers using carbon nanotubes instead of carbon black, conventional carbon nanotubes are inferior in dispersibility in the resin, so increasing this compounding amount decreases the physical properties of the resin such as tensile strength and elongation, making spinning impossible. become. On the other hand, there has been proposed a conductive fiber having increased tensile strength and elongation at break by using a highly lipophilic carbon nanotube (Patent Document 6).
JP 09-49116 A JP 52-31450 A JP 2003-105634 A JP 2004-183180 A JP 2004-131899 A JP 2006-152491 A

樹脂中にカーボンナノファイバーを分散させた導電性樹脂組成物によって形成した導電繊維は、高強度であって導電性に優れた繊維であるが、繊維表面の表皮構造のために接触抵抗が高く、放電性能が低い問題点があった。本発明は強度が高く、かつ接触抵抗の小さい導電繊維を提供する。   The conductive fiber formed by the conductive resin composition in which the carbon nanofibers are dispersed in the resin is a fiber having high strength and excellent conductivity, but the contact resistance is high due to the skin structure of the fiber surface, There was a problem of low discharge performance. The present invention provides a conductive fiber having high strength and low contact resistance.

本発明は、以下の構成によって上記課題を解決した導電繊維とその用途に関する。
〔1〕カーボンナノファイバーを分散させた導電性熱可塑性樹脂組成物によって形成され、エッチング処理によって繊維表面の接触抵抗を低減した導電繊維であり、
カーボンナノファイバーの含有量が、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2000m 2 以下であって樹脂組成物中の含有量が2〜10重量%の導電繊維について、
繊維重量の減量率2.0〜20.0重量%になるようにアルカリ水溶液でエッチング処理することによって、非エッチング処理前の接触抵抗に対するエッチング処理後の接触抵抗の比を1/102以下にしたことを特徴とする導電繊維。
〔2〕繊維重量の減量率3重量%以上になるようにエッチング処理することによって、非エッチング処理前の接触抵抗に対するエッチング処理後の接触抵抗の比を1/10 4 以下にした上記[1]に記載する導電繊維。
〔3〕カーボンナノファイバーを分散させた導電性熱可塑性樹脂組成物によって形成した繊維を濃度0.5〜10.0重量%のアルカリ水溶液に、0〜110℃の温度下、0.1〜48.0時間浸漬して、繊維重量の減量率が2.0〜20.0重量%になるようにエッチング処理した上記[1]または上記[2]に記載する導電繊維。
〔4〕上記[1]〜上記[3]の何れかに記載する導電繊維によって形成された導電ブラシ、導電ベルト、導電シート、または帯電防止衣料。
The present invention relates to a conductive fiber that has solved the above-described problems by the following configuration and its use.
[1] A conductive fiber formed of a conductive thermoplastic resin composition in which carbon nanofibers are dispersed and having a contact resistance on the fiber surface reduced by etching treatment ,
The carbon nanofiber content is 2000 m 2 or less in terms of the surface area of the carbon nanofiber relative to 100 parts by weight of the thermoplastic resin (carbon content × specific surface area value), and the content in the resin composition is 2 to 2 About 10 wt% conductive fiber,
By etching treatment with an aqueous alkaline solution such that the weight reduction rate 2.0 to 20.0 wt% of the fiber weight, the ratio of the contact resistance after the etching process for the contact resistance before the non-etched 1/10 2 below Conductive fiber characterized by that.
[2] The ratio of the contact resistance after the etching process to the contact resistance before the non-etching process is reduced to 1/10 4 or less by performing the etching process so that the fiber weight reduction rate is 3% by weight or more [1] Conductive fiber described in 1.
[3] A fiber formed from a conductive thermoplastic resin composition in which carbon nanofibers are dispersed is added to an alkaline aqueous solution having a concentration of 0.5 to 10.0% by weight at a temperature of 0 to 110 ° C. and 0.1 to 48. The conductive fiber according to the above [1] or [2], which is soaked for 0.0 hours and subjected to an etching treatment so that the weight loss rate of the fiber becomes 2.0 to 20.0% by weight.
[4] A conductive brush, a conductive belt, a conductive sheet, or an antistatic clothing formed of the conductive fiber according to any one of [1] to [3].

本発明の導電繊維は、エッチング処理によって繊維表面の表皮構造が除去されているので、接触抵抗が小さい。好ましくは、繊維重量の減量率が2.0〜20.0重量%になるようにエッチング処理することによって、非エッチング処理繊維の接触抵抗に対するエッチング処理繊維の接触抵抗の比を(1/102以下)に低減した導電繊維を得ることができる。 The conductive fiber of the present invention has a low contact resistance because the skin structure on the fiber surface is removed by etching. Preferably, the ratio of the contact resistance of the etched fiber to the contact resistance of the non-etched fiber is reduced to (1/10 2) by etching so that the fiber weight reduction rate is 2.0 to 20.0% by weight. The conductive fiber reduced to the following can be obtained.

本発明の導電繊維は、カーボンナノファイバーを分散させた導電性熱可塑性樹脂組成物によって形成され、エッチング処理によって繊維表面の接触抵抗を低減した導電繊維であり、カーボンナノファイバーの含有量が、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2000m 2 以下であって樹脂組成物中の含有量が2〜10重量%の導電繊維について、繊維重量の減量率2.0〜20.0重量%になるようにアルカリ水溶液でエッチング処理することによって、非エッチング処理前の接触抵抗に対するエッチング処理後の接触抵抗の比を1/102以下にしたことを特徴とする導電繊維である。本発明の導電繊維は糸を含めて繊維と云う。

Conductive fibers of the present invention is formed of a conductive thermoplastic resin composition obtained by dispersing the carbon nanofibers are conductive fibers having a reduced contact resistance on the fiber surface by etching, the content of the carbon nanofibers, the heat About conductive fibers having a surface area converted value (carbon content x specific surface area) of carbon nanofibers of 100 parts by weight of plastic resin of 2000 m 2 or less, and the content in the resin composition is 2 to 10% by weight. The ratio of the contact resistance after the etching process to the contact resistance before the non-etching process was reduced to 1/10 2 or less by etching with an alkaline aqueous solution so that the weight loss rate was 2.0 to 20.0% by weight . It is the conductive fiber characterized by this. The conductive fiber of the present invention is called a fiber including a thread.

本発明に用いるカーボンナノファイバーは、例えば直径が数十ナノメータ以下、長さが数百ミクロンメータ以下であるナノサイズの極微細炭素繊維であり、内部が中空構造のカーボンナノチューブに限らず、内部が充填された構造のものを含む。   The carbon nanofiber used in the present invention is, for example, a nano-sized ultrafine carbon fiber having a diameter of several tens of nanometers or less and a length of several hundreds of micrometers or less. Includes a packed structure.

本発明の導電繊維に用いるカーボンナノファイバーは、DBP吸油量150ml/100g以上のものが好ましい。DBP吸油量が150ml/100gよりも少ないカーボンナノファイバーは樹脂中の分散性が劣り、凝集しやすいので樹脂組成物の導電性が不均一になり、さらに、樹脂組成物の加工性が低下するので引張強度や伸度に優れた導電繊維を得るのが難しい。また、体積抵抗値1.0Ωcm以下のものが好ましい。体積抵抗値が1.0Ωcmより大きいカーボンナノファイバーは導電性が不十分である。   The carbon nanofiber used for the conductive fiber of the present invention preferably has a DBP oil absorption of 150 ml / 100 g or more. Carbon nanofibers with a DBP oil absorption of less than 150 ml / 100 g have poor dispersibility in the resin and are prone to agglomerate, making the resin composition non-uniform in conductivity, and further reducing the processability of the resin composition. It is difficult to obtain a conductive fiber excellent in tensile strength and elongation. Further, those having a volume resistance of 1.0 Ωcm or less are preferable. Carbon nanofibers having a volume resistance value greater than 1.0 Ωcm have insufficient conductivity.

上記カーボンナノファイバーは、触媒を用いた気相成長法において、触媒および原料混合ガス組成などを調整することによって製造することができる。具体的には、例えば、触媒粒子としてFe、Ni、Co、Mn、Cuの酸化物から選ばれた1種または2種以上と、Mg、Ca、Al、Siの酸化物から選ばれた1種または2種以上の混合酸化物粉末を用い、400℃〜800℃の温度で、一酸化炭素または二酸化炭素と水素の混合ガスを上記触媒粒子に接触させて、カーボンナノファイバーを製造する気相成長法において、触媒としてCo酸化物とMg酸化物の混合酸化物あるいは、Mg酸化物にCo酸化物が被覆された複合酸化物を用い、原料混合ガスを一酸化炭素および/または二酸化炭素と水素とし、その混合比をCO/H2=50/50〜99/1に調整し、好ましくは、さらに反応後に連続して反応温度と同一温度下で水素ガスで10分間以上処理することによって、体積抵抗値が低くDBP吸油量が高いカーボンナノファイバーを製造することができる。 The carbon nanofibers can be produced by adjusting the composition of the catalyst and the raw material mixed gas in a vapor phase growth method using a catalyst. Specifically, for example, the catalyst particles are one or more selected from oxides of Fe, Ni, Co, Mn, and Cu and one selected from oxides of Mg, Ca, Al, and Si. Alternatively, vapor phase growth in which carbon nanofibers are produced by using two or more mixed oxide powders and contacting carbon monoxide or a mixed gas of carbon dioxide and hydrogen with the catalyst particles at a temperature of 400 ° C. to 800 ° C. In this method, a mixed oxide of Co oxide and Mg oxide or a composite oxide in which a Mg oxide is coated with a Co oxide is used as a catalyst, and the raw material mixed gas is carbon monoxide and / or carbon dioxide and hydrogen. The volume ratio is adjusted by adjusting the mixing ratio to CO / H 2 = 50/50 to 99/1, preferably by further treating with hydrogen gas for 10 minutes or more continuously at the same temperature as the reaction temperature after the reaction. value Can ku DBP oil absorption of producing high carbon nanofiber.

上記カーボンナノファイバーは、直径5〜100nm、アスペクト比10以上、BET比表面積400m2/g以下であるものが好ましい。直径がこれより小さいと均一に分散するのが難しく、直径がこれよりも大きいと繊維長さに対してフィラーが大きすぎるため繊維強度が向上し難い。一方、アスペクト比がこれよりも小さいと、繊維相互の接触が不十分になり、導電性を高めるうえで好ましくない。また、BET比表面積がこれより大きいと樹脂との接触面積が過大になり、樹脂の物性が損なわれ、樹脂自体が本来有する強度や混練時ないし成形時の粘度が高くなり、流動性が失われるので好ましくない。 The carbon nanofibers preferably have a diameter of 5 to 100 nm, an aspect ratio of 10 or more, and a BET specific surface area of 400 m 2 / g or less. If the diameter is smaller than this, it is difficult to uniformly disperse, and if the diameter is larger than this, the fiber strength is difficult to improve because the filler is too large with respect to the fiber length. On the other hand, if the aspect ratio is smaller than this, the contact between fibers becomes insufficient, which is not preferable in terms of enhancing the conductivity. Also, if the BET specific surface area is larger than this, the contact area with the resin becomes excessive, the properties of the resin are impaired, the inherent strength of the resin itself, the viscosity at the time of kneading or molding increases, and the fluidity is lost. Therefore, it is not preferable.

上記カーボンナノファイバーを含有する熱可塑性樹脂は一般的に溶融紡糸可能な熱可塑性樹脂を使用することができる。具体的にはポリエステル系樹脂、ポリアミド系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂等を用いることができる。上記熱可塑性樹脂のうち、ポリエステルは、いわゆる炭化水素基が主鎖にエステル結合を介して連結された高分子量体であって、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレートなどが挙げられる。   As the thermoplastic resin containing the carbon nanofiber, a melt-spinnable thermoplastic resin can be generally used. Specifically, a polyester resin, a polyamide resin, a polyethylene resin, a polypropylene resin, or the like can be used. Among the thermoplastic resins, polyester is a high molecular weight body in which a so-called hydrocarbon group is connected to the main chain through an ester bond, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, and polypropylene terephthalate.

カーボンナノファイバーを含有する熱可塑性樹脂組成物は固有粘度(IV値)が0.50〜0.90であることが好ましい。この値は、使用する熱可塑性樹脂の分子量を表す量であり、この値が0.5より少ないと、分子量が小さいために溶融紡糸の際に樹脂粘度が低すぎて、糸切れが発生し、連続的に糸を製造できない。一方、上記値が0.9より大きいと分子量が大き過ぎ、樹脂が硬いために紡糸の際に押出機のノズルから樹脂が十分に流れ出さず、糸を製造できない。   The thermoplastic resin composition containing carbon nanofibers preferably has an intrinsic viscosity (IV value) of 0.50 to 0.90. This value is an amount representing the molecular weight of the thermoplastic resin used. If this value is less than 0.5, the resin viscosity is too low during melt spinning because the molecular weight is small, and yarn breakage occurs. The yarn cannot be manufactured continuously. On the other hand, if the above value is larger than 0.9, the molecular weight is too large and the resin is hard, so that the resin does not flow sufficiently from the nozzle of the extruder during spinning, and the yarn cannot be manufactured.

カーボンナノファイバーを含有する熱可塑性樹脂組成物の溶融粘度(MFR)が、温度280℃および荷重2160gの条件下で10g/min以上で、かつ熱可塑性樹脂としてポリエステル系樹脂であることが好ましい。MFR値は加工時温度での流動性を示す値であり、10g/minよりも小さいと、流動性が小さいので、溶融紡糸の際に充分に樹脂が流れ出てこない。   The thermoplastic resin composition containing carbon nanofibers preferably has a melt viscosity (MFR) of 10 g / min or more under the conditions of a temperature of 280 ° C. and a load of 2160 g, and is a polyester resin as a thermoplastic resin. The MFR value is a value indicating the fluidity at the processing temperature, and if it is less than 10 g / min, the fluidity is small, so that the resin does not sufficiently flow out during melt spinning.

本発明の導電繊維を形成する樹脂組成物のカーボンナノファイバーの含有量は、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2000m2以下であって、樹脂組成物中の含有量が2〜10重量%であるものが好ましい。この含有量が2重量%未満では比抵抗が低い。また、この含有量が10重量%を上回ると溶融紡糸性が低下し、紡糸中に糸切れが多発するようになる。 The carbon nanofiber content of the resin composition forming the conductive fiber of the present invention is 2000 m 2 or less in terms of the surface area of the carbon nanofiber with respect to 100 parts by weight of the thermoplastic resin (value of carbon content × specific surface area). And what whose content in a resin composition is 2 to 10 weight% is preferable. When this content is less than 2% by weight, the specific resistance is low. On the other hand, when the content exceeds 10% by weight, melt spinnability is lowered, and yarn breakage frequently occurs during spinning.

カーボンナノファイバーを分散させた導電性熱可塑性樹脂組成物を溶融紡糸し、延伸して糸状の導電繊維を製造する。この導電繊維をエッチング処理して繊維表面の表皮構造を除去する。エッチング処理は、例えば、濃度0.5〜10.0重量%のアルカリ水溶液に、0〜110℃の温度下、0.1〜48.0時間浸漬して行うと良い。   A conductive thermoplastic resin composition in which carbon nanofibers are dispersed is melt-spun and drawn to produce a thread-like conductive fiber. The conductive fiber is etched to remove the skin structure on the fiber surface. For example, the etching treatment may be performed by immersing in an alkaline aqueous solution having a concentration of 0.5 to 10.0 wt% at a temperature of 0 to 110 ° C. for 0.1 to 48.0 hours.

エッチング処理は、繊維重量の減量率が2.0〜20.0重量%になるように行うのが好ましい。減量率はエッチング前の繊維重量(Go)に対するエッチング後の繊維重量(Gs)の比(Gs/Go)である。実施例に示すように、エッチングによる減量率が1〜2%程度ではエッチング前の繊維(非処理繊維と云う)の接触抵抗に対して、エッチング後の繊維(処理繊維)の接触抵抗は1/102程度低下するが、減量率が3.0重量%以上では処理繊維の接触抵抗が1/104程度に大幅に低下する。一方、減量率に比例して繊維強度が低下するので、減量率は20%を超えないことが好ましい。エッチングによる減量率は概ね処理時間に比例するので、上記減量率の範囲になるようにエッチングの処理時間を調整すると良い。 The etching treatment is preferably performed so that the fiber weight reduction rate is 2.0 to 20.0% by weight. The weight loss rate is the ratio (Gs / Go) of the fiber weight (Gs) after etching to the fiber weight (Go) before etching. As shown in the examples, when the weight loss rate by etching is about 1 to 2%, the contact resistance of the fiber after etching (processed fiber) is 1/2 compared to the contact resistance of the fiber before etching (referred to as non-processed fiber). Although it decreases by about 10 2 , when the weight loss rate is 3.0% by weight or more, the contact resistance of the treated fiber significantly decreases to about 1/10 4 . On the other hand, since the fiber strength decreases in proportion to the weight loss rate, the weight loss rate preferably does not exceed 20%. Since the reduction rate due to etching is approximately proportional to the processing time, it is preferable to adjust the etching processing time so that it falls within the range of the reduction rate.

以上のように繊維重量の減量率が2.0〜20.0重量%になるようにエッチング処理を行うことによって、エッチング処理しない繊維の接触抵抗(Ro)に対するエッチング処理繊維の接触抵抗(Rs)の比(Rs/Ro)を1/102以下に低減することができる。一方、繊維の体積抵抗は変わらないため、エッチング処理前後の端子間抵抗に変化は無いが、接触抵抗が大きく改善されているので、ブラシ等の加工製品における導電性能が格段に向上する。 As described above, the contact resistance (Rs) of the etched fiber relative to the contact resistance (Ro) of the fiber not subjected to the etching process is performed by performing the etching process so that the fiber weight reduction rate is 2.0 to 20.0% by weight. Ratio (Rs / Ro) can be reduced to 1/10 2 or less. On the other hand, since the volume resistance of the fiber does not change, there is no change in the inter-terminal resistance before and after the etching process, but the contact resistance is greatly improved, so that the conductive performance in a processed product such as a brush is remarkably improved.

本発明の導電繊維は導電ブラシ、導電ベルト、導電シート、または帯電防止衣料などの導電製品の材料として好適である。   The conductive fiber of the present invention is suitable as a material for a conductive product such as a conductive brush, a conductive belt, a conductive sheet, or antistatic clothing.

以下に本発明の実施例を比較例と共に示す。なお、紡糸方法および評価方法は以下のとおりである。
〔紡糸方法〕巻取り速度400m/minで溶融紡糸し、さらに連続して延伸倍率4倍に延伸し、48ファイラメントの糸を製造した。
〔体積抵抗〕超絶縁抵抗計(東亜電波工業社製品:SM-8210)を用い、長さ10cmの繊維の両端に銅製端子を付け、そこに10〜1000Vの電圧を印可し、温度20℃、湿度30%RHの条件下で、電気抵抗値R(Ω)を測定し、平均繊維径及び本数から体積を求め換算した。
〔接触抵抗値〕超絶縁抵抗計(東亜電波工業社製品:SM-8210)を用い、試重0.5gを計量して円筒形セルに入れ、荷重を加えた状態で、10〜1000Vの電圧を印可し、温度20℃、湿度30%RHの条件下で、電気抵抗値R(Ω)を測定し、これを接触抵抗の指標とした。
〔引張強度〕引っ張り試験機を用いて、最大荷重とそのときの伸びを測定した。引張強度については、別途、繊維太さ(繊維径)を測定し、単位太さあたりに換算した。
Examples of the present invention are shown below together with comparative examples. The spinning method and the evaluation method are as follows.
[Spinning method] Melt spinning was carried out at a winding speed of 400 m / min, and the yarn was continuously drawn at a draw ratio of 4 to produce 48 filament yarn.
[Volume resistance] Using a super insulation resistance meter (manufactured by Toa Denpa Kogyo Co., Ltd .: SM-8210), copper terminals were attached to both ends of a 10 cm long fiber, a voltage of 10 to 1000 V was applied thereto, a temperature of 20 ° C, The electrical resistance value R (Ω) was measured under the condition of a humidity of 30% RH, and the volume was determined from the average fiber diameter and the number and converted.
[Contact resistance value] Using a super-insulation resistance meter (product of Toa Denpa Kogyo Co., Ltd .: SM-8210), weigh 0.5 g of sample weight, put it in a cylindrical cell, and apply a voltage of 10 to 1000 V with a load applied. The electrical resistance value R (Ω) was measured under the conditions of a temperature of 20 ° C. and a humidity of 30% RH, and this was used as an index of contact resistance.
[Tensile strength] The maximum load and the elongation at that time were measured using a tensile tester. For the tensile strength, the fiber thickness (fiber diameter) was separately measured and converted per unit thickness.

〔実施例1〜2〕
表1に示すカーボンナノファイバー(CNF)をPET樹脂に均一に練り込み、導電性樹脂組成物を製造した。これを溶融紡糸し、さらに延伸して、表1に示す導電糸を得た。この導電糸を表2に示す濃度の水酸化ナトリウム水溶液(50℃)に浸漬することによってエッチング処理し、接触抵抗を測定した。エッチング時間と減量率、および接触抵抗を表2、表3に示した。
[Examples 1-2]
Carbon nanofibers (CNF) shown in Table 1 were uniformly kneaded into a PET resin to produce a conductive resin composition. This was melt-spun and further drawn to obtain conductive yarns shown in Table 1. This conductive yarn was etched by immersing it in a sodium hydroxide aqueous solution (50 ° C.) having the concentration shown in Table 2, and the contact resistance was measured. Tables 2 and 3 show the etching time, weight loss ratio, and contact resistance.

〔比較例1〕
実施例1と同様の導電性樹脂組成物を溶融紡糸し、さらに延伸して導電糸を得た。この導電糸について、エッチング処理を行わず接触抵抗を測定した。この結果を表3に示した。
[Comparative Example 1]
A conductive resin composition similar to that of Example 1 was melt-spun and further drawn to obtain a conductive yarn. The contact resistance of this conductive yarn was measured without performing an etching process. The results are shown in Table 3.

表2に示すように、本発明のエッチングの減量率が5.41%の導電糸(実施例2)の接触抵抗は9.5×106Ωであるが、エッチング処理を行わない導電糸の接触抵抗は1.0×1014Ωであり、非処理繊維(比較例1)の接触抵抗(Ro)に対して本発明による上記処理繊維の接触抵抗(Rs)の比(Rs/Ro)は約1/107以下に低減されている。 As shown in Table 2, the contact resistance of the conductive yarn (Example 2) having a weight loss rate of 5.41% according to the present invention is 9.5 × 10 6 Ω. The contact resistance is 1.0 × 10 14 Ω, and the ratio (Rs / Ro) of the contact resistance (Rs) of the treated fiber according to the present invention to the contact resistance (Ro) of the untreated fiber (Comparative Example 1) is It is reduced to about 1/10 7 or less.

Figure 0005051571
Figure 0005051571

Figure 0005051571
Figure 0005051571

Figure 0005051571
Figure 0005051571

Claims (4)

カーボンナノファイバーを分散させた導電性熱可塑性樹脂組成物によって形成され、エッチング処理によって繊維表面の接触抵抗を低減した導電繊維であり、
カーボンナノファイバーの含有量が、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2000m 2 以下であって樹脂組成物中の含有量が2〜10重量%の導電繊維について、
繊維重量の減量率2.0〜20.0重量%になるようにアルカリ水溶液でエッチング処理することによって、非エッチング処理前の接触抵抗に対するエッチング処理後の接触抵抗の比を1/102以下にしたことを特徴とする導電繊維。
It is a conductive fiber formed by a conductive thermoplastic resin composition in which carbon nanofibers are dispersed, and the contact resistance of the fiber surface is reduced by etching treatment .
The carbon nanofiber content is 2000 m 2 or less in terms of the surface area of the carbon nanofiber relative to 100 parts by weight of the thermoplastic resin (carbon content × specific surface area value), and the content in the resin composition is 2 to 2 About 10 wt% conductive fiber,
By etching treatment with an aqueous alkaline solution such that the weight reduction rate 2.0 to 20.0 wt% of the fiber weight, the ratio of the contact resistance after the etching process for the contact resistance before the non-etched 1/10 2 below Conductive fiber characterized by that.
繊維重量の減量率3重量%以上になるようにエッチング処理することによって、非エッチング処理前の接触抵抗に対するエッチング処理後の接触抵抗の比を1/10By performing the etching process so that the fiber weight loss rate is 3% by weight or more, the ratio of the contact resistance after etching to the contact resistance before non-etching is reduced to 1/10 4Four 以下にした請求項1に記載する導電繊維。The conductive fiber according to claim 1, wherein: カーボンナノファイバーを分散させた導電性熱可塑性樹脂組成物によって形成した繊維を濃度0.5〜10.0重量%のアルカリ水溶液に、0〜110℃の温度下、0.1〜48.0時間浸漬して、繊維重量の減量率が2.0〜20.0重量%になるようにエッチング処理した請求項1または請求項2に記載する導電繊維。 A fiber formed from a conductive thermoplastic resin composition in which carbon nanofibers are dispersed is placed in an alkaline aqueous solution having a concentration of 0.5 to 10.0% by weight at a temperature of 0 to 110 ° C. for 0.1 to 48.0 hours. The conductive fiber according to claim 1 or 2, wherein the conductive fiber is subjected to an etching treatment so as to have a fiber weight reduction rate of 2.0 to 20.0% by weight. 請求項1〜請求項3の何れかに記載する導電繊維によって形成された導電ブラシ、導電ベルト、導電シート、または帯電防止衣料。 A conductive brush, a conductive belt, a conductive sheet, or an antistatic garment formed by the conductive fiber according to any one of claims 1 to 3.
JP2006323890A 2006-11-30 2006-11-30 Conductive fiber and its use Expired - Fee Related JP5051571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323890A JP5051571B2 (en) 2006-11-30 2006-11-30 Conductive fiber and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323890A JP5051571B2 (en) 2006-11-30 2006-11-30 Conductive fiber and its use

Publications (2)

Publication Number Publication Date
JP2008138304A JP2008138304A (en) 2008-06-19
JP5051571B2 true JP5051571B2 (en) 2012-10-17

Family

ID=39600070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323890A Expired - Fee Related JP5051571B2 (en) 2006-11-30 2006-11-30 Conductive fiber and its use

Country Status (1)

Country Link
JP (1) JP5051571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104997209A (en) * 2015-07-29 2015-10-28 安徽创星实业有限公司 Anti-static blend fiber fabric

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646646B2 (en) 2009-12-16 2014-12-24 イーエスエービー・エービー Welding method and welding apparatus
US8737884B2 (en) 2011-10-12 2014-05-27 Canon Kabushiki Kaisha Charging member and electrophotographic image forming apparatus
JP2014148765A (en) * 2013-01-31 2014-08-21 Uniplas Shiga Kk Conductive polyester monofilament and method of producing the same
JP6230093B2 (en) * 2013-04-25 2017-11-15 日産自動車株式会社 Core-sheath type conductive fiber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102474A (en) * 1984-10-22 1986-05-21 帝人株式会社 Production of conductive composite fiber
JPS61132626A (en) * 1984-11-30 1986-06-20 Kanebo Ltd Conjugated fiber of high conductivity
JPS61174469A (en) * 1985-01-28 1986-08-06 カネボウ株式会社 Production of conductive composite fiber
JPS63295761A (en) * 1987-05-26 1988-12-02 カネボウ株式会社 Antistatic fiber and its production
JP4771250B2 (en) * 2004-11-30 2011-09-14 三菱マテリアル株式会社 Conductive yarn and its use
JP4565384B2 (en) * 2004-11-30 2010-10-20 三菱マテリアル株式会社 Method for producing carbon nanofibers with excellent dispersibility in resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104997209A (en) * 2015-07-29 2015-10-28 安徽创星实业有限公司 Anti-static blend fiber fabric

Also Published As

Publication number Publication date
JP2008138304A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5051571B2 (en) Conductive fiber and its use
TWI647263B (en) Polymer/filler/metal composite fiber and preparation method thereof
US20090032778A1 (en) Electrically conductive fiber and brush
JP2014148765A (en) Conductive polyester monofilament and method of producing the same
JP2005054277A (en) Fiber and fabric
JP5609638B2 (en) Conductive flock and conductive brush
JP4278970B2 (en) Carbon fiber bundle and chopped carbon fiber bundle for fiber reinforced resin and carbon fiber reinforced resin composition exhibiting high mechanical properties and low electrical conductivity
JP4278969B2 (en) Carbon fiber bundle, chopped carbon fiber bundle and carbon fiber reinforced resin composition for fiber reinforced resin exhibiting high conductivity
JP2010037664A (en) Electroconductive fiber
JP4872688B2 (en) Conductive yarn
JP4923519B2 (en) Conductive mixed yarn
JP4877637B2 (en) Conductive resin
JP4771250B2 (en) Conductive yarn and its use
KR100633222B1 (en) High conductive fiber having antimicrobial effects and manufacturing method thereof
JP2005002535A (en) Conductive conjugate fiber
JP2007247095A (en) Conductive polyester fiber
JP5254532B2 (en) Conductive polyester fiber
KR101126066B1 (en) Static dissipative and anti-bacterial fiber comprising needle shaped zinc oxide whisker
JP5062503B2 (en) Conductive resin sheet
JP4975471B2 (en) Conductive polyester fiber
JP2016069786A (en) Conductive core-sheath composite multifilament yarn
EP2242064B1 (en) Electrically conductive fiber and brush
CN116612934B (en) Preparation method of elastic conductive film and high-conductivity fiber
JP5071001B2 (en) Conductive yarn
JP2012180625A (en) Electroconductive conjugate monofilament

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Ref document number: 5051571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees