JP2006283225A - Method for producing flame-proofed fiber and carbon fiber - Google Patents

Method for producing flame-proofed fiber and carbon fiber Download PDF

Info

Publication number
JP2006283225A
JP2006283225A JP2005104230A JP2005104230A JP2006283225A JP 2006283225 A JP2006283225 A JP 2006283225A JP 2005104230 A JP2005104230 A JP 2005104230A JP 2005104230 A JP2005104230 A JP 2005104230A JP 2006283225 A JP2006283225 A JP 2006283225A
Authority
JP
Japan
Prior art keywords
fiber
flame
resistant
specific gravity
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005104230A
Other languages
Japanese (ja)
Inventor
Hidekazu Yoshikawa
秀和 吉川
Taro Oyama
太郎 尾山
Takafumi Munetsugi
啓文 宗次
Takaya Suzuki
貴也 鈴木
Harumitsu Enomoto
晴光 榎本
Takeshi Yamazaki
剛 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2005104230A priority Critical patent/JP2006283225A/en
Publication of JP2006283225A publication Critical patent/JP2006283225A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a flame-proofed fiber for a carbon fiber having high orientation, high strength and high appearance quality by which the breakage of single filament, formation of fluff, and the like are suppressed, and the operation state is stabilized in the operation of a production apparatus. <P>SOLUTION: The flame-proofed fiber 2 having >0 and ≤0.6 thickness ratio (b/a) of a double circle formed in the white-black distribution of a fiber cross section in the white-black image of the fiber cross section obtained by a scanning probe microscope observation, 1.32-1.41 specific gravity and 9-13 μm fiber diameter is produced by regulating a gradient coefficient A obtained by the expression: (gradient coefficient A)=[flame-proofing treating time (min)]/(increase of specific gravity) [wherein, (increase of specific gravity)=(specific gravity of flame-proofed fiber)-(specific gravity of precursor)] so as to be ≥200 when carrying out the flame-proofing treatment of the precursor for the carbon fiber, having 9.5-13.5 μm fiber diameter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高配向、高強力、高品位の炭素繊維の製造用等に有用な耐炎化繊維及びその製造方法、並びに、この耐炎化繊維を用いた炭素繊維の製造方法に関する。   The present invention relates to a flame-resistant fiber useful for producing highly oriented, high-strength, and high-quality carbon fibers, a method for producing the same, and a method for producing carbon fiber using the flame-resistant fibers.

従来、炭素繊維製造用のプリカーサー(前駆体繊維)を用い、これに耐炎化処理を施して耐炎化繊維を得ること、更にこの耐炎化繊維に炭素化処理を施して高性能炭素繊維を得ることは広く知られており、またこの方法は工業的にも実施されている。   Conventionally, a precursor (precursor fiber) for producing carbon fiber is used to obtain a flame resistant fiber by subjecting it to a flame resistant treatment, and further, a high performance carbon fiber is obtained by subjecting this flame resistant fiber to a carbonization treatment. Is widely known, and this method is also practiced industrially.

特に、近年炭素繊維の用途はスポーツ・レジャー用品から航空宇宙分野、特に航空機の一次構造材にまで展開されている。さらに、炭素繊維の高い比強度、比弾性の特性を生かして製品の軽量化を図ることにより省エネルギー化を図り、これにより排出CO2の削減に寄与することを目的として各産業界は炭素繊維の新しい利用方法に注目し、また研究を進めている。 In particular, in recent years, the use of carbon fiber has been expanded from sports and leisure goods to the aerospace field, particularly to primary structural materials for aircraft. In addition, various industries have made efforts to reduce energy consumption by reducing the weight of products by taking advantage of the high specific strength and specific elasticity of carbon fibers, thereby contributing to the reduction of CO 2 emissions. We are paying attention to new usages and are conducting research.

このような状況下において、炭素繊維にも更なる高性能化、低製造コスト化、また取扱性に優れる高品質化等の課題の解決が要請されている。   Under such circumstances, carbon fibers are also required to solve problems such as higher performance, lower manufacturing costs, and higher quality with excellent handling properties.

一方、炭素繊維を製造する場合、原料繊維であるプリカーサーの性質は目的物である炭素繊維の性能に直接影響する。従って、高性能、低製造コストで且つ取扱性のよい炭素繊維製造用プリカーサーの開発が望まれている。   On the other hand, when producing carbon fiber, the properties of the precursor, which is the raw fiber, directly affect the performance of the target carbon fiber. Therefore, it is desired to develop a precursor for carbon fiber production that has high performance, low production cost, and good handleability.

一般に、原料繊維であるプリカーサーとしてはポリアクリロニトリル(PAN)系繊維が用いられる。このPAN系繊維から炭素繊維を製造する場合、PAN系繊維を200〜260℃の酸化性雰囲気下で延伸又は収縮を行いながら酸化処理(耐炎化処理)を行った後、260℃以上、通常は1000℃以上の不活性ガス雰囲気中で炭素化して製造する方法が知られている。   Generally, a polyacrylonitrile (PAN) type fiber is used as a precursor which is a raw material fiber. When producing carbon fiber from this PAN-based fiber, after subjecting the PAN-based fiber to an oxidation treatment (flame-proofing treatment) while stretching or shrinking in an oxidizing atmosphere of 200 to 260 ° C., 260 ° C. or more, usually A method of carbonizing and producing in an inert gas atmosphere at 1000 ° C. or higher is known.

とりわけ耐炎化処理工程における繊維の処理方法の相違は、炭素繊維の強度発現に大きく影響を及ぼすので、これまでに多くの検討が行われている(例えば、特許文献1〜3)。   In particular, the difference in the fiber treatment method in the flameproofing process greatly affects the strength development of the carbon fiber, and thus many studies have been made so far (for example, Patent Documents 1 to 3).

しかし、これら従来の方法では、耐炎化工程における強度発現が不充分であるばかりでなく、繊維強力発現も不充分であったり、繊維密度が1.22g/cm3以上になった時点以後の延伸持続の耐炎化処理工程においては単糸切れ、毛羽等を多く発生するなど、安定した耐炎化繊維、炭素繊維の生産が損なわれる。
特公昭63−28132号公報(第2〜3頁) 特公平3−23649号公報(特許請求の範囲) 特公平3−23650号公報(特許請求の範囲)
However, in these conventional methods, not only the strength development in the flameproofing process is insufficient, but also the fiber strength development is insufficient, or the drawing after the point when the fiber density becomes 1.22 g / cm 3 or more. In the continuous flameproofing treatment process, production of stable flameproofed fibers and carbon fibers is impaired due to the occurrence of many single yarn breaks, fluff and the like.
Japanese Examined Patent Publication No. 63-28132 (pages 2 and 3) Japanese Patent Publication No. 3-23649 (Claims) Japanese Patent Publication No. 3-23650 (Claims)

本発明者は、上記問題を解決するために種々検討しているうちに、プリカーサーの耐炎化進行状態に応じて、走査型プローブ顕微鏡(SPM)観察より得られる繊維断面の画像が、繊維断面外周部を示す外円と、繊維の外表面から繊維軸方向にかけて形成される既耐炎化部分と繊維軸を含む未耐炎化部分との境界で形成される内円との二重円が観察されるように、昇温時の比重増加に対する耐炎化処理時間を示す勾配係数Aを調節しつつプリカーサーを耐炎化処理することにより、単糸切れ、毛羽等が無くなり、安定した耐炎化繊維の生産ができ、且つこの耐炎化繊維を炭素化して得られる炭素繊維は、高配向、高強力、高品位であることを知得し、本発明を完成するに到った。   While the present inventor has made various studies in order to solve the above problems, an image of a fiber cross section obtained by scanning probe microscope (SPM) observation according to the progress of the flame resistance of the precursor is the outer circumference of the fiber cross section. A double circle is observed which consists of an outer circle indicating the portion and an inner circle formed at the boundary between the flame-resistant portion formed from the outer surface of the fiber toward the fiber axis and the non-flame-resistant portion including the fiber axis. Thus, by adjusting the gradient coefficient A indicating the flameproofing treatment time against the increase in specific gravity at the time of temperature rise, the precursor is flameproofed, so that there is no breakage of single yarn, fluff, etc., and stable flameproof fiber can be produced. The carbon fiber obtained by carbonizing this flame resistant fiber has been known to have high orientation, high strength, and high quality, and the present invention has been completed.

従って、本発明の目的とするところは、上記問題を解決した、高配向、高強力、高品位の炭素繊維の中間原料としての耐炎化繊維、及びその製造方法、並びに、この耐炎化繊維を用いた炭素繊維の製造方法を提供することにある。   Therefore, the object of the present invention is to use the flame-resistant fiber as an intermediate raw material of the highly oriented, high strength, and high-quality carbon fiber, the production method thereof, and the flame-resistant fiber, which solve the above problems. Another object of the present invention is to provide a method for producing a carbon fiber.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 炭素繊維製造用耐炎化繊維の走査型プローブ顕微鏡観察により得られる繊維断面の白黒画像において、繊維断面の画像の白黒濃度分布は、繊維断面外周部の画像で形成される外円と、繊維の外表面から繊維軸方向に形成される既耐炎化部分と繊維軸を含む未耐炎化部分との境界で形成される内円との二重円構造を有し、既耐炎化部分の径方向厚み(a)と前記内円半径で示される未耐炎化部分の厚み(b)との比(b/a)が0より大きく且つ0.6以下であり、比重が1.32〜1.41であり、繊維直径が9〜13μmである耐炎化繊維。   [1] In the black and white image of the fiber cross section obtained by scanning probe microscope observation of the flameproof fiber for carbon fiber production, the black and white density distribution of the fiber cross section image is an outer circle formed by the image of the fiber cross section outer periphery, It has a double circular structure with an inner circle formed at the boundary between the flame-resistant portion formed in the fiber axis direction from the outer surface of the fiber and the non-flame-resistant portion including the fiber axis, and the diameter of the flame-resistant portion. The ratio (b / a) between the directional thickness (a) and the thickness (b) of the non-flame resistant portion indicated by the inner circle radius is greater than 0 and less than or equal to 0.6, and the specific gravity is 1.32-1. 41, a flame-resistant fiber having a fiber diameter of 9 to 13 μm.

〔2〕 繊維直径9.5〜13.5μmの炭素繊維用プリカーサーを耐炎化処理する際、次式
勾配係数A=耐炎化処理時間(分)/比重増加
(ここで、比重増加=耐炎化繊維比重−プリカーサー比重)
で求められる勾配係数Aを200以上に保つことを特徴とする耐炎化繊維の製造方法。
[2] When a carbon fiber precursor having a fiber diameter of 9.5 to 13.5 μm is subjected to flame resistance treatment, the following gradient coefficient A = flame resistance treatment time (minutes) / specific gravity increase
(Here, specific gravity increase = flame-resistant fiber specific gravity−precursor specific gravity)
A method for producing a flame-resistant fiber, characterized in that the gradient coefficient A determined in step 1 is maintained at 200 or more.

〔3〕 〔1〕に記載の耐炎化繊維を不活性ガス雰囲気で熱処理することを特徴とする炭素繊維の製造方法。   [3] A method for producing a carbon fiber, comprising heat-treating the flame-resistant fiber according to [1] in an inert gas atmosphere.

本発明の耐炎化繊維は、SPM観察より得られる繊維断面の画像が、繊維断面外周部を示す外円と、表層付近の既耐炎化部分と円の中心付近の未耐炎化部分との境界を示す内円との二重円を有し、既耐炎化部分の厚み(a)と未耐炎化部分の厚み(b)との比(b/a)が0より大きく且つ0.6以下であり、比重が1.32〜1.41であり、繊維直径が9〜13μmであるので、この耐炎化繊維を炭素化処理して得られる炭素繊維は、高配向、高強力を有し、毛羽や糸切れの少ない高品位なものである。   In the flame-resistant fiber of the present invention, the image of the fiber cross section obtained by SPM observation shows the boundary between the outer circle showing the outer periphery of the fiber cross section, the flame-resistant part near the surface layer, and the non-flame-resistant part near the center of the circle. And a ratio (b / a) of the thickness (a) of the flame-resistant portion and the thickness (b) of the non-flame-resistant portion is greater than 0 and 0.6 or less. Since the specific gravity is 1.32 to 1.41 and the fiber diameter is 9 to 13 μm, the carbon fiber obtained by carbonizing this flame resistant fiber has high orientation and high strength, High quality with few yarn breaks.

本発明の耐炎化繊維の製造方法によれば、昇温時の比重増加に対する耐炎化処理時間を示す勾配係数Aを所定範囲に調節しつつプリカーサーを耐炎化処理しているので、単糸切れ、毛羽等が無くなり、安定した耐炎化繊維の生産ができ、しかも、SPM観察より得られる繊維断面の画像は、上記の二重円になる。   According to the method for producing flame-resistant fibers of the present invention, since the precursor is flame-resistant while adjusting the gradient coefficient A indicating the flame resistance treatment time against the specific gravity increase at the time of temperature rise to a predetermined range, single yarn breakage, Fluff and the like are eliminated, stable flame-resistant fiber can be produced, and an image of the fiber cross section obtained by SPM observation is the above-mentioned double circle.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の耐炎化繊維は、炭素繊維用プリカーサーが耐炎化処理されてなる耐炎化繊維であって、比重が1.32〜1.41であり、繊維直径が9〜13μm、好ましくは10〜12μmである。   The flame-resistant fiber of the present invention is a flame-resistant fiber obtained by flame-treating a carbon fiber precursor, having a specific gravity of 1.32 to 1.41, and a fiber diameter of 9 to 13 μm, preferably 10 to 12 μm. It is.

図1は、本発明の耐炎化繊維の一例を示す概略断面図である。図1において、2は耐炎化繊維であり、4は繊維断面外周部を示す外円である。この外円4の内側には、繊維表面から繊維軸(円の中心)8方向にかけて形成される既耐炎化部分6と、円の中心8付近の未耐炎化部分10との境界により内円12が形成されている。   FIG. 1 is a schematic cross-sectional view showing an example of the flameproof fiber of the present invention. In FIG. 1, 2 is a flame resistant fiber, and 4 is an outer circle showing the outer periphery of the fiber cross section. Inside the outer circle 4, an inner circle 12 is formed by a boundary between an already flame-resistant portion 6 formed from the fiber surface to the fiber axis (center of the circle) 8 and a non-flame-resistant portion 10 near the center 8 of the circle. Is formed.

SPMは原子間力顕微鏡(AFM)に代表され、それを用いて耐炎化繊維断面観察する場合、繊維断面における既耐炎化部分6と未耐炎化部分10との物性の違いが画像化される。即ち、耐炎化繊維2は、その断面のSPM画像が二重円になる。   The SPM is typified by an atomic force microscope (AFM). When the cross section of the flame-resistant fiber is observed using the SPM, the difference in physical properties between the flame-resistant portion 6 and the non-flame-resistant portion 10 in the fiber cross section is imaged. That is, the SPM image of the cross section of the flameproof fiber 2 becomes a double circle.

図2は、耐炎化処理中のプリカーサー2の一例を示す図面代用のSPM写真である。この耐炎化繊維は耐炎化処理途中のプリカーサーであるので、図2に見られるように繊維断面の画像の白黒濃度分布は、繊維断面外周部の画像で形成している外円と、既耐炎化部分と未耐炎化部分との境界で形成している内円との二重円を示している。   FIG. 2 is an SPM photograph in place of a drawing showing an example of the precursor 2 during the flameproofing treatment. Since this flameproof fiber is a precursor in the middle of the flameproofing treatment, as shown in FIG. 2, the black and white density distribution of the fiber cross section image shows the outer circle formed by the image of the fiber cross section and the flame resistance already formed. A double circle with an inner circle formed at the boundary between the portion and the non-flame resistant portion is shown.

図1において、aは既耐炎化部分6の厚みを示し、bは未耐炎化部分10の厚みを示す。上述したように、本発明の耐炎化繊維は、既耐炎化部分の厚み(a)と未耐炎化部分の厚み(b)との比(b/a)が0より大きく且つ0.6以下である。   In FIG. 1, “a” indicates the thickness of the flameproof portion 6, and “b” indicates the thickness of the non-flameproof portion 10. As described above, the flame-resistant fiber of the present invention has a ratio (b / a) between the thickness (a) of the flame-resistant portion and the thickness (b) of the non-flame-resistant portion that is greater than 0 and 0.6 or less. is there.

耐炎化繊維の比(b/a)、比重、繊維直径が上記範囲を逸脱する場合は、炭素化処理時に毛羽や糸切れが発生すること、得られる炭素繊維の配向、強力が低下することの少なくとも何れかが起こるので好ましくない。   When the ratio (b / a), specific gravity, and fiber diameter of the flameproof fiber deviate from the above ranges, fluff and yarn breakage may occur during the carbonization treatment, and the orientation and strength of the resulting carbon fiber may decrease. Since at least one of them occurs, it is not preferable.

図3は、比(b/a)が0である従来の耐炎化繊維の一例を示す図面代用のSPM写真である。本例の耐炎化繊維は既耐炎化部分だけで未耐炎化部分が無いので、SPM画像は繊維断面が均一な白黒濃度分布になり、何ら白黒濃度の偏りにより特定の形状を示すことはない。即ち、図3に見られるように繊維断面の画像において円を形成する画像は繊維断面外周部のみで、SPM観察より得られる繊維断面の画像は図1に示すような二重円にはならない。   FIG. 3 is an SPM photograph in place of a drawing showing an example of a conventional flameproof fiber having a ratio (b / a) of 0. Since the flame-resistant fiber of this example has only a flame-resistant portion and no flame-resistant portion, the SPM image has a uniform black-and-white density distribution in the fiber cross section, and does not show a specific shape due to any black-and-white density deviation. That is, as shown in FIG. 3, the image forming the circle in the fiber cross-sectional image is only the outer periphery of the fiber cross-section, and the image of the fiber cross-section obtained by SPM observation is not a double circle as shown in FIG.

SPMの測定原理は電子線プローブで試料表面をなぞり、試料形状(試料表面の高さ)を離散的に測定し、コンピューター上で画像解析処理するものである。その特徴としては、高さ情報の精度が高いことが上げられる。   The measurement principle of SPM is to trace the sample surface with an electron beam probe, discretely measure the sample shape (the height of the sample surface), and perform image analysis processing on a computer. The feature is that the accuracy of the height information is high.

この画像解析処理は、例えば特開2003−293264号公報に開示されているような公知の方法を用いて行うことができる。   This image analysis processing can be performed using a known method as disclosed in, for example, Japanese Patent Laid-Open No. 2003-293264.

本発明の耐炎化繊維は上記の構成を有するので、高配向、高強力を有する。また、本例の耐炎化繊維を炭素化して得られる炭素繊維は、高配向、高強力を有し、毛羽や糸切れの少ない高品位なものである。   Since the flameproof fiber of the present invention has the above-described configuration, it has high orientation and high strength. In addition, the carbon fiber obtained by carbonizing the flame resistant fiber of this example has high orientation, high strength, and high quality with less fuzz and yarn breakage.

本発明の耐炎化繊維は、例えば、以下の方法により製造することができる。   The flame resistant fiber of the present invention can be produced, for example, by the following method.

本発明の耐炎化繊維の原料であるプリカーサーについては、最も高品位の炭素繊維を得る中間原料として適した耐炎化繊維が得られることから、PAN系プリカーサーが好ましい。なお、PAN系プリカーサー以外には、ピッチ系、フェノール系、セルロース系、レーヨン系等のプリカーサーを用いることもできる。   The precursor, which is a raw material for the flame-resistant fiber of the present invention, is preferably a PAN-based precursor because a flame-resistant fiber suitable as an intermediate raw material for obtaining the highest quality carbon fiber can be obtained. In addition to the PAN-based precursor, a pitch-based, phenol-based, cellulose-based or rayon-based precursor can also be used.

PAN系プリカーサーは、例えばアクリロニトリルを95質量%以上含有する単量体を重合した単独重合体又は共重合体を含む紡糸溶液を、湿式又は乾湿式紡糸法において紡糸・水洗・乾燥・延伸等の処理を行うことによって得ることができる。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸メチル、アクリル酸等が好ましい。   PAN-based precursors, for example, a spinning solution containing a homopolymer or copolymer obtained by polymerizing a monomer containing 95% by mass or more of acrylonitrile in a wet or dry-wet spinning method such as spinning, washing, drying, stretching, etc. Can be obtained by doing As the monomer to be copolymerized, methyl acrylate, itaconic acid, methyl methacrylate, acrylic acid and the like are preferable.

なお、プリカーサーの繊維直径は9.5〜13.5μmに調節する。   The fiber diameter of the precursor is adjusted to 9.5 to 13.5 μm.

このようにして得られるプリカーサーを、本発明の耐炎化繊維の製造方法に従って耐炎化して耐炎化繊維を得る。この耐炎化繊維を炭素化することによって高配向、高強力の炭素繊維を得ることができる。   The precursor thus obtained is flame-resistant according to the method for producing flame-resistant fibers of the present invention to obtain flame-resistant fibers. By carbonizing this flame resistant fiber, highly oriented and highly strong carbon fiber can be obtained.

本発明の耐炎化繊維の製造方法における耐炎化処理過程では、上記プリカーサーを耐炎化処理する際、次式
勾配係数A=耐炎化処理時間(分)/比重増加
(ここで、比重増加=耐炎化繊維比重−プリカーサー比重)
で求められる勾配係数Aを200以上にする。
In the flameproofing process in the method for producing a flameproofed fiber of the present invention, when the precursor is flameproofed, the following gradient coefficient A = flameproofing time (minutes) / specific gravity increase
(Here, specific gravity increase = flame-resistant fiber specific gravity−precursor specific gravity)
Is set to 200 or more.

本発明の耐炎化繊維の製造方法によれば、昇温時の比重増加に対する耐炎化処理時間を示す勾配係数Aを上記範囲に調節しつつプリカーサーを耐炎化処理しているので、単糸切れ、毛羽等が無くなり、安定した耐炎化繊維の生産ができ、しかも、SPM観察より得られる繊維断面の画像は、既耐炎化部分の厚み(a)と未耐炎化部分の厚み(b)との比(b/a)が0より大きく且つ0.6以下の二重円になる。   According to the method for producing flame-resistant fibers of the present invention, since the precursor is flame-resistant while adjusting the gradient coefficient A indicating the flame resistance treatment time for the specific gravity increase at the time of temperature rise to the above range, the single yarn breakage, There is no fluff and the like, and stable flame-resistant fibers can be produced, and the image of the fiber cross section obtained by SPM observation is the ratio between the thickness (a) of the flame-resistant part and the thickness (b) of the non-flame-resistant part. (b / a) is a double circle greater than 0 and less than or equal to 0.6.

次に、この耐炎化繊維を、窒素雰囲気下などの不活性ガス雰囲気下で焼成し炭素化することにより炭素繊維を得ることができる。焼成条件は特に制限がなく、公知の条件に従う。更に、炭素繊維の後加工をしやすくし、取扱性を向上させる目的で、炭素繊維のサイジング処理することが好ましい。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、炭素繊維に均一付着させた後に、乾燥することが好ましい。   Next, the flame-resistant fiber is baked and carbonized in an inert gas atmosphere such as a nitrogen atmosphere to obtain a carbon fiber. The firing conditions are not particularly limited, and follow known conditions. Further, for the purpose of facilitating the post-processing of the carbon fiber and improving the handleability, sizing treatment of the carbon fiber is preferable. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering to the carbon fiber.

このようにして得られた炭素繊維は、高配向、且つ高強力を有し、毛羽や糸切れの少ない炭素繊維である。   The carbon fiber thus obtained is a carbon fiber having high orientation, high strength, and less fluff and yarn breakage.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例におけるプリカーサー、耐炎化繊維及び炭素繊維の諸物性についての評価方法は、前述の方法又は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the evaluation method about the various physical properties of the precursor in each Example and a comparative example, a flame-resistant fiber, and carbon fiber was implemented by the above-mentioned method or the following methods.

<繊維比重>
アルキメデス法により測定した。プリカーサー又は耐炎化繊維の試料繊維はアセトン中にて脱気処理し測定した。
<Fiber specific gravity>
Measured by Archimedes method. Precursor or flameproof fiber sample fibers were degassed in acetone and measured.

<SPM観察>
試料作製方法:耐炎化繊維をエポキシ樹脂(エポマウント:リファインテック社製)に包埋し、ミクロトームにてダイヤモンドナイフを用いて断面サンプルを作製した。
<SPM observation>
Sample preparation method: Flame-resistant fibers were embedded in an epoxy resin (Epomount: manufactured by Refinetech), and a cross-sectional sample was prepared using a diamond knife with a microtome.

SPM装置:Digital Instrument社製 SPM Dimension3100を使用し、耐炎化繊維断面を観察した。   SPM device: SPM Dimension3100 manufactured by Digital Instrument was used to observe the cross section of the flame-resistant fiber.

<広角X線測定(回折角26°)における配向度>
延伸処理後の耐炎化繊維又は炭素繊維の単繊維約12000本を束にし、アセトンを用いて束を収束させながら繊維軸方向に繊維を引揃える。
<Degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °)>
About 12,000 single fibers of flame-resistant fibers or carbon fibers after the drawing treatment are bundled, and the fibers are aligned in the fiber axis direction while converging the bundle using acetone.

直径1.0cmの穴をあけた台紙に、繊維束の中央が穴の中央に来るように、繊維を緊張させた状態で貼付ける。その後、繊維軸と治具の軸が平行になるように、台紙を試料調整用治具に固定する。   The fiber is affixed to a mount having a hole with a diameter of 1.0 cm in a tensioned state so that the center of the fiber bundle comes to the center of the hole. Thereafter, the mount is fixed to the sample adjusting jig so that the fiber axis and the axis of the jig are parallel to each other.

更に、この治具を透過法による広角X線回折測定試料台に固定する。X線源として、CuのKα線を使用し、試料に照射すると、2θが26度付近に回折パターン(二つのピークを有する)が現れる。   Furthermore, this jig is fixed to a wide-angle X-ray diffraction measurement sample stage by a transmission method. When Cu Kα rays are used as the X-ray source and the sample is irradiated, a diffraction pattern (having two peaks) appears at 2θ of around 26 degrees.

この回折パターンのピーク角度を求め、それらの角度を含む360度の範囲について測定を行う。次いで得られたX線回折チャートのグラフ上にベースラインを引き、ピークの半値幅H1/2、H'1/2(度)を求め、下式
配向度=[360−(H1/2+H'1/2)]/360
によって配向度を計算する。
The peak angle of this diffraction pattern is obtained, and measurement is performed for a range of 360 degrees including these angles. Next, a base line is drawn on the graph of the obtained X-ray diffraction chart to determine peak half-value widths H 1/2 and H ′ 1/2 (degrees), and the following degree of orientation = [360− (H 1/2 + H'1 / 2 )] / 360
The degree of orientation is calculated by

<繊維強力及び引張り強度>
JIS R 7601に規定された方法により測定した。
<Fiber strength and tensile strength>
It was measured by the method defined in JIS R7601.

実施例1〜5及び比較例1〜5
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を湿式又は乾湿式紡糸し、水洗・乾燥・延伸して繊維直径:実施例1〜5、比較例1〜3で12.3μm、比較例4で8.5μm、比較例5で14.2μmのプリカーサーを得た。
Examples 1-5 and Comparative Examples 1-5
Copolymer spinning stock solution consisting of 95% by weight of acrylonitrile / 4% by weight of methyl acrylate / 1% by weight of itaconic acid was wet or dry-wet spun, washed with water, dried and stretched, and fiber diameter: Examples 1 to 5, Comparative Example 1 to 12.3 μm, Comparative Example 4 to 8.5 μm, and Comparative Example 5 to 14.2 μm.

このプリカーサーを、240〜250℃に設定された熱風循環式耐炎化炉を用い、酸化性雰囲気下、表1に示す条件で耐炎化繊維とした。得られた耐炎化繊維の諸物性を表1に示す。これら耐炎化繊維を、350〜550℃に設定された第一炭素化炉で不活性ガス雰囲気下熱処理を行い、引き続き700〜1500℃に設定された第二炭素化炉で不活性ガス雰囲気下熱処理を行い、炭素繊維を得た。得られた炭素繊維の物性を表1に示す。   This precursor was made into a flame resistant fiber under the conditions shown in Table 1 in an oxidizing atmosphere using a hot air circulation type flame resistant furnace set at 240 to 250 ° C. Table 1 shows the physical properties of the obtained flame-resistant fiber. These flame resistant fibers are heat-treated in an inert gas atmosphere in a first carbonization furnace set at 350 to 550 ° C., and subsequently heat-treated in an inert gas atmosphere in a second carbonization furnace set at 700 to 1500 ° C. The carbon fiber was obtained. Table 1 shows the physical properties of the obtained carbon fibers.

Figure 2006283225
実施例1〜5において、得られた炭素繊維は良好な性能を有するものであった。
Figure 2006283225
In Examples 1 to 5, the obtained carbon fibers had good performance.

比較例1〜4において得られた耐炎化繊維は、観察より得られる繊維断面の画像が二重円を示すこと、既耐炎化部分の厚み(a)と未耐炎化部分の厚み(b)との比(b/a)が0より大きく且つ0.6以下であること、比重が1.32〜1.41であること、及び、繊維直径が9〜13μmであることの少なくとも何れかが本発明の構成から逸脱しており、この耐炎化繊維から得られた炭素繊維は、毛羽の有無、26°配向度及び強力の少なくとも何れかが好ましくないものであった。   The flame-resistant fibers obtained in Comparative Examples 1 to 4 show that the image of the fiber cross section obtained by observation shows a double circle, the thickness (a) of the flame-resistant part and the thickness (b) of the non-flame-resistant part. The ratio (b / a) is greater than 0 and less than or equal to 0.6, the specific gravity is 1.32 to 1.41, and the fiber diameter is 9 to 13 μm. The carbon fiber deviated from the constitution of the invention was unfavorable for at least one of the presence or absence of fluff, the degree of orientation at 26 °, and the strength.

比較例5において得られた耐炎化繊維は、既耐炎化部分の厚み(a)と未耐炎化部分の厚み(b)との比(b/a)が0.63であり、繊維直径が14μmであり、本発明の構成から逸脱しており、また第一炭素化工程を通過することができなかった。   The flame-resistant fiber obtained in Comparative Example 5 has a ratio (b / a) of the thickness (a) of the flame-resistant portion to the thickness (b) of the non-flame-resistant portion is 0.63, and the fiber diameter is 14 μm. And deviated from the configuration of the present invention, and could not pass through the first carbonization step.

本発明の耐炎化繊維の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the flameproof fiber of this invention. 耐炎化処理途中のプリカーサーの一例を示す図面代用のSPM写真である。It is a drawing SPM photograph which shows an example of the precursor in the middle of a flameproofing process. 従来の耐炎化繊維の一例を示す図面代用のSPM写真である。It is a SPM photograph instead of drawing which shows an example of the conventional flameproof fiber.

符号の説明Explanation of symbols

2 耐炎化繊維
4 繊維断面外周部を示す外円
6 繊維の外表面から繊維軸方向にかけて形成される既耐炎化部分
8 繊維軸(円の中心)
10 繊維軸を含む未耐炎化部分
12 既耐炎化部分と未耐炎化部分との境界を示す内円
a 既耐炎化部分の厚み
b 未耐炎化部分の厚み
2 Flame-resistant fiber 4 Outer circle showing fiber cross section outer periphery 6 Flame-resistant part formed from fiber outer surface to fiber axis direction 8 Fiber axis (center of circle)
10 Non-flame-resistant part including fiber axis 12 Inner circle showing boundary between flame-proof part and non-flame-resistant part a Thickness of flame-resistant part b Thickness of non-flame-resistant part

Claims (3)

炭素繊維製造用耐炎化繊維の走査型プローブ顕微鏡観察により得られる繊維断面の白黒画像において、繊維断面の画像の白黒濃度分布は、繊維断面外周部の画像で形成される外円と、繊維の外表面から繊維軸方向に形成される既耐炎化部分と繊維軸を含む未耐炎化部分との境界で形成される内円との二重円構造を有し、既耐炎化部分の径方向厚み(a)と前記内円半径で示される未耐炎化部分の厚み(b)との比(b/a)が0より大きく且つ0.6以下であり、比重が1.32〜1.41であり、繊維直径が9〜13μmである耐炎化繊維。 In the black and white image of the fiber cross section obtained by scanning probe microscope observation of the flame resistant fiber for carbon fiber production, the black and white density distribution of the fiber cross section image is the outer circle formed by the image of the outer periphery of the fiber cross section, and the outside of the fiber. It has a double circular structure with an inner circle formed at the boundary between the flame-resistant part formed in the fiber axis direction from the surface and the non-flame-resistant part including the fiber axis, and the radial thickness of the flame-resistant part ( The ratio (b / a) between a) and the thickness (b) of the non-flame resistant portion indicated by the inner circle radius is greater than 0 and less than or equal to 0.6, and the specific gravity is 1.32 to 1.41 Flame resistant fiber having a fiber diameter of 9 to 13 μm. 繊維直径9.5〜13.5μmの炭素繊維用プリカーサーを耐炎化処理する際、次式
勾配係数A=耐炎化処理時間(分)/比重増加
(ここで、比重増加=耐炎化繊維比重−プリカーサー比重)
で求められる勾配係数Aを200以上に保つことを特徴とする耐炎化繊維の製造方法。
When a carbon fiber precursor having a fiber diameter of 9.5 to 13.5 μm is subjected to flame resistance treatment, the following gradient coefficient A = flame resistance treatment time (min) / specific gravity increase
(Here, specific gravity increase = flame-resistant fiber specific gravity−precursor specific gravity)
A method for producing a flame-resistant fiber, characterized in that the gradient coefficient A determined in step 1 is maintained at 200 or more.
請求項1に記載の耐炎化繊維を不活性ガス雰囲気で熱処理することを特徴とする炭素繊維の製造方法。 A method for producing carbon fiber, comprising heat-treating the flame-resistant fiber according to claim 1 in an inert gas atmosphere.
JP2005104230A 2005-03-31 2005-03-31 Method for producing flame-proofed fiber and carbon fiber Pending JP2006283225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104230A JP2006283225A (en) 2005-03-31 2005-03-31 Method for producing flame-proofed fiber and carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104230A JP2006283225A (en) 2005-03-31 2005-03-31 Method for producing flame-proofed fiber and carbon fiber

Publications (1)

Publication Number Publication Date
JP2006283225A true JP2006283225A (en) 2006-10-19

Family

ID=37405429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104230A Pending JP2006283225A (en) 2005-03-31 2005-03-31 Method for producing flame-proofed fiber and carbon fiber

Country Status (1)

Country Link
JP (1) JP2006283225A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825558A (en) * 2010-03-25 2010-09-08 中国科学院宁波材料技术与工程研究所 Method for study on thermal stabilization process of polyacrylonitrile-based carbon fiber
JP2018145540A (en) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 Method for production of carbon fiber bundle
WO2019107276A1 (en) 2017-12-01 2019-06-06 帝人株式会社 Carbon fiber bundle, prepreg, and fiber-reinforced composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045576A1 (en) * 1996-05-24 1997-12-04 Toray Industries, Inc. Carbon fiber, acrylic fiber, and method of manufacturing them
JPH10251923A (en) * 1997-03-11 1998-09-22 Mitsubishi Rayon Co Ltd Flame-resisted fiber for production of carbon fiber, its production and measurement of structural nonuniformity of flame-resisted fiber
JP2004003043A (en) * 2001-05-24 2004-01-08 Toray Ind Inc Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP2006274518A (en) * 2005-03-30 2006-10-12 Toho Tenax Co Ltd Method for producing flame resistant fiber and carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045576A1 (en) * 1996-05-24 1997-12-04 Toray Industries, Inc. Carbon fiber, acrylic fiber, and method of manufacturing them
JPH10251923A (en) * 1997-03-11 1998-09-22 Mitsubishi Rayon Co Ltd Flame-resisted fiber for production of carbon fiber, its production and measurement of structural nonuniformity of flame-resisted fiber
JP2004003043A (en) * 2001-05-24 2004-01-08 Toray Ind Inc Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP2006274518A (en) * 2005-03-30 2006-10-12 Toho Tenax Co Ltd Method for producing flame resistant fiber and carbon fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825558A (en) * 2010-03-25 2010-09-08 中国科学院宁波材料技术与工程研究所 Method for study on thermal stabilization process of polyacrylonitrile-based carbon fiber
JP2018145540A (en) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 Method for production of carbon fiber bundle
WO2019107276A1 (en) 2017-12-01 2019-06-06 帝人株式会社 Carbon fiber bundle, prepreg, and fiber-reinforced composite material
US11560646B2 (en) 2017-12-01 2023-01-24 Teijin Limited Carbon fiber bundle, prepreg, and fiber-reinforced composite material
US11746445B2 (en) 2017-12-01 2023-09-05 Teijin Limited Carbon fiber bundle, prepreg, and fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
WO2016068034A1 (en) Carbon fiber bundle and method for manufacturing same
JP5264150B2 (en) Carbon fiber strand and method for producing the same
JP2007177368A (en) Carbon fiber and precursor and method for producing carbon fiber
JP5708896B1 (en) Carbon fiber bundle and flameproof fiber bundle
JP4662450B2 (en) Carbon fiber manufacturing method
JP5907321B1 (en) Carbon fiber bundle and method for producing the same
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
KR102603178B1 (en) Carbon fiber bundle and its manufacturing method
JP2006283225A (en) Method for producing flame-proofed fiber and carbon fiber
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP4754855B2 (en) Method for producing flame-resistant fiber, method for producing carbon fiber
JP4271019B2 (en) Carbon fiber manufacturing method
JP4088500B2 (en) Carbon fiber manufacturing method
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
JP2004197278A (en) Method for producing carbon fiber
JP4565978B2 (en) Carbon fiber manufacturing method
JP2006283226A (en) Flame-proofed fiber, carbon fiber and method for producing them
JP4454364B2 (en) Carbon fiber manufacturing method
JP2006104604A (en) Method for producing flameproofed fiber and carbon fiber
JP6547924B1 (en) Method of manufacturing flameproofed fiber bundle and carbon fiber bundle
JP4088543B2 (en) High-strength carbon fiber and method for producing the same
JP4626939B2 (en) Carbon fiber manufacturing method
JP2005054283A (en) Method for producing fire-resistant fiber
JP2010133049A (en) Carbon fiber and method for producing the same
JP2004107836A (en) Method for producing carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412