JP4971836B2 - Boron nitride nanotube dispersion and non-woven fabric obtained therefrom - Google Patents

Boron nitride nanotube dispersion and non-woven fabric obtained therefrom Download PDF

Info

Publication number
JP4971836B2
JP4971836B2 JP2007054088A JP2007054088A JP4971836B2 JP 4971836 B2 JP4971836 B2 JP 4971836B2 JP 2007054088 A JP2007054088 A JP 2007054088A JP 2007054088 A JP2007054088 A JP 2007054088A JP 4971836 B2 JP4971836 B2 JP 4971836B2
Authority
JP
Japan
Prior art keywords
boron nitride
nanotubes
nitride nanotubes
dispersion
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007054088A
Other languages
Japanese (ja)
Other versions
JP2008214130A (en
Inventor
広明 桑原
義雄 板東
ズィ チュンイ
タン チェンチュン
ゴルバーグ デミトリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Teijin Ltd
Original Assignee
National Institute for Materials Science
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Teijin Ltd filed Critical National Institute for Materials Science
Priority to JP2007054088A priority Critical patent/JP4971836B2/en
Publication of JP2008214130A publication Critical patent/JP2008214130A/en
Application granted granted Critical
Publication of JP4971836B2 publication Critical patent/JP4971836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、窒化ホウ素ナノチューブを含有する分散液ならびにそれより得られる窒化ホウ素ナノチューブ不織布に関する。さらに詳しくは、分散溶媒として遊離水分含有量が5重量%以下である強酸性溶媒を用い、分散性、安定性に優れた分散液を調製し、これを湿式凝固製膜せしめることによる窒化ホウ素ナノチューブ不織布状シート、およびその製造方法に関する。   The present invention relates to a dispersion containing boron nitride nanotubes and a boron nitride nanotube nonwoven fabric obtained therefrom. More specifically, boron nitride nanotubes are prepared by preparing a dispersion having excellent dispersibility and stability using a strongly acidic solvent having a free water content of 5% by weight or less as a dispersion solvent, and forming the dispersion by wet coagulation. The present invention relates to a non-woven sheet and a method for producing the same.

カーボンナノチューブは炭素6員環からなるグラファイトシートが円筒状を形成した物質であり、1層に巻いたものを単層カーボンナノチューブ、2層に巻いたものを2層カーボンナノチューブ、多層に巻いたものを多層カーボンナノチューブという。
カーボンナノチューブは、高電気伝導性、機械的性質、化学安定性等、これまでにない優れた特性を有しており、複合材料、半導体素子、導電材料、水素吸蔵材料などへの応用研究が進められている。
一方で近年、窒化ホウ素ナノチューブもカーボンナノチューブと構造的な類似性を有することから従来にない特性を有する材料として期待されている(特許文献1参照)。
A carbon nanotube is a material in which a graphite sheet composed of a carbon 6-membered ring forms a cylindrical shape. A single-walled carbon nanotube is a single-walled carbon nanotube wound in one layer, a double-walled carbon nanotube is wound in a multi-layer, and a multi-layered carbon nanotube Is called multi-walled carbon nanotube.
Carbon nanotubes have unprecedented properties such as high electrical conductivity, mechanical properties, and chemical stability, and application research on composite materials, semiconductor devices, conductive materials, hydrogen storage materials, etc. is underway. It has been.
On the other hand, boron nitride nanotubes are also expected as a material having unprecedented characteristics since they have structural similarities to carbon nanotubes (see Patent Document 1).

例えば、高強度、高弾性率、高熱伝導性かつ絶縁性、高耐熱性という特徴を生かしてポリマーなどの構造材料マトリクス中にフィラーとして添加して、機械的物性、耐熱性や熱伝導性を向上させることが期待できる。更にチューブを賦型し、シートやマット状に成型できればマトリクスとの任意の複合化が可能となり、電気・電子部材、高強度、耐熱構造材料などの広い分野で様々な利用が可能となる。しかし、窒化ホウ素ナノチューブは粉黛状のナノフィラーであるため、通常の成型方法を適用することが困難であった。有効な成型方法としては、一旦窒化ホウ素ナノチューブを適当な溶剤に均一分散せしめ、これより溶媒抽出を行うことで成型することが考えられる。ただし窒化ホウ素ナノチューブは単独では水や一般的な有機溶剤への分散性が低く、通常カーボンナノチューブが分散するような界面活性剤水溶液や有機溶媒へも高度に分散することができない。このような場合、従来より高分子型添加剤とマトリクスポリマーを用いて窒化ホウ素ナノチューブを有機溶媒に分散し、ポリマーと共に成型することが検討されているが、この方法では分散用、マトリクス用ポリマーが成型材料としてそのまま窒化ホウ素ナノチューブと複合利用される場合のみ有効であり、窒化ホウ素ナノチューブのみを成型したり、この方法を適用できない溶剤不溶性のポリマーや金属との複合を目的とした窒化ホウ素ナノチューブ成型体調製は困難である。この目的には、純粋な窒化ホウ素ナノチューブを第三成分の添加なしに高度に溶媒分散させ、その分散液を用いた成型方法を確立する必要がある。
特開2000−109306号公報
For example, taking advantage of the characteristics of high strength, high elastic modulus, high thermal conductivity, insulation, and high heat resistance, it can be added as a filler to a structural material matrix such as polymer to improve mechanical properties, heat resistance, and thermal conductivity. You can expect Furthermore, if the tube is shaped and formed into a sheet or mat shape, it can be arbitrarily combined with the matrix, and can be used in a wide range of fields such as electric / electronic members, high strength, heat-resistant structural materials, and the like. However, since boron nitride nanotubes are powdery nanofillers, it has been difficult to apply ordinary molding methods. As an effective molding method, it is conceivable that the boron nitride nanotubes are once uniformly dispersed in an appropriate solvent and then molded by solvent extraction. However, boron nitride nanotubes alone have low dispersibility in water and general organic solvents, and cannot be highly dispersed in a surfactant aqueous solution or organic solvent in which carbon nanotubes are normally dispersed. In such a case, it has been conventionally studied to disperse boron nitride nanotubes in an organic solvent using a polymer-type additive and a matrix polymer, and to form the polymer together with the polymer. It is effective only when it is used in combination with boron nitride nanotubes as it is as a molding material, and it is effective to mold boron nitride nanotubes for the purpose of molding only boron nitride nanotubes or compounding with solvent-insoluble polymers and metals to which this method cannot be applied. It is difficult to make. For this purpose, it is necessary to highly disperse pure boron nitride nanotubes without adding a third component and to establish a molding method using the dispersion.
JP 2000-109306 A

本発明の目的は、分散性および安定性が改良された、窒化ホウ素ナノチューブを含有する分散液ならびにその製造方法を提供すること、更にこれを用いた窒化ホウ素ナノチューブの成型方法及び成型体を提供することにある。   An object of the present invention is to provide a dispersion containing boron nitride nanotubes with improved dispersibility and stability, a method for producing the same, and a method and a molded body for boron nitride nanotubes using the same. There is.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、窒化ホウ素ナノチューブを分散させる溶媒として、水分含有率の極端に低い強酸性液体を使用することにより、窒化ホウ素ナノチューブを強酸性液体中に均一にかつ安定して分散させることができること、ならびにこの溶液を湿式凝固製膜法により成型することで簡便に均一な不織布状窒化ホウ素ナノチューブシートを調製できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have made boron nitride nanotubes highly acidic by using a strongly acidic liquid with extremely low moisture content as a solvent for dispersing boron nitride nanotubes. The present invention was completed by finding that it can be uniformly and stably dispersed in a liquid, and that a uniform non-woven boron nitride nanotube sheet can be easily prepared by molding this solution by a wet coagulation film forming method. .

すなわち本発明は、
1.1重量部の窒化ホウ素ナノチューブ(A)と、遊離水分含有量が5重量%以下であり、濃硫酸、発煙硫酸、アルキルスルホン酸及び/またはそれらの混合溶媒から成る強酸性溶媒(B)を1〜100000重量部含有することを特徴とする窒化ホウ素ナノチューブ分散液。
.窒化ホウ素ナノチューブの平均直径が0.4nm〜1μm、平均アスペクト比が5以上であることを特徴とする上記に記載の窒化ホウ素ナノチューブ分散液。
.強酸性溶媒(B)が、濃度95〜100重量%の濃硫酸および/またはメタンスルホン酸であることを特徴とする上記に記載の窒化ホウ素ナノチューブ分散液。
.上記に記載の分散液を湿式凝固し製膜せしめた後に洗浄し、次いで乾燥することにより得られる厚さ1μm以上の窒化ホウ素ナノチューブ不織布状シート。
5.目付け量が1.6g/m 以上である上記に記載の窒化ホウ素ナノチューブ不織布状シート。
6.上記に記載の分散液を湿式凝固し製膜せしめた後に洗浄し、次いで乾燥することを特徴とする窒化ホウ素ナノチューブ不織布状シートの製造方法、
7.平均直径が0.4nm〜1μm、平均アスペクト比が5以上である窒化ホウ素ナノチューブ50〜100重量%からなる厚さ1μm以上の窒化ホウ素ナノチューブ不織布状シート。
により構成される。
That is, the present invention
1.1 parts by weight of boron nitride nanotubes (A), free moisture content of Ri der 5 wt% or less, concentrated sulfuric acid, fuming sulfuric acid, a strongly acidic solvent consisting of alkylsulfonic acids and / or their mixed solvent (B 1) to 100000 parts by weight of boron nitride nanotube dispersion.
2 . The boron nitride nanotube dispersion liquid according to, wherein the average diameter of the nitrided boron nanotubes 0.4Nm~1myuemu, average aspect ratio of 5 or more.
3 . The boron nitride nanotube dispersion described above, wherein the strongly acidic solvent (B) is concentrated sulfuric acid and / or methanesulfonic acid having a concentration of 95 to 100% by weight.
4 . A boron nitride nanotube non-woven sheet having a thickness of 1 μm or more obtained by wet coagulation to form a film after forming the dispersion described above, followed by drying and then drying.
5. The boron nitride nanotube nonwoven fabric sheet according to the above, wherein the basis weight is 1.6 g / m 2 or more.
6). A method for producing a non-woven sheet of boron nitride nanotubes, characterized in that the dispersion described above is wet-coagulated to form a film, washed, and then dried,
7). A non-woven sheet of boron nitride nanotubes having a thickness of 1 μm or more, comprising 50 to 100% by weight of boron nitride nanotubes having an average diameter of 0.4 nm to 1 μm and an average aspect ratio of 5 or more.
Consists of.

本発明によれば、窒化ホウ素ナノチューブの分散安定性に優れた分散液を得ることができる。また本発明によれば、該分散液を用いて成型することにより不織布状の窒化ホウ素ナノチューブシートを容易に製造することができ、このシートは単独での使用、あるいはポリマーや金属等のマトリクスとの複合により高強度、高耐熱性の構造材料および/または絶縁性、高熱伝導性の成型体として、自動車、航空機、電気、電子素材の基材として好適に使用することができる。   According to the present invention, a dispersion having excellent dispersion stability of boron nitride nanotubes can be obtained. Further, according to the present invention, a non-woven boron nitride nanotube sheet can be easily produced by molding using the dispersion, and this sheet can be used alone or with a matrix such as a polymer or metal. The composite material can be suitably used as a base material for automobiles, aircrafts, electrical and electronic materials as a structural material and / or an insulating and high thermal conductive molded body having high strength and high heat resistance.

以下本発明を詳細に説明する。
<窒化ホウ素ナノチューブ(A)>
本発明において、窒化ホウ素ナノチューブとは、窒化ホウ素からなるチューブ状材料であり、理想的な構造としては6角網目の面がチューブ軸に平行に管を形成し、一重管もしくは多重管になっているものである。窒化ホウ素ナノチューブの平均直径は、好ましくは0.4nm〜1μm、より好ましくは0.6〜500nm、さらにより好ましくは0.8〜200nmである。ここでいう平均直径とは、一重管の場合、その平均外径を、多重管の場合はその最外側の管の平均外径を意味する。平均長さは、好ましくは10μm以下、より好ましくは5μm以下である。平均アスペクト比は、好ましくは5以上、さらに好ましくは10以上である。平均アスペクト比の上限は、平均長さが10μm以下であれば限定されるものではないが、上限は実質25000である。よって、窒化ホウ素ナノチューブは、平均直径が0.4nm〜1μm、平均アスペクト比が5以上であることが好ましい。
The present invention will be described in detail below.
<Boron nitride nanotube (A)>
In the present invention, the boron nitride nanotube is a tube-shaped material made of boron nitride, and as an ideal structure, a hexagonal mesh surface forms a tube parallel to the tube axis, forming a single tube or multiple tube. It is what. The average diameter of the boron nitride nanotubes is preferably 0.4 nm to 1 μm, more preferably 0.6 to 500 nm, and even more preferably 0.8 to 200 nm. The average diameter here means the average outer diameter in the case of a single pipe, and the average outer diameter of the outermost pipe in the case of a multiple pipe. The average length is preferably 10 μm or less, more preferably 5 μm or less. The average aspect ratio is preferably 5 or more, more preferably 10 or more. The upper limit of the average aspect ratio is not limited as long as the average length is 10 μm or less, but the upper limit is substantially 25000. Therefore, the boron nitride nanotubes preferably have an average diameter of 0.4 nm to 1 μm and an average aspect ratio of 5 or more.

窒化ホウ素ナノチューブの平均直径および平均アスペクト比は、電子顕微鏡による観察から求めることが出来る。例えばTEM(透過型電子顕微鏡)測定を行い、その画像から直接窒化ホウ素ナノチューブの直径および長手方向の長さを測定することが可能である。また組成物中の窒化ホウ素ナノチューブの形態は例えば繊維軸と平行に切断した繊維断面のTEM(透過型電子顕微鏡)測定により把握することが出来る。   The average diameter and average aspect ratio of the boron nitride nanotube can be determined from observation with an electron microscope. For example, a TEM (transmission electron microscope) measurement is performed, and the diameter and the length in the longitudinal direction of the boron nitride nanotube can be directly measured from the image. The form of the boron nitride nanotubes in the composition can be grasped by, for example, TEM (transmission electron microscope) measurement of a fiber cross section cut parallel to the fiber axis.

窒化ホウ素ナノチューブは、アーク放電法、レーザー加熱法、化学的気相成長法を用いて合成できる。また、ホウ化ニッケルを触媒として使用し、ボラジンを原料として合成する方法も知られている(Chem. Mater., 2000,vol.12,1808)。また、カーボンナノチューブを鋳型として利用して、酸化ホウ素と窒素を反応させて合成する方法(特開2000-109306号公報、特開2002-97004号公報)等も提案されている。本発明に用いられる窒化ホウ素ナノチューブは、これらの方法により製造されるものに限定されない。窒化ホウ素ナノチューブは、強酸処理や化学修飾された窒化ホウ素ナノチューブも使用することができる。   Boron nitride nanotubes can be synthesized using arc discharge methods, laser heating methods, and chemical vapor deposition methods. A method of synthesizing borazine as a raw material using nickel boride as a catalyst is also known (Chem. Mater., 2000, vol. 12, 1808). In addition, a method of synthesizing boron oxide and nitrogen by using carbon nanotubes as a template (Japanese Patent Laid-Open Nos. 2000-109306 and 2002-97004) has been proposed. The boron nitride nanotubes used in the present invention are not limited to those produced by these methods. As the boron nitride nanotube, a boron nitride nanotube subjected to strong acid treatment or chemical modification can also be used.

窒化ホウ素ナノチューブ(A)は、不純物として窒化ホウ素フレーク、触媒金属等を含んでいる場合がある。その場合、50%以上が窒化ホウ素ナノチューブであることが好ましく、80%以上が窒化ホウ素ナノチューブであることがより好ましい。   The boron nitride nanotube (A) may contain boron nitride flakes, catalyst metals, and the like as impurities. In that case, 50% or more are preferably boron nitride nanotubes, and more preferably 80% or more are boron nitride nanotubes.

<強酸性溶媒(B)>
強酸性溶媒(B)は、窒化ホウ素ナノチューブと十分に相互作用できる程度の酸強度を有することに加え、窒化ホウ素ナノチューブと酸の相互作用を阻害する遊離水分濃度が低いものが好ましく、遊離水分含有量が5重量%以下である。強酸性溶媒(B)は濃硫酸、発煙硫酸、アルキルスルホン酸及び/またはそれらの混合溶媒から成ることが好ましい。具体的には、(i)濃硫酸、発煙硫酸、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、などのスルホン酸類、(ii) トリフルオロメタンスルホン酸、フルオロ硫酸、クロロ硫酸、フルオロホウ酸などハロゲン化酸素酸類、(iii)正リン酸、オルトリン酸、ピロリン酸、メタリン酸、ポリリン酸などのリン酸類、(iv)フルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸、トリクロロ酢酸などのハロゲン化カルボン酸などが挙げられる。これらの液体は通常単独で用いるが、特別な副反応性などが無い組み合わせの場合は2種以上を混合して用いることもできる。これらの溶媒のなかでも、より好ましい強酸性液体として、濃硫酸、発煙硫酸、アルキルスルホン酸及び/またはそれらの混合溶媒から成るものが挙げられる。なかでも、98〜100%濃度の濃硫酸、メタンスルホン酸を特に好ましく挙げることができる。
<Strongly acidic solvent (B)>
The strongly acidic solvent (B) preferably has an acid strength that can sufficiently interact with boron nitride nanotubes, and preferably has a low free water concentration that inhibits the interaction between boron nitride nanotubes and acid. The amount is 5% by weight or less. The strongly acidic solvent (B) is preferably composed of concentrated sulfuric acid, fuming sulfuric acid, alkylsulfonic acid and / or a mixed solvent thereof. Specifically, (i) sulfonic acids such as concentrated sulfuric acid, fuming sulfuric acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, etc. (ii) halogenated such as trifluoromethanesulfonic acid, fluorosulfuric acid, chlorosulfuric acid, fluoroboric acid, etc. Oxygen acids, (iii) phosphoric acids such as orthophosphoric acid, orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, polyphosphoric acid, (iv) halogenated carboxylic acids such as fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, trichloroacetic acid, etc. It is done. These liquids are usually used alone, but in the case of a combination having no special side reactivity, two or more kinds can be mixed and used. Among these solvents, more preferred strongly acidic liquids include those composed of concentrated sulfuric acid, fuming sulfuric acid, alkylsulfonic acid and / or a mixed solvent thereof. Of these, concentrated sulfuric acid and methanesulfonic acid having a concentration of 98 to 100% are particularly preferred.

分散液中の強酸性溶媒(B)の量は、1重量部の窒化ホウ素ナノチューブ(A)に対して1〜100000重量部、好ましくは2〜10,000重量部、より好ましくは5〜1,000重量部である。
強酸性溶媒(B)の量が多すぎると賦型用途への利用価値が低く、少なすぎると窒化ホウ素ナノチューブ(A)の分散性が低下することもある。
The amount of the strongly acidic solvent (B) in the dispersion is 1 to 100000 parts by weight, preferably 2 to 10,000 parts by weight, more preferably 5 to 1, based on 1 part by weight of the boron nitride nanotube (A). 000 parts by weight.
If the amount of the strongly acidic solvent (B) is too large, the utility value for the forming application is low, and if it is too small, the dispersibility of the boron nitride nanotube (A) may be lowered.

<分散液の製造方法>
本発明の分散液は、(i)窒化ホウ素ナノチューブ(A)に強酸性溶媒(B)を添加する方法や、(ii)強酸性溶媒(B)に窒化ホウ素ナノチューブ(A)を添加する方法により比較的容易に製造することができる。
窒化ホウ素ナノチューブ(A)を強酸性溶媒(B)に分散させる方法としては、特に限定されないが超音波や各種攪拌方法を用いることができる。攪拌方法としては、ホモジナイザーのような高速攪拌やアトライター、ボールミル等の攪拌方法も使用することができる。
<Method for producing dispersion>
The dispersion of the present invention is obtained by (i) a method of adding a strong acidic solvent (B) to boron nitride nanotubes (A), or (ii) a method of adding boron nitride nanotubes (A) to a strong acidic solvent (B). It can be manufactured relatively easily.
The method for dispersing the boron nitride nanotubes (A) in the strongly acidic solvent (B) is not particularly limited, and ultrasonic waves and various stirring methods can be used. As the stirring method, high-speed stirring such as a homogenizer, stirring methods such as an attritor and a ball mill can be used.

本発明の分散液は、分散性に優れ、かつ分散している状態が保持、安定化している。この理由については、完全に解明されたわけではないが窒化ホウ素ナノチューブ(A)の粒子間に強酸性液体が侵入し、その酸性により構成元素である窒素やホウ素部位と酸−塩基相互作用を発現する状態が形成され、窒化ホウ素ナノチューブの凝集が抑制されているものと推定される。
また、本発明の分散液には必要に応じて塩、粘度調整剤、キレーター等が含まれていてもかまわない。
The dispersion of the present invention is excellent in dispersibility and is maintained and stabilized in a dispersed state. Although the reason for this is not completely clarified, a strongly acidic liquid enters between the particles of the boron nitride nanotube (A), and the acid-base interaction is expressed with the constituent elements nitrogen and boron by the acidity. It is presumed that a state is formed and aggregation of boron nitride nanotubes is suppressed.
In addition, the dispersion of the present invention may contain a salt, a viscosity modifier, a chelator and the like, if necessary.

<不織布の製造方法>
前述の方法で調製した窒化ホウ素ナノチューブ分散液を湿式凝固し製膜せしめた後に洗浄し、次いで乾燥することにより窒化ホウ素ナノチューブ不織布状シートを製造することができる。
本発明で得られる窒化ホウ素ナノチューブ不織布は、純粋に窒化ホウ素ナノチューブ間のナノレベルでの絡み合いに基づき形成される網目状組織から成る成型体である。
本発明で用いる凝固液としては、純粋な水であってもよいが、水以外の成分として、窒化ホウ素ナノチューブの良分散剤あるいは有機溶剤が含有されていてもよい。
<Nonwoven Fabric Manufacturing Method>
A boron nitride nanotube non-woven sheet can be produced by wet coagulating and forming a film of the boron nitride nanotube dispersion prepared by the above method, followed by drying.
The boron nitride nanotube nonwoven fabric obtained by the present invention is a molded body composed of a network structure formed based on nano-level entanglement between boron nitride nanotubes.
The coagulation liquid used in the present invention may be pure water, but may contain a good dispersant of boron nitride nanotubes or an organic solvent as a component other than water.

窒化ホウ素ナノチューブの良分散剤としては、窒化ホウ素ナノチューブ分散液を調製する際に用いた強酸性液体を好ましく挙げることができ、特に濃度30%以下の希硫酸、濃度30%以下のリン酸水溶液や濃度20%以下のメタンスルホン酸などを好ましく上げることができる。また有機溶剤としては親水性の高い極性溶剤を好ましくあげることができ、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサメチルホスホルアミド、1,3−ジメチルイミダゾリジノン、テトラメチルウレア、1,3−ジプロピルイミダゾリジノン、N−メチルカプロラクタム、ジメチルスルホキシド、メタノール、エタノール、プロパノール、イソプロパノール、アセトン、テトラヒドロフラン、ジオキサン等が挙げられる。特にN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、メタノール、エタノール、アセトン、テトラヒドロフランを好ましく挙げることができる。   As a good dispersing agent for boron nitride nanotubes, a strong acidic liquid used in preparing the boron nitride nanotube dispersion liquid can be preferably mentioned. Particularly, dilute sulfuric acid having a concentration of 30% or less, a phosphoric acid aqueous solution having a concentration of 30% or less, Methanesulfonic acid having a concentration of 20% or less can be preferably increased. As the organic solvent, a polar solvent having high hydrophilicity can be preferably used. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, hexamethylphosphoramide, 1,3 -Dimethylimidazolidinone, tetramethylurea, 1,3-dipropylimidazolidinone, N-methylcaprolactam, dimethyl sulfoxide, methanol, ethanol, propanol, isopropanol, acetone, tetrahydrofuran, dioxane and the like. Particularly preferred are N, N-dimethylformamide, N, N-dimethylacetamide, methanol, ethanol, acetone, and tetrahydrofuran.

前記の窒化ホウ素ナノチューブ分散液の凝固時間は、窒化ホウ素ナノチューブの濃度、溶媒の種類、温度、凝固液の組成比によって変わるものであるので適宜決めればよい。
また該凝固工程は1段の凝固浴に限定されるものではなく、2段以上の凝固浴を用いてもよい。前記の多段の凝固において各段階の凝固時間は、窒化ホウ素ナノチューブの濃度、溶媒の種類、凝固液の組成比によって変わるものであるので適宜決めればよい。
The coagulation time of the boron nitride nanotube dispersion liquid may be determined as appropriate since it varies depending on the concentration of the boron nitride nanotubes, the type of solvent, the temperature, and the composition ratio of the coagulation liquid.
The coagulation step is not limited to a one-stage coagulation bath, and two or more coagulation baths may be used. In the multistage solidification described above, the solidification time at each stage varies depending on the concentration of the boron nitride nanotubes, the type of solvent, and the composition ratio of the coagulation liquid, and may be determined as appropriate.

窒化ホウ素ナノチューブ分散液を表面が平滑な面を有する基板表面上にキャストし、湿式プロセスにて凝固製膜せしめる。窒化ホウ素ナノチューブ分散液をキャストする温度は、200℃以下が好ましく、100℃以下がさらに好ましい。200℃以上でキャストした場合、用いる強酸性液体によっては蒸発、気化する恐れがあり、これは窒化ホウ素ナノチューブの安定な分散状態を阻害する要因にもなるため好ましくない。   The boron nitride nanotube dispersion liquid is cast on a substrate surface having a smooth surface, and solidified and formed by a wet process. The temperature at which the boron nitride nanotube dispersion is cast is preferably 200 ° C. or lower, and more preferably 100 ° C. or lower. When cast at 200 ° C. or more, depending on the strongly acidic liquid used, there is a risk of evaporation and vaporization, which is not preferable because it also becomes a factor that inhibits the stable dispersion state of boron nitride nanotubes.

上記窒化ホウ素ナノチューブをキャストした薄膜を凝固液に浸漬し凝固する温度は、100℃以下が好ましく、50℃以下がさらに好ましい。100℃以上でキャストした場合、凝固液の主成分である水の蒸発、気化が起こりやすくなり、凝固液組成の変性をきたす恐れがあり安定な凝固プロセスの維持に好ましくない。   The temperature at which the thin film in which the boron nitride nanotubes are cast is immersed in a coagulating liquid and solidified is preferably 100 ° C. or lower, and more preferably 50 ° C. or lower. When cast at 100 ° C. or higher, evaporation and vaporization of water, which is the main component of the coagulation liquid, is likely to occur, and the coagulation liquid composition may be denatured, which is not preferable for maintaining a stable coagulation process.

このようにして凝固、製膜して得られる窒化ホウ素ナノチューブ不織布は、引き続き純水で洗浄、乾燥することにより取り扱いに安定な形状、強度を有する成型体として調製される。なお洗浄の際、残存する強酸性液体を効率よく除去するべく、純水による洗浄の前に塩基性水溶液を用いた中和プロセスを好ましく実施することができる。中和プロセスでは、塩基性物質を溶解した水溶液を好ましく用いることができ、例えば水酸化ナトリウム、水酸化カリウムのような水酸化アルカリ、石灰水のような水酸化アルカリ土類金属の水溶液、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウムのような炭酸アルカリ塩、ピリジン、トリエチルアミンのような有機塩基の水溶液、4級アンモニウム水酸化物、アンモニア水などを挙げることができる。   The boron nitride nanotube nonwoven fabric obtained by coagulation and film formation in this way is subsequently prepared as a molded body having a shape and strength stable in handling by washing and drying with pure water. In order to efficiently remove the remaining strongly acidic liquid during washing, a neutralization process using a basic aqueous solution can be preferably performed before washing with pure water. In the neutralization process, an aqueous solution in which a basic substance is dissolved can be preferably used. For example, an alkali hydroxide such as sodium hydroxide or potassium hydroxide, an alkaline earth metal hydroxide aqueous solution such as lime water, sodium carbonate , Alkaline carbonates such as potassium carbonate and sodium hydrogen carbonate, aqueous solutions of organic bases such as pyridine and triethylamine, quaternary ammonium hydroxides and aqueous ammonia.

<不織布状シート>
本発明により、窒化ホウ素ナノチューブ不織布状シートが得られる。本発明の窒化ホウ素ナノチューブ不織布状シートは窒化ホウ素ナノチューブが互いに絡み合って積層した微細構造を基本とする組織からなり、均質かつ緻密な不織布構造を有しているいる。本発明の方法で極薄の不織布状シートを形成することが可能であり、実質的な厚さの下限は1μm程度のものも得ることができる。厚さの上限はとくになく、本発明方法で製造できる範囲であれば用途により所望の厚さが選択できる。
不織布状シートの好ましい目付け量は1.6g/m以上のものであり、より好ましい目付け量は5〜200g/mである。
また柔軟で屈曲性にある薄い不織布状シートを得ることが可能である。本発明の不織布状シートは、平均直径が0.4nm〜1μm、平均アスペクト比が5以上である窒化ホウ素ナノチューブ50〜100重量%、好ましくは70〜100重量%からなる。
<Nonwoven fabric sheet>
According to the present invention, a non-woven sheet of boron nitride nanotubes is obtained. The boron nitride nanotube nonwoven sheet of the present invention has a microstructure based on a fine structure in which boron nitride nanotubes are entangled with each other and have a homogeneous and dense nonwoven fabric structure. An ultrathin nonwoven sheet can be formed by the method of the present invention, and the lower limit of the substantial thickness can be about 1 μm. The upper limit of the thickness is not particularly limited, and a desired thickness can be selected depending on the application as long as it can be produced by the method of the present invention.
A preferable basis weight of the nonwoven fabric sheet is 1.6 g / m 2 or more, and a more preferable basis weight is 5 to 200 g / m 2 .
Moreover, it is possible to obtain a thin non-woven sheet having flexibility and flexibility. The nonwoven fabric-like sheet of the present invention is composed of 50 to 100% by weight, preferably 70 to 100% by weight, of boron nitride nanotubes having an average diameter of 0.4 nm to 1 μm and an average aspect ratio of 5 or more.

窒化ホウ素ナノチューブ以外の不織布状シートを構成する材料としては、本発明の目的を阻害せず、本発明方法を適用できるものであればとくに制限はない。具体的にはシリカ、アルミナ、チタニア、ジルコニア、ホウ素酸化物又はそれらの混合酸化物などより構成されるセラミック系無機繊維、ガラス繊維、炭素繊維、カーボンナノチューブ、金属繊維、ボロン繊維などの各種無機化合物よりなる繊維、またはシリカ、チタニア、アルミナ、ジルコニア、窒化アルミニウム、窒化ホウ素などのセラミック系微粒子、あるいはアラミド、アゾール、ポリイミドなどからなる有機繊維が挙げられる。なかでもセラミック系無機繊維、セラミック系微粒子または有機繊維が好ましい。   The material constituting the non-woven sheet other than the boron nitride nanotube is not particularly limited as long as the object of the present invention is not impaired and the method of the present invention can be applied. Specifically, various inorganic compounds such as ceramic inorganic fibers, glass fibers, carbon fibers, carbon nanotubes, metal fibers, and boron fibers composed of silica, alumina, titania, zirconia, boron oxide or mixed oxides thereof Or ceramic fibers such as silica, titania, alumina, zirconia, aluminum nitride, boron nitride, or organic fibers made of aramid, azole, polyimide, or the like. Among these, ceramic inorganic fibers, ceramic fine particles, or organic fibers are preferable.

窒化ホウ素ナノチューブ以外の不織布状シートを構成する材料について、平均アスペクト比は5以上であることが好ましい。また平均直径は0.005〜100μmの範囲であることが好ましい。
シートは単独での使用、あるいはポリマーや金属等のマトリクスとの複合体として用いられ、高強度、高耐熱性の構造材料および/または絶縁性、高熱伝導性の成型体として、自動車、航空機、電気、電子素材の基材として好適に使用することができる。
The average aspect ratio of the material constituting the nonwoven fabric sheet other than boron nitride nanotubes is preferably 5 or more. Moreover, it is preferable that an average diameter is the range of 0.005-100 micrometers.
The sheet is used alone or as a composite with a matrix such as a polymer or metal, and is used as a high strength, high heat resistant structural material and / or an insulating, high heat conductive molded body for automobiles, aircraft, electrical It can be suitably used as a base material for electronic materials.

以下、実施例により、本発明をさらに詳しく具体的に説明する。ただしこれらの実施例は本発明の範囲を限定するものではない。
<分散性の評価>
分散液をスライドグラス上に1滴とり、カバーグラスでカーバーしたものを、光学顕微鏡を用いて200倍で観察し、窒化ホウ素ナノチューブの分散性を確認した。
<動的光散乱測定>
大塚電子ZDLS-7000を用いて濃度0.001重量%で動的光散乱測定を行った。
<走査型電子顕微鏡観察>
得られた窒化ホウ素ナノチューブ不織布状成型体の表面組織を走査型電子顕微鏡(株式会社日立製作所製S−2400)により観察することで微細構造、形態を評価した。
Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples do not limit the scope of the present invention.
<Evaluation of dispersibility>
One drop of the dispersion was taken on a slide glass and covered with a cover glass, and observed with an optical microscope at 200 times to confirm the dispersibility of the boron nitride nanotubes.
<Dynamic light scattering measurement>
Dynamic light scattering measurement was performed at a concentration of 0.001% by weight using Otsuka Electronics ZDLS-7000.
<Scanning electron microscope observation>
The microstructure and form were evaluated by observing the surface structure of the obtained boron nitride nanotube nonwoven fabric shaped article with a scanning electron microscope (S-2400, manufactured by Hitachi, Ltd.).

<参考例1>(窒化ホウ素ナノチューブの製造)
窒化ホウ素製のるつぼに、1:1のモル比でホウ素と酸化マグネシウムを入れ、るつぼを高周波誘導加熱炉で1300℃に加熱した。ホウ素と酸化マグネシウムは反応し、気体状の酸化ホウ素(B)とマグネシウムの蒸気が生成した。この生成物をアルゴンガスにより反応室へ移送し、温度を1100℃に維持してアンモニアガスを導入した。酸化ホウ素とアンモニアが反応し、窒化ホウ素が生成した。1.55gの混合物を十分に加熱し、副生成物を蒸発させると、反応室の壁から310mgの白色の固体が得られた。続いて得られた白色固体を濃塩酸で洗浄、イオン交換水で中性になるまで洗浄後、60℃で減圧乾燥を行い窒化ホウ素ナノチューブ(以下、BNNTと略すことがある)を得た。得られたBNNTは、平均直径が27.6nm、平均長さが2460nmのチューブ状であった。
<Reference Example 1> (Production of boron nitride nanotube)
Boron and magnesium oxide were put into a boron nitride crucible at a molar ratio of 1: 1, and the crucible was heated to 1300 ° C. in a high frequency induction heating furnace. Boron and magnesium oxide reacted to form gaseous boron oxide (B 2 O 2 ) and magnesium vapor. This product was transferred to the reaction chamber with argon gas, and ammonia gas was introduced while maintaining the temperature at 1100 ° C. Boron oxide and ammonia reacted to form boron nitride. When 1.55 g of the mixture was fully heated and the by-product was evaporated, 310 mg of a white solid was obtained from the walls of the reaction chamber. Subsequently, the obtained white solid was washed with concentrated hydrochloric acid and washed with ion-exchanged water until neutral, and then dried at 60 ° C. under reduced pressure to obtain boron nitride nanotubes (hereinafter sometimes abbreviated as BNNT). The obtained BNNT was a tube having an average diameter of 27.6 nm and an average length of 2460 nm.

[実施例1]
(分散液の調製)
参考例1で得られた窒化ホウ素ナノチューブ500mgを98重量%濃硫酸5mlに添加して、3周波超音波洗浄器(アズワン製、出力100W、28Hz)で60分超音波処理を行うことで窒化ホウ素ナノチューブが均一分散した分散液を得た。
得られた分散液は、1日放置後も窒化ホウ素ナノチューブの沈殿は観察されなかった。また、光学顕微鏡観察(200倍)を用い分散性の評価を行ったところ、窒化ホウ素ナノチューブの分散性が飛躍的に向上していることを確認した。動的光散乱測定から算出した平均粒径サイズは405.7nmであった。
[Example 1]
(Preparation of dispersion)
Boron nitride nanotubes obtained by adding 500 mg of boron nitride nanotubes obtained in Reference Example 1 to 5 ml of 98 wt% concentrated sulfuric acid and performing ultrasonic treatment for 60 minutes with a three-frequency ultrasonic cleaner (manufactured by ASONE, output 100 W, 28 Hz) A dispersion in which nanotubes were uniformly dispersed was obtained.
In the obtained dispersion, precipitation of boron nitride nanotubes was not observed even after standing for 1 day. Moreover, when the dispersibility was evaluated using optical microscope observation (200 times), it was confirmed that the dispersibility of the boron nitride nanotubes was dramatically improved. The average particle size calculated from the dynamic light scattering measurement was 405.7 nm.

(窒化ホウ素ナノチューブ不織布の調製)
上述の窒化ホウ素ナノチューブが均一分散した分散液を、ガラス基板上にクリアランス400μmのドクターブレードを使用してキャスト流延した後、20℃にてイオン交換水に浸漬し硫酸を抽出することでシート状成型体を作成した。これをガラス基板ごと1%水酸化ナトリウム水溶液中に30分浸漬し、ついでイオン交換した流水中で1時間洗浄後、シートをガラス基板より剥離し、テフロン(登録商標)製の型枠に固定して30mmHgにて80℃で1時間、120℃で1時間減圧乾燥を実施することで10cm×10cmの面積の窒化ホウ素ナノチューブからなる不織布状シートを得た。シートは柔軟で屈曲性があり折り曲げることも可能であった。このシートの重さを測定したところ、目付けは50g/mであった。また走査型電子顕微鏡観察より、窒化ホウ素ナノチューブが互いに絡み合って積層した微細構造を基本とする組織から不織布が形成されていることが確認された(図1)。
(Preparation of boron nitride nanotube nonwoven fabric)
The above dispersion of boron nitride nanotubes uniformly dispersed is cast on a glass substrate using a doctor blade having a clearance of 400 μm, and then immersed in ion-exchanged water at 20 ° C. to extract sulfuric acid. A molded body was created. The glass substrate is immersed in a 1% aqueous sodium hydroxide solution for 30 minutes, then washed in ion-exchanged running water for 1 hour, and then the sheet is peeled off from the glass substrate and fixed to a Teflon (registered trademark) formwork. By carrying out vacuum drying at 80 ° C. for 1 hour at 30 mmHg and for 1 hour at 120 ° C., a nonwoven sheet made of boron nitride nanotubes having an area of 10 cm × 10 cm was obtained. The sheet was flexible and flexible and could be folded. When the weight of this sheet was measured, the basis weight was 50 g / m 2 . Further, it was confirmed by scanning electron microscope observation that a nonwoven fabric was formed from a structure based on a fine structure in which boron nitride nanotubes were entangled with each other and laminated (FIG. 1).

[実施例2]
溶媒に98重量%硫酸の代わりに100%硫酸を用いた以外は実施例1と同様に窒化ホウ素ナノチューブ分散液を得た。動的光散乱測定から算出した窒化ホウ素ナノチューブ分散体の平均粒径サイズは401.2nmであった。この分散液をキャスト、凝固製膜することにより10cm×10cmの面積の窒化ホウ素ナノチューブから成る均一な不織布状シートを得た。シートは柔軟で屈曲性があり折り曲げることも可能であった。このシートの重さを測定したところ、目付けは50g/mであった。また走査型電子顕微鏡観察より、窒化ホウ素ナノチューブが互いに絡み合って積層した微細構造を基本とする組織から不織布が形成されていることが確認された(図2)。
[Example 2]
A boron nitride nanotube dispersion liquid was obtained in the same manner as in Example 1 except that 100% sulfuric acid was used in place of 98% by weight sulfuric acid as the solvent. The average particle size of the boron nitride nanotube dispersion calculated from the dynamic light scattering measurement was 401.2 nm. The dispersion was cast and coagulated to obtain a uniform non-woven sheet made of boron nitride nanotubes having an area of 10 cm × 10 cm. The sheet was flexible and flexible and could be folded. When the weight of this sheet was measured, the basis weight was 50 g / m 2 . Further, it was confirmed by scanning electron microscope observation that a nonwoven fabric was formed from a structure based on a fine structure in which boron nitride nanotubes were entangled with each other and laminated (FIG. 2).

[実施例3]
溶媒に98重量%硫酸の代わりに100%メタンスルホン酸を用いた以外は実施例1と同様に窒化ホウ素ナノチューブ分散液を得た。動的光散乱測定から算出した窒化ホウ素ナノチューブ分散体の平均粒径サイズは410.3nmであった。この分散液をキャスト、凝固製膜することにより10cm×10cmの面積の窒化ホウ素ナノチューブから成る均一な不織布状シートを得た。シートは柔軟で屈曲性があり折り曲げることも可能であった。このシートの重さを測定したところ、目付けは50g/mであった。また走査型電子顕微鏡観察より、窒化ホウ素ナノチューブが互いに絡み合って積層した微細構造を基本とする組織から不織布が形成されていることが確認された(図3)。
[Example 3]
A boron nitride nanotube dispersion was obtained in the same manner as in Example 1 except that 100% methanesulfonic acid was used in place of 98 wt% sulfuric acid as the solvent. The average particle size of the boron nitride nanotube dispersion calculated from the dynamic light scattering measurement was 410.3 nm. The dispersion was cast and coagulated to obtain a uniform non-woven sheet made of boron nitride nanotubes having an area of 10 cm × 10 cm. The sheet was flexible and flexible and could be folded. When the weight of this sheet was measured, the basis weight was 50 g / m 2 . Further, it was confirmed by scanning electron microscope observation that a nonwoven fabric was formed from a microstructure based on a fine structure in which boron nitride nanotubes were entangled with each other and laminated (FIG. 3).

[比較例1]
溶媒に98重量%硫酸の代わりに70%硫酸を用いた以外は実施例1と同様に窒化ホウ素ナノチューブ分散液を調製した。分散液を一日静置した後に観察すると、窒化ホウ素ナノチューブは溶媒と巨視的に相分離していた。また光学顕微鏡観察(200倍)では窒化ホウ素ナノチューブの凝集物が観察された。以上のことから、窒化ホウ素ナノチューブは分散液中で時々刻々凝集しており、均一な分散性を保持、安定化することができないことを確認した。また、動的光散乱測定から算出した平均粒径サイズは1545.2nmであった。この分散液をキャスト、凝固製膜することを試みたが、キャストした時点で窒化ホウ素ナノチューブが分離、凝集しており、イオン交換水中で凝固しても均一なシート状成型体を得ることができなかった。
[Comparative Example 1]
A boron nitride nanotube dispersion was prepared in the same manner as in Example 1 except that 70% sulfuric acid was used in place of 98% by weight sulfuric acid as the solvent. When the dispersion was observed after standing for one day, the boron nitride nanotubes were macroscopically separated from the solvent. Moreover, the aggregate of the boron nitride nanotube was observed by optical microscope observation (200 times). From the above, it was confirmed that the boron nitride nanotubes were agglomerated every moment in the dispersion and could not maintain and stabilize uniform dispersibility. The average particle size calculated from the dynamic light scattering measurement was 1545.2 nm. Attempts were made to cast and solidify this dispersion, but the boron nitride nanotubes were separated and aggregated at the time of casting, and a uniform sheet-like molded product could be obtained even when solidified in ion-exchanged water. There wasn't.

実施例1で得られた不織布の走査型電子顕微鏡観察。Scanning electron microscope observation of the nonwoven fabric obtained in Example 1. 実施例2で得られた不織布の走査型電子顕微鏡観察。Scanning electron microscope observation of the nonwoven fabric obtained in Example 2. 実施例3で得られた不織布の走査型電子顕微鏡観察。Scanning electron microscope observation of the nonwoven fabric obtained in Example 3.

Claims (7)

1重量部の窒化ホウ素ナノチューブ(A)と、遊離水分含有量が5重量%以下であり、濃硫酸、発煙硫酸、アルキルスルホン酸及び/またはそれらの混合溶媒から成る強酸性溶媒(B)を1〜100000重量部含有することを特徴とする窒化ホウ素ナノチューブ分散液。 1 part by weight of boron nitride nanotubes (A), Ri der free moisture content of 5 wt% or less, concentrated sulfuric acid, fuming sulfuric acid, a strongly acidic solvent consisting of alkylsulfonic acids and / or their mixed solvent (B) A boron nitride nanotube dispersion liquid containing 1 to 100000 parts by weight. 窒化ホウ素ナノチューブの平均直径が0.4nm〜1μm、平均アスペクト比が5以上であることを特徴とする請求項1に記載の窒化ホウ素ナノチューブ分散液。The boron nitride nanotube dispersion liquid according to claim 1, wherein the boron nitride nanotube has an average diameter of 0.4 nm to 1 µm and an average aspect ratio of 5 or more. 強酸性溶媒(B)が、濃度98〜100重量%の濃硫酸および/またはメタンスルホン酸であることを特徴とする請求項1または2に記載の窒化ホウ素ナノチューブ分散液。The boron nitride nanotube dispersion liquid according to claim 1 or 2, wherein the strongly acidic solvent (B) is concentrated sulfuric acid and / or methanesulfonic acid having a concentration of 98 to 100% by weight. 請求項1〜3のいずれかに記載の分散液を湿式凝固し製膜せしめた後に洗浄し、次いで乾燥することにより得られる厚さ1μm以上の窒化ホウ素ナノチューブ不織布状シート。A non-woven sheet of boron nitride nanotubes having a thickness of 1 µm or more obtained by wet coagulation to form a film after forming the dispersion according to any one of claims 1 to 3, followed by drying. 目付け量が1.6g/mThe basis weight is 1.6 g / m 2 以上である請求項4記載の窒化ホウ素ナノチューブ不織布状シート。The boron nitride nanotube nonwoven fabric sheet according to claim 4, which is as described above. 請求項1〜のいずれかに記載の分散液を湿式凝固し製膜せしめた後に洗浄し、次いで乾燥することを特徴とする窒化ホウ素ナノチューブ不織布状シートの製造方法。 A method for producing a non-woven sheet of boron nitride nanotubes, wherein the dispersion according to any one of claims 1 to 3 is wet-coagulated to form a film, then washed, and then dried. 平均直径が0.4nm〜1μm、平均アスペクト比が5以上である窒化ホウ素ナノチューブ50〜100重量%からなる厚さ1μm以上の窒化ホウ素ナノチューブ不織布状シート。 A non-woven sheet of boron nitride nanotubes having a thickness of 1 μm or more, comprising 50 to 100% by weight of boron nitride nanotubes having an average diameter of 0.4 nm to 1 μm and an average aspect ratio of 5 or more.
JP2007054088A 2007-03-05 2007-03-05 Boron nitride nanotube dispersion and non-woven fabric obtained therefrom Expired - Fee Related JP4971836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054088A JP4971836B2 (en) 2007-03-05 2007-03-05 Boron nitride nanotube dispersion and non-woven fabric obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054088A JP4971836B2 (en) 2007-03-05 2007-03-05 Boron nitride nanotube dispersion and non-woven fabric obtained therefrom

Publications (2)

Publication Number Publication Date
JP2008214130A JP2008214130A (en) 2008-09-18
JP4971836B2 true JP4971836B2 (en) 2012-07-11

Family

ID=39834624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054088A Expired - Fee Related JP4971836B2 (en) 2007-03-05 2007-03-05 Boron nitride nanotube dispersion and non-woven fabric obtained therefrom

Country Status (1)

Country Link
JP (1) JP4971836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102437A1 (en) * 2016-11-29 2018-06-07 Bnnt, Llc Boron nitride nanotube materials for cryopumps and other large volume configurations

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674642B2 (en) * 2008-05-07 2015-02-25 ナノコンプ テクノロジーズ インコーポレイテッド Carbon nanotube based coaxial electrical cable and wire harness
WO2010047398A1 (en) * 2008-10-20 2010-04-29 帝人株式会社 Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate
US9381449B2 (en) 2013-06-06 2016-07-05 Idex Health & Science Llc Carbon nanotube composite membrane
US9403121B2 (en) 2013-06-06 2016-08-02 Idex Health & Science, Llc Carbon nanotube composite membrane
CN105984858B (en) * 2015-01-27 2017-12-05 中国科学院苏州纳米技术与纳米仿生研究所 Boron nitride nanosheet fexible film of self-supporting and preparation method thereof
JP2019149259A (en) * 2018-02-26 2019-09-05 学校法人早稲田大学 Separator for power storage device, manufacturing method thereof, integral structure for power storage device, and manufacturing method thereof
KR102422154B1 (en) * 2020-05-11 2022-07-18 재단법인차세대융합기술연구원 Manufacturing Method of BNNT Composite Fiber
WO2022039239A1 (en) * 2020-08-20 2022-02-24 デンカ株式会社 Boron nitride particles, resin composition, and method for producing resin composition
CN115605428A (en) * 2020-08-20 2023-01-13 电化株式会社(Jp) Boron nitride particles, boron nitride powder, resin composition, and method for producing resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160216A (en) * 1997-08-04 1999-03-02 Shin Etsu Chem Co Ltd Heat conductive boron nitride filler and insulating heat releasing sheet
US6905667B1 (en) * 2002-05-02 2005-06-14 Zyvex Corporation Polymer and method for using the polymer for noncovalently functionalizing nanotubes
JP2004161561A (en) * 2002-11-14 2004-06-10 National Institute For Materials Science Manufacturing process of boron nitride nanotube
JP3890408B2 (en) * 2002-11-27 2007-03-07 独立行政法人物質・材料研究機構 Method for producing boron nitride nanotubes for hydrogen storage
JP2005154950A (en) * 2003-11-26 2005-06-16 Teijin Ltd Fiber formed product composed of single-wall carbon nanotube
CN100543074C (en) * 2004-03-20 2009-09-23 帝人阿拉米德有限公司 The matrix material that comprises PPTA and nanotube
KR20060133099A (en) * 2004-04-13 2006-12-22 지벡스 코포레이션 Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials
JP2007145677A (en) * 2005-11-30 2007-06-14 Teijin Ltd Boron nitride nanotube coated with aromatic polyamide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102437A1 (en) * 2016-11-29 2018-06-07 Bnnt, Llc Boron nitride nanotube materials for cryopumps and other large volume configurations
US11866327B2 (en) 2016-11-29 2024-01-09 Bnnt, Llc Boron nitride nanotube materials for cryopumps and other large volume configurations

Also Published As

Publication number Publication date
JP2008214130A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4971836B2 (en) Boron nitride nanotube dispersion and non-woven fabric obtained therefrom
JP4384488B2 (en) Aligned single-walled carbon nanotube fibers and method for producing the same
Lipton et al. Mechanically strong and electrically conductive multilayer MXene nanocomposites
Bharath et al. Synthesis and evaluation of PVDF–MgTiO 3 polymer–ceramic composites for low-k dielectric applications
Li et al. Facial fabrication of aramid composite insulating paper with high strength and good thermal conductivity
Shen et al. Anisotropic electrical conductivity in polymer derived ceramics induced by graphene aerogels
Zhan et al. Multifunctional cellulose-based fireproof thermal conductive nanocomposite films assembled by in-situ grown SiO2 nanoparticle onto MXene
US11104989B2 (en) Chemical vapor deposition process to build 3D foam-like structures
WO2003004740A1 (en) Single-wall carbon nanotube alewives process for making and compositions thereof
Chen et al. Core–shell structured Ag@ C nanocables for flexible ferroelectric polymer nanodielectric materials with low percolation threshold and excellent dielectric properties
Fang et al. Freestanding ZrO 2 nanotube membranes made by anodic oxidation and effect of heat treatment on their morphology and crystalline structure
WO2008108484A1 (en) Boron nitride fiber paper and method for producing the same
KR20150028745A (en) Hexagonal boron nitride nanosheet/ceramic nanocomposite powders and producing method of the same, and hexagonal boron nitride nanosheet/ceramic nanocomposite materials and producing method of the same
JP2007145677A (en) Boron nitride nanotube coated with aromatic polyamide
Yue et al. Significantly enhanced dielectric constant and energy storage properties in polyimide/reduced BaTiO 3 composite films with excellent thermal stability
JP2007137720A (en) Polymer dispersion containing boron nitride nanotube
Zhao et al. Facile fabrication of polyelectrolyte complex/carbon nanotube nanocomposites with improved mechanical properties and ultra-high separation performance
Han et al. Enhanced electrical and thermal conductivities of 3D-SiC (rGO, Gx) PDCs based on polycarbosilane-vinyltriethoxysilane-graphene oxide (PCS-VTES-GO) precursor containing graphene fillers
JP2013166849A (en) Method of producing polysulfone composition and method of producing molded product
Zhu et al. Synthesis and properties of polyimide composites containing graphene oxide via in-situ polymerization
JP2007138037A (en) Aromatic polyamide molded article and method for producing the same
JP4647384B2 (en) Composite fiber composed of wholly aromatic polyamide and thin-walled carbon nanotubes
JP2008285789A (en) Composite fiber composed of wholly aromatic polyamide and multilayer carbon nanotube
JP2008308543A (en) Carbon fiber composite sheet and its manufacturing method
Zhao et al. Enhanced dielectric properties of PVDF-based composite film with BaTiO 3@ SrTiO 3 nanoparticles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees