JP2007137720A - Polymer dispersion containing boron nitride nanotube - Google Patents

Polymer dispersion containing boron nitride nanotube Download PDF

Info

Publication number
JP2007137720A
JP2007137720A JP2005334387A JP2005334387A JP2007137720A JP 2007137720 A JP2007137720 A JP 2007137720A JP 2005334387 A JP2005334387 A JP 2005334387A JP 2005334387 A JP2005334387 A JP 2005334387A JP 2007137720 A JP2007137720 A JP 2007137720A
Authority
JP
Japan
Prior art keywords
boron nitride
dispersion
weight
polymer
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005334387A
Other languages
Japanese (ja)
Inventor
Susumu Honda
勧 本多
Hiroaki Kuwabara
広明 桑原
Yoshio Bando
義雄 板東
Zhi Chunyi
チュンイ・ズィ
Tang Chengchun
チェンチュン・タン
Golberg Dmitri
デミトリー・ゴルバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Teijin Ltd
Original Assignee
National Institute for Materials Science
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Teijin Ltd filed Critical National Institute for Materials Science
Priority to JP2005334387A priority Critical patent/JP2007137720A/en
Publication of JP2007137720A publication Critical patent/JP2007137720A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable dispersion in which boron nitride nanotubes are dispersed in an organic solvent and aggregation is suppressed, and a method for producing the same. <P>SOLUTION: The dispersion comprises 1 part by weight of the boron nitride nanotubes (A), 1-100,000 parts by weight of the organic solvent (B) and 0.01-1,000 parts by weight of a polymer (C). The method for producing the same is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、窒化ホウ素ナノチューブを含有する分散液に関する。さらに詳しくは、分散剤としてポリマーを用い、分散性、安定性に優れた分散液に関する。   The present invention relates to a dispersion containing boron nitride nanotubes. More specifically, the present invention relates to a dispersion having excellent dispersibility and stability using a polymer as a dispersant.

カーボンナノチューブは炭素6員環からなるグラファイトシートが円筒状を形成した物質であり、1層に巻いたものを単層カーボンナノチューブ、2層に巻いたものを2層カーボンナノチューブ、多層に巻いたものを多層カーボンナノチューブという。カーボンナノチューブは、高電気伝導性、機械的性質、化学安定性等、これまでにない優れた特性を有しており、複合材料、半導体素子、導電材料、水素吸蔵材料などへの応用研究が進められている。   A carbon nanotube is a material in which a graphite sheet composed of a carbon six-membered ring forms a cylindrical shape. A single-walled carbon nanotube is a single-walled carbon nanotube wound in one layer, a double-walled carbon nanotube is wound in a multi-layer, and a multi-layered carbon nanotube Is called multi-walled carbon nanotube. Carbon nanotubes have unprecedented properties such as high electrical conductivity, mechanical properties, and chemical stability, and application research on composite materials, semiconductor devices, conductive materials, hydrogen storage materials, etc. is underway. It has been.

一方で近年、窒化ホウ素ナノチューブもカーボンナノチューブと構造的な類似性を有することから従来にない特性を有する材料として期待されている(特許文献1参照)。例えば、高強度、高弾性率、高熱伝導性、高耐熱性という特徴を生かしてポリマー中にフィラーとして添加して、機械的物性、耐熱性や熱伝導性を向上させることが期待できる。しかし、窒化ホウ素ナノチューブの機能を十分に発現させるためには、窒化ホウ素ナノチューブを高度に分散させる必要がある。
特開2000−109306号公報
On the other hand, boron nitride nanotubes are also expected as a material having unprecedented characteristics since they have structural similarities to carbon nanotubes (see Patent Document 1). For example, it can be expected that the mechanical properties, heat resistance and thermal conductivity can be improved by adding as a filler to the polymer by taking advantage of the characteristics of high strength, high elastic modulus, high thermal conductivity and high heat resistance. However, in order to fully exhibit the function of the boron nitride nanotube, it is necessary to highly disperse the boron nitride nanotube.
JP 2000-109306 A

本発明の目的は、分散性および安定性が改良された、窒化ホウ素ナノチューブを含有する分散液を提供することにある。また本発明は、該分散液を製造する方法を提供することにある。   It is an object of the present invention to provide a dispersion containing boron nitride nanotubes with improved dispersibility and stability. Another object of the present invention is to provide a method for producing the dispersion.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、窒化ホウ素ナノチューブを有機溶剤に分散させる際に、有機溶剤に可溶なポリマーを添加すると、該ポリマーが一種の分散剤として作用し、窒化ホウ素ナノチューブを有機溶剤中に均一にかつ安定して分散させることができることを見出し、本発明を完成した。
すなわち本発明は、1重量部の窒化ホウ素ナノチューブ(A)、1〜100,000重量部の有機溶剤(B)および0.01〜1,000重量部のポリマー(C)を含有する分散液である。また本発明は、窒化ホウ素ナノチューブ(A)を有機溶剤(B)に分散させた後、ポリマー(C)を添加することを特徴とする分散液の製造方法である。
As a result of intensive studies to solve the above problems, the present inventors have added a polymer soluble in an organic solvent when the boron nitride nanotubes are dispersed in the organic solvent, and the polymer becomes a kind of dispersant. It has been found that boron nitride nanotubes can be dispersed uniformly and stably in an organic solvent, and the present invention has been completed.
That is, the present invention is a dispersion containing 1 part by weight of boron nitride nanotubes (A), 1 to 100,000 parts by weight of organic solvent (B), and 0.01 to 1,000 parts by weight of polymer (C). is there. Moreover, this invention is a manufacturing method of the dispersion liquid which adds a polymer (C), after disperse | distributing a boron nitride nanotube (A) in the organic solvent (B).

本発明によれば、分散性に優れた分散液を得ることができる。また本発明によれば、分散安定性に優れた分散液を得ることができる。また本発明によれば、該分散液を容易に製造することができる。本発明の分散液を用いれば、窒化ホウ素ナノチューブを高度に分散させた複合材料などを製造することができる。   According to the present invention, a dispersion having excellent dispersibility can be obtained. Further, according to the present invention, a dispersion having excellent dispersion stability can be obtained. Further, according to the present invention, the dispersion can be easily produced. By using the dispersion of the present invention, a composite material in which boron nitride nanotubes are highly dispersed can be produced.

<窒化ホウ素ナノチューブ(A)>
本発明において、窒化ホウ素ナノチューブ(A)とは、平均直径が0.4nm〜1μm、平均長さが数nm〜数μmの窒化ホウ素からなるチューブ状材料である。理想的な構造としては6角網目の面がチューブ軸に平行に管を形成し、一重管もしくは多重管になっているものである。ここでいう平均直径とは、チューブが一重管の場合、その平均外径を意味し、チューブが多重管の場合、最外管の平均外径を意味する。
窒化ホウ素ナノチューブの平均直径およびアスペクト比は、電子顕微鏡による観察から求めることが出来る。例えばTEM(透過型電子顕微鏡)測定を行い、その画像から直接窒化ホウ素ナノチューブの直径および長手方向の長さを測定することが可能である。また組成物中の窒化ホウ素ナノチューブの形態は例えば繊維軸と平行に切断した繊維断面のTEM(透過型電子顕微鏡)測定により把握することが出来る。
<Boron nitride nanotube (A)>
In the present invention, the boron nitride nanotube (A) is a tube-shaped material made of boron nitride having an average diameter of 0.4 nm to 1 μm and an average length of several nm to several μm. As an ideal structure, a hexagonal mesh surface forms a tube parallel to the tube axis and is a single tube or multiple tubes. The average diameter here means the average outer diameter when the tube is a single tube, and means the average outer diameter of the outermost tube when the tube is a multiple tube.
The average diameter and aspect ratio of boron nitride nanotubes can be determined from observation with an electron microscope. For example, a TEM (transmission electron microscope) measurement is performed, and the diameter and the length in the longitudinal direction of the boron nitride nanotube can be directly measured from the image. The form of the boron nitride nanotubes in the composition can be grasped by, for example, TEM (transmission electron microscope) measurement of a fiber cross section cut parallel to the fiber axis.

窒化ホウ素ナノチューブ(A)の製法として、アーク放電法、レーザー加熱法、化学的気相成長法を用いて合成できることが知られている。またこの上記以外にもホウ化ニッケルを触媒として使用し、ボラジンを原料として窒化ホウ素を合成する方法が知られている(Chem. Mater.,2000,vol.12,1808)。また、カーボンナノチューブを鋳型として利用して、酸化ホウ素と窒素を反応させて合成する方法(特開2000−109306号公報、特開2002−97004号公報)等が提案されている。本発明に用いる窒化ホウ素ナノチューブは、これらの方法により製造されたものに限定されるものではない。
窒化ホウ素ナノチューブ(A)は、不純物として窒化ホウ素フレーク、触媒金属等を含んでいても差し支えない。50%以上が窒化ホウ素ナノチューブであることが好ましく、80%以上が窒化ホウ素ナノチューブであることがより好ましい。窒化ホウ素ナノチューブ(A)は、従来公知の方法で合成された窒化ホウ素ナノチューブを使用することができる。また、強酸処理や化学修飾された窒化ホウ素ナノチューブも使用することができる。
It is known that the boron nitride nanotube (A) can be synthesized using an arc discharge method, a laser heating method, or a chemical vapor deposition method. In addition to the above, there is known a method of synthesizing boron nitride using nickel boride as a catalyst and borazine as a raw material (Chem. Mater., 2000, vol. 12, 1808). In addition, a method of synthesizing boron oxide and nitrogen by using carbon nanotubes as a template (JP 2000-109306 A, JP 2002-97004 A) and the like have been proposed. The boron nitride nanotubes used in the present invention are not limited to those produced by these methods.
The boron nitride nanotube (A) may contain boron nitride flakes, catalytic metals, etc. as impurities. 50% or more are preferably boron nitride nanotubes, and more preferably 80% or more are boron nitride nanotubes. As the boron nitride nanotube (A), a boron nitride nanotube synthesized by a conventionally known method can be used. Further, a boron nitride nanotube subjected to strong acid treatment or chemical modification can also be used.

<有機溶剤(B)>
有機溶剤(B)は、種類が特に限定されるものではない。具体的には、(i)N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、ジメチルスルホキシド、N−アセチル−2−ピロリドン、N,N−ジメチルアセトアミドなどが挙げられる。また(ii)水、(iii)メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等の1価アルコール、(iv)エチレングリコール、プロピレングリコール等の2価アルコール、(v)グリセリン等の3価アルコール、(vi)アセトン等のケトン類、(vii)テトラヒドロフラン等の環状エーテル、(viii)1,2−ジクロロベンゼン等のハロゲン化芳香族炭化水素、(ix)クロロホルム等のハロアルカン、(x)1−メチルナフタレン等が挙げられる。
<Organic solvent (B)>
The type of the organic solvent (B) is not particularly limited. Specifically, (i) N, N-dimethylformamide, N-methyl-2-pyrrolidone, hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfoxide, N-acetyl-2-pyrrolidone, N, N-dimethyl Examples include acetamide. (Ii) water, (iii) monohydric alcohols such as methanol, ethanol, propanol, isopropanol and butanol, (iv) dihydric alcohols such as ethylene glycol and propylene glycol, (v) trihydric alcohols such as glycerin, (vi ) Ketones such as acetone, (vii) cyclic ethers such as tetrahydrofuran, (viii) halogenated aromatic hydrocarbons such as 1,2-dichlorobenzene, (ix) haloalkanes such as chloroform, (x) 1-methylnaphthalene, etc. Is mentioned.

これらの液体は単独で用いても、2種以上を混合して用いることもできる。これらの有機溶剤のなかでも、より好ましい液体として、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、ジメチルスルホキシド、N−アセチル−2−ピロリドン、N,N−ジメチルアセトアミドが挙げられる。なかでも、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、N,N−ジメチルアセトアミドなどの非プロトン性極性分散媒が特に好ましい。
分散液中の有機溶剤(B)の量は、1重量部の窒化ホウ素ナノチューブ(A)に対して1〜100,000重量部、好ましくは2〜50,000重量部、より好ましくは9〜10,000重量部である。有機溶剤(B)の量が多すぎると利用価値が低く、少なすぎると窒化ホウ素ナノチューブ(A)の分散性が低下することもある。
These liquids can be used alone or in combination of two or more. Among these organic solvents, more preferable liquids include N, N-dimethylformamide, N-methyl-2-pyrrolidone, hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfoxide, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide may be mentioned. Of these, aprotic polar dispersion media such as N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and N, N-dimethylacetamide are particularly preferable.
The amount of the organic solvent (B) in the dispersion is 1 to 100,000 parts by weight, preferably 2 to 50,000 parts by weight, more preferably 9 to 10 parts by weight with respect to 1 part by weight of the boron nitride nanotube (A). 1,000 parts by weight. When the amount of the organic solvent (B) is too large, the utility value is low, and when it is too small, the dispersibility of the boron nitride nanotube (A) may be lowered.

<ポリマー(C)>
本発明の分散液はポリマー(C)を含有する。ポリマー(C)は、有機溶剤(B)に可溶なポリマーである。ポリマー(C)は、窒化ホウ素ナノチューブ(A)の有機溶剤(B)中での分散剤として作用する。
ポリマー(C)として、ポリスチレン、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルイミド、ポリエチレンテレフタレート、ポリフェニレンオキサイド、ポリフェニレンスルフィド、ポリブチレンテレフタレート、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリアミック酸、ポリアミック酸エステル、ポリアミド、全芳香族ポリアミドが挙げられる。
<Polymer (C)>
The dispersion of the present invention contains a polymer (C). The polymer (C) is a polymer that is soluble in the organic solvent (B). The polymer (C) acts as a dispersant in the organic solvent (B) of the boron nitride nanotube (A).
As polymer (C), polystyrene, polycarbonate, polyarylate, polysulfone, polyetherimide, polyethylene terephthalate, polyphenylene oxide, polyphenylene sulfide, polybutylene terephthalate, polyimide, polyamideimide, polyetheretherketone, polyamic acid, polyamic acid ester, polyamide And wholly aromatic polyamides.

なかでも下記式(1)で表される繰り返し単位からなる全芳香族ポリアミドが好ましい。
−NH―Ar―NH―OC―Ar―CO― (1)
式(1)中、ArおよびArは同一または異なり、炭素数6〜20の2価の芳香族基を表わす。
Of these, wholly aromatic polyamides composed of repeating units represented by the following formula (1) are preferred.
—NH—Ar 1 —NH—OC—Ar 2 —CO— (1)
In formula (1), Ar 1 and Ar 2 are the same or different and represent a divalent aromatic group having 6 to 20 carbon atoms.

上記ArおよびArとして、メタフェニレン基、パラフェニレン基、オルトフェニレン基、2,6−ナフチレン基、2,7−ナフチレン基、4,4’−イソプロピリデンジフェニレン基、4,4’−ビフェニレン基、4,4’−ジフェニレンスルフィド基、4,4’−ジフェニレンスルホン基、4,4’−ジフェニレンケトン基、4,4’−ジフェニレンエーテル基、3,4’−ジフェニレンエーテル基、メタキシリレン基、パラキシリレン基、オルトキシリレン基等が挙げられる。 As Ar 1 and Ar 2 , a metaphenylene group, paraphenylene group, orthophenylene group, 2,6-naphthylene group, 2,7-naphthylene group, 4,4′-isopropylidenediphenylene group, 4,4′- Biphenylene group, 4,4'-diphenylene sulfide group, 4,4'-diphenylene sulfone group, 4,4'-diphenylene ketone group, 4,4'-diphenylene ether group, 3,4'-diphenylene Examples include an ether group, a metaxylylene group, a paraxylylene group, and an orthoxylylene group.

これら芳香族基の水素原子のうち1つまたは複数がそれぞれ独立にフッ素、塩素、臭素等のハロゲン基;メチル基、エチル基、プロピル基、ヘキシル基等の炭素数1〜6のアルキル基;シクロペンチル基、シクロヘキシル基等の炭素数5〜10のシクロアルキル基;フェニル基等の炭素数6〜10の芳香族基で置換されていてもよい。なお、式(1)中のAr、Arまたはこれらの双方が、2種以上の芳香族基から構成されていてもよい。 One or more hydrogen atoms of these aromatic groups are each independently halogen groups such as fluorine, chlorine and bromine; alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group and hexyl group; cyclopentyl A cycloalkyl group having 5 to 10 carbon atoms such as a cyclohexyl group; and an aromatic group having 6 to 10 carbon atoms such as a phenyl group. In addition, Ar < 1 >, Ar < 2 > in Formula (1) or both of these may be comprised from 2 or more types of aromatic groups.

即ち、Arとして、メタフェニレン基、パラフェニレン基または3,4’−ジフェニレンエーテル基が好ましい。Arはパラフェニレン基あることが好ましい。Arは、パラフェニレン基と3,4’−ジフェニレンエーテル基とを併用したものがより好ましく、これらのモル比が1:0.8〜1:1.2の範囲にあることがさらに好ましい。Arはメタフェニレン基またはパラフェニレン基が好ましい。パラフェニレン基がさらに好ましい。
すなわち本発明において好適に用いられる全芳香族ポリアミドとして、一般式(1)のAr
That is, as Ar 1 , a metaphenylene group, a paraphenylene group, or a 3,4′-diphenylene ether group is preferable. Ar 1 is preferably a paraphenylene group. Ar 1 is more preferably a combination of a paraphenylene group and a 3,4′-diphenylene ether group, and the molar ratio thereof is more preferably in the range of 1: 0.8 to 1: 1.2. . Ar 2 is preferably a metaphenylene group or a paraphenylene group. More preferred is a paraphenylene group.
That is, as the wholly aromatic polyamide suitably used in the present invention, Ar 1 of the general formula (1) is

であり、Ar And Ar 2 is

であるものが挙げられる。 Are listed.

これらの全芳香族ポリアミドは溶液重合法、界面重合法、溶融重合法など従来公知の方法にて製造することが出来る。重合度は芳香族ジアミン成分と芳香族ジカルボン酸成分の比率によりコントロールすることが出来、得られるポリマーの分子量としては98重量%濃硫酸に0.5g/100mLの濃度で溶かした溶液を30℃にて測定した固有粘度(η)が0.05〜20dL/gであることが好ましく、0.1〜10dL/gの間にあるものがより好ましい。
分散液中のポリマー(C)の量は、1重量部の窒化ホウ素ナノチューブ(A)に対して、0.01〜1,000重量部であり、好ましくは0.02〜500重量部、より好ましくは0.05〜200重量部である。とくにポリマーが上記式(1)で表される繰り返し単位からなる全芳香族ポリアミドである場合、1重量部の窒化ホウ素ナノチューブ(A)に対して0.01〜100重量部添加することが好ましい。
These wholly aromatic polyamides can be produced by a conventionally known method such as a solution polymerization method, an interfacial polymerization method, or a melt polymerization method. The degree of polymerization can be controlled by the ratio of the aromatic diamine component and the aromatic dicarboxylic acid component, and the molecular weight of the polymer obtained is a solution of 98% by weight concentrated sulfuric acid at a concentration of 0.5 g / 100 mL at 30 ° C. The intrinsic viscosity (η) measured in this manner is preferably 0.05 to 20 dL / g, more preferably 0.1 to 10 dL / g.
The amount of the polymer (C) in the dispersion is 0.01 to 1,000 parts by weight, preferably 0.02 to 500 parts by weight, more preferably based on 1 part by weight of the boron nitride nanotube (A). Is 0.05 to 200 parts by weight. In particular, when the polymer is a wholly aromatic polyamide composed of the repeating unit represented by the above formula (1), it is preferable to add 0.01 to 100 parts by weight with respect to 1 part by weight of the boron nitride nanotube (A).

<分散液の製造方法>
本発明の分散液は、例えば(i)窒化ホウ素ナノチューブ(A)の有機溶媒(B)溶液に、ポリマー(C)を添加する方法、(ii)ポリマー(C)の有機溶媒(B)溶液に、窒化ホウ素ナノチューブ(A)を添加する方法、(iii)有機溶媒(B)に、ポリマー(C)と窒化ホウ素ナノチューブ(A)とを添加する方法により製造することができる。なかでも、(i)の窒化ホウ素ナノチューブ(A)を有機溶媒(B)中に分散させた後、ポリマー(C)を添加する方法が好ましい。
窒化ホウ素ナノチューブ(A)を有機溶剤(B)に分散させる方法としては、特に限定されないが超音波や各種攪拌方法を用いることができる。攪拌方法としては、ホモジナイザーのような高速攪拌やアトライター、ボールミル等の攪拌方法も使用することができる。
<Method for producing dispersion>
The dispersion liquid of the present invention includes, for example, (i) a method of adding a polymer (C) to an organic solvent (B) solution of boron nitride nanotubes (A), and (ii) an organic solvent (B) solution of a polymer (C). And (iii) a method of adding the polymer (C) and the boron nitride nanotube (A) to the organic solvent (B). Among them, the method of adding the polymer (C) after dispersing the boron nitride nanotube (A) of (i) in the organic solvent (B) is preferable.
The method for dispersing the boron nitride nanotube (A) in the organic solvent (B) is not particularly limited, and ultrasonic waves and various stirring methods can be used. As the stirring method, high-speed stirring such as a homogenizer, stirring methods such as an attritor and a ball mill can be used.

本発明の分散液は、分散性に優れ、かつ分散している状態が保持、安定化している。この理由については、明らかではないが窒化ホウ素ナノチューブ(A)の間にポリマーが挿入された状態が形成され、窒化ホウ素ナノチューブの凝集が抑制されているものと推定される。また、本発明の分散液には必要に応じて塩、pH調整剤、粘度調整剤、キレーター等が含まれていてもかまわない。   The dispersion of the present invention is excellent in dispersibility and is maintained and stabilized in a dispersed state. The reason for this is not clear, but it is presumed that a state in which a polymer is inserted between the boron nitride nanotubes (A) is formed, and aggregation of the boron nitride nanotubes is suppressed. Further, the dispersion of the present invention may contain a salt, a pH adjuster, a viscosity adjuster, a chelator and the like as required.

<濃縮>
本発明の分散液はそのまま使用することも可能であるが、濃縮することにより高濃度の分散液を調製することも可能である。濃縮の方法としては、加熱による溶媒の除去、減圧濃縮による溶媒の除去および凍結乾燥等、公知の方法を使用することができる。
本発明の特徴である分散性、安定性を保持したまま濃縮させることが可能である。濃縮して得られる分散液の組成としては好ましくは、1重量部の窒化ホウ素ナノチューブ(A)、1〜10,000重量部の有機溶剤(B)、および0.01〜1,000重量部のポリマー(C)である。
<Concentration>
The dispersion of the present invention can be used as it is, but a high-concentration dispersion can also be prepared by concentrating. As the concentration method, a known method such as removal of the solvent by heating, removal of the solvent by concentration under reduced pressure, and lyophilization can be used.
It is possible to concentrate while maintaining the dispersibility and stability that are the characteristics of the present invention. The composition of the dispersion obtained by concentration is preferably 1 part by weight of boron nitride nanotube (A), 1 to 10,000 parts by weight of organic solvent (B), and 0.01 to 1,000 parts by weight of Polymer (C).

以下、実施例により、本発明をさらに詳しく具体的に説明する。ただしこれらの実施例は本発明の範囲を限定するものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples do not limit the scope of the present invention.

<窒化ホウ素ナノチューブの平均直径と平均長さ>
透過型電子顕微鏡(TEM)により50点以上窒化ホウ素ナノチューブを観察し、その直径と長さの平均をとることで窒化ホウ素ナノチューブの平均直径および平均長さとした。
<Average diameter and average length of boron nitride nanotubes>
More than 50 boron nitride nanotubes were observed with a transmission electron microscope (TEM), and the average diameter and length thereof were taken to obtain the average diameter and average length of the boron nitride nanotubes.

<分散性の評価>
分散液をスライドグラス上に1滴とり、カバーグラスでカーバーしたものを、光学顕微鏡を用いて200倍で観察し、窒化ホウ素ナノチューブの分散性を確認した。
<Evaluation of dispersibility>
One drop of the dispersion was taken on a slide glass and covered with a cover glass, and observed with an optical microscope at 200 times to confirm the dispersibility of the boron nitride nanotubes.

<動的光散乱測定>
大塚電子ZDLS-7000を用いて濃度0.001重量%で動的光散乱測定を行った。
<Dynamic light scattering measurement>
Dynamic light scattering measurement was performed at a concentration of 0.001% by weight using Otsuka Electronics ZDLS-7000.

<参考例1>(窒化ホウ素ナノチューブの合成)
窒化ホウ素製のるつぼに1:1のモル比でホウ素と酸化マグネシウムの混合物を入れ、るつぼを高周波誘導加熱炉で1,300℃に加熱した。ホウ素と酸化マグネシウムは反応し、気体状の酸化ホウ素(B)とマグネシウムの蒸気が生成した。この生成物をアルゴンガスにより反応室へ移送し、温度を1100℃に維持してアンモニアガスを導入した。酸化ホウ素とアンモニアが反応し、窒化ホウ素が生成した。1.55gの混合物を十分に加熱し、副生成物を蒸発させると、反応室の壁から310mgの白色の固体が得られた。続いて得られた白色固体を濃塩酸で洗浄、イオン交換水で中性になるまで洗浄後、60℃で減圧乾燥を行い窒化ホウ素ナノチューブ(以下、BNNTと略すことがある)を得た。得られたBNNTは、平均直径が27.6nm、平均長さが2,460nmのチューブ状であった。
<Reference Example 1> (Synthesis of boron nitride nanotube)
A boron nitride crucible was charged with a mixture of boron and magnesium oxide at a molar ratio of 1: 1, and the crucible was heated to 1,300 ° C. in a high frequency induction heating furnace. Boron and magnesium oxide reacted to form gaseous boron oxide (B 2 O 2 ) and magnesium vapor. This product was transferred to the reaction chamber with argon gas, and ammonia gas was introduced while maintaining the temperature at 1100 ° C. Boron oxide and ammonia reacted to form boron nitride. When 1.55 g of the mixture was fully heated and the by-product was evaporated, 310 mg of a white solid was obtained from the walls of the reaction chamber. Subsequently, the obtained white solid was washed with concentrated hydrochloric acid and washed with ion-exchanged water until neutral, and then dried at 60 ° C. under reduced pressure to obtain boron nitride nanotubes (hereinafter sometimes abbreviated as BNNT). The obtained BNNT was a tube having an average diameter of 27.6 nm and an average length of 2,460 nm.

<実施例1>
(全芳香族ポリアミドの合成)
十分に乾燥した攪拌装置付きの三口フラスコにN−メチルピロリドン(以下、NMPと略すことがある)1717.38重量部、p−フェニレンジアミン18.82重量部および3、4’−ジアミノフェニルエ−テル34.84重量部を常温下で添加し窒素中で溶解した後、攪拌しながらテレフタル酸ジクロリド70.08重量部を添加した。最終的に80℃、60分反応させたところに水酸化カルシウム12.85重量部を添加し中和反応を行った。得られたポリマ−ド−プを水にて再沈殿することにより析出させ全芳香族ポリアミドを合成した。ポリマ−の固有粘度は3.5(dl/g)であった。
<Example 1>
(Synthesis of wholly aromatic polyamide)
In a well-dried three-necked flask with a stirrer, 1717.38 parts by weight of N-methylpyrrolidone (hereinafter sometimes abbreviated as NMP), 18.82 parts by weight of p-phenylenediamine, and 3,4′-diaminophenyl ether After adding 34.84 parts by weight of tellurium at room temperature and dissolving in nitrogen, 70.08 parts by weight of terephthalic acid dichloride was added with stirring. Finally, the reaction was carried out at 80 ° C. for 60 minutes, and 12.85 parts by weight of calcium hydroxide was added to carry out a neutralization reaction. The obtained polymer dope was precipitated by reprecipitation with water to synthesize a wholly aromatic polyamide. The intrinsic viscosity of the polymer was 3.5 (dl / g).

(分散液の調製)
参考例1で得られたBNNT 100mgをNMP 30mlに添加して、3周波超音波洗浄器(アズワン製、出力100W、28Hz)で30分超音波処理を行った。続いて、上記で合成した全芳香族ポリアミド溶液1.67gをBNNTとNMPからなる分散液に添加し、さらに1時間超音波処理することにより分散液を得た。得られた分散液は、1日放置した後、BNNTの沈殿は観察されなかった。また、光学顕微鏡観察(200倍)を用い分散性の評価を行ったところ、BNNTの分散性が飛躍的に向上していることを確認した(図1)。動的光散乱測定から算出した平均粒径サイズは408.2nmであった。
(Preparation of dispersion)
100 mg of BNNT obtained in Reference Example 1 was added to 30 ml of NMP, and sonication was performed for 30 minutes with a 3-frequency ultrasonic cleaner (manufactured by ASONE, output 100 W, 28 Hz). Subsequently, 1.67 g of the wholly aromatic polyamide solution synthesized above was added to a dispersion composed of BNNT and NMP, and further subjected to ultrasonic treatment for 1 hour to obtain a dispersion. After the obtained dispersion was allowed to stand for 1 day, no BNNT precipitation was observed. Moreover, when the dispersibility was evaluated using optical microscope observation (200 times), it was confirmed that the dispersibility of BNNT was dramatically improved (FIG. 1). The average particle size calculated from the dynamic light scattering measurement was 408.2 nm.

<比較例1>
参考例1で得られたBNNT 100mgをNMP 30mlに添加して、3周波超音波洗浄器(アズワン製、出力100W、28Hz)で30分超音波処理を行った。次いで得られたBNNTとNMPからなる混合物を1時間放置した後、光学顕微鏡にて200倍で観察したところ、BNNTの凝集物が観察された(図2)。以上のことから、BNNTだけをNMPに分散させた場合、時々刻々凝集しており、分散性を保持、安定化することができないことを確認した。また、動的光散乱測定から算出した平均粒径サイズは1537.5nmであった。
<Comparative Example 1>
100 mg of BNNT obtained in Reference Example 1 was added to 30 ml of NMP, and sonication was performed for 30 minutes with a 3-frequency ultrasonic cleaner (manufactured by ASONE, output 100 W, 28 Hz). Subsequently, the obtained mixture of BNNT and NMP was allowed to stand for 1 hour and then observed with an optical microscope at a magnification of 200. As a result, BNNT aggregates were observed (FIG. 2). From the above, it was confirmed that when only BNNT was dispersed in NMP, it was agglomerated every moment and the dispersibility could not be maintained and stabilized. The average particle size calculated from the dynamic light scattering measurement was 1537.5 nm.

<実施例2>
参考例1で得られたBNNT 100mgをNMP 50mlに添加して、3周波超音波洗浄器(アズワン製、出力100W、28Hz)で30分超音波処理を行った。続いて、固有粘度1.35dl/gのポリ(メタフェニレンイソフタルアミド)100mgをBNNTとNMPからなる分散液に添加し、さらに1時間超音波処理することにより分散液を得た。得られた分散液は、1日放置した後、BNNTの沈殿は観察されなかった。また、光学顕微鏡観察(200倍)からBNNTの分散性が飛躍的に向上していることを確認した(図3)。動的光散乱測定から算出した平均粒径サイズは390.2nmであった。
<Example 2>
100 mg of BNNT obtained in Reference Example 1 was added to 50 ml of NMP, and sonication was performed for 30 minutes with a three-frequency ultrasonic cleaner (manufactured by ASONE, output 100 W, 28 Hz). Subsequently, 100 mg of poly (metaphenylene isophthalamide) having an intrinsic viscosity of 1.35 dl / g was added to the dispersion composed of BNNT and NMP, and further subjected to ultrasonic treatment for 1 hour to obtain a dispersion. After the obtained dispersion was allowed to stand for 1 day, no BNNT precipitation was observed. Moreover, it confirmed that the dispersibility of BNNT improved greatly from optical microscope observation (200 times) (FIG. 3). The average particle size calculated from the dynamic light scattering measurement was 390.2 nm.

<比較例2>
参考例1で得られたBNNT 100mgをNMP 50mlに添加して、3周波超音波洗浄器(アズワン製、出力100W、28Hz)で30分超音波処理を行った。次いで得られたBNNTとNMPからなる混合物を1時間放置した後、光学顕微鏡にて200倍で観察したところ、BNNTの凝集物が観察された。(図4)以上のことから、BNNTだけをNMPに分散させた場合、時々刻々凝集しており、分散性を保持、安定化することができないことを確認した。また、動的光散乱測定から算出した平均粒径サイズは1537.5nmであった。
<Comparative example 2>
100 mg of BNNT obtained in Reference Example 1 was added to 50 ml of NMP, and sonication was performed for 30 minutes with a three-frequency ultrasonic cleaner (manufactured by ASONE, output 100 W, 28 Hz). Subsequently, the obtained mixture of BNNT and NMP was allowed to stand for 1 hour and then observed with an optical microscope at 200 times. As a result, BNNT aggregates were observed. (FIG. 4) From the above, it was confirmed that when only BNNT was dispersed in NMP, it was agglomerated every moment, and the dispersibility could not be maintained and stabilized. The average particle size calculated from the dynamic light scattering measurement was 1537.5 nm.

本発明の分散液は、BNNTの分散性、分散安定性に優れているので、BNNTが均一に分散された、樹脂、成形体などの製造に用いることができる。   Since the dispersion liquid of the present invention is excellent in the dispersibility and dispersion stability of BNNT, it can be used for the production of a resin, a molded body and the like in which BNNT is uniformly dispersed.

実施例1で得られた分散液の光学顕微鏡写真である。2 is an optical micrograph of the dispersion obtained in Example 1. 比較例1で得られた分散液の光学顕微鏡写真である。3 is an optical micrograph of the dispersion obtained in Comparative Example 1. 実施例2で得られた分散液の光学顕微鏡写真である。2 is an optical micrograph of the dispersion obtained in Example 2. 比較例2で得られた分散液の光学顕微鏡写真である。3 is an optical micrograph of the dispersion obtained in Comparative Example 2.

Claims (6)

1重量部の窒化ホウ素ナノチューブ(A)、1〜100,000重量部の有機溶剤(B)および0.01〜1,000重量部のポリマー(C)を含有する分散液。   A dispersion containing 1 part by weight of boron nitride nanotubes (A), 1 to 100,000 parts by weight of an organic solvent (B) and 0.01 to 1,000 parts by weight of a polymer (C). ポリマー(C)が下記式(1)
―NH―Ar―NH―OC―Ar―CO― (1)
式(1)中、Ar、Arは同一または異なり、炭素数6〜20の2価の芳香族基を示す、
で表される繰り返し単位からなる全芳香族ポリアミドである請求項1記載の分散液。
The polymer (C) is represented by the following formula (1)
—NH—Ar 1 —NH—OC—Ar 2 —CO— (1)
In formula (1), Ar 1 and Ar 2 are the same or different and represent a divalent aromatic group having 6 to 20 carbon atoms,
The dispersion according to claim 1, which is a wholly aromatic polyamide comprising a repeating unit represented by the formula:
有機溶剤(B)が、非プロトン性極性溶媒である請求項1記載の分散液。   The dispersion according to claim 1, wherein the organic solvent (B) is an aprotic polar solvent. 式(1)のArが、
であり、
Arが、
である請求項2記載の分散液。
Ar 1 in formula (1) is
And
Ar 2 is
The dispersion according to claim 2.
窒化ホウ素ナノチューブ(A)を有機溶剤(B)に分散させた後、ポリマー(C)を添加することを特徴とする分散液の製造方法。   A method for producing a dispersion, comprising dispersing boron nitride nanotubes (A) in an organic solvent (B) and then adding a polymer (C). 請求項5の方法で得られた分散液を濃縮することからなる分散液の製造方法。
A method for producing a dispersion comprising concentrating the dispersion obtained by the method of claim 5.
JP2005334387A 2005-11-18 2005-11-18 Polymer dispersion containing boron nitride nanotube Pending JP2007137720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334387A JP2007137720A (en) 2005-11-18 2005-11-18 Polymer dispersion containing boron nitride nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005334387A JP2007137720A (en) 2005-11-18 2005-11-18 Polymer dispersion containing boron nitride nanotube

Publications (1)

Publication Number Publication Date
JP2007137720A true JP2007137720A (en) 2007-06-07

Family

ID=38201044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334387A Pending JP2007137720A (en) 2005-11-18 2005-11-18 Polymer dispersion containing boron nitride nanotube

Country Status (1)

Country Link
JP (1) JP2007137720A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146039A (en) * 2005-11-29 2007-06-14 Teijin Ltd Resin composition and molded article thereof
JP2007146081A (en) * 2005-11-30 2007-06-14 Teijin Ltd Polycarbonate-based resin molded article and method for producing the same
JP2007197595A (en) * 2006-01-27 2007-08-09 Teijin Ltd Polyethersulfone-based resin composition with high thermal stability and method for producing the same
JP2007197555A (en) * 2006-01-26 2007-08-09 Teijin Ltd Heat-resistant resin composition and method for producing the same
JP2008069194A (en) * 2006-09-12 2008-03-27 Teijin Ltd Heat-resistant resin composite composition and method for producing the same
JP2009256534A (en) * 2008-04-21 2009-11-05 Teijin Ltd Polymer electrolyte composition having excellent mechanical characteristics and dimensional stability, and method for manufacturing the same
US20110192016A1 (en) * 2009-10-13 2011-08-11 National Institute Of Aerospace Associates Energy conversion materials fabricated with boron nitride nanotubes (BNNTs) and BNNT polymer composites
JP2012097174A (en) * 2010-11-01 2012-05-24 Osaka Gas Co Ltd Nanocarbon-containing coating composition and coating film formed by the same
US10607742B2 (en) 2011-05-09 2020-03-31 National Institute Of Aerospace Associates Radiation shielding materials containing hydrogen, boron and nitrogen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676624A (en) * 1992-08-31 1994-03-18 Shin Etsu Chem Co Ltd Electrically insulating material
JPH1087990A (en) * 1996-09-18 1998-04-07 Mitsui Petrochem Ind Ltd Resin composition
JP2004002849A (en) * 2002-05-02 2004-01-08 Zyvex Corp Polymer for noncovalently functionalizing nanotube and method of noncovalently functionalizing nanotube by using the polymer
JP2004161561A (en) * 2002-11-14 2004-06-10 National Institute For Materials Science Manufacturing process of boron nitride nanotube
WO2004065496A1 (en) * 2003-01-20 2004-08-05 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
JP2004537489A (en) * 2001-08-07 2004-12-16 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド High solid content hBN slurry, hBN paste, spherical hBN powder, and methods for producing and using them
JP2005219986A (en) * 2004-02-09 2005-08-18 Teijin Ltd Dispersion of single-wall carbon nanotube and production method therefor
WO2005100466A1 (en) * 2004-04-13 2005-10-27 Zyvex Corporation Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676624A (en) * 1992-08-31 1994-03-18 Shin Etsu Chem Co Ltd Electrically insulating material
JPH1087990A (en) * 1996-09-18 1998-04-07 Mitsui Petrochem Ind Ltd Resin composition
JP2004537489A (en) * 2001-08-07 2004-12-16 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド High solid content hBN slurry, hBN paste, spherical hBN powder, and methods for producing and using them
JP2004002849A (en) * 2002-05-02 2004-01-08 Zyvex Corp Polymer for noncovalently functionalizing nanotube and method of noncovalently functionalizing nanotube by using the polymer
JP2004161561A (en) * 2002-11-14 2004-06-10 National Institute For Materials Science Manufacturing process of boron nitride nanotube
WO2004065496A1 (en) * 2003-01-20 2004-08-05 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
JP2005219986A (en) * 2004-02-09 2005-08-18 Teijin Ltd Dispersion of single-wall carbon nanotube and production method therefor
WO2005100466A1 (en) * 2004-04-13 2005-10-27 Zyvex Corporation Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146039A (en) * 2005-11-29 2007-06-14 Teijin Ltd Resin composition and molded article thereof
JP2007146081A (en) * 2005-11-30 2007-06-14 Teijin Ltd Polycarbonate-based resin molded article and method for producing the same
JP2007197555A (en) * 2006-01-26 2007-08-09 Teijin Ltd Heat-resistant resin composition and method for producing the same
JP2007197595A (en) * 2006-01-27 2007-08-09 Teijin Ltd Polyethersulfone-based resin composition with high thermal stability and method for producing the same
JP2008069194A (en) * 2006-09-12 2008-03-27 Teijin Ltd Heat-resistant resin composite composition and method for producing the same
JP2009256534A (en) * 2008-04-21 2009-11-05 Teijin Ltd Polymer electrolyte composition having excellent mechanical characteristics and dimensional stability, and method for manufacturing the same
US20110192016A1 (en) * 2009-10-13 2011-08-11 National Institute Of Aerospace Associates Energy conversion materials fabricated with boron nitride nanotubes (BNNTs) and BNNT polymer composites
US10435293B2 (en) * 2009-10-13 2019-10-08 National Institute Of Aerospace Associates Methods of manufacturing energy conversion materials fabricated with boron nitride nanotubes (BNNTs) and BNNT polymer composites
JP2012097174A (en) * 2010-11-01 2012-05-24 Osaka Gas Co Ltd Nanocarbon-containing coating composition and coating film formed by the same
US10607742B2 (en) 2011-05-09 2020-03-31 National Institute Of Aerospace Associates Radiation shielding materials containing hydrogen, boron and nitrogen

Similar Documents

Publication Publication Date Title
JP2007137720A (en) Polymer dispersion containing boron nitride nanotube
US7906043B2 (en) Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
Laird et al. Structure and morphology control in crystalline polymer–carbon nanotube nanocomposites
CN103842445B (en) Carbon nanotube composite material and heat conductor
JP5139717B2 (en) Multi-walled carbon nanotube dispersion and method for producing the same
Liu et al. Functionalization of multi-walled carbon nanotubes grafted with self-generated functional groups and their polyamide 6 composites
Zhou et al. In situ preparation and continuous fiber spinning of poly (p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes
Zhang et al. The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication
EP2041225B1 (en) Polymer composition suitable for electrostatic discharge applications
WO2004050764A1 (en) Composite fiber comprising wholly aromatic polyamide and carbon nanotube
Ha et al. Morphology and properties of polyamide/multi-walled carbon nanotube composites
JP2007145677A (en) Boron nitride nanotube coated with aromatic polyamide
JP2010511095A (en) Method for preparing aramid polymer containing carbon nanotube
Ding et al. Enhanced thermal conductive property of polyamide composites by low mass fraction of covalently grafted graphene nanoribbons
Ben Doudou et al. Hybrid carbon nanotube—silica/polyvinyl alcohol nanocomposites films: preparation and characterisation
Anis et al. Preparation, characterization, and thermal conductivity of polyvinyl-formaldehyde/MWCNTs foam: A low cost heat sink substrate
JP4647384B2 (en) Composite fiber composed of wholly aromatic polyamide and thin-walled carbon nanotubes
JP5015469B2 (en) Heat resistant resin composition and process for producing the same
JP5069432B2 (en) Heat resistant resin composite composition and method for producing the same
JP2008285789A (en) Composite fiber composed of wholly aromatic polyamide and multilayer carbon nanotube
JP4383913B2 (en) Single-walled carbon nanotube dispersion and method for producing the same
JP2007138037A (en) Aromatic polyamide molded article and method for producing the same
JP2007217669A (en) Copolymerization of aromatic polymer and carbon nano tube and copolymer, and article produced therefrom
JP4456965B2 (en) Composite fiber composed of wholly aromatic polyamide and single-walled carbon nanotubes
Yousefian-Arani et al. Semi-aromatic polyamide-based nanocomposites: I. in-situ polymerization in the presence of graphene oxide

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110105