JP4906023B2 - GaN系半導体装置 - Google Patents

GaN系半導体装置 Download PDF

Info

Publication number
JP4906023B2
JP4906023B2 JP2001246113A JP2001246113A JP4906023B2 JP 4906023 B2 JP4906023 B2 JP 4906023B2 JP 2001246113 A JP2001246113 A JP 2001246113A JP 2001246113 A JP2001246113 A JP 2001246113A JP 4906023 B2 JP4906023 B2 JP 4906023B2
Authority
JP
Japan
Prior art keywords
layer
gan
undoped
region
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001246113A
Other languages
English (en)
Other versions
JP2003059946A (ja
Inventor
清輝 吉田
崇宏 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2001246113A priority Critical patent/JP4906023B2/ja
Publication of JP2003059946A publication Critical patent/JP2003059946A/ja
Application granted granted Critical
Publication of JP4906023B2 publication Critical patent/JP4906023B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はGaN系半導体装置に関し、更に詳しくは、GaN系半導体材料から成るHEMT構造であって、従来に比べて動作時のオン抵抗が大幅に低下するので大電流動作が可能なGaN系半導体装置に関する。
【0002】
【従来の技術】
GaN,InGaN,AlGaN,AlInGaNなどのGaN系半導体材料は、例えばGaAs系の材料に比べてそのバンドギャップエネルギーが大きく、しかも耐熱度が高く高温動作が優れているので、これらの材料、とくにGaNを用いて電界効果トランジスタ(Field Effect Transistor:FET)や高移動度トランジスタ(High Electorn Mobility Transistor:HEMT)などの電子デバイスの開発研究が進められている。
【0003】
GaN系HEMT構造の1例を図5に示す。このHEMT構造においては、例えばサファイア基板のような半絶縁性基板1の上に、例えばGaNから成るバッファ層2、アンドープGaN層3、および前記アンドープGaN層3に比べれば超かに薄いアンドープAlGaN層4が順次積層して成る層構造が形成されている。
【0004】
そして、アンドープAlGaN層4の上には、ゲート電極G、ソース電極S、およびドレイン電極Dが平面的に配置されている。その場合、ゲート電極Gは、直接、アンドープAlGaN層4の上に形成される。
しかしながら、ソース電極Sとドレイン電極Dは、一般に、アンドープAlGaN層4の表面のうち、これら電極の形成領域に、一旦、例えばn型不純物であるSiが高濃度でドーピングされて成るn−AlGaNのコンタクト層5を形成し、このコンタクト層5の上に配置される。その理由は、これら電極とアンドープAlGaN層4の間を低抵抗化して動作時のオン抵抗を下げて大電流動作を実現させるためである。
【0005】
なお、ソース電極Sとドレイン電極Dを、直接、アンドープAlGaN層4の上に形成する場合もあるが、この場合には、これら電極とアンドープAlGaN層4の間が高抵抗となって大電流動作の実現が困難となるため、上記したように、両者間にコンタクト層5を介装した構造が通例である。
図5で示したHEMT構造の場合、アンドープGaNのバンドギャップエネルギーはアンドープAlGaNのバンドギャップエネルギーよりも小さい。そして、アンドープGaNは単結晶であるが、アンドープAlGaNはAlNとGaNの混晶になっている。そのため、両層のヘテロ接合界面においては、結晶歪みに基づくピエゾ圧電効果でピエゾ電界が発生し、両者の接合界面の直下に2次元電子ガス層6が形成される。
【0006】
GaN系材料の上記ヘテロ接合界面で形成される2次元電子ガス層における電子ガス濃度は、5×1018〜1×1020/cm3程度であり、この値は、例えばGaAs系材料で形成される2次元電子ガス層の電子ガス濃度が5×1017〜1×1018/cm3程度であることに比べると、1桁以上高濃度になっている。
このHEMT構造いおいて、ソース電極Sとドレイン電極Dを作動すると、アンドープAlGaN層4は電子の供給層として機能してアンドープGaN層3に電子を供給する。供給された電子は2次元電子ガス層6の働きで高速移動してドレイン電極Dへと走行していく。このとき、ゲート電極Gを作動してその直下に所望厚みの空乏層を発生させることにより、このHEMT構造に各種の変調動作を実現させることができる。
【0007】
【発明が解決しようとする課題】
ところで、図5で示したHEMT構造の場合、アンドープAlGaN層4の上に直接ソース電極Sとドレイン電極Dを形成したHEMT構造の場合よりも動作時のオン抵抗は小さくなるとはいえ、これら電極と2次元電子ガス層の間には高抵抗のアンドープAlGaN層4が所定の厚みで介装された状態になっているので、動作時のオン抵抗の低下実現に関しては限界が生じてくる。
【0008】
また、コンタクト層5は、通常、選択成長によって形成されているが、仮にこの選択成長を行うことなく、動作時のオン抵抗が低下するHEMT構造を製造することができれば、その工業的なメリットは大きくなる。
本発明は、図5で示した従来のHEMT構造における上記した問題を解決し、コンタクト層を形成することなく、動作時のオン抵抗の低下を実現することができる新規なHEMT構造を有するGaN系半導体装置の提供を目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、GaN系材料のヘテロ接合界面に形成される2次元電子ガス層の電子ガス濃度は高く、また、例えばアンドープAlGaNとアンドープGaNのヘテロ接合界面の場合、アンドープAlGaNが薄くなればなるほどアンドープGaN内の2次元電子ガス層のしみ出し効果でアンドープ層のキャリアが実効的に増加するため、抵抗が小さくなるという現象に着目した。
【0010】
そして、ソース電極とドレイン電極を形成する領域におけるアンドープAlGaN層を選択的に薄層化すれば、その領域は従来のコンタクト層と同等の機能を発揮することができるのではないかとの着想を抱き、種々の実験を重ねてその着想の正しさを確認し、本発明のGaN系半導体装置を開発するに至った。
すなわち、本発明のGaN系半導体装置は、
全体がGaN系半導体材料で構成され、第1のアンドープ材料から成る下層と前記第1のアンドープ材料よりもバンドギャップエネルギーが大きい第2のアンドープ材料から成る上層との層構造が基板の上に形成され、
前記上層の表面には、ゲート電極、ソース電極、およびドレイン電極が形成されているGaN系半導体装置であって、
前記ソース電極と前記ドレイン電極の形成領域における前記上層の厚みが、他の領域における厚みよりも薄くなっていることを特徴とする。
【0011】
【発明の実施の形態】
本発明のGaN系半導体装置の1例Aを図1に示す。
この装置Aは、半絶縁性基板1の上に、例えばGaNから成るバッファ層2、後述する第1のアンドープ材料から成る下層3、第2のアンドープ材料から成る上層4が順次積層された層構造が形成されている。そして全体の表面は例えばSiO2のような保護膜7で被覆されている。
【0012】
そして、上層4の一部領域4Aは他の領域4Bに比べて薄くなっていて、その薄い領域4Aにソース電極Sとドレイン電極Dのそれぞれが形成され、上記した厚い他の領域4Bにはゲート電極Gが形成されている。
下層3の第1のアンドープ材料および上層4の第2のアンドープ材料はいずれもGaN系半導体材料である。その場合、第2のアンドープ材料と第1のアンドープ材料としては、前者のバンドギャップエネルギー(Eg)の方が後者のそれよりも大きい材料を選択し、両者を組み合わせて用いられる。その結果、下層3と上層4のヘテロ接合界面の直下、すなわち下層3の最上部には2次元電子ガス層6が形成される。
【0013】
下層3の第1のアンドープ材料としては、通常、GaN(Eg=3.40eV)が用いられる。そのとき、上層4の第2のアンドープ材料としては、例えばAlGaN(Eg=4.16eV)、AlInGaN(Eg=3.8eV)、AlGaNAs(Eg=4.5eV)、AlGaNP(Eg=4.2eV)、AlGaInNAsP(Eg=4.0eV)、AlGaNAsPなどを用いることができる。
【0014】
なお、第1のアンドープ材料はGaNに限定されるものではなく、GaN系の各種混晶であってもよいが、その場合、第2のアンドープ材料にはその混晶よりもEgが大きいGaN系半導体材料を用いることが必要である。
ここで、下層3の厚みは格別限定されないが、通常、1000〜4000nm程度に設定される。
【0015】
また、上層4における電極の形成領域4Aの厚みは、当該上層の構成材料とそれに組み合わされている下層3の構成材料との関係や、2次元電子ガス層6における電子ガス濃度の高低や、結晶欠陥などとの関係で適宜決められる。形成領域4Aの厚みをあまり薄くすると、膜欠陥が生じて連続した2次元電子ガス層6の形成が進まず、逆に厚くしすぎると、アンドープ層の抵抗が高くなるなどの不都合が生ずるので、形成領域4Aの厚みは1〜15nm程度に設定することが好ましい。
【0016】
形成領域4Aの厚みが上記した範囲にあると、その直下における2次元電子ガス層6の状態は良好であり、またその電子ガス濃度も高く、電極と下層3との間で充分にコンタクト層としての機能を発揮する。
この装置Aは次のようにして製造することができる。
まず、半絶縁性基板1の上に、ガスソース分子線エピタキシャル成長法(GSMBE)や有機金属気相成長法(MOCVD)などの結晶成長法で、例えばGaNから成るバッファ層2、例えばアンドープGaNから成る下層3,例えばアンドープAlGaNから成る上層4を順次成膜して、図2で示した層構造A0を製造する。
【0017】
ここで、基板1としては、通常、サファイア基板が用いられるが、SiC,GaAs,Si,GaNなどの基板であってもよい。
ついで、層構造A0の表面全体に例えばSiO2を堆積したのち、そこにレジストでパターニングし、更に、反応性イオンビームエッチング法(RIBE)で、ゲート電極を形成すべき領域以外の領域に所望する深さだけドライエッチングを行う。
【0018】
その結果、図3で示したように、所望する厚みの領域4Aとエッチングされない領域4Bが形成されている上層4を有する層構造A1が製造される。
ついで、層構造A1のレジストとSiO2膜を除去したのち、再び全面に例えばSiO2を成膜し、そのSiO2膜に対してレジストでパターニングし、ソース電極とドレイン電極を形成すべき箇所を開口し、そこに例えばスパッタ法で電極材料を被着せしめる。
【0019】
その結果、図4で示したように、上層4の領域4Aにソース電極Sとドレイン電極Dが形成されている層構造A2が製造される。
なお、電極材料としては、例えばTa−Si,Al/Ti,Ti/Auなどを用いることができる。これらはいずれも上層4との間でオーミック接触する。
また、ソース電極とドレイン電極の形成後、層構造A2を例えばN2ガス雰囲気炉で加熱処理することが好ましい。これら電極の上層とのオーミック接触が一層良好になるからである。そのときの熱処理温度は400〜800℃、処理時間は5〜30分間に設定することが好ましい。
【0020】
そして最後に、再び全面に例えばSiO2を成膜したのち、前記と同様にして上層の領域4Bの上にゲート電極を形成することにより、図1で示した装置Aが製造される。
なお、上記した一連の工程において、層構造A1の領域4Aの表面に更にInGaNやGaNなどの薄層を成膜しておくと、図4で示した層構造A2におけるソース電極Sおよびドレイン電極Dと領域4Aとの間のオーミック接触は一層良好となる。
【0021】
【実施例】
図1で示した装置Aを次のようにして製造した。
サファイア基板1の上に、ラジカル化窒素(3×10-6Torr)、金属Ga(5×10-7Torr)、金属Si(5×10-9Torr)を用い、GSMBE法により成長温度640℃で厚み50nmのn−GaNから成るバッファ層2を成膜し、更にその上に、金属Ga(1×10-6Torr)とアンモニア(5×10-5Torr)を用い、成長温度850℃で厚み1000nmのアンドープGaN層3を成膜した。そして、更にその上に、金属Al(1×10-7Torr)、金属Ga(1×10-7Torr)、アンモニア(5×10-6Torr)を用い、成長温度850℃で厚み30nmのアンドープAlGaN層4を成膜して図2の層構造A0を形成した。
【0022】
この層構造A0の全面を、P−CVD法で厚み100nmのSiO2膜で被覆したのち、レジストでパターニングして、ゲート電極を形成すべき領域4B以外に対してはバッファドフッ酸を用いた湿式エッチングを行ってSiO2膜を除去した。そして表出したアンドープAlGaN層4に対してRIBEでドライエッチングを行って図3で示した層構造A1にした。
【0023】
このとき、エッチングの深さを表1で示したように変化させて、領域4Aの厚みが異なる層構造A1を製造した。
ついで、領域4B上のレジストとSiO2膜を除去したのち、再び全面にSiO2膜を成膜し、レジストでパターニングしてソース電極とドレイン電極を形成すべき箇所を開口し、そこにTa−Siをスパッタしたのちリフトオフを行い、ソース電極Sとドレイン電極Dを形成した(図4)。その後、全体を温度1050℃のN2ガス雰囲気炉内で60分間の熱処理を行った。
【0024】
最後に、領域4B上のSiO2膜を開口し、ここにPt/Auを蒸着してゲート電極Gを形成し、図1で示した装置Aにした。
得られた装置につき、電気的特性、すなわちFETのオン抵抗とソース・ドレイン間の電流を測定した。その結果を表1に示した。
なお、比較のために、図2の層構造の上に、Siドープn−AlGaN(Siドーピング濃度1×1019/cm3)から成る厚み50nmのコンタクト層を形成したのちそこにソース電極Sとドレイン電極Dを形成したことを除いては実施例と同様の層構造を有するHEMTを製造した。その特性を従来例として表1に示した。
【0025】
【表1】
Figure 0004906023
【0026】
表1から次のことが明らかである。
(1)実施例装置は、オン抵抗がコンタクト層を積層した従来例に比べて低下しており、またソース・ドレイン間の電流も大幅に大きくなっている。
(2)実施例装置において、領域4Aの厚みが15nmより厚くなると、領域4Aの半導体層の抵抗は高くなり、また1nmより薄くなると、歪みが小さくなって2次元電子ガス層の効果が弱くなり、結果的に半導体層の抵抗が高くなっている。このようなことから領域4Aの厚みは1〜15nmに設定することが好ましい。
【0027】
【発明の効果】
以上の説明で明らかなように、本発明のGaN系半導体装置は、上層におけるソース電極とドレイン電極の形成領域の厚みを薄くすることにより動作時のオン抵抗は小さくなり、大電流動作が可能になっている。
また、この装置は、従来のように選択成長でコンタクト層を形成することが不要になるので、高い生産性の下で製造することができる。
【図面の簡単な説明】
【図1】本発明の装置の1例Aを示す断面図である。
【図2】装置Aの製造に用いる層構造A0を示す断面図である。
【図3】層構造A0の上層に領域4Aと領域4Bが形成されている層構造A1を示す断面図である。
【図4】ソース電極とドレイン電極が形成された層構造A2を示す断面図である。
【図5】従来のGaN系HEMT構造例を示す断面図である。
【符号の説明】
1 半絶縁性基板
2 バッファ層
3 第1のアンドープ材料から成る下層
4 第2のアンドープ材料から成る下層
4A 上層4におけるソース電極とドレイン電極の形成領域
4B 上層4における領域4A以外の領域
5 コンタクト層
6 2次元電子ガス層
7 保護膜

Claims (4)

  1. 全体がGaN系半導体材料で構成され、
    第1のアンドープ材料から成る下層と前記第1のアンドープ材料よりもバンドギャップエネルギーが大きい第2のアンドープ材料から成る上層との層構造が基板の上に形成され、
    前記上層の表面には、ゲート電極、ソース電極、およびドレイン電極が形成されているGaN系半導体装置であって、
    前記ソース電極と前記ドレイン電極の形成領域における前記上層の厚みが1〜15nmであり、他の領域における前記上層の厚みよりも薄くなっていることを特徴とするGaN系半導体装置。
  2. 前記ソース電極と前記ドレイン電極は400〜800℃で熱処理されたことを特徴とする請求項1のGaN系半導体装置。
  3. 前記第1のアンドープ材料がGaNであり、前記第2のアンドープ材料がAlGaNである請求項1または2に記載のGaN系半導体装置。
  4. 前記ソース電極と前記ゲート電極の間と、前記ドレイン電極と前記ゲート電極の間の少なくとも一方の領域において上層の厚みが、前記ゲート電極の形成領域における上層の厚みよりも薄い領域を有することを特徴とする請求項1〜3のいずれか1項に記載のGaN系半導体装置。
JP2001246113A 2001-08-14 2001-08-14 GaN系半導体装置 Expired - Lifetime JP4906023B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246113A JP4906023B2 (ja) 2001-08-14 2001-08-14 GaN系半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246113A JP4906023B2 (ja) 2001-08-14 2001-08-14 GaN系半導体装置

Publications (2)

Publication Number Publication Date
JP2003059946A JP2003059946A (ja) 2003-02-28
JP4906023B2 true JP4906023B2 (ja) 2012-03-28

Family

ID=19075738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246113A Expired - Lifetime JP4906023B2 (ja) 2001-08-14 2001-08-14 GaN系半導体装置

Country Status (1)

Country Link
JP (1) JP4906023B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057240A (ja) * 2003-07-23 2005-03-03 Seiko Epson Corp 薄膜半導体素子、及び薄膜半導体素子の製造方法
JP2005129696A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP4744109B2 (ja) 2004-07-20 2011-08-10 トヨタ自動車株式会社 半導体装置とその製造方法
JP4474292B2 (ja) 2005-01-28 2010-06-02 トヨタ自動車株式会社 半導体装置
JP2006295126A (ja) * 2005-03-15 2006-10-26 Sumitomo Electric Ind Ltd Iii族窒化物半導体素子およびエピタキシャル基板
JP5135686B2 (ja) 2005-03-23 2013-02-06 住友電気工業株式会社 Iii族窒化物半導体素子
JP4792814B2 (ja) * 2005-05-26 2011-10-12 住友電気工業株式会社 高電子移動度トランジスタ、電界効果トランジスタ、エピタキシャル基板、エピタキシャル基板を作製する方法およびiii族窒化物系トランジスタを作製する方法
JP4705412B2 (ja) 2005-06-06 2011-06-22 パナソニック株式会社 電界効果トランジスタ及びその製造方法
JP2007027224A (ja) * 2005-07-13 2007-02-01 Sony Corp 半導体装置および半導体装置の製造方法
JP4705481B2 (ja) * 2006-01-25 2011-06-22 パナソニック株式会社 窒化物半導体装置
CN103219375A (zh) * 2006-11-20 2013-07-24 松下电器产业株式会社 半导体装置
JP5207874B2 (ja) * 2008-08-08 2013-06-12 親夫 木村 半導体装置およびその製造方法
JP5707763B2 (ja) * 2010-07-26 2015-04-30 住友電気工業株式会社 半導体装置の製造方法
TWI420664B (zh) * 2010-07-27 2013-12-21 Univ Nat Chiao Tung 增強式高電子移動率電晶體及其製造方法
JP5747245B2 (ja) * 2010-10-14 2015-07-08 国立研究開発法人物質・材料研究機構 電界効果トランジスタ及びその製造方法
JP2011066464A (ja) * 2011-01-06 2011-03-31 Panasonic Corp 電界効果トランジスタ
JP6096523B2 (ja) * 2013-02-01 2017-03-15 トヨタ自動車株式会社 半導体装置とその製造方法
JP2013239735A (ja) * 2013-07-29 2013-11-28 Panasonic Corp 電界効果トランジスタ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294452A (ja) * 1997-04-22 1998-11-04 Sony Corp ヘテロ接合電界効果トランジスタ
US6316793B1 (en) * 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP2001102565A (ja) * 1999-09-28 2001-04-13 Toshiba Corp 半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP2003059946A (ja) 2003-02-28

Similar Documents

Publication Publication Date Title
JP4906023B2 (ja) GaN系半導体装置
JP5160225B2 (ja) 再成長オーミックコンタクト領域を有する窒化物ベースのトランジスタの製作方法及び再成長オーミックコンタクト領域を有する窒化物ベースのトランジスタ
US6982204B2 (en) Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
JP4022708B2 (ja) 半導体装置
JP5323527B2 (ja) GaN系電界効果トランジスタの製造方法
JP5183913B2 (ja) 半導体装置の製造方法
JP2007273545A (ja) 半導体装置及びその製造方法
JP2008124262A (ja) 選択再成長を用いたAlGaN/GaN−HEMTの製造方法
JP2014072397A (ja) 化合物半導体装置及びその製造方法
JP2003209124A (ja) 電界効果半導体素子の製造方法及び電界効果半導体素子
JP2000277724A (ja) 電界効果トランジスタとそれを備えた半導体装置及びその製造方法
JP5202897B2 (ja) 電界効果トランジスタおよびその製造方法
KR20080011647A (ko) Ⅲ-ⅴ족 질화물계 화합물 반도체장치 및 전극형성방법
JP5520432B2 (ja) 半導体トランジスタの製造方法
JP5685020B2 (ja) 半導体装置の製造方法
JP2005183733A (ja) 高電子移動度トランジスタ
JP2003100778A (ja) 半導体装置
JP2004165387A (ja) GaN系電界効果トランジスタ
JP4209136B2 (ja) 半導体装置及びその製造方法
JP5101143B2 (ja) 電界効果トランジスタ及びその製造方法
JP2006286698A (ja) 電子デバイス及び電力変換装置
JP2001102565A (ja) 半導体装置及びその製造方法
JP4330851B2 (ja) 半導体装置の製造方法
JP2006351762A (ja) 半導体装置及びその製造方法
JP2005203544A (ja) 窒化物半導体装置とその製造方法

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4906023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

EXPY Cancellation because of completion of term