JP4938178B2 - Hydrocarbon hydrotreating method - Google Patents

Hydrocarbon hydrotreating method Download PDF

Info

Publication number
JP4938178B2
JP4938178B2 JP2001084055A JP2001084055A JP4938178B2 JP 4938178 B2 JP4938178 B2 JP 4938178B2 JP 2001084055 A JP2001084055 A JP 2001084055A JP 2001084055 A JP2001084055 A JP 2001084055A JP 4938178 B2 JP4938178 B2 JP 4938178B2
Authority
JP
Japan
Prior art keywords
downstream
catalyst
hydrotreating
hydrocarbon
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001084055A
Other languages
Japanese (ja)
Other versions
JP2002045698A (en
Inventor
充 由田
明 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Japan Petroleum Energy Center JPEC filed Critical Idemitsu Kosan Co Ltd
Priority to JP2001084055A priority Critical patent/JP4938178B2/en
Publication of JP2002045698A publication Critical patent/JP2002045698A/en
Application granted granted Critical
Publication of JP4938178B2 publication Critical patent/JP4938178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は炭化水素の水素化処理方法に関し、より詳しくは、脱メタル触媒と二種類の脱硫触媒からなる水素化処理触媒を使用して炭化水素を水素化処理し、生成した分解軽油の硫黄分と窒素分を減少させる炭化水素の水素化処理方法に関する。
【0002】
【従来の技術】
近年、地球規模で環境破壊が極めて深刻な問題となっている。特に、石油類や石炭等の化石燃料の燃焼に伴って発生する硫黄酸化物(SOx )や窒素酸化物(NOx )が大気中に放出されると、これらが酸性雨や酸性霧となって森林や湖沼等の環境が著しく破壊される。
【0003】
石油類について言えば、原油の蒸留によって得られる各種の留分やその分解によって得られる分解油には、通常、数%の硫黄化合物と50〜800ppmの窒素化合物が含まれている。特に、ディーゼル機関からの排ガスによる大気汚染が深刻化しており、その燃料面からの対策として、軽油留分中の硫黄分及び窒素分の低減が強く要望されている。軽油留分には、直留軽油,分解軽油等があり、分解軽油中の硫黄分と窒素分の低減も重要な課題となっている。それは、炭化水素を水素化処理する場合、触媒の組み合わせの開発にかかっていると言ってよい。
【0004】
【発明が解決しようとする課題】
本発明は、上記観点からなされたもので、炭化水素を水素化処理して得られる分解軽油の硫黄分及び窒素分の低減可能な炭化水素の水素化処理方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、脱メタル金属触媒と特定の脱硫触媒からなる水素化処理触媒を使用することにより、上記本発明の目的を効果的に達成しうることを見出し本発明を完成させたものである。
【0006】
すなわち、本発明の要旨は下記のとおりである。
1.炭化水素の水素化処理において、
(1)上流側に脱メタル触媒、下流側の前段と後段に異なる二種類の脱硫触媒からなる水素化処理触媒を使用し、
(2)下流側後段の脱硫触媒が、担体として耐火性無機酸化物を含み、活性金属としてニッケルとモリブデンを含み、かつその他の成分としてリンを含み、
(3)下流側後段の脱硫触媒が、その調製過程において活性金属を担持する際、沸点又は分解温度が150℃以上の水溶性有機化合物を使用してなるものであり、
(4)下流側後段の脱硫触媒の平均細孔径が60〜150Åであることを特徴とする炭化水素の水素化処理方法。
2.さらに、(5)下流側前段の脱硫触媒が、その調製過程において活性金属を担持する際、沸点又は分解温度が150℃以上の水溶性有機化合物を使用してなるものである前記1記載の炭化水素の水素化処理方法。
3.下流側後段の脱硫触媒の平均細孔径が60〜135Åである前記1又は2に記載の炭化水素の水素化処理方法。
4.水溶性有機化合物がポリエチレングリコールである前記1〜3のいずれかに記載の炭化水素の水素化処理方法。
5.耐火性無機酸化物担体がボリア−アルミナである前記1〜4のいずれかに記載の炭化水素の水素化処理方法。
6.ボリア/アルミナ質量比が0.01〜0.08である前記5記載の炭化水素の水素化処理方法。
7.下流側後段の脱硫触媒の平均細孔径が下流側前段の脱硫触媒の平均細孔径よりも小さいものである前記1〜6のいずれかに記載の炭化水素の水素化処理方法。8.下流側後段の脱硫触媒が、触媒基準、酸化物換算で、ニッケル1〜6質量%、モリブデン10〜30質量%、リン1〜5質量%を含有するものである前記1〜7のいずれかに記載の炭化水素の水素化処理方法。
9.脱メタル触媒と二種の脱硫触媒の使用割合が、それぞれ20〜50容量%の範囲内である前記1〜8のいずれかに記載の炭化水素の水素化処理方法。
10.下流側後段の脱硫触媒における活性金属量が、下流側前段の脱硫触媒の活性金属量の1.2〜1.5倍である前記1〜9のいずれかに記載の炭化水素の水素化処理方法。
【0007】
【発明の実施の形態】
以下に本発明について詳細に説明する。
本発明の処理の対象となる炭化水素としては、減圧軽油,常圧残油,減圧残油,重質軽油、抜頭原油、脱蝋減圧残油,脱アスファルテン油,タールサンド油等を挙げることができ、また、これらは直留軽油を始めいろいろな軽油留分を含んでいてもよい。
炭化水素の性状は、特に限定されないが、代表的な性状としては下記のとおりである。
密度(15℃):0.9530〜0.9940g/cm3
動粘度(50℃):250〜3,000mm2 /s
硫黄分:2.5〜5.0質量%
窒素分:1,500〜4,200ppm
金属分(V,Ni):30〜250ppm
残炭分:5〜18質量%
アスファルテン分:0.5〜12.0質量%
【0008】
本発明の炭化水素の水素化処理は、以下の点を特徴とするものである。
(1)上流側に脱メタル触媒、下流側の前段と後段に異なる二種の脱硫触媒からなる水素化処理触媒を使用すること
(2)下流側後段の脱硫触媒が、担体として耐火性無機酸化物を含み、活性金属としてニッケルとモリブデンを含み、かつその他の成分としてリンを含むこと
(3)下流側後段の脱硫触媒が、その調製過程において活性金属を担持する際、沸点又は分解温度が150℃以上の水溶性有機化合物を使用しなるものであること
(4)下流側後段の脱硫触媒の平均細孔径が60〜150Åであること
さらに、本発明においては次の要件を満足することが好ましい。
(5)下流側前段の脱硫触媒が、その調製過程において活性金属を担持する際、沸点又は分解温度が150℃以上の水溶性有機化合物を使用してなるものであること
以下、上記(1)〜(5)について順次説明する。
【0009】
1)について
上流側の脱メタル触媒は、炭化水素中に含まれるバナジウム,ニッケル,鉄等のメタル分が下流側の脱硫触媒の活性点上に堆積し触媒を失活させるのを防ぐために設けるものである。その脱メタル触媒としては市販のものも含み従来使用されているいずれのものも使用可能である。一般に、脱メタル触媒はアルミナ含有担体に、周期律表第6族金属及び第8〜10族金属を担持したものが使用される。周期律表第6族の金属としては、モリブデン、タングステンなどを挙げることができるが、モリブデンが好ましい。第6族金属の担持量は、触媒基準で、酸化物基準で2〜15質量%、好ましくは4〜12質量%である。周期律表第8〜10族の金属として、コバルト、ニッケルなどを挙げることができるが、ニッケルが好ましい。第8〜10族金属の担持量は、触媒基準で、酸化物基準で1〜4質量%、好ましくは1.5〜2.5質量%である。担体としては、アルミナが望ましく、触媒の細孔径は100〜250Å(好ましくは150〜220Å)、比表面積は、80〜200m2 /g(好ましくは100〜180m2 /g)、細孔容量は0.4〜1.0cc/g(好ましくは0.5〜0.9cc/g)である。
【0010】
下流側の前段の脱硫触媒としては、通常炭化水素の脱硫に使用されるものをもちいることができ、好ましい脱硫触媒は、アルミナ含有担体に、触媒基準、酸化物換算で、モリブデン及び/又はタングステンを10〜20質量%、及びコバルト及び/又はニッケルを1〜6質量%の範囲で含有する触媒である。また、その細孔容量は0.4〜0.7cc/g、平均細孔径が130〜180Åの範囲のものが好ましい。
上記の上流側の脱メタル触媒と後述の下流側の二種類の脱硫触媒の使用割合は、それぞれを20〜50容量%の範囲内とするのが好ましい。また、下流側後段の脱硫触媒の平均細孔径が下流側前段の脱硫触媒の平均細孔径よりも小さい方が好ましい。その径の差は10〜70Åであることが好ましい。
【0011】
2),(3)について
下流側後段の脱硫触媒は、担体として耐火性無機酸化物を含み、活性金属としてニッケルとモリブデンを含み、及びその他の成分としてリンを含むものが好ましい。
上記耐火性無機酸化物としては、アルミナ,シリカ,マグネシア,ジルコニア,ボリア,カルシア,シリカ−アルミナ,ジルコニア−アルミナ,マグネシ−アルミナ,ボリア−アルミナ等を挙げることができ、これらは単独で、あるいは二種以上を組み合わせて用いることができる。中でもボリア−アルミナが好ましい。その場合、ボリア/アルミナ質量比は0.01〜0.08の範囲であるのが好ましい。この場合、ボリア−アルミナは、アルミナにボリア源を含浸して担持して製造されたものでもよい。
下流側後段の脱硫触媒は、触媒基準、酸化物換算で、ニッケルを1〜6質量%、モリブデンを10〜30質量%、リンを1〜5質量%の範囲で含有するものが好ましい。
【0012】
その製造方法については、例えば、前記の耐火性無機酸化物担体に、通常ニッケル化合物、モリブデン化合物及びリン化合物を含浸法で担持する方法が挙げられる。ニッケル化合物としては、硝酸ニッケル,炭酸ニッケル,硫酸ニッケル等が使用され、モリブデン化合物としては、三酸化モリブデン,パラモリブデン酸アンモニウム等が使用され、リン化合物としては、五酸化リン,リン酸等が使用される。ニッケル化合物、モリブデン化合物及びリン化合物は別々に含浸してもよいが同時に行うのが効率的である。具体的には、ニッケル化合物を0.3〜3.6モル/リットル、モリブデン化合物を0.7〜7.0モル/リットル、リン化合物を0.5〜2.2モル/リットルの割合で純水に溶解させるが、さらに本発明においては、沸点又は分解温度が150℃以上の水溶性有機化合物を50〜200g/リットルの割合で溶解させたものを含浸液とし、担体に吸水率と等量になるように調整後含浸させる。
【0013】
上記沸点又は分解温度が150℃以上の水溶性有機化合物としては、例えば、1,3−ブタンジオール、1,4−ブタンジオール、ブタントリオール、1,2−プロパンジオール、1,2−ペンタンジオール等のジオール類;5−メチル−1−ヘキサノール、イソアミルアルコール(3−メチル−1−ブタノール)、s−イソアミルアルコール(3−メチル−2−ブタノール)、イソウンデシレンアルコール、イソオクタノール、イソペンタノール、イソゲランオール、イソヘキシルアルコール、2,4−ジメチル−1−ペンタノール、2,4,4−トリメチル−1−ペンタノール等の炭素数4以上のイソ体のアルコール;2−ヘキサノール、3−ヘキサノール等の炭素数5以上で末端の炭素以外にヒドロキシル基が結合しているアルコール;ポリエチレングリコール、トリエチレングリコール,ジエチレングリコール,ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のエーテル基含有水溶性高分子;ポリビニルアルコール等の水溶性高分子;サッカロース、グルコース等の各種糖類;メチルセルロース、水溶性でんぷん等の水溶性多糖類もしくしはその誘導体などを挙げることができ、これらは単独でも二種類以上を混合して使用することもできる。この水溶性有機化合物を使用することにより、金属の担体での凝集を抑制することができる。
【0014】
なお、沸点又は分解温度が150℃以上の水溶性有機化合物の担体への担持は、活性金属を担持する際に行うこともできるが、活性金属を担持する前後に行ってもよい。
また、含浸液のpHは特に限定されないが、硝酸,塩酸,硫酸等の無機酸、リンゴ酸,エチレンジアミン4酢酸等の有機酸、アンモニアなどを使用して適宜調整することができる。含浸後乾燥、焼成を行うが、乾燥温度については、好ましくは80〜200℃(より好ましくは100〜150℃)、焼成温度については、好ましくは300〜600℃(より好ましくは400〜550℃)である。焼成温度が低すぎると、担持成分と担体と十分な結合を持つことができない場合があり、高すぎると、担持成分の凝集が起こり易くなる場合がある。
【0015】
4)について
下流側後段の脱硫触媒の平均粒径は60〜150Å、好ましくは60〜135Åである。上記粒径がこの範囲を逸脱すると脱硫活性の低下がみられる。
なお、本願における触媒の平均細孔径、細孔容量はBJH法における脱離等温線による細孔分布より求めることができる。
5)について
本発明においては、下流側前段の脱硫触媒の調製過程においても、活性金属を担持する際、後段の触媒と同様、沸点又は分解温度が150℃以上の上記水溶性有機化合物を使用することが好ましい。
【0016】
水素化処理条件については、原料油の種類や目的により適宜設定することができるが、一般には、反応温度300〜450℃(好ましくは330〜410℃)、水素分圧10〜20MPa(好ましくは11〜17MPa)の範囲で行われる。
また、反応形式は特に限定されないが、通常は、固定床,移動床,沸騰床,懸濁床等の種々のプロセスから選択でき、固定床が好ましい。また、原料油の流通法については、ダウンフロー、アップフローの両形式をいずれも採用することができる。
固定床の場合、液空間速度(LHSV)は通常0.05〜5hr-1(好ましくは0.1〜2hr-1)、水素/オイル比は通常100〜2,000Nm3 /kl(好ましくは600〜1,000Nm3 /kl)である。
【0017】
本発明の水素化処理方法においては、上記水素化処理により得られた分解軽油の軽質留分を用いることにより、更に硫黄分の低減した分解軽油を得ることができる。すなわち、このような低硫黄含量分解軽油を得るには、特に、上記本発明の触媒系において、更に、下流側後段の脱硫触媒における活性金属量(ニッケル及びモリブデン量)を、上流側の脱硫触媒の活性金属量の1.2〜1.5倍量とすることが好ましい。また、上記水素化処理後に、蒸留を行いその軽質分を分留することにより、更にその硫黄分を低減した分解軽油を得ることができる。
具体的には、以下の2つの方法により行うことができる。
【0018】
(1)下流側後段の脱硫触媒における活性金属量を、下流側前段の脱硫触媒の活性金属量の1.2〜1.5倍量として水素化処理して得られた分解軽油について、蒸留によりその90%留出温度が370℃以下である留分を得ることにより低イオウ分解軽油を得ることができる。この場合の水素化処理条件は、例えば、水素分圧が13〜20MPa、LHSVが0.05〜0.30hr-1、反応温度360〜450℃で行うことが好ましい。
得られた分解軽油の性状は、硫黄分が300重量ppm以下、窒素分含量が250重量ppm以下、更に好ましくは、200重量ppm以下である。この窒素分含量は、例えば、後述の分解軽油の直留軽油に対する混合割合が15容量%である場合の窒素分量が、混合軽油(直留軽油+分解軽油)の窒素分/直留軽油中の窒素分で1.2(重量比)以下となるように水素化処理により調整することが好ましい。
この分解軽油は、更にこれを軽油脱硫装置を用いて処理して、硫黄分50重量ppm以下の深度脱硫軽油を得るための原料油として優れたものである。すなわち、上記得られた分解軽油は、直留軽油と混合して、軽油脱硫装置で処理する。この場合の分解軽油の直留軽油への混合量としては、特に制限はないが、色相等の点から、5〜20容量%であることが好ましい。このような方法により、硫黄分50重量ppm以下の深度脱硫分解軽油を得ることができる。
【0019】
(2)下流側後段の脱硫触媒における活性金属量を、下流側前段の脱硫触媒の活性金属量の1.2〜1.5倍量として水素化処理して得られた分解軽油について、蒸留によりその90%留出温度が350℃以下である留分を得ることにより硫黄分50重量ppm以下の脱硫分解軽油を得ることができる。この場合、その水素化処理条件としては、水素分圧が13〜20MPa、LHSVが0.05〜0.20hr-1、反応温度380〜450℃で行うことが好ましい。
得られた分解軽油の性状は、硫黄分が50重量ppm以下、窒素分含量が60重量ppm以下である。
【0020】
水素化処理触媒を用いて水素化処理を行う際には、予め安定化処理として予備硫化を行うことが望ましい。この予備硫化処理の条件は特に限定されないが、通常、予備硫化剤として、硫化水素,二硫化炭素,チオフェン,ジメチルジスルフィド等挙げることができ、それらの予備硫化剤を直留軽油等に混合した油を水素とともに通油して行われる。処理温度は、例えば、200〜400℃、処理圧力は常圧〜30MPaの範囲である。
炭化水素の水素化処理に使用される触媒の形状については、特に限定はないが、通常押出成形で製造されるものが多く、その形状は実質的に柱状をしている。その断面は円形のものが多いが、三葉型、四葉型など外表面を多くする工夫のあるものも使用できる。また、球状触媒も用いることができ、特に圧縮強度や耐磨耗性が要求される場合に使用される。
本発明の炭化水素の水素化処理方法を実施すると、生成油としてナフサ,分解軽油,脱硫重油を得ることができ、その分解軽油は硫黄分,窒素分が低減されたものであり、特に、上述の方法により著しく低イオウ分の分解軽油を得ることができる。
【0021】
【実施例】
次に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によりなんら制限されるものではない。
〔触媒製造例1〕
平均細孔径81Åのボリア−アルミナ担体1kgに、三酸化モリブデン157g、炭酸ニッケル61g、正リン酸80g、ポリエチレングリコール(分子量400)100gを含む水溶液930ccを含浸させた後、120℃で乾燥させ、次いで550℃で3時間焼成して触媒Aを得た。その触媒組成と物性を第1表に示す。
【0022】
〔触媒製造例2〕
平均細孔径140Åのボリア−アルミナ担体1kgに、三酸化モリブデン157g、炭酸ニッケル61g、正リン酸80g、ポリエチレングリコール(分子量400)100gを含む水溶液930ccを含浸させた後、120℃で乾燥させ、次いで550℃で3時間焼成して触媒Bを得た。その触媒組成と物性を第1表に示す。
【0023】
〔触媒製造例3〕
平均細孔径152Åのアルミナ担体1kgに、三酸化モリブデン157g、炭酸ニッケル61g、リンゴ酸80gを含む水溶液930ccを含浸させた後、120℃で乾燥させ、次いで550℃で3時間焼成して触媒Cを得た。その触媒組成と物性を第1表に示す。
〔触媒製造例4〕
平均細孔径133Åのアルミナ担体1kgに、三酸化モリブデン157g、炭酸ニッケル61g、リンゴ酸80gを含む水溶液930ccを含浸させた後、120℃で乾燥させ、次いで550℃で3時間焼成して触媒Dを得た。その触媒組成と物性を第1表に示す。
【0024】
〔触媒製造例5〕
平均細孔径120Åのアルミナ担体1kgに、三酸化モリブデン157g、炭酸ニッケル61g、リンゴ酸80gを含む水溶液930ccを含浸させた後、120℃で乾燥させ、次いで550℃で3時間焼成して触媒Eを得た。その触媒組成と物性を第1表に示す。
〔触媒製造例6〕
平均細孔径84Åのアルミナ担体1kgに、三酸化モリブデン157g、炭酸ニッケル61g、リンゴ酸80gを含む水溶液930ccを含浸させた後、120℃で乾燥させ、次いで550℃で3時間焼成して触媒Fを得た。その触媒組成と物性を第1表に示す。
【0025】
〔触媒製造例7〕
平均細孔径152Åのアルミナ担体1kgに、三酸化モリブデン157g、炭酸ニッケル61g、正リン酸40g、ポリエチレングリコール(分子量:400)100gを含む水溶液930ccを含浸させた後、120℃で乾燥させ、次いで550℃で3時間焼成して触媒Gを得た。その触媒組成と物性を第1表に示す。
〔触媒製造例8〕
平均細孔径152Åのアルミナ担体1kgに、三酸化モリブデン157g、炭酸ニッケル61g、リンゴ酸80g、ポリエチレングリコール(分子量:400)100gを含む水溶液930ccを含浸させた後、120℃で乾燥させ、次いで550℃で3時間焼成して触媒Hを得た。その触媒組成と物性を第1表に示す。
【0026】
〔触媒製造例9〕
平均細孔径110Åのボリア−アルミナ担体1kgに、三酸化モリブデン188g、炭酸ニッケル73g、正リン酸48g、ポリエチレングリコール(分子量:400)100gを含む水溶液930ccを含浸させた後、120℃で乾燥させ、次いで550℃で3時間焼成して触媒Iを得た。その触媒組成と物性を第1表に示す。
【0027】
【表1】

Figure 0004938178
【0028】
【表2】
Figure 0004938178
【0029】
〔実施例1〜5,比較例1〜4〕
固定床流通反応装置の反応管の上流側に市販のアルミナ系脱メタル触媒を108cc(36容量%)、下流側前段に第2表記載の脱硫触媒を102cc(34容量%)、下流側後段に第2表記載の脱硫触媒を90cc(30容量%)充填した。原料油はダウンフロー形式で流通させて反応性を評価した。前処理として、中東系軽質軽油(LGO,硫黄分1.18質量%、窒素分70ppm)にジメチルジスルフィドを添加して硫黄濃度を2.5質量%に調整した予備硫化油を調製した。この予備硫化油を、上記の触媒に、水素ガスとともに290℃で20時間流通させて予備硫化した。また、原料油としては中東系原油の常圧残油を用いた。その性状を第3表に示す。
【0030】
【表3】
Figure 0004938178
【0031】
【表4】
Figure 0004938178
【0032】
この原料油を、上記の予備硫化後の触媒に、水素ガスとともに流通させて、以下の条件で水素化処理を行った。結果を第4表に示す。
水素化処理条件
反応温度:370℃
水素分圧:13MPa
液空間速度(LHSV):0.25hr-1
水素/オイル比:800Nm3 /kl
【0033】
【表5】
Figure 0004938178
【0034】
【表6】
Figure 0004938178
【0035】
〔実施例6〕
実施例1において、原料油として密度0.9860g/cc、硫黄分4.6重量%、窒素分2290ppmの中東系重質常圧残油を用い、下流側前段脱硫触媒として触媒Gを用い、下流側後段脱硫触媒として触媒Iを用い、下記の条件で水素化処理を行った以外は実施例1と同様にして水素化処理を行った後、更に蒸留を行い、90%留出温度が370℃以下である留分についてその性状を調べた結果、硫黄分が270重量ppm,窒素分が90重量ppmであった。
水素化処理条件
反応温度:370℃
水素分圧:13MPa
液空間速度(LHSV):0.18hr-1
水素/オイル比:800Nm3 /kl
【0036】
〔実施例7〕
実施例1において、原料油として密度0.9573g/cc、硫黄分2.7重量%、窒素分1640ppmの中東系重質常圧残油を用い、下流側前段脱硫触媒として触媒Gを用い、下流側後段脱硫触媒として触媒Iを用い、下記の条件で水素化処理を行った以外は実施例1と同様にして水素化処理を行った後、更に蒸留を行い、90%留出温度が370℃以下の留分についてその性状を調べた結果、硫黄分が230重量ppm,窒素分が90重量ppmであった。
水素化処理条件
反応温度:370℃
水素分圧:13MPa
液空間速度(LHSV):0.25hr-1
水素/オイル比:800Nm3 /kl
次に、上記得られた分解軽油15容量%と直留軽油85容量%を混合し、軽油脱硫装置を用いて下記条件で脱硫処理を行った。得られた脱硫軽油のイオウ分は46重量%であった。
脱硫処理条件
反応温度: 360℃
水素分圧: 5MPa
LHSV: 2.0hr-1
2 /oil: 250Nm3 /kl
【0037】
〔実施例8〕
実施例1において、原料油として密度0.986g/cc、硫黄分4.6重量%、窒素分2290ppmの中東系重質常圧残油を用い、下流側前段脱硫触媒として触媒Gを用い、下流側後段脱硫触媒として触媒Iを用い、下記の条件で水素化処理を行った以外は実施例1と同様にして水素化処理を行った後、更に蒸留を行い、90%留出温度が350℃以下の留分についてその性状を調べた結果、硫黄分が48重量ppmであった。
水素化処理条件
反応温度:385℃
水素分圧:13MPa
液空間速度(LHSV):0.18hr-1
水素/オイル比:800Nm3 /kl
【0038】
【発明の効果】
本発明によれば、炭化水素を水素化処理して得られる分解軽油の硫黄分及び窒素分の低減可能な炭化水素の水素化処理方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hydrocarbon hydrotreating method, and more specifically, hydrotreating hydrocarbons using a hydrotreating catalyst comprising a demetallation catalyst and two types of desulfurization catalysts, and the sulfur content of the produced cracked light oil. And a hydrocarbon hydroprocessing method for reducing nitrogen content.
[0002]
[Prior art]
In recent years, environmental destruction has become a very serious problem on a global scale. In particular, when sulfur oxides (SO x ) and nitrogen oxides (NO x ) generated from the combustion of fossil fuels such as petroleum and coal are released into the atmosphere, they become acid rain and acid fog. The environment such as forests and lakes will be significantly destroyed.
[0003]
As for petroleum, various fractions obtained by distillation of crude oil and cracked oil obtained by decomposition thereof usually contain several percent of a sulfur compound and 50 to 800 ppm of a nitrogen compound. In particular, air pollution due to exhaust gas from diesel engines has become serious, and as a countermeasure from the fuel side, there is a strong demand for reduction of sulfur and nitrogen in light oil fractions. Light oil fractions include straight-run light oil and cracked light oil, and reduction of sulfur and nitrogen content in cracked light oil is also an important issue. It can be said that it depends on the development of a catalyst combination when hydrotreating hydrocarbons.
[0004]
[Problems to be solved by the invention]
The present invention has been made from the above viewpoint, and an object thereof is to provide a hydrocarbon hydrotreating method capable of reducing the sulfur content and nitrogen content of cracked gas oil obtained by hydrotreating hydrocarbons. It is.
[0005]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have found that the object of the present invention can be effectively achieved by using a hydrotreating catalyst comprising a demetallized metal catalyst and a specific desulfurization catalyst, thereby completing the present invention. It has been made.
[0006]
That is, the gist of the present invention is as follows.
1. In hydrocarbon hydroprocessing,
(1) Use a hydrotreating catalyst consisting of two types of desulfurization catalysts at the upstream side and two different types of desulfurization catalysts at the downstream side and the downstream side,
(2) The downstream downstream desulfurization catalyst contains a refractory inorganic oxide as a carrier, nickel and molybdenum as active metals, and phosphorus as other components,
(3) When the downstream desulfurization catalyst supports an active metal in the preparation process, a water-soluble organic compound having a boiling point or decomposition temperature of 150 ° C. or higher is used.
(4) A hydrocarbon hydrotreating method, wherein the downstream desulfurization catalyst has an average pore diameter of 60 to 150 mm.
2. (5) The carbonization according to 1 above, wherein the desulfurization catalyst in the upstream downstream stage uses a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C. or higher when supporting an active metal in the preparation process. Hydrogen hydrotreating method.
3. 3. The hydrocarbon hydrotreating method according to 1 or 2, wherein the downstream desulfurization catalyst has an average pore diameter of 60 to 135 mm.
4). 4. The hydrocarbon hydrotreating method according to any one of 1 to 3, wherein the water-soluble organic compound is polyethylene glycol.
5). 5. The hydrocarbon hydrotreating method according to any one of 1 to 4, wherein the refractory inorganic oxide support is boria-alumina.
6). 6. The hydrocarbon hydrotreating method according to 5 above, wherein the boria / alumina mass ratio is 0.01 to 0.08.
7). 7. The hydrocarbon hydrotreating method according to any one of 1 to 6, wherein the downstream pore downstream desulfurization catalyst has an average pore diameter smaller than that of the downstream upstream upstream desulfurization catalyst. 8). The downstream desulfurization catalyst contains 1 to 6% by mass of nickel, 10 to 30% by mass of molybdenum, and 1 to 5% by mass of phosphorus in terms of catalyst and oxide. The hydrocarbon hydroprocessing method as described.
9. 9. The hydrocarbon hydrotreating method according to any one of 1 to 8, wherein the demetalization catalyst and the two kinds of desulfurization catalysts are used in a range of 20 to 50% by volume, respectively.
10. 10. The hydrocarbon hydrotreating method according to any one of 1 to 9, wherein the amount of active metal in the downstream downstream desulfurization catalyst is 1.2 to 1.5 times the amount of active metal in the downstream upstream downstream desulfurization catalyst. .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
Examples of the hydrocarbons subject to the treatment of the present invention include vacuum gas oil, atmospheric residue, vacuum residue, heavy gas oil, precipitated crude oil, dewaxed vacuum residue, deasphalted oil, tar sand oil, and the like. They can also contain various diesel oil fractions, including straight run diesel oil.
The properties of the hydrocarbon are not particularly limited, but typical properties are as follows.
Density (15 ° C.): 0.9530 to 0.9940 g / cm 3
Kinematic viscosity (50 ° C.): 250 to 3,000 mm 2 / s
Sulfur content: 2.5-5.0 mass%
Nitrogen content: 1,500-4,200 ppm
Metal content (V, Ni): 30-250 ppm
Residual carbon content: 5 to 18% by mass
Asphaltene content: 0.5-12.0% by mass
[0008]
The hydrocarbon hydrotreatment of the present invention is characterized by the following points.
(1) Use a hydrotreating catalyst consisting of a demetallization catalyst on the upstream side and two different types of desulfurization catalysts on the downstream side and the downstream side. (2) The downstream side downstream desulfurization catalyst serves as a refractory inorganic oxide as a carrier. (3) When the downstream desulfurization catalyst supports the active metal in the preparation process, the boiling point or decomposition temperature is 150. (4) The average pore diameter of the downstream desulfurization catalyst is 60 to 150 mm, and the present invention preferably satisfies the following requirements: .
(5) When the desulfurization catalyst in the downstream upstream stage carries an active metal in the preparation process, it is formed using a water-soluble organic compound having a boiling point or decomposition temperature of 150 ° C. or higher. To (5) will be described sequentially.
[0009]
About ( 1) The upstream demetallation catalyst is such that vanadium, nickel, iron, and other metals contained in the hydrocarbon are deposited on the active site of the downstream desulfurization catalyst to deactivate the catalyst. It is provided to prevent this. As the demetallation catalyst, any conventionally used catalyst including commercially available catalysts can be used. Generally, a demetallization catalyst is used in which an alumina-containing support is loaded with a Group 6 metal and a Group 8 to 10 metal on the periodic table. Examples of the metal of Group 6 of the periodic table include molybdenum and tungsten, but molybdenum is preferable. The amount of the Group 6 metal supported is 2 to 15% by mass, preferably 4 to 12% by mass based on the oxide, based on the catalyst. Examples of metals in Groups 8 to 10 of the periodic table include cobalt and nickel, with nickel being preferred. The supported amount of the Group 8-10 metal is 1 to 4% by mass, preferably 1.5 to 2.5% by mass based on the oxide, based on the catalyst. As the support, alumina is desirable, the catalyst has a pore diameter of 100 to 250 mm (preferably 150 to 220 mm), a specific surface area of 80 to 200 m 2 / g (preferably 100 to 180 m 2 / g), and a pore volume of 0. .4 to 1.0 cc / g (preferably 0.5 to 0.9 cc / g).
[0010]
The downstream desulfurization catalyst can be the one usually used for hydrocarbon desulfurization, and the preferred desulfurization catalyst is an alumina-containing support, molybdenum and / or tungsten in terms of catalyst and oxide. 10 to 20% by mass, and cobalt and / or nickel in the range of 1 to 6% by mass. The pore volume is preferably 0.4 to 0.7 cc / g and the average pore diameter is in the range of 130 to 180 mm.
It is preferable that the use ratio of the above-mentioned upstream demetallization catalyst and two downstream desulfurization catalysts described later be in the range of 20 to 50% by volume. Further, it is preferable that the average pore diameter of the downstream desulfurization catalyst is smaller than the average pore diameter of the downstream upstream desulfurization catalyst. The difference in diameter is preferably 10 to 70 mm.
[0011]
About ( 2) and (3) The downstream desulfurization catalyst preferably includes a refractory inorganic oxide as a carrier, nickel and molybdenum as active metals, and phosphorus as other components. .
Examples of the refractory inorganic oxide include alumina, silica, magnesia, zirconia, boria, calcia, silica-alumina, zirconia-alumina, magnesi-alumina, and boria-alumina. A combination of more than one species can be used. Of these, boria-alumina is preferable. In that case, the mass ratio of boria / alumina is preferably in the range of 0.01 to 0.08. In this case, the boria-alumina may be manufactured by impregnating and supporting alumina with a boria source.
The downstream downstream desulfurization catalyst preferably contains 1 to 6 mass% of nickel, 10 to 30 mass% of molybdenum, and 1 to 5 mass% of phosphorus in terms of oxide.
[0012]
As for the production method, for example, a method in which a nickel compound, a molybdenum compound and a phosphorus compound are usually supported on the refractory inorganic oxide support by an impregnation method. Nickel compounds such as nickel nitrate, nickel carbonate, and nickel sulfate are used. Molybdenum compounds include molybdenum trioxide and ammonium paramolybdate. Phosphorus compounds such as phosphorus pentoxide and phosphoric acid are used. Is done. The nickel compound, the molybdenum compound and the phosphorus compound may be impregnated separately, but it is efficient to carry out at the same time. Specifically, the nickel compound is pure at a rate of 0.3 to 3.6 mol / liter, the molybdenum compound is 0.7 to 7.0 mol / liter, and the phosphorus compound is pure at a rate of 0.5 to 2.2 mol / liter. Although it is dissolved in water, in the present invention, a water-soluble organic compound having a boiling point or decomposition temperature of 150 ° C. or higher is dissolved at a rate of 50 to 200 g / liter as an impregnating liquid, and the carrier has an equivalent amount of water absorption. After adjustment, impregnation is performed.
[0013]
Examples of the water-soluble organic compound having a boiling point or decomposition temperature of 150 ° C. or higher include 1,3-butanediol, 1,4-butanediol, butanetriol, 1,2-propanediol, 1,2-pentanediol, and the like. Diols: 5-methyl-1-hexanol, isoamyl alcohol (3-methyl-1-butanol), s-isoamyl alcohol (3-methyl-2-butanol), isoundecylene alcohol, isooctanol, isopentanol, iso Isomeric alcohols having 4 or more carbon atoms such as gellanol, isohexyl alcohol, 2,4-dimethyl-1-pentanol, 2,4,4-trimethyl-1-pentanol; 2-hexanol, 3-hexanol, etc. Alcohol with 5 or more carbon atoms and a hydroxyl group other than the terminal carbon Ether group-containing water-soluble polymers such as polyethylene glycol, triethylene glycol, diethylene glycol, polyoxyethylene phenyl ether, polyoxyethylene octyl phenyl ether; water-soluble polymers such as polyvinyl alcohol; various sugars such as saccharose and glucose; methylcellulose, Water-soluble polysaccharides such as water-soluble starch or derivatives thereof can be mentioned, and these can be used alone or in admixture of two or more. By using this water-soluble organic compound, aggregation on a metal carrier can be suppressed.
[0014]
The supporting of the water-soluble organic compound having a boiling point or decomposition temperature of 150 ° C. or higher can be performed when the active metal is supported, but may be performed before or after the active metal is supported.
The pH of the impregnating solution is not particularly limited, but can be appropriately adjusted using an inorganic acid such as nitric acid, hydrochloric acid or sulfuric acid, an organic acid such as malic acid or ethylenediaminetetraacetic acid, ammonia or the like. After the impregnation, drying and firing are performed. The drying temperature is preferably 80 to 200 ° C. (more preferably 100 to 150 ° C.), and the firing temperature is preferably 300 to 600 ° C. (more preferably 400 to 550 ° C.). It is. If the calcination temperature is too low, the supported component and the carrier may not be sufficiently bonded. If it is too high, the supported component may easily aggregate.
[0015]
About ( 4) The average particle diameter of the downstream desulfurization catalyst is 60 to 150 mm, preferably 60 to 135 mm. When the particle size deviates from this range, the desulfurization activity is reduced.
In addition, the average pore diameter and pore volume of the catalyst in the present application can be obtained from the pore distribution by the desorption isotherm in the BJH method.
Regarding ( 5) In the present invention, in the preparation process of the downstream upstream desulfurization catalyst, when the active metal is supported, the water-soluble property having a boiling point or decomposition temperature of 150 ° C or higher is the same as the downstream catalyst. Preference is given to using organic compounds.
[0016]
The hydrotreating conditions can be appropriately set depending on the type and purpose of the raw material oil. In general, the reaction temperature is 300 to 450 ° C. (preferably 330 to 410 ° C.), and the hydrogen partial pressure is 10 to 20 MPa (preferably 11). ˜17 MPa).
In addition, the reaction mode is not particularly limited, but usually, it can be selected from various processes such as a fixed bed, a moving bed, a boiling bed, and a suspension bed, and a fixed bed is preferable. Moreover, about the distribution | circulation method of raw material oil, both a down flow and an up flow form can be employ | adopted.
In the case of a fixed bed, the liquid hourly space velocity (LHSV) is usually 0.05 to 5 hr −1 (preferably 0.1 to 2 hr −1 ), and the hydrogen / oil ratio is usually 100 to 2,000 Nm 3 / kl (preferably 600). ˜1,000 Nm 3 / kl).
[0017]
In the hydrotreating method of the present invention, a cracked gas oil with a further reduced sulfur content can be obtained by using the light fraction of the cracked gas oil obtained by the hydrotreating process. That is, in order to obtain such a low sulfur content cracked light oil, particularly in the catalyst system of the present invention, the amount of active metal (nickel and molybdenum amount) in the downstream desulfurization catalyst is further changed to the upstream desulfurization catalyst. The amount of active metal is preferably 1.2 to 1.5 times the amount. In addition, after the hydrogenation treatment, by performing distillation and fractionating the light component, it is possible to obtain a cracked light oil in which the sulfur component is further reduced.
Specifically, it can be performed by the following two methods.
[0018]
(1) About the cracked gas oil obtained by hydrotreating the amount of active metal in the downstream desulfurization catalyst at 1.2 to 1.5 times the amount of active metal in the downstream upstream desulfurization catalyst, by distillation By obtaining a fraction having a 90% distillation temperature of 370 ° C. or lower, a low-sulfur cracked light oil can be obtained. The hydrotreating conditions in this case are preferably performed, for example, at a hydrogen partial pressure of 13 to 20 MPa, LHSV of 0.05 to 0.30 hr −1 , and a reaction temperature of 360 to 450 ° C.
The properties of the obtained cracked light oil have a sulfur content of 300 ppm by weight or less, a nitrogen content of 250 ppm by weight or less, and more preferably 200 ppm by weight or less. This nitrogen content is, for example, the amount of nitrogen when the mixing ratio of cracked light oil to straight-run gas oil, which will be described later, is 15% by volume, the nitrogen content of mixed light oil (straight-run gas oil + cracked gas oil) / straight-run gas oil It is preferable to adjust by hydrogenation so that the nitrogen content is 1.2 (weight ratio) or less.
This cracked light oil is excellent as a raw material oil for further processing by using a light oil desulfurizer to obtain a deep desulfurized light oil having a sulfur content of 50 ppm by weight or less. That is, the obtained cracked light oil is mixed with straight-run light oil and treated with a light oil desulfurization apparatus. In this case, the mixing amount of the cracked gas oil to the straight-run gas oil is not particularly limited, but is preferably 5 to 20% by volume from the viewpoint of hue and the like. By such a method, a deep desulfurization cracked light oil having a sulfur content of 50 ppm by weight or less can be obtained.
[0019]
(2) About the cracked light oil obtained by hydrotreating the amount of active metal in the downstream desulfurization catalyst at 1.2 to 1.5 times the amount of active metal in the downstream upstream desulfurization catalyst, By obtaining a fraction having a 90% distillation temperature of 350 ° C. or less, a desulfurized cracked light oil having a sulfur content of 50 ppm by weight or less can be obtained. In this case, it is preferable to carry out the hydrotreating conditions at a hydrogen partial pressure of 13 to 20 MPa, an LHSV of 0.05 to 0.20 hr −1 , and a reaction temperature of 380 to 450 ° C.
The properties of the obtained cracked light oil have a sulfur content of 50 ppm by weight or less and a nitrogen content of 60 ppm by weight or less.
[0020]
When hydrotreating using a hydrotreating catalyst, it is desirable to perform preliminary sulfidation as a stabilizing treatment in advance. The conditions for the preliminary sulfidation treatment are not particularly limited, but normally, as the preliminary sulfidizing agent, hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide and the like can be mentioned, and oil obtained by mixing these preliminary sulfidizing agents with straight-run gas oil, etc. Is conducted with hydrogen. The processing temperature is, for example, 200 to 400 ° C., and the processing pressure is in the range of normal pressure to 30 MPa.
The shape of the catalyst used for the hydrotreating of hydrocarbons is not particularly limited, but is usually produced by extrusion molding, and the shape is substantially columnar. The cross section is often circular, but those with a device for increasing the outer surface such as a trilobal type and a quadrilobal type can also be used. Spherical catalysts can also be used, particularly when compressive strength and wear resistance are required.
When the hydrocarbon hydrotreating method of the present invention is carried out, naphtha, cracked gas oil, and desulfurized heavy oil can be obtained as product oil, and the cracked gas oil has reduced sulfur and nitrogen contents. By this method, it is possible to obtain a decomposed light oil having a significantly low sulfur content.
[0021]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited at all by these Examples.
[Catalyst Production Example 1]
After impregnating 1 kg of boria-alumina carrier having an average pore diameter of 81 mm with 930 cc of an aqueous solution containing 157 g of molybdenum trioxide, 61 g of nickel carbonate, 80 g of normal phosphoric acid, and 100 g of polyethylene glycol (molecular weight 400), it was dried at 120 ° C. The catalyst A was obtained by calcination at 550 ° C. for 3 hours. The catalyst composition and physical properties are shown in Table 1.
[0022]
[Catalyst Production Example 2]
After impregnating 1 kg of boria-alumina carrier having an average pore diameter of 140 mm with 930 cc of an aqueous solution containing 157 g of molybdenum trioxide, 61 g of nickel carbonate, 80 g of normal phosphoric acid, and 100 g of polyethylene glycol (molecular weight 400), it was dried at 120 ° C. The catalyst B was obtained by calcination at 550 ° C. for 3 hours. The catalyst composition and physical properties are shown in Table 1.
[0023]
[Catalyst Production Example 3]
After impregnating 1 kg of an alumina carrier having an average pore diameter of 152 mm with 930 cc of an aqueous solution containing 157 g of molybdenum trioxide, 61 g of nickel carbonate, and 80 g of malic acid, drying at 120 ° C., followed by calcination at 550 ° C. for 3 hours to produce catalyst C Obtained. The catalyst composition and physical properties are shown in Table 1.
[Catalyst Production Example 4]
After impregnating 1 kg of an alumina carrier having an average pore size of 133 mm with 930 cc of an aqueous solution containing 157 g of molybdenum trioxide, 61 g of nickel carbonate, and 80 g of malic acid, drying at 120 ° C., followed by calcination at 550 ° C. for 3 hours to form Catalyst D Obtained. The catalyst composition and physical properties are shown in Table 1.
[0024]
[Catalyst Production Example 5]
After impregnating 1 kg of an alumina carrier having an average pore size of 120 mm with 930 cc of an aqueous solution containing 157 g of molybdenum trioxide, 61 g of nickel carbonate, and 80 g of malic acid, drying at 120 ° C., followed by calcination at 550 ° C. for 3 hours to give catalyst E Obtained. The catalyst composition and physical properties are shown in Table 1.
[Catalyst Production Example 6]
After impregnating 1 kg of an alumina support having an average pore diameter of 84 mm with 930 cc of an aqueous solution containing 157 g of molybdenum trioxide, 61 g of nickel carbonate, and 80 g of malic acid, drying at 120 ° C., followed by calcination at 550 ° C. for 3 hours to produce catalyst F Obtained. The catalyst composition and physical properties are shown in Table 1.
[0025]
[Catalyst Production Example 7]
After impregnating 1 kg of an alumina carrier having an average pore diameter of 152 mm with 930 cc of an aqueous solution containing 157 g of molybdenum trioxide, 61 g of nickel carbonate, 40 g of orthophosphoric acid, and 100 g of polyethylene glycol (molecular weight: 400), it was dried at 120 ° C. and then 550 The catalyst G was obtained by calcining at 0 ° C. for 3 hours. The catalyst composition and physical properties are shown in Table 1.
[Catalyst Production Example 8]
After impregnating 1 kg of an alumina carrier having an average pore diameter of 152 mm with 930 cc of an aqueous solution containing 157 g of molybdenum trioxide, 61 g of nickel carbonate, 80 g of malic acid, and 100 g of polyethylene glycol (molecular weight: 400), it was dried at 120 ° C. and then 550 ° C. And calcined for 3 hours to obtain catalyst H. The catalyst composition and physical properties are shown in Table 1.
[0026]
[Catalyst Production Example 9]
After impregnating 1 kg of a boria-alumina carrier having an average pore diameter of 110 mm with 930 cc of an aqueous solution containing 188 g of molybdenum trioxide, 73 g of nickel carbonate, 48 g of normal phosphoric acid, and 100 g of polyethylene glycol (molecular weight: 400), it was dried at 120 ° C. Subsequently, the catalyst I was obtained by calcination at 550 ° C. for 3 hours. The catalyst composition and physical properties are shown in Table 1.
[0027]
[Table 1]
Figure 0004938178
[0028]
[Table 2]
Figure 0004938178
[0029]
[Examples 1 to 5, Comparative Examples 1 to 4]
108 cc (36% by volume) of a commercially available alumina-based demetallized catalyst on the upstream side of the reaction tube of the fixed bed flow reactor, 102 cc (34% by volume) of the desulfurization catalyst listed in Table 2 on the downstream upstream side, and downstream on the downstream side 90 cc (30% by volume) of the desulfurization catalyst shown in Table 2 was charged. The feedstock oil was distributed in a downflow format to evaluate the reactivity. As a pretreatment, a preliminary sulfurized oil was prepared by adding dimethyl disulfide to a Middle Eastern light gas oil (LGO, sulfur content 1.18% by mass, nitrogen content 70 ppm) to adjust the sulfur concentration to 2.5% by mass. This pre-sulfided oil was pre-sulfided by passing it through the above catalyst together with hydrogen gas at 290 ° C. for 20 hours. Moreover, the atmospheric residue of Middle Eastern crude oil was used as the feedstock. The properties are shown in Table 3.
[0030]
[Table 3]
Figure 0004938178
[0031]
[Table 4]
Figure 0004938178
[0032]
This raw material oil was circulated together with hydrogen gas through the catalyst after the preliminary sulfidation, and the hydrogenation treatment was performed under the following conditions. The results are shown in Table 4.
Hydrotreating conditions Reaction temperature: 370 ° C
Hydrogen partial pressure: 13 MPa
Liquid space velocity (LHSV): 0.25 hr −1
Hydrogen / oil ratio: 800 Nm 3 / kl
[0033]
[Table 5]
Figure 0004938178
[0034]
[Table 6]
Figure 0004938178
[0035]
Example 6
In Example 1, Middle Eastern heavy atmospheric residual oil having a density of 0.9860 g / cc, a sulfur content of 4.6% by weight and a nitrogen content of 2290 ppm was used as the feedstock, and catalyst G was used as the downstream upstream desulfurization catalyst. The catalyst I was used as a side post-stage desulfurization catalyst, and the hydrogenation treatment was carried out in the same manner as in Example 1 except that the hydrogenation treatment was carried out under the following conditions, followed by further distillation and a 90% distillation temperature of 370 ° C. As a result of examining the properties of the following fractions, the sulfur content was 270 ppm by weight and the nitrogen content was 90 ppm by weight.
Hydrotreating conditions Reaction temperature: 370 ° C
Hydrogen partial pressure: 13 MPa
Liquid space velocity (LHSV): 0.18 hr −1
Hydrogen / oil ratio: 800 Nm 3 / kl
[0036]
Example 7
In Example 1, middle east heavy heavy pressure residual oil having a density of 0.9573 g / cc, sulfur content of 2.7% by weight and nitrogen content of 1640 ppm was used as the feedstock, and catalyst G was used as the downstream upstream desulfurization catalyst. The catalyst I was used as a side post-stage desulfurization catalyst, and the hydrogenation treatment was carried out in the same manner as in Example 1 except that the hydrogenation treatment was carried out under the following conditions, followed by further distillation and a 90% distillation temperature of 370 ° C. As a result of examining the properties of the following fractions, the sulfur content was 230 ppm by weight and the nitrogen content was 90 ppm by weight.
Hydrotreating conditions Reaction temperature: 370 ° C
Hydrogen partial pressure: 13 MPa
Liquid space velocity (LHSV): 0.25 hr −1
Hydrogen / oil ratio: 800 Nm 3 / kl
Next, 15% by volume of the cracked gas oil obtained above and 85% by volume of straight-run gas oil were mixed and subjected to desulfurization treatment under the following conditions using a gas oil desulfurizer. The sulfur content of the obtained desulfurized gas oil was 46% by weight.
Desulfurization treatment conditions Reaction temperature: 360C
Hydrogen partial pressure: 5 MPa
LHSV: 2.0 hr −1
H 2 / oil: 250 Nm 3 / kl
[0037]
Example 8
In Example 1, a density of 0.986 g / cc, a sulfur content of 4.6% by weight, and a nitrogen content of 2290 ppm were used as the feedstock oil. The catalyst I was used as a side post-stage desulfurization catalyst, and the hydrogenation treatment was performed in the same manner as in Example 1 except that the hydrogenation treatment was performed under the following conditions. As a result of examining the properties of the following fractions, the sulfur content was 48 ppm by weight.
Hydrotreating conditions Reaction temperature: 385 ° C
Hydrogen partial pressure: 13 MPa
Liquid space velocity (LHSV): 0.18 hr −1
Hydrogen / oil ratio: 800 Nm 3 / kl
[0038]
【Effect of the invention】
ADVANTAGE OF THE INVENTION According to this invention, the hydrotreating method of the hydrocarbon which can reduce the sulfur content and nitrogen content of the cracked light oil obtained by hydrotreating a hydrocarbon can be provided.

Claims (9)

炭化水素の水素化処理において、
(1)上流側に脱メタル触媒、下流側の前段と後段に異なる二種の脱硫触媒からなる水素化処理触媒を使用し、
(2)下流側後段の脱硫触媒が、担体としてボリア−アルミナを含み、活性金属としてニッケルとモリブデンを含み、かつその他の成分としてリンを含み、
(3)下流側後段の脱硫触媒が、その調製過程において活性金属を担持する際、沸点又は分解点が150℃以上の水溶性有機化合物を使用してなるものであり、(4)下流側後段の脱硫触媒の平均細孔径が60〜150Åであることを特徴とする炭化水素の水素化処理方法。
In hydrocarbon hydroprocessing,
(1) Use a hydrotreating catalyst composed of a demetallization catalyst on the upstream side and two different types of desulfurization catalysts on the downstream side and the downstream side,
(2) The downstream downstream desulfurization catalyst contains boria-alumina as a support, nickel and molybdenum as active metals, and phosphorus as other components,
(3) When the downstream desulfurization catalyst supports an active metal in the preparation process, it uses a water-soluble organic compound having a boiling point or decomposition point of 150 ° C. or higher. (4) Downstream downstream A hydrocarbon hydrotreating method, wherein the desulfurization catalyst has an average pore diameter of 60 to 150 mm.
さらに、(5)下流側前段が、その脱硫触媒の調製過程において活性金属を担持する際、沸点又は分解温度が150℃以上の水溶性有機化合物を使用してなるものである請求項1記載の炭化水素の水素化処理方法。  Furthermore, (5) the downstream upstream stage uses a water-soluble organic compound having a boiling point or decomposition temperature of 150 ° C. or higher when supporting an active metal in the process of preparing the desulfurization catalyst. Hydrocarbon hydrotreating method. 下流側後段の脱硫触媒の平均細孔径が60〜135Åである請求項1又は2に記載の炭化水素の水素化処理方法。  The hydrocarbon hydrotreating method according to claim 1 or 2, wherein the downstream desulfurization catalyst has an average pore diameter of 60 to 135 mm. 水溶性有機化合物がポリエチレングリコールである請求項1〜3のいずれかに記載の炭化水素の水素化処理方法。  The method for hydrotreating a hydrocarbon according to any one of claims 1 to 3, wherein the water-soluble organic compound is polyethylene glycol. ボリア/アルミナ質量比が0.01〜0.08である請求項1〜4のいずれかに記載の炭化水素の水素化処理方法。The method for hydrotreating hydrocarbons according to claim 1, wherein the mass ratio of boria / alumina is 0.01 to 0.08. 下流側後段の脱硫触媒の平均細孔径が下流側前段の脱硫触媒の平均細孔径よりも小さいものである請求項1〜のいずれかに記載の炭化水素の水素化処理方法。Hydrotreating a hydrocarbon according to any one of claims 1 to 5 the average pore size of the downstream subsequent desulfurization catalyst is smaller than the average pore size of the downstream front of the desulfurization catalyst. 下流側後段の脱硫触媒が、触媒基準、酸化物換算で、ニッケル1〜6質量%、モリブデン10〜30質量%、リン1〜5質量%を含有するものである請求項1〜のいずれかに記載の炭化水素の水素化処理方法。Downstream subsequent desulfurization catalyst, the catalyst reference, in terms of oxide, nickel 1-6% by weight, molybdenum 10 to 30 wt%, claim 1-6 are those containing from 1 to 5 wt% phosphorus Hydrocarbon hydrotreating method according to claim 1. 脱メタル触媒と二種の脱硫触媒の使用割合が、それぞれ20〜50容量%の範囲内である請求項1〜のいずれかに記載の炭化水素の水素化処理方法。The method for hydrotreating a hydrocarbon according to any one of claims 1 to 7 , wherein the ratio of use of the demetallation catalyst and the two types of desulfurization catalysts is in the range of 20 to 50% by volume, respectively. 下流側後段の脱硫触媒における活性金属量が、下流側前段の脱硫触媒の活性金属量の1.2〜1.5倍である請求項1〜のいずれかに記載の炭化水素の水素化処理方法。The hydrocarbon hydrotreatment according to any one of claims 1 to 8 , wherein the amount of active metal in the downstream desulfurization catalyst is 1.2 to 1.5 times the amount of active metal in the downstream upstream desulfurization catalyst. Method.
JP2001084055A 2000-05-26 2001-03-23 Hydrocarbon hydrotreating method Expired - Fee Related JP4938178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084055A JP4938178B2 (en) 2000-05-26 2001-03-23 Hydrocarbon hydrotreating method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000156948 2000-05-26
JP2000156948 2000-05-26
JP2000-156948 2000-05-26
JP2001084055A JP4938178B2 (en) 2000-05-26 2001-03-23 Hydrocarbon hydrotreating method

Publications (2)

Publication Number Publication Date
JP2002045698A JP2002045698A (en) 2002-02-12
JP4938178B2 true JP4938178B2 (en) 2012-05-23

Family

ID=26592730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084055A Expired - Fee Related JP4938178B2 (en) 2000-05-26 2001-03-23 Hydrocarbon hydrotreating method

Country Status (1)

Country Link
JP (1) JP4938178B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702973B2 (en) 2011-03-15 2014-04-22 Uop Llc Process for upgrading one or more hydrocarbons boiling in a naphtha range
CN105754637A (en) * 2014-12-20 2016-07-13 中国石油化工股份有限公司 A sulfuration starting method for a hydrogenation catalyst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010288616B9 (en) 2009-08-24 2014-12-18 Albemarle Europe Sprl Solutions and catalysts comprising Group VI metal, Group VIII metal, phosphorous and an additive
US9920258B2 (en) * 2015-12-15 2018-03-20 Saudi Arabian Oil Company Supercritical reactor systems and processes for petroleum upgrading

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214544A (en) * 1989-02-16 1990-08-27 Nippon Oil Co Ltd Catalyst for hydrocracking of heavy oils
JPH0753968A (en) * 1993-08-09 1995-02-28 Idemitsu Kosan Co Ltd Hydrotreatment of heavy hydrocarbon oil
JP3391522B2 (en) * 1993-10-15 2003-03-31 出光興産株式会社 Hydroprocessing of heavy oil
JP3669377B2 (en) * 1994-03-29 2005-07-06 出光興産株式会社 Crude oil hydrotreating method
JP3363304B2 (en) * 1995-10-09 2003-01-08 出光興産株式会社 Method for producing catalyst composition for heavy oil hydrotreating
JP4089800B2 (en) * 1998-09-09 2008-05-28 株式会社ジャパンエナジー Method for hydrorefining heavy oil and catalyst used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702973B2 (en) 2011-03-15 2014-04-22 Uop Llc Process for upgrading one or more hydrocarbons boiling in a naphtha range
CN105754637A (en) * 2014-12-20 2016-07-13 中国石油化工股份有限公司 A sulfuration starting method for a hydrogenation catalyst
CN105754637B (en) * 2014-12-20 2017-10-03 中国石油化工股份有限公司 A kind of start-up vulcanization method of hydrogenation catalyst

Also Published As

Publication number Publication date
JP2002045698A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
EP2173477B1 (en) Method for the production of a catalyst for hydrocarbon hydrotreatment.
US11325108B2 (en) Hydroprocessing catalyst composition containing a heterocyclic polar compound, a method of making such a catalyst, and a process of using such catalyst
WO2003000410A1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
US9546327B2 (en) Process for upgrading a high endpoint gas oil containing high concentrations of thiophenes and nitrogen and providing for a reduced hydrogen consumption rate
RU2678456C2 (en) Process for preparing hydrotreating catalyst
EP2196260A1 (en) Hydrodesulphurization nanocatalyst, its use and a process for its production
EP2726578B1 (en) An ether amine additive impregnated composition useful in the catalytic hydroprocessing of hydrocarbons, a method of making such composition
JP2002239385A (en) Method for producing hydrotreatment catalyst for hydrocarbon oil and method for hydrotreating hydrocarbon oil
JP4938178B2 (en) Hydrocarbon hydrotreating method
US11517891B2 (en) Hydroprocessing catalyst having an organic additive with metals incorporated using chelant and method of making and using such catalyst
EP2988870B1 (en) Preparation of a sulphided catalyst and process using said catalyst for hydrotreating a sulphur-containing hydrocarbon feedstock
JP4778605B2 (en) Hydrodesulfurization catalyst for diesel oil fraction
RU2753526C2 (en) Hydrotreating catalyst containing polar additive, method for its manufacture and application
US10189015B2 (en) Hydroprocessing catalyst composition containing an acetoacetic acid compound, a method of making such a catalyst, and a process of using such catalyst
JP3362359B2 (en) Method for producing hydrotreating catalyst
US11511269B2 (en) Hydroprocessing catalyst having an organic additive with overlaid metals and method of making and using such catalyst
JP2000354766A (en) Catalyst for hydrogenation treatment of hydrocarbon oil
JPH08243407A (en) Preparation of hydrogenated catalyst
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JPH03275142A (en) Catalyst composition for hydrodesulfurization of hydrocarbon oil, its production and hydrodesulfurization method using the same
JP4272760B2 (en) Hydrocracking and desulfurization catalyst for hydrocarbon oil and hydrocracking and desulfurization method
JP2002003862A (en) Method for treating heavy hydrocarbon oil
JP2001040368A (en) Hydrogenation method for gas oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4938178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees