JP4621371B2 - Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed - Google Patents

Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed Download PDF

Info

Publication number
JP4621371B2
JP4621371B2 JP2001070403A JP2001070403A JP4621371B2 JP 4621371 B2 JP4621371 B2 JP 4621371B2 JP 2001070403 A JP2001070403 A JP 2001070403A JP 2001070403 A JP2001070403 A JP 2001070403A JP 4621371 B2 JP4621371 B2 JP 4621371B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrotreating
metal
catalyst bed
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001070403A
Other languages
Japanese (ja)
Other versions
JP2002263498A (en
Inventor
成存 各務
隆一郎 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2001070403A priority Critical patent/JP4621371B2/en
Publication of JP2002263498A publication Critical patent/JP2002263498A/en
Application granted granted Critical
Publication of JP4621371B2 publication Critical patent/JP4621371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は水素化処理触媒床及びこれを用いた重質炭化水素油の水素化処理方法に関し、より詳しくは、特定の物性を有する二段からなる水素化処理触媒床、及びこれを用いた重質炭化水素油の水素化処理方法に関する。
【0002】
【従来の技術】
現在、酸性雨等からの環境保護のため、燃料油中の硫黄分は水素化精製処理により低減されており、そこで脱硫触媒が一般に使用されている。しかし、特に常圧残油、減圧残油等の重質油を原料として低硫黄重油を生産する場合において、触媒の脱硫性能の限界から触媒寿命は短く、1年未満となっている。したがって、1年以内で精製装置を停止し、触媒を交換せざるを得ない。また、一般に、より重質の原料油ほど安価であるため、より重質な原料油を通油した方が経済的に望ましいが、製品として硫黄分が同じ低硫黄重油を生産する場合、触媒劣化が著しく大きくなるために触媒寿命が短くなり、経済的に不利になる場合がある。
【0003】
上記のように、重質油から低硫黄重油を生産する場合、灯軽油の水素化処理に比較して、硫黄分を低減するためには、運転初期から高い温度を必要とする。また、触媒の活性は時間とともに劣化していくため、製品の硫黄分の量を一定に維持するためには、運転温度を徐々に上げていく必要がある。特に、重質油にはバナジウム、ニッケルといった金属分が含まれ、反応中に触媒に堆積して活性を被毒するため、触媒の劣化が著しい。このため、1年以内に装置の上限温度に達し、触媒を交換することとなるわけである。また、より重質な原料油ほど、この金属分が多いため、触媒の劣化が著しく大きくなり、通油量が制限されるという問題がある。
【0004】
この問題を解決するために、異なる触媒を組み合わせて使用する方法が提案されている。例えば、特開昭61−266490号公報には、減圧軽油等のアスファルテンの含有量が2質量%未満である原料油を主に対象とする場合、前段にリンを多く含み、後段にリンを含まない触媒を組み合わせて使用する方法が開示されている。しかしながら、金属分を多く含む常圧残油、減圧残油等の重質油を原料とする場合、効果が不十分である。
【0005】
【発明が解決しようとする課題】
本発明は、上記観点からなされたもので、原料油中に金属分を多く含む常圧残油、減圧残油等の重質油でも、触媒の運転期間の延長による原料油の増処理や触媒交換頻度の低減が可能な水素化処理触媒床及びそれを用いた重質炭化水素油の水素化処理方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、上流側に脱金属活性が高く、また金属分の被毒に対する耐性が強い触媒を充填し、下流側に高脱硫活性が高い触媒を充填してなる水素化処理触媒床を使用することにより、上記本発明の目的を効果的に達成しうることを見出し本発明を完成したものである。
【0007】
すなわち、本発明の要旨は下記のとおりである。
1.上流側が周期律表第6族金属及び周期律表第8〜10族金属並びに触媒基準で、酸化物基準で0.5〜3.0質量%のリンを担持し、平均細孔直径(PD)が140〜180Åの触媒からなり、下流側が周期律表第6族金属及び周期律表第8〜10族金属並びに触媒基準で、酸化物基準で3.0〜8.0質量%のリンを担持し、平均細孔直径(PD)が140Å未満の触媒からなるものであって、上流側の触媒充填割合が5〜95容量%、下流側の触媒充填割合が95〜9容量%である水素化処理触媒床。
2.触媒の平均細孔直径(PD;Å)と比表面積(SA;m2 /g)との関係において、上流側の触媒が下記式(1)を満足し、下流側の触媒が下記式(2)を満足するものである前記1記載の水素化処理触媒床。
【0008】
SA+1.65PD > 410 ・・・(1)
SA+1.65PD ≦ 410 ・・・(2)
3.周期律表第6族金属がモリブデンであり、周期律表第8〜10族金属がニッケルである前記1又は2に記載の水素化処理触媒床。
4.担体への金属の担持が、沸点又は分解温度200℃以上の水溶性有機化合物を含有する含浸液を用いてなされたものである前記1〜3のいずれかに記載の水素化処理触媒床。
5.沸点又は分解温度200℃以上の水溶性有機化合物がポリエチレングリコールである前記4記載の水素化処理触媒床。
6.前記1〜5のいずれかに記載した水素化処理触媒床を用いた重質炭化水素油の水素化処理方法。
7.前記1〜5のいずれかに記載の水素化処理触媒床のさらに上流側に脱金属触媒を用いたものである請求項6記載の重質炭化水素油の水素化処理方法。
8.重質炭化水素油が減圧軽油、常圧残油又は減圧残油である前記6又は7に記載の重質炭化水素油の水素化処理方法。
【0009】
【発明の実施の形態】
以下に本発明について詳細に説明する。
本発明の水素化処理触媒床は、上流側触媒と下流側触媒からなり順次説明する。
上流側は周期律表第6族金属及び周期律表第8〜10族金属並びに触媒基準で、酸化物基準で0.5〜3.0質量%のリンを担持し、平均細孔直径(PD)が140〜180Åの触媒からなる。
【0010】
まず、担体としては、アルミナ、シリカ−アルミナが好ましく、特に、アルミナが好ましい。担体に担持する金属については、周期律表第6族金属として、モリブデン、タングステンなどを挙げることができるが、モリブデンが好ましい。第6族金属の担持量は、触媒基準で、酸化物基準で好ましくは4〜25質量%、より好ましくは8〜20質量%である。周期律表第8〜10族の金属として、コバルト、ニッケルなどを挙げることができるが、ニッケルが好ましい。第8〜10族金属の担持量は、触媒基準で、酸化物基準で好ましくは1〜8質量%、より好ましくは2〜5質量%である。また、その他の成分としては、リンが必要で、リンを添加すると、触媒の水素化活性が向上し、特に重質炭化水素油を原料とする場合においては、脱硫活性が向上する。その効果は添加量が、触媒基準で、酸化物基準で0.5〜3.0質量%で顕著となる。リンが多すぎると、通常のアルミナ担体上では、モリブデンと凝集酸化物を形成してしまい、モリブデンの分散性が低下してしまい、逆に脱硫活性が低下してしまう。また、触媒上に堆積する油中金属の堆積分布が変化し、触媒の外表面近傍に偏積してしまい、触媒劣化が大きくなるという問題もある。
【0011】
上記触媒の平均細孔直径(PD)は140〜180Åであることが必要である。140Å未満であると、原料油中のバナジウム、ニッケルといった金属を除去する脱金属活性が小さくなり、下流側の脱硫触媒を保護することはできない。一方、180Åを超えると、担体の表面積が著しく小さくなって、その結果脱硫活性が著しく低下してしまい、下流側の高脱硫活性触媒と組み合わせても全体の脱硫活性が不足して運転温度が高くなりすぎる。
【0012】
また、上記触媒の平均細孔直径(PD;Å)と比表面積(SA;m2 /g)との関係において、下記式(1)を満足した方が好ましい。
SA+1.65PD > 410 ・・・(1)
上記式(1)を満足しないと、金属分の触媒への堆積による活性被毒に対する耐性が弱くなる場合がある。
【0013】
次に、上記触媒の製造方法について説明するが、担体としては好ましいアルミナを取り上げる。
アルミナ担体の製造方法は特に限定されないが、水溶性酸性アルミナ塩の水溶液に塩基を添加するか、水溶性塩基性アルミナ塩の水溶液に酸を添加するか、水溶性酸性アルミナ塩の水溶液と水溶性塩基性アルミナ塩の水溶液を混合して得られるゲルを、熟成、乾燥、焼成することによって得られる。
【0014】
上記の水溶性酸性アルミナ塩として、硫酸アルミニウム,硝酸アルミニウム等を挙げることができ、水溶性塩基アルミナ塩として、アルミン酸ソーダ等を挙げることができる。
上記のアルミナゲルの生成は、一般に50〜90℃の温度で行う。
生成したゲルの熟成方法については、一般には、混合時と同じ温度にて酸性及びアルカリ性溶液を交互に加える操作(スイング)を、pH3.3〜9.3の間で10回以上、好ましくは13回以上行うことによって行うことができる。また、pH10以上にて温度125℃以上、好ましくはpH11以上にて温度130℃以上で、一定の時間攪拌する方法(高温熟成法)を用いることもできる。これをスイング法と組み合わせてもよい。熟成した沈殿を80〜200℃(好ましくは100〜160℃)で乾燥させ、400〜700℃(好ましくは500〜600℃)で焼成する。
【0015】
なお、上記触媒の平均細孔直径(PD)を140〜180Åにする必要があるが、上記のアルミナの熟成において、スイングの回数や熟成時間を調整すればよい。
また、望ましい触媒物性として、前記式(1)を満足するために、アルミナゲルの乾燥条件、押出成型条件等を調整すればよい。例えば、アルミナゲルを乾燥して押出成型する際、加熱しながら捏和して水分を調整する方法などを挙げることができる。
【0016】
以上のようにして得られたアルミナ担体に、以下の方法で金属を担持することができる。担持法は含浸法が好ましい。周期律表第6族のモリブデン化合物としては、三酸化モリブデン,パラモリブデン酸アンモニウム等が使用され、タングステン化合物としては、三酸化タングステン,タングステン酸アンモニウム等が使用される。また、周期律表第8〜10族のニッケル化合物としては、硝酸ニッケル,塩基性炭酸ニッケル等が使用され、コバルト化合物としては、硝酸コバルト,塩基性炭酸コバルト等が使用される。さらに、リン化合物としては、五酸化リン,リン酸等が使用される。上記の金属化合物を、周期律表第6族金属は0.7〜4.3モル/リットル、周期律表第8〜10族の金属は0.3〜2.4モル/リットル、リン化合物は0.1〜1.0モル/リットルの割合で純水に溶解させ、さらに沸点又は分解温度200℃以上の水溶性有機化合物を50〜200g/リットルの割合で溶解させたものを含浸液とし、担体に吸水率と等量になるように調整後含浸させる方が好ましい。その沸点又は分解温度200℃以上の水溶性有機化合物として、1,3−ブタンジオール,1,4−ブタンジオール,ポリエチレングリコール,ポリオキシエチレンフェニルエーテル,ポリオキシエチレンオクチルフェニルエーテル等のエーテル基含有水溶性高分子、ポリビニルアルコール等のアルコール水溶性高分子、サッカロース,グリコース等の各種糖類、メチルセルロース,水溶性でんぷん等の水溶性多糖類及びこれらの誘導体を使用することができるが、分子量400以上のポリエチレングリコールが最も好ましい。沸点又は分解温度200℃以上の水溶性有機化合物を使用することにより、金属の担体での凝集を抑制することができる。
【0017】
なお、含浸液のpH調整は特に限定されないが、硝酸,塩酸,硫酸等の無機酸、りんご酸,エチレンジアミン4酢酸等の有機酸、アンモニアなどを使用して行うことができる。含浸後乾燥、焼成するが、乾燥温度は通常80〜200℃(好ましくは100〜150℃)、焼成温度は通常300〜600℃(好ましくは400〜550℃)である。焼成温度が低すぎると、担持成分と担体と十分な結合を持つことができない場合があり、高すぎると、担持成分の凝集が起こり易くなる。
【0018】
次に、下流側は周期律表第6族金属及び周期律表第8〜10族金属並びに触媒基準で、酸化物基準で3.0〜8.0質量%のリンを担持し、平均細孔直径(PD)が140Å未満の触媒からなる。
担体としては、上流側の触媒と同じくアルミナが好ましい。担体に担持する金属の種類と量は上流側と同様であるが、リンの量が上流側に比較して高い。リンを添加すると、触媒の水素化活性が向上し、特に重質炭化水素油を原料とする場合においては、脱硫活性が向上する。その効果は添加量が、触媒基準で、酸化物基準で3.0〜8.0質量%で顕著となる。リンが多すぎると、通常のアルミナ担体上では、モリブデンと凝集酸化物を形成してしまい、モリブデンの分散性が低下してしまい、逆に脱硫活性が低下してしまう。
【0019】
上記触媒の平均細孔直径(PD)は140Å未満であることが必要である。140Å以上であると、表面積が小さくなりすぎるために、十分な脱硫活性を得ることができない。
また、上記触媒の平均細孔直径(PD;Å)と比表面積(SA;m2 /g)との関係において、下記式(2)を満足した方が好ましい。
【0020】
SA+1.65PD ≦ 410 ・・・(2)
上記式(2)を満足すると、上流側の触媒と異なり、金属分の触媒への堆積による活性被毒に対する耐性がさらに強くなる。
次に、上記触媒の製造方法について説明する。担体としては上流側の触媒と同様にアルミナが好ましい。
【0021】
アルミナの製法については、上流側の場合と比べて、ゲルの熟成の段階で、スイングの回数を少なくしたり、熟成時間を短くする必要がある。そうすることによって、触媒の平均細孔直径を140Å未満にすることができる。
また、望ましい触媒物性として、前記式(2)を満足するために、アルミナゲルの乾燥条件、押出成型条件等を調整すればよい。例えば、アルミナゲルを水に懸濁させ、そのスラリーを200〜300℃の雰囲気へ噴霧して乾燥する方法(スプレードライ法)等がある。
【0022】
アルミナ担体に金属を担持する方法については、リンの濃度を0.7〜2.0モル/リットルと増やしたこと以外は上流側触媒の製造方法と同様である。
本発明の水素化処理触媒床は、上流側の触媒充填割合5〜95容量%に対して、下流側の触媒充填割合95〜5容量%である。好ましくは、上流側の触媒充填割合10〜90容量%に対して、下流側の触媒充填割合90〜10容量%である。
【0023】
次に、本発明の水素化処理触媒床を用いて水素化処理を行う際には、予め安定化処理として予備硫化を行うことが望ましい。この予備硫化処理の条件は特に限定されないが、通常、予備硫化剤として、硫化水素,二硫化炭素,チオフェン,ジメチルジスルフィド等を挙げることができ、軽油等に予備硫化剤を混合した予備硫化油を使用するのが一般的である。処理温度は200〜400℃、水素分圧は常圧〜30MPaの範囲で行われる。
【0024】
触媒の形状については、特に重質炭化水素油の水素化処理に使用される触媒は、通常押出成形で製造されるものが多く、その形状は実質的に柱状をしている。その断面は円形のものが多いが、三葉型、四葉型など外表面を多くする工夫のあるものもある。また、球状触媒もよく用いられる。球状触媒は圧縮強度や耐磨耗性が特に要求される場合に使用される。
【0025】
水素化処理条件については、原料油の種類や目的により異なるが、一般的には反応温度200〜550℃(好ましくは220〜500℃)、水素分圧5〜30MPa(好ましくは10〜25MPa)の範囲で行われる。
反応形式は特に限定されないが、通常は、固定床,移動床,沸騰床,懸濁床等の種々のプロセスから選択できるが、固定床が好ましい。
【0026】
固定床の場合の温度、圧力以外の反応条件としては、液空間速度(LHSV)は0.05〜10hr-1(好ましくは0.1〜5hr-1)、水素/オイル比は500〜2,500Nm3 /kl(好ましくは700〜2,000Nm3 /kl)である。
本願の第二発明は、前記水素化処理触媒床を用いた重質炭化水素油の水素化処理方法である。
【0027】
該重質炭化水素として、常圧残油,減圧残油,減圧軽油,脱蝋減圧残油,アスファルテン油,タールサンド油及びこれらを一旦予備的に水素化処理した残油を挙げることができる。原料油の性状として、特に限定されないが、代表的な性状としては下記のとおりである。
比重(15/4℃):0.9640〜0.9940
動粘度(50℃):300〜3,000mm2 /s
硫黄分:2.8〜4.5質量%
窒素分:1,500〜4,200ppm
金属分(V+Ni):20〜150ppm
残炭分:5〜18質量%
アスファルテン分:0.5〜12.0質量%
反応条件としては、上記の原料油を、以上で述べた水素化処理触媒床を充填して水素化処理してもよいが、より高脱硫活性で長寿命な触媒にするために、さらに上流側にアルミナ担体に周期律表第6族の少なくとも一種の金属及び周期律表第8〜10族から選ばれる少なくとも一種の金属を担持した脱金属触媒を用い、下流側に本発明の水素化処理触媒床を用いた触媒システムにすればよい。
【0028】
上記の上流側に使用する脱金属触媒の物性等の例を下記に示す。
周期律表第6族の金属として、モリブデン、タングステンなどを挙げることができるが、モリブデンが好ましい。第6族金属の担持量は、触媒基準で、酸化物基準で2〜15質量%、好ましくは4〜12質量%である。周期律表第8〜10族の金属として、コバルト、ニッケルなどを挙げることができるが、ニッケルが好ましい。第8〜10族金属の担持量は、触媒基準で、酸化物基準で1〜4質量%、好ましくは1.5〜2.5質量%である。担体としては、アルミナが望ましく、触媒の細孔径は170〜250Å(好ましくは180〜220Å)、比表面積は、80〜200m2 /g(好ましくは100〜180m2 /g)、細孔容積は0.4〜1.0cc/g(好ましくは0.5〜0.9cc/g)である。
【0029】
脱金属触媒と本発明の水素化処理触媒床の充填割合は、通常、脱金属触媒が10〜40容量%(好ましくは15〜30容量%)に対して、本発明の水素化処理触媒床は90〜60容量%(好ましくは85〜70容量%)である。
【0030】
【実施例】
次に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によりなんら制限されるものではない。
〔触媒調製例1〕
純水1リットルに、水酸化ナトリウム35.4gを溶解させ、さらに、アルミン酸ソーダ99.1gを添加して、均一なアルミナ溶液B1を得た。別に、純水1リットルに硝酸アルミニウム500gを溶解させ、アルミナ溶液A1を得た。そして、純水2.38リットルを70℃に加温し、攪拌しながら、アルミナ溶液A1をpH3.6になるまで添加した。次に、アルミナ溶液B1をpH9.0になるまで添加して、5分間攪拌しながら熟成させた。続いて再びアルミナ溶液A1を添加して、pHを3.6とし、攪拌しながら5分間ゲルを熟成させた。このようにpHを3.6から9.0の間で変化させる操作を10回繰り返した。その後、得られたゲルを濾過、洗浄してアルミナゲルを850g得た。このアルミナゲルの水分を80℃で加熱攪拌して調節し、押出成型を行った。その後、120℃、16時間乾燥させ、さらに550℃で2時間焼成してアルミナ担体C1を得た。
【0031】
一方、三酸化モリブデン75g、塩基性炭酸ニッケル31g(NiOとして16.7g)、正リン酸(純度85%)9.5g、りんご酸15gをイオン交換水に80℃で加熱溶解させ、冷却後にポリエチレングリコール(分子量400,分解温度200℃以上)40g全量を加え、イオン交換水で275ccとした。次にその含浸液55ccを前記のアルミナ担体C1の吸水量100gに見合った量に調製し、常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、5時間焼成して触媒D1を得た。その物性を第1表に示す。
【0032】
〔触媒調製例2〕
調製例1と同様にして、アルミナ担体C1を得た。
一方、三酸化モリブデン78g、塩基性炭酸ニッケル32g(NiOとして17.3g)、正リン酸(純度85%)39.4gをイオン交換水に80℃で加熱溶解させ、冷却後にポリエチレングリコール(分子量400,分解温度200℃以上)40g全量を加え、イオン交換水で275ccとした。次にその含浸液55ccを前記のアルミナ担体C1の吸水量100gに見合った量に調製し、100gに常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、5時間焼成して触媒D2を得た。その物性を第1表に示す。
【0033】
〔触媒調製例3〕
調製例3と同様にしてアルミナゲルを850g得た。このアルミナゲルをイオン交換水に懸濁させ、250℃でスプレードライを行った。その後、水を添加し水分を調整して、押出成型をし、さらに550℃で2時間焼成してアルミナ担体C2を得た。
一方、調製例1と同様の方法でニッケルとモリブデンとリン及びポリエチレングリコールを含む含浸液を調製した。この含浸液55ccを前記のアルミナ担体C2の吸水量100gに見合った量に調製し、常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、5時間焼成して触媒D3を得た。その物性を第1表に示す。
【0034】
〔触媒調製例4〕
純水1リットルに、水酸化ナトリウム35.4gを溶解させ、さらに、アルミン酸ソーダ99.1gを添加して、均一なアルミナ溶液B1を得た。別に、純水1リットルに硝酸アルミニウム500gを溶解させ、アルミナ溶液A1を得た。そして、純水2.38リットルを70℃に加温し、攪拌しながら、アルミナ溶液A1をpH3.6になるまで添加した。次に、アルミナ溶液B1をpH9.0になるまで添加して、5分間攪拌しながら熟成させた。続いて再びアルミナ溶液A1を添加して、pHを3.6とし、攪拌しながら5分間ゲルを熟成させた。このようにpHを3.6から9.0の間で変化させる操作を6回繰り返した。その後、得られたゲルを濾過、洗浄してアルミナゲルを850g得た。このアルミナゲルをイオン交換水に懸濁させ、250℃でスプレードライを行った。その後、水を添加し水分を調整し、押出成型を行い、さらに550℃で2時間焼成してアルミナ担体C3を得た。
【0035】
一方、三酸化モリブデン89g、塩基性炭酸ニッケル38g(NiOとして20.5g)、正リン酸(純度85%)40gをイオン交換水に80℃で加熱溶解させ、冷却後にポリエチレングリコール(分子量400,分解温度200℃以上)40g全量を加え、イオン交換水で275ccとした。次にその含浸液55ccを前記のアルミナ担体C3の吸水量100gに見合った量に調製し、常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、5時間焼成して触媒S1を得た。その物性を第1表に示す。
【0036】
〔触媒調製例5〕
調製例4と同様にしてアルミナ担体C3を得た。
一方、三酸化モリブデン86g、塩基性炭酸ニッケル36g(NiOとして19.5g)、正リン酸(純度85%)9.7g、りんご酸15gをイオン交換水に80℃で加熱溶解させ、冷却後にポリエチレングリコール(分子量400,分解温度200℃以上)40g全量を加え、イオン交換水で275ccとした。次にその含浸液55ccを前記のアルミナ担体C3の吸水量100gに見合った量に調製し、常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、5時間焼成して触媒S2を得た。その物性を第1表に示す。
【0037】
〔触媒調製例6〕
調製例4と同様にしてアルミナゲルを850g得た。このアルミナゲルの水分を80℃で加熱攪拌して調節し、押出成型を行った。その後、120℃、16時間乾燥させ、さらに550℃で2時間焼成してアルミナ担体C4を得た。
一方、調製例1と同様の方法でニッケルとモリブデンとリン及びポリエチレングリコールを含む含浸液を調製した。この含浸液55ccを前記のアルミナ担体C4の吸水量100gに見合った量に調製し、常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、5時間焼成して触媒S3を得た。その物性を第1表に示す。
【0038】
【表1】

Figure 0004621371
【0039】
【表2】
Figure 0004621371
【0040】
〔脱金属触媒の調製例〕
純水1リットルに、水酸化ナトリウム35.4gを溶解させ、さらに、アルミン酸ソーダ99.1gを添加して、均一なアルミナ溶液B1を得た。別に、純水1リットルに硝酸アルミニウム500gを溶解させ、アルミナ溶液A1を得た。そして、純水2.38リットルを70℃に加温し、攪拌しながら、アルミナ溶液A1をpH3.6になるまで添加した。次に、アルミナ溶液B1をpH9.0になるまで添加して、5分間攪拌しながら熟成させた。続いて再びアルミナ溶液A1を添加して、pHを3.6とし、攪拌しながら5分間ゲルを熟成させた。このようにpHを3.6から9.0の間で変化させる操作を13回繰り返した。その後、得られたゲルを濾過、洗浄してアルミナゲルを1,075g得た。このアルミナゲルの水分を80℃で加熱攪拌して調節し、押出成型を行った。その後、120℃、16時間乾燥させ、さらに500℃で2時間焼成してアルミナ担体C5を得た。
【0041】
一方、三酸化モリブデン31g、塩基性炭酸ニッケル11.1g(NiOとして6g)、りんご酸50gをイオン交換水に溶解させ、全量を200ccとした。次にその含浸液55ccを前記のアルミナ担体C5の吸水量100gに見合った量に調製し、常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中550℃、5時間焼成して触媒Mを得た。その物性を第2表に示す。
【0042】
【表3】
Figure 0004621371
【0043】
〔触媒性能評価〕(実施例1〜3及び比較例1〜3)
小型高圧固定床反応装置の反応管に、上記で得られた触媒M、触媒D1〜D3及び触媒S1〜S3を第4表に示す割合で上流から充填し、触媒システムとした。次いで、LGO(中東系軽質軽油、硫黄分1.18質量%、窒素分70ppm)にジメチルジスルフィドを添加して硫黄濃度を2.5質量%に調整した予備硫化油を、上記の触媒システムに、水素ガスとともに250℃で、水素分圧13.5MPaで24時間流通させ、予備硫化を行った。また、原料油としては、金属(バナジウム,ニッケル)含有量が非常に多い中東系原油の常圧残油を用いた。
その性状を第3表に示す。
【0044】
【表4】
Figure 0004621371
【0045】
この原料油を、上記の予備硫化後の触媒に、水素ガスとともに流通させて、以下の条件で水素化処理を行った。結果を第4表に示す。
生成油のターゲット硫黄分:0.5質量%
水素分圧:13.5MPa
液空間速度(LHSV):0.6hr-1
水素/オイル比:850Nm3 /kl
【0046】
【表5】
Figure 0004621371
【0047】
【発明の効果】
本発明によれば、上流側に脱金属活性が高く、また金属分の被毒に対する耐性が強い触媒を充填し、下流側に高脱硫活性が高い触媒を充填してなる水素化処理触媒床を使用しているので、原料油中に金属分を多く含む常圧残油、減圧残油等の重質油でも、触媒の運転期間の延長による原料油の増処理や触媒交換頻度の低減が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrotreating catalyst bed and a method for hydrotreating heavy hydrocarbon oil using the same, and more particularly, to a hydrotreating catalyst bed having two specific stages and a heavy catalyst using the same. The present invention relates to a method for hydrotreating a hydrocarbon oil.
[0002]
[Prior art]
At present, in order to protect the environment from acid rain and the like, the sulfur content in fuel oil is reduced by hydrorefining treatment, and therefore, a desulfurization catalyst is generally used. However, particularly in the case of producing low-sulfur heavy oil using heavy oil such as atmospheric residual oil and reduced-pressure residual oil as a raw material, the catalyst life is short and less than one year due to the limit of the desulfurization performance of the catalyst. Therefore, the refiner must be stopped and the catalyst replaced within one year. In general, heavier feedstocks are less expensive, so it is economically preferable to feed heavier feedstocks. However, when producing low-sulfur heavy oils with the same sulfur content as products, catalyst degradation Is extremely large, which shortens the catalyst life and may be economically disadvantageous.
[0003]
As described above, when low-sulfur heavy oil is produced from heavy oil, a higher temperature is required from the beginning of operation in order to reduce the sulfur content compared to kerosene oil hydrotreatment. Further, since the activity of the catalyst deteriorates with time, it is necessary to gradually increase the operating temperature in order to keep the amount of sulfur in the product constant. In particular, heavy oil contains metal components such as vanadium and nickel, and deposits on the catalyst during the reaction to poison the activity. For this reason, the upper limit temperature of the apparatus is reached within one year, and the catalyst is replaced. In addition, the heavier raw material oil has more metal, so there is a problem that the deterioration of the catalyst is remarkably increased and the amount of oil passing is limited.
[0004]
In order to solve this problem, a method of using a combination of different catalysts has been proposed. For example, in Japanese Patent Application Laid-Open No. 61-266490, when mainly the raw material oil whose content of asphaltenes such as vacuum gas oil is less than 2% by mass, the front stage contains a lot of phosphorus and the rear stage contains phosphorus. Disclosed is a method of using no catalyst in combination. However, when heavy oil such as atmospheric residual oil and reduced pressure residual oil containing a large amount of metal is used as a raw material, the effect is insufficient.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and even in heavy oil such as atmospheric residual oil and reduced-pressure residual oil containing a large amount of metal in the raw oil, the raw oil can be increased by extending the operation period of the catalyst or the catalyst. It is an object of the present invention to provide a hydrotreating catalyst bed capable of reducing the exchange frequency and a method of hydrotreating heavy hydrocarbon oil using the catalyst bed.
[0006]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have filled a catalyst with high demetallation activity on the upstream side and a strong resistance against poisoning of metal, and hydrogenation with a catalyst having high desulfurization activity on the downstream side. The inventors have found that the object of the present invention can be effectively achieved by using a treated catalyst bed, and have completed the present invention.
[0007]
That is, the gist of the present invention is as follows.
1. The upstream side carries 0.5 to 3.0% by mass of phosphorus on the basis of oxide, based on periodic table group 6 metal and periodic table group 8 to 10 metal and catalyst, and average pore diameter (PD) Is composed of a catalyst of 140 to 180 mm, and the downstream side carries 3.0 to 8.0 mass% phosphorus on the basis of oxides based on the periodic table group 6 metal and the periodic table group 8 to 10 metal and catalyst. And a hydrogenation catalyst comprising an average pore diameter (PD) of less than 140 mm, wherein the upstream catalyst filling ratio is 5 to 95% by volume and the downstream catalyst filling ratio is 95 to 9% by volume. Treatment catalyst bed.
2. Average pore diameter (PD; Å) and specific surface area (SA; m) of the catalyst2/ G) The hydrotreating catalyst bed as described in 1 above, wherein the upstream catalyst satisfies the following formula (1) and the downstream catalyst satisfies the following formula (2).
[0008]
SA + 1.65PD> 410 (1)
SA + 1.65PD ≦ 410 (2)
3. 3. The hydrotreating catalyst bed according to 1 or 2, wherein the Group 6 metal of the periodic table is molybdenum and the Group 8-10 metal of the periodic table is nickel.
4). 4. The hydrotreating catalyst bed according to any one of 1 to 3, wherein the metal is supported on the support using an impregnating liquid containing a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher.
5. 5. The hydrotreating catalyst bed as described in 4 above, wherein the water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher is polyethylene glycol.
6). A method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst bed described in any one of 1 to 5 above.
7. The heavy hydrocarbon oil hydrotreating method according to claim 6, wherein a demetallation catalyst is used further upstream of the hydrotreating catalyst bed according to any one of (1) to (5).
8). 8. The method for hydrotreating heavy hydrocarbon oil as described in 6 or 7 above, wherein the heavy hydrocarbon oil is a vacuum gas oil, an atmospheric residue or a vacuum residue.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The hydrotreating catalyst bed of the present invention is composed of an upstream catalyst and a downstream catalyst, which will be described sequentially.
The upstream side carries 0.5 to 3.0% by mass of phosphorus on the basis of oxide, based on periodic table group 6 metal and periodic table groups 8 to 10 metal and catalyst, and has an average pore diameter (PD ) Consists of 140 to 180 liters of catalyst.
[0010]
First, as the carrier, alumina and silica-alumina are preferable, and alumina is particularly preferable. With respect to the metal supported on the carrier, examples of the Group 6 metal of the periodic table include molybdenum and tungsten. Molybdenum is preferred. The supported amount of the Group 6 metal is preferably 4 to 25% by mass, more preferably 8 to 20% by mass based on the oxide, based on the catalyst. Examples of metals in Groups 8 to 10 of the periodic table include cobalt and nickel, with nickel being preferred. The amount of the Group 8-10 metal supported is preferably 1 to 8% by mass, more preferably 2 to 5% by mass based on the oxide, based on the catalyst. Further, as other components, phosphorus is required. When phosphorus is added, the hydrogenation activity of the catalyst is improved, and particularly when heavy hydrocarbon oil is used as a raw material, the desulfurization activity is improved. The effect becomes significant when the addition amount is 0.5 to 3.0% by mass on the basis of the catalyst and on the basis of the oxide. When there is too much phosphorus, aggregated oxides are formed with molybdenum on a normal alumina support, dispersibility of molybdenum is lowered, and desulfurization activity is lowered. Further, there is a problem that the deposition distribution of the metal in oil deposited on the catalyst changes and accumulates in the vicinity of the outer surface of the catalyst, resulting in a large deterioration of the catalyst.
[0011]
The catalyst must have an average pore diameter (PD) of 140 to 180 mm. If it is less than 140%, the demetallation activity for removing metals such as vanadium and nickel in the feedstock oil becomes small, and the downstream desulfurization catalyst cannot be protected. On the other hand, if it exceeds 180 mm, the surface area of the carrier is remarkably reduced, and as a result, the desulfurization activity is remarkably reduced. Even when combined with the downstream high desulfurization activity catalyst, the overall desulfurization activity is insufficient and the operating temperature is high. Too much.
[0012]
Further, the average pore diameter (PD; Å) and specific surface area (SA; m) of the above catalyst.2/ G), it is preferable to satisfy the following formula (1).
SA + 1.65PD> 410 (1)
If the above formula (1) is not satisfied, the resistance to active poisoning due to deposition of metal on the catalyst may be weakened.
[0013]
Next, although the manufacturing method of the said catalyst is demonstrated, a preferable alumina is taken up as a support | carrier.
The production method of the alumina carrier is not particularly limited, but a base is added to the aqueous solution of the water-soluble acidic alumina salt, an acid is added to the aqueous solution of the water-soluble basic alumina salt, or the aqueous solution of the water-soluble acidic alumina salt and the water-soluble A gel obtained by mixing an aqueous solution of a basic alumina salt is obtained by aging, drying and firing.
[0014]
Examples of the water-soluble acidic alumina salt include aluminum sulfate and aluminum nitrate, and examples of the water-soluble basic alumina salt include sodium aluminate.
The production of the alumina gel is generally performed at a temperature of 50 to 90 ° C.
Regarding the aging method of the generated gel, generally, an operation (swing) in which an acidic solution and an alkaline solution are alternately added at the same temperature as at the time of mixing is performed 10 times or more between pH 3.3 and 9.3, preferably 13 times. It can be done by doing more than once. Further, a method of stirring at a temperature of 125 ° C. or higher at a pH of 10 or higher, preferably 130 ° C. or higher at a pH of 11 or higher (high temperature aging method) can be used. This may be combined with the swing method. The aged precipitate is dried at 80 to 200 ° C. (preferably 100 to 160 ° C.) and calcined at 400 to 700 ° C. (preferably 500 to 600 ° C.).
[0015]
The average pore diameter (PD) of the catalyst needs to be 140 to 180 mm. In the aging of the alumina, the number of swings and the aging time may be adjusted.
Moreover, what is necessary is just to adjust the drying conditions, extrusion molding conditions, etc. of an alumina gel, in order to satisfy said Formula (1) as a desired catalyst physical property. For example, when alumina gel is dried and extruded, a method of kneading while heating to adjust the moisture can be used.
[0016]
A metal can be supported on the alumina support obtained as described above by the following method. The supporting method is preferably an impregnation method. As the molybdenum compound of Group 6 of the periodic table, molybdenum trioxide, ammonium paramolybdate or the like is used, and as the tungsten compound, tungsten trioxide, ammonium tungstate or the like is used. Moreover, nickel nitrate, basic nickel carbonate, etc. are used as a nickel compound of Group 8-10 of a periodic table, and cobalt nitrate, basic cobalt carbonate, etc. are used as a cobalt compound. Furthermore, phosphorus pentoxide, phosphoric acid, etc. are used as a phosphorus compound. In the metal compound, the group 6 metal of the periodic table is 0.7 to 4.3 mol / liter, the metal of the group 8 to 10 of the periodic table is 0.3 to 2.4 mol / liter, and the phosphorus compound is What was dissolved in pure water at a rate of 0.1 to 1.0 mol / liter, and further dissolved a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher at a rate of 50 to 200 g / liter was used as an impregnating solution, It is preferable to impregnate the support after adjustment so as to be equivalent to the water absorption rate. As a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher, 1,3-butanediol, 1,4-butanediol, polyethylene glycol, polyoxyethylene phenyl ether, polyoxyethylene octylphenyl ether, or other ether group-containing water-soluble Water-soluble polymers such as water-soluble polymers such as water-soluble polymers, polyvinyl alcohol and the like, various sugars such as saccharose and glycolose, methylcellulose, water-soluble starch and the like, and polyethylene having a molecular weight of 400 or more. Glycol is most preferred. By using a water-soluble organic compound having a boiling point or decomposition temperature of 200 ° C. or higher, aggregation on a metal carrier can be suppressed.
[0017]
The pH adjustment of the impregnating solution is not particularly limited, but can be performed using an inorganic acid such as nitric acid, hydrochloric acid or sulfuric acid, an organic acid such as malic acid or ethylenediaminetetraacetic acid, ammonia or the like. After impregnation, drying and firing are performed, and the drying temperature is usually 80 to 200 ° C. (preferably 100 to 150 ° C.), and the firing temperature is usually 300 to 600 ° C. (preferably 400 to 550 ° C.). If the calcination temperature is too low, the supported component and the carrier may not be sufficiently bonded. If it is too high, aggregation of the supported component tends to occur.
[0018]
Next, the downstream side carries 3.0 to 8.0% by mass of phosphorus on the basis of oxide based on the periodic table group 6 metal and the periodic table group 8 to 10 metal and catalyst basis, and the average pores It consists of a catalyst with a diameter (PD) of less than 140 mm.
As the support, alumina is preferable as in the upstream catalyst. The type and amount of metal supported on the carrier is the same as that on the upstream side, but the amount of phosphorus is higher than that on the upstream side. When phosphorus is added, the hydrogenation activity of the catalyst is improved, and particularly when heavy hydrocarbon oil is used as a raw material, the desulfurization activity is improved. The effect becomes remarkable when the addition amount is 3.0 to 8.0% by mass on the basis of the catalyst and on the basis of the oxide. When there is too much phosphorus, aggregated oxides are formed with molybdenum on a normal alumina support, dispersibility of molybdenum is lowered, and desulfurization activity is lowered.
[0019]
The catalyst should have an average pore diameter (PD) of less than 140 mm. When it is 140 mm or more, since the surface area becomes too small, sufficient desulfurization activity cannot be obtained.
Further, the average pore diameter (PD; Å) and specific surface area (SA; m) of the above catalyst.2/ G), it is preferable that the following formula (2) is satisfied.
[0020]
SA + 1.65PD ≦ 410 (2)
When the above formula (2) is satisfied, unlike the upstream catalyst, the resistance to active poisoning due to the deposition of metal on the catalyst is further enhanced.
Next, the manufacturing method of the said catalyst is demonstrated. As the support, alumina is preferable as in the upstream catalyst.
[0021]
As for the production method of alumina, it is necessary to reduce the number of swings or shorten the aging time at the stage of aging of the gel as compared with the case of the upstream side. By doing so, the average pore diameter of the catalyst can be less than 140 mm.
Moreover, what is necessary is just to adjust the drying conditions, extrusion molding conditions, etc. of an alumina gel, in order to satisfy said Formula (2) as desired catalyst physical property. For example, there is a method (spray drying method) in which alumina gel is suspended in water and the slurry is sprayed into an atmosphere of 200 to 300 ° C. and dried.
[0022]
The method for supporting the metal on the alumina support is the same as the method for producing the upstream catalyst except that the phosphorus concentration is increased to 0.7 to 2.0 mol / liter.
The hydrotreating catalyst bed of the present invention has a downstream catalyst filling ratio of 95 to 5% by volume with respect to an upstream catalyst filling ratio of 5 to 95% by volume. Preferably, the catalyst filling rate on the downstream side is 90 to 10% by volume with respect to the catalyst filling rate on the upstream side of 10 to 90% by volume.
[0023]
Next, when hydrotreating using the hydrotreating catalyst bed of the present invention, it is desirable to perform preliminary sulfidation in advance as a stabilizing treatment. The conditions for this preliminary sulfidation treatment are not particularly limited, but normally, as the preliminary sulfidizing agent, hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide and the like can be mentioned. It is common to use. The treatment temperature is 200 to 400 ° C., and the hydrogen partial pressure is in the range of normal pressure to 30 MPa.
[0024]
As for the shape of the catalyst, in particular, many of the catalysts used for the hydrogenation treatment of heavy hydrocarbon oils are usually produced by extrusion molding, and the shape thereof is substantially columnar. The cross-section is often circular, but there are also devices that devise to increase the outer surface such as a trilobal type and a four-leaf type. Also, spherical catalysts are often used. Spherical catalysts are used when compression strength and wear resistance are particularly required.
[0025]
The hydrotreating conditions vary depending on the type and purpose of the feedstock, but generally the reaction temperature is 200 to 550 ° C. (preferably 220 to 500 ° C.) and the hydrogen partial pressure is 5 to 30 MPa (preferably 10 to 25 MPa). Done in a range.
Although the reaction mode is not particularly limited, it can be usually selected from various processes such as a fixed bed, a moving bed, a boiling bed, and a suspension bed, but a fixed bed is preferable.
[0026]
As reaction conditions other than temperature and pressure in the case of a fixed bed, the liquid space velocity (LHSV) is 0.05 to 10 hr.-1(Preferably 0.1-5 hr-1), Hydrogen / oil ratio is 500-2500 NmThree/ Kl (preferably 700 to 2,000 NmThree/ Kl).
The second invention of the present application is a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst bed.
[0027]
Examples of the heavy hydrocarbon include atmospheric residual oil, vacuum residual oil, vacuum gas oil, dewaxed vacuum residual oil, asphaltene oil, tar sand oil, and residual oil obtained by temporarily hydrotreating these. The properties of the feed oil are not particularly limited, but typical properties are as follows.
Specific gravity (15/4 ° C.): 0.9640 to 0.9940
Kinematic viscosity (50 ° C.): 300 to 3,000 mm2/ S
Sulfur content: 2.8 to 4.5% by mass
Nitrogen content: 1,500-4,200 ppm
Metal content (V + Ni): 20 to 150 ppm
Residual carbon content: 5 to 18% by mass
Asphaltene content: 0.5-12.0% by mass
As the reaction conditions, the above-mentioned feed oil may be hydrotreated by filling the hydrotreating catalyst bed described above, but in order to obtain a catalyst with higher desulfurization activity and longer life, further upstream side In addition, a demetallation catalyst in which at least one metal selected from Group 6 of the periodic table and at least one metal selected from Groups 8 to 10 of the periodic table is supported on an alumina support, and the hydroprocessing catalyst of the present invention is provided downstream. A catalyst system using a bed may be used.
[0028]
Examples of physical properties of the demetallation catalyst used on the upstream side are shown below.
Examples of the metal of Group 6 of the periodic table include molybdenum and tungsten, but molybdenum is preferable. The amount of the Group 6 metal supported is 2 to 15% by mass, preferably 4 to 12% by mass based on the oxide, based on the catalyst. Examples of metals in Groups 8 to 10 of the periodic table include cobalt and nickel, with nickel being preferred. The supported amount of the Group 8-10 metal is 1 to 4% by mass, preferably 1.5 to 2.5% by mass based on the oxide, based on the catalyst. As the support, alumina is desirable, the pore diameter of the catalyst is 170 to 250 mm (preferably 180 to 220 mm), and the specific surface area is 80 to 200 m.2/ G (preferably 100 to 180 m2/ G) and the pore volume is 0.4 to 1.0 cc / g (preferably 0.5 to 0.9 cc / g).
[0029]
The filling ratio of the demetallation catalyst and the hydrotreating catalyst bed of the present invention is usually 10 to 40% by volume (preferably 15 to 30% by volume) of the demetallized catalyst, while the hydrotreating catalyst bed of the present invention is 90 to 60% by volume (preferably 85 to 70% by volume).
[0030]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited at all by these Examples.
[Catalyst Preparation Example 1]
35.4 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.1 g of sodium aluminate was further added to obtain a uniform alumina solution B1. Separately, 500 g of aluminum nitrate was dissolved in 1 liter of pure water to obtain an alumina solution A1. Then, 2.38 liters of pure water was heated to 70 ° C., and the alumina solution A1 was added to pH 3.6 while stirring. Next, the alumina solution B1 was added until pH 9.0 and aged with stirring for 5 minutes. Subsequently, the alumina solution A1 was added again to adjust the pH to 3.6, and the gel was aged for 5 minutes while stirring. The operation of changing the pH between 3.6 and 9.0 was repeated 10 times. Thereafter, the obtained gel was filtered and washed to obtain 850 g of alumina gel. The moisture of the alumina gel was adjusted by heating and stirring at 80 ° C., and extrusion molding was performed. Thereafter, it was dried at 120 ° C. for 16 hours and further calcined at 550 ° C. for 2 hours to obtain an alumina carrier C1.
[0031]
On the other hand, 75 g of molybdenum trioxide, 31 g of basic nickel carbonate (16.7 g as NiO), 9.5 g of orthophosphoric acid (purity 85%) and 15 g of malic acid were heated and dissolved in ion-exchanged water at 80 ° C., and after cooling, polyethylene A total amount of 40 g of glycol (molecular weight 400, decomposition temperature 200 ° C. or higher) was added to make 275 cc with ion-exchanged water. Next, 55 cc of the impregnating liquid was prepared in an amount commensurate with the water absorption of 100 g of the alumina carrier C1, and impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 5 hours to obtain catalyst D1. The physical properties are shown in Table 1.
[0032]
[Catalyst Preparation Example 2]
In the same manner as in Preparation Example 1, an alumina support C1 was obtained.
On the other hand, 78 g of molybdenum trioxide, 32 g of basic nickel carbonate (17.3 g as NiO), and 39.4 g of orthophosphoric acid (purity 85%) were heated and dissolved in ion-exchanged water at 80 ° C. After cooling, polyethylene glycol (molecular weight 400) , Decomposition temperature of 200 ° C. or higher) 40 g total amount was added to make 275 cc with ion-exchanged water. Next, 55 cc of the impregnating solution was prepared to an amount corresponding to the water absorption of 100 g of the alumina carrier C1, and 100 g was impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 5 hours to obtain catalyst D2. The physical properties are shown in Table 1.
[0033]
[Catalyst Preparation Example 3]
In the same manner as in Preparation Example 3, 850 g of alumina gel was obtained. This alumina gel was suspended in ion-exchanged water and spray-dried at 250 ° C. Thereafter, water was added to adjust the water content, extrusion molding was performed, and the mixture was further fired at 550 ° C. for 2 hours to obtain an alumina carrier C2.
On the other hand, an impregnation liquid containing nickel, molybdenum, phosphorus and polyethylene glycol was prepared in the same manner as in Preparation Example 1. 55 cc of this impregnating solution was prepared in an amount commensurate with the water absorption of 100 g of the alumina carrier C2, and impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 5 hours to obtain catalyst D3. The physical properties are shown in Table 1.
[0034]
[Catalyst Preparation Example 4]
35.4 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.1 g of sodium aluminate was further added to obtain a uniform alumina solution B1. Separately, 500 g of aluminum nitrate was dissolved in 1 liter of pure water to obtain an alumina solution A1. Then, 2.38 liters of pure water was heated to 70 ° C., and the alumina solution A1 was added to pH 3.6 while stirring. Next, the alumina solution B1 was added until pH 9.0 and aged with stirring for 5 minutes. Subsequently, the alumina solution A1 was added again to adjust the pH to 3.6, and the gel was aged for 5 minutes while stirring. The operation of changing the pH between 3.6 and 9.0 in this manner was repeated 6 times. Thereafter, the obtained gel was filtered and washed to obtain 850 g of alumina gel. This alumina gel was suspended in ion-exchanged water and spray-dried at 250 ° C. Thereafter, water was added to adjust the moisture content, extrusion molding was performed, and the mixture was further calcined at 550 ° C. for 2 hours to obtain an alumina carrier C3.
[0035]
On the other hand, 89 g of molybdenum trioxide, 38 g of basic nickel carbonate (20.5 g as NiO), and 40 g of normal phosphoric acid (purity 85%) are heated and dissolved in ion-exchanged water at 80 ° C. After cooling, polyethylene glycol (molecular weight 400, decomposition) The total amount of 40 g (temperature of 200 ° C. or higher) was added, and the volume was adjusted to 275 cc with ion-exchanged water. Next, 55 cc of the impregnating liquid was prepared to an amount corresponding to the water absorption of 100 g of the alumina carrier C3 and impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 5 hours to obtain catalyst S1. The physical properties are shown in Table 1.
[0036]
[Catalyst Preparation Example 5]
In the same manner as in Preparation Example 4, an alumina support C3 was obtained.
On the other hand, 86 g of molybdenum trioxide, 36 g of basic nickel carbonate (19.5 g as NiO), 9.7 g of normal phosphoric acid (purity 85%), and 15 g of malic acid were heated and dissolved in ion-exchanged water at 80 ° C., and after cooling, polyethylene A total amount of 40 g of glycol (molecular weight 400, decomposition temperature 200 ° C. or higher) was added to make 275 cc with ion-exchanged water. Next, 55 cc of the impregnating liquid was prepared to an amount corresponding to the water absorption of 100 g of the alumina carrier C3 and impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 5 hours to obtain catalyst S2. The physical properties are shown in Table 1.
[0037]
[Catalyst Preparation Example 6]
In the same manner as in Preparation Example 4, 850 g of alumina gel was obtained. The moisture of the alumina gel was adjusted by heating and stirring at 80 ° C., and extrusion molding was performed. Then, it was dried at 120 ° C. for 16 hours and further calcined at 550 ° C. for 2 hours to obtain an alumina carrier C4.
On the other hand, an impregnation liquid containing nickel, molybdenum, phosphorus and polyethylene glycol was prepared in the same manner as in Preparation Example 1. 55 cc of this impregnating liquid was prepared in an amount commensurate with the water absorption of 100 g of the alumina carrier C4 and impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 5 hours to obtain catalyst S3. The physical properties are shown in Table 1.
[0038]
[Table 1]
Figure 0004621371
[0039]
[Table 2]
Figure 0004621371
[0040]
[Preparation Example of Demetallization Catalyst]
35.4 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.1 g of sodium aluminate was further added to obtain a uniform alumina solution B1. Separately, 500 g of aluminum nitrate was dissolved in 1 liter of pure water to obtain an alumina solution A1. Then, 2.38 liters of pure water was heated to 70 ° C., and the alumina solution A1 was added to pH 3.6 while stirring. Next, the alumina solution B1 was added until pH 9.0 and aged with stirring for 5 minutes. Subsequently, the alumina solution A1 was added again to adjust the pH to 3.6, and the gel was aged for 5 minutes while stirring. Thus, the operation of changing the pH between 3.6 and 9.0 was repeated 13 times. Thereafter, the obtained gel was filtered and washed to obtain 1075 g of alumina gel. The moisture of the alumina gel was adjusted by heating and stirring at 80 ° C., and extrusion molding was performed. Then, it was dried at 120 ° C. for 16 hours and further calcined at 500 ° C. for 2 hours to obtain an alumina carrier C5.
[0041]
On the other hand, 31 g of molybdenum trioxide, 11.1 g of basic nickel carbonate (6 g as NiO), and 50 g of malic acid were dissolved in ion-exchanged water to make a total amount of 200 cc. Next, 55 cc of the impregnating solution was prepared in an amount commensurate with the water absorption of 100 g of the alumina carrier C5 and impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 550 ° C. for 5 hours to obtain catalyst M. The physical properties are shown in Table 2.
[0042]
[Table 3]
Figure 0004621371
[0043]
[Catalyst performance evaluation] (Examples 1-3 and Comparative Examples 1-3)
The catalyst M, the catalysts D1 to D3, and the catalysts S1 to S3 obtained above were charged into the reaction tube of the small high-pressure fixed bed reactor from the upstream in the ratio shown in Table 4 to obtain a catalyst system. Next, a preliminary sulfurized oil in which dimethyl disulfide was added to LGO (Middle Eastern light gas oil, sulfur content 1.18% by mass, nitrogen content 70 ppm) to adjust the sulfur concentration to 2.5% by mass was added to the above catalyst system. Presulfurization was performed by flowing together with hydrogen gas at 250 ° C. and hydrogen partial pressure of 13.5 MPa for 24 hours. Moreover, as the feedstock, a normal-pressure residual oil of Middle Eastern crude oil having a very high metal (vanadium, nickel) content was used.
The properties are shown in Table 3.
[0044]
[Table 4]
Figure 0004621371
[0045]
This raw material oil was circulated together with hydrogen gas through the catalyst after the preliminary sulfidation, and the hydrogenation treatment was performed under the following conditions. The results are shown in Table 4.
Target sulfur content of the product oil: 0.5% by mass
Hydrogen partial pressure: 13.5 MPa
Liquid space velocity (LHSV): 0.6 hr-1
Hydrogen / oil ratio: 850 NmThree/ Kl
[0046]
[Table 5]
Figure 0004621371
[0047]
【The invention's effect】
According to the present invention, there is provided a hydrotreating catalyst bed in which a catalyst having high demetallation activity on the upstream side and a strong resistance to poisoning of metal is packed and a catalyst having high desulfurization activity is packed on the downstream side. Because it is used, even with heavy oils such as atmospheric residual oil and vacuum residual oil that contain a large amount of metal in the raw oil, it is possible to increase the raw oil and reduce the frequency of catalyst replacement by extending the operation period of the catalyst. It becomes.

Claims (8)

上流側が周期律表第6族金属及び周期律表第8〜10族金属並びに触媒基準で、酸化物基準で0.5〜3.0質量%のリンを担持し、平均細孔直径(PD)が140〜180Åの触媒からなり、下流側が周期律表第6族金属及び周期律表第8〜10族金属並びに触媒基準で、酸化物基準で3.0〜8.0質量%のリンを担持し、平均細孔直径(PD)が140Å未満の触媒からなるものであって、上流側の触媒充填割合が5〜95容量%、下流側の触媒充填割合が95〜5容量%である水素化処理触媒床。The upstream side carries 0.5 to 3.0% by mass of phosphorus on the basis of oxide, based on the periodic table group 6 metal and periodic table group 8 to 10 metal and catalyst, and the average pore diameter (PD) Is composed of a catalyst of 140 to 180 mm, and the downstream side carries 3.0 to 8.0% by mass of phosphorus on the basis of oxides based on the periodic table group 6 metal and the periodic table group 8 to 10 metal and catalyst. And a hydrogenation catalyst comprising an average pore diameter (PD) of less than 140 mm, wherein the upstream catalyst filling ratio is 5 to 95% by volume and the downstream catalyst filling ratio is 95 to 5% by volume. Treatment catalyst bed. 触媒の平均細孔直径(PD;Å)と比表面積(SA;m2 /g)との関係において、上流側の触媒が下記式(1)を満足し、下流側の触媒が下記式(2)を満足するものである請求項1記載の水素化処理触媒床。
SA+1.65PD > 410 ・・・(1)
SA+1.65PD ≦ 410 ・・・(2)
In the relationship between the average pore diameter (PD; Å) of the catalyst and the specific surface area (SA; m 2 / g), the upstream catalyst satisfies the following formula (1), and the downstream catalyst represents the following formula (2 2) The hydrotreating catalyst bed according to claim 1, wherein:
SA + 1.65PD> 410 (1)
SA + 1.65PD ≦ 410 (2)
周期律表第6族金属がモリブデンであり、周期律表第8〜10族金属がニッケルである請求項1又は2に記載の水素化処理触媒床。The hydrotreating catalyst bed according to claim 1 or 2, wherein the Group 6 metal of the periodic table is molybdenum and the Group 8-10 metal of the periodic table is nickel. 担体への金属の担持が、沸点又は分解温度200℃以上の水溶性有機化合物を含有する含浸液を用いてなされたものである請求項1〜3のいずれかに記載の水素化処理触媒床。The hydrotreating catalyst bed according to any one of claims 1 to 3, wherein the metal is supported on the support by using an impregnating liquid containing a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C or higher. 沸点又は分解温度200℃以上の水溶性有機化合物がポリエチレングリコールである請求項4記載の水素化処理触媒床。The hydrotreating catalyst bed according to claim 4, wherein the water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C or higher is polyethylene glycol. 請求項1〜5のいずれかに記載した水素化処理触媒床を用いた重質炭化水素油の水素化処理方法。A method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst bed according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の水素化処理触媒床のさらに上流側に脱金属触媒を用いたものである請求項6記載の重質炭化水素油の水素化処理方法。The method for hydrotreating heavy hydrocarbon oil according to claim 6, wherein a demetallation catalyst is used further upstream of the hydrotreating catalyst bed according to any one of claims 1 to 5. 重質炭化水素油が減圧軽油、常圧残油又は減圧残油である請求項6又は7に記載の重質炭化水素油の水素化処理方法。The heavy hydrocarbon oil hydrotreating method according to claim 6 or 7, wherein the heavy hydrocarbon oil is a vacuum gas oil, an atmospheric residue or a vacuum residue.
JP2001070403A 2001-03-13 2001-03-13 Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed Expired - Fee Related JP4621371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070403A JP4621371B2 (en) 2001-03-13 2001-03-13 Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070403A JP4621371B2 (en) 2001-03-13 2001-03-13 Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed

Publications (2)

Publication Number Publication Date
JP2002263498A JP2002263498A (en) 2002-09-17
JP4621371B2 true JP4621371B2 (en) 2011-01-26

Family

ID=18928284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070403A Expired - Fee Related JP4621371B2 (en) 2001-03-13 2001-03-13 Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed

Country Status (1)

Country Link
JP (1) JP4621371B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844805B2 (en) * 2005-05-20 2011-12-28 住友電気工業株式会社 Method for forming metal coating
AU2010288616B9 (en) * 2009-08-24 2014-12-18 Albemarle Europe Sprl Solutions and catalysts comprising Group VI metal, Group VIII metal, phosphorous and an additive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753968A (en) * 1993-08-09 1995-02-28 Idemitsu Kosan Co Ltd Hydrotreatment of heavy hydrocarbon oil
JP2000313891A (en) * 1999-01-05 2000-11-14 Idemitsu Kosan Co Ltd Method and system for desulfurizing fuel oil
JP2000351978A (en) * 1999-06-10 2000-12-19 Idemitsu Kosan Co Ltd Hydrogenation of heavy oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753968A (en) * 1993-08-09 1995-02-28 Idemitsu Kosan Co Ltd Hydrotreatment of heavy hydrocarbon oil
JP2000313891A (en) * 1999-01-05 2000-11-14 Idemitsu Kosan Co Ltd Method and system for desulfurizing fuel oil
JP2000351978A (en) * 1999-06-10 2000-12-19 Idemitsu Kosan Co Ltd Hydrogenation of heavy oil

Also Published As

Publication number Publication date
JP2002263498A (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US5435908A (en) Hydroconversion process employing catalyst with specified pore size distribution
JP5140817B2 (en) Process for hydrorefining and / or hydroconversion of hydrocarbon feedstock using catalyst
KR100209814B1 (en) Hydrotreating catalyst composition, its preparation and use
US9675965B2 (en) Resid hydrotreating catalyst containing titania
JP2547115B2 (en) Hydrotreating catalyst composition for hydrocarbon oil and hydrotreating method using the same
JP4033249B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same
EP3023147B1 (en) Iron-based hydrogenation catalyst and applications thereof
EP0341893A2 (en) Hydroprocessing catalyst and method of preparation
US6893553B1 (en) Hydroprocessing catalyst and use thereof
US4613425A (en) Process for hydrotreating heavy hydrocarbon oils
EP3065868B1 (en) Process for preparing a hydrotreating catalyst
EP0349223B1 (en) Hydroprocessing catalytic composition and the preparation and use thereof
EP0582403B1 (en) Hydrotreating of cracked naptha
KR20140079304A (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
US6387248B2 (en) Method of preparing a catalyst for use in the hydrotreating of high boiling hydrocarbon feedstocks
EP0590894A1 (en) Hydroconversion process
JP4865940B2 (en) Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst
JP4621371B2 (en) Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed
CN109794299B (en) Hydrogenation catalyst, preparation method thereof and distillate oil hydrofining method
JP2000042413A (en) Catalyst for hydrogenation refining
US5531885A (en) Hydroconversion process for heavy hydrocarbon oil
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst
JP2001104789A (en) Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst
JP2004115581A (en) Method for demetallating petroleum heavy oil
CN113828289A (en) Composite oxide carrier, hydrorefining catalyst, preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4621371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees