JP2001162168A - Hydrogenation catalyst and method for hydrogenation treatment of heavy hydrocarbon oil by using that catalyst - Google Patents

Hydrogenation catalyst and method for hydrogenation treatment of heavy hydrocarbon oil by using that catalyst

Info

Publication number
JP2001162168A
JP2001162168A JP2000234049A JP2000234049A JP2001162168A JP 2001162168 A JP2001162168 A JP 2001162168A JP 2000234049 A JP2000234049 A JP 2000234049A JP 2000234049 A JP2000234049 A JP 2000234049A JP 2001162168 A JP2001162168 A JP 2001162168A
Authority
JP
Japan
Prior art keywords
catalyst
hydrotreating
heavy hydrocarbon
oil
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000234049A
Other languages
Japanese (ja)
Other versions
JP4865940B2 (en
Inventor
Shigeari Kagami
成存 各務
Mamoru Nomura
守 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2000234049A priority Critical patent/JP4865940B2/en
Publication of JP2001162168A publication Critical patent/JP2001162168A/en
Application granted granted Critical
Publication of JP4865940B2 publication Critical patent/JP4865940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogenation catalyst having high desulfurizing activity at lower temperatures and resistance against accumulation of metals and to provide a method for hydrogenation of heavy hydrocarbon oil by using the hydrogenation catalyst. SOLUTION: This catalyst is prepared by depositing at least one metal selected from the group VI metals and at least one metal selected from the group VIII to X metals in the periodic table on an alumina carrier containing 1 to 10 mass % silica. The catalyst has 100 to 170 Å average pore diameter(PD) and 140 to 250 m2/g specific surface area(SA) satisfying formula (1): SA+1.65PD>410, and 0.4 to 1.0 cc/g whole pore volume. The catalyst is used for the hydrogenation of heavy hydrocarbon oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素化処理触媒及び
これを用いた重質炭化水素油の水素化処理方法に関し、
より詳しくは特定の物性を有する水素化処理触媒、及び
これを用いた重質炭化水素油の水素化処理方法に関す
る。
The present invention relates to a hydrotreating catalyst and a method for hydrotreating heavy hydrocarbon oil using the same.
More specifically, the present invention relates to a hydrotreating catalyst having specific physical properties and a method for hydrotreating heavy hydrocarbon oil using the same.

【0002】[0002]

【従来の技術】現在、酸性雨等からの環境保護のため、
燃料油中の硫黄分は水素化精製処理により低減されてお
り、そこで脱硫触媒が一般に使用されている。しかし、
特に常圧残油、減圧残油等の重質油を原料として低硫黄
重油を生産する場合において、触媒の脱硫性能の限界か
ら触媒寿命は短く、1年未満となっている。したがっ
て、1年以内で精製装置を停止し、触媒を交換せざるを
得ない。このように、重質油から低硫黄重油を生産する
場合、灯軽油の水素化処理に比較して、硫黄分を低減す
るためには、運転初期から高い温度を必要とする。ま
た、触媒の活性は時間とともに劣化していくため、製品
の硫黄分の量を一定に維持するためには、運転温度を徐
々に上げていく必要がある。特に、重質油にはバナジウ
ム、ニッケルといった金属分が含まれ、反応中に触媒に
堆積して活性を被毒するため、触媒の劣化が著しい。こ
のため、1年以内に装置の上限温度に達し、触媒を交換
することとなるわけである。したがって、より低温にお
ける高脱硫活性と耐金属蓄積性を有する触媒の開発が望
まれている。
2. Description of the Related Art At present, to protect the environment from acid rain, etc.,
The sulfur content in fuel oils has been reduced by hydrorefining processes, where desulfurization catalysts are commonly used. But,
In particular, in the case of producing low-sulfur heavy oil from heavy oil such as atmospheric residual oil and vacuum residual oil as a raw material, the catalyst life is short and less than one year due to the limit of desulfurization performance of the catalyst. Therefore, the refining unit must be stopped within one year, and the catalyst must be replaced. As described above, when producing low-sulfur heavy oil from heavy oil, a high temperature is required from the beginning of operation in order to reduce the sulfur content as compared with the hydrotreatment of kerosene and light oil. In addition, since the activity of the catalyst deteriorates with time, it is necessary to gradually increase the operating temperature in order to keep the amount of sulfur in the product constant. In particular, heavy oil contains metals such as vanadium and nickel, and accumulates on the catalyst during the reaction and poisons the activity. Therefore, the temperature reaches the upper limit temperature of the device within one year, and the catalyst is replaced. Therefore, development of a catalyst having a high desulfurization activity and a metal accumulation resistance at a lower temperature is desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記観点か
らなされたもので、より低温における高脱硫活性と耐金
属蓄積性を有する水素化処理触媒を提供するとともに、
その水素化処理触媒を用いた重質炭化水素油の水素化処
理方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and provides a hydrotreating catalyst having a high desulfurization activity and a metal accumulation resistance at a lower temperature.
It is an object of the present invention to provide a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst.

【0004】[0004]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、特定の物性を有する水素化処理触媒を使用するこ
とにより、上記本発明の目的を効果的に達成しうること
を見出し本発明を完成したものである。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above object of the present invention can be effectively achieved by using a hydrotreating catalyst having specific physical properties. The invention has been completed.

【0005】すなわち、本発明の要旨は下記のとおりで
ある。 1.シリカを1〜10質量%含有するアルミナ担体に、
周期律表第6族の金属の少なくとも一種及び周期律表第
8〜10族の金属から選ばれる少なくとも一種を担持し
た触媒であって、該触媒の平均細孔直径(PD)が10
0〜170Åで、比表面積(SA)が140〜250m
2 /gであり、かつ両者が下記の(1)式を満足し、さ
らに全細孔容量が0.4〜1.0cc/gであることを
特徴とする水素化処理触媒。 SA+1.65PD > 410 ・・・(1) 2.周期律表第6族金属がモリブデンであり、周期律表
第8〜10族金属がニッケルである上記1記載の水素化
処理触媒。 3.触媒がリンを3〜5質量%含有するものである上記
1又は2に記載の水素化処理触媒。 4.担体への金属担持が、沸点又は分解温度200℃以
上の水溶性有機化合物を含有する含浸液を用いてなされ
たものである上記1〜3のいずれかに記載の水素化処理
触媒。 5.水溶性有機化合物がポリエチレングリコールである
上記4記載の水素化処理触媒。 6.上記1〜5のいずれかに記載した水素化処理触媒を
用いた重質炭化水素油の水素化処理方法。 7.上流側に脱金属触媒、下流側に上記1〜5のいずれ
かに記載の水素化処理触媒を用いた上記6記載の重質炭
化水素油の水素化処理方法。 8.重質炭化水素油が減圧軽油、常圧残油又は減圧残油
である上記6又は7に記載の重質炭化水素油の水素化処
理方法。
That is, the gist of the present invention is as follows. 1. Alumina support containing 1 to 10% by mass of silica,
A catalyst supporting at least one metal of Group 6 of the periodic table and at least one metal selected from metals of Groups 8 to 10 of the periodic table, wherein the catalyst has an average pore diameter (PD) of 10
0-170 °, specific surface area (SA) 140-250m
2 / g, both satisfy the following formula (1), and have a total pore volume of 0.4 to 1.0 cc / g. SA + 1.65PD> 410 (1) 2. The hydrotreating catalyst according to the above 1, wherein the metal belonging to Group 6 of the periodic table is molybdenum and the metal belonging to Groups 8 to 10 of the periodic table is nickel. 3. 3. The hydrotreating catalyst according to 1 or 2, wherein the catalyst contains 3 to 5% by mass of phosphorus. 4. 4. The hydrotreating catalyst according to any one of the above 1 to 3, wherein the supporting of the metal on the carrier is performed using an impregnating liquid containing a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C or higher. 5. 5. The hydrotreating catalyst according to the above 4, wherein the water-soluble organic compound is polyethylene glycol. 6. A method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst according to any one of the above 1 to 5. 7. 7. The method for hydrotreating heavy hydrocarbon oil according to the above item 6, wherein the dehydrogenating catalyst is used on the upstream side and the hydrotreating catalyst described in any one of the above items 1 to 5 is used on the downstream side. 8. 8. The method for hydrotreating heavy hydrocarbon oil according to the above item 6 or 7, wherein the heavy hydrocarbon oil is a vacuum gas oil, a normal pressure residual oil or a vacuum residual oil.

【0006】[0006]

【発明の実施の形態】以下に本発明について詳細に説明
する。本発明の水素化処理触媒は、シリカを1〜10質
量%含有するアルミナ担体に、周期律表第6族の金属の
少なくとも一種及び周期律表第8〜10族の金属から選
ばれる少なくとも一種を担持した触媒であって、該触媒
の平均細孔直径(PD)が100〜170Åで、比表面
積(SA)が140〜250m2 /gであり、かつ両者
が下記の(1)式を満足し、さらに全細孔容量が0.4
〜1.0cc/gであることを特徴とする。 SA+1.65PD > 410 ・・・(1)
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The hydrotreating catalyst of the present invention comprises, on an alumina carrier containing 1 to 10% by mass of silica, at least one metal selected from Group 6 of the periodic table and a metal selected from Groups 8 to 10 of the periodic table. A supported catalyst having an average pore diameter (PD) of 100 to 170 °, a specific surface area (SA) of 140 to 250 m 2 / g, and both satisfy the following formula (1): And a total pore volume of 0.4
~ 1.0 cc / g. SA + 1.65PD> 410 (1)

【0007】まず、アルミナ担体に添加するシリカの量
は1〜10質量%である。1質量%未満であると、アル
ミナの表面積を大にする効果は少なく、10質量%を超
えると、特定の含浸液が担体に高分散に金属を担持する
能力が低下し好ましくない。担体に担持する金属につい
ては、周期律表第6族金属として、モリブデン、タング
ステンなどを挙げることができるが、モリブデンが好ま
しい。第6族金属の担持量は、触媒基準で、酸化物基準
で4〜25質量%、好ましくは8〜20質量%である。
周期律表第8〜10族の金属として、コバルト、ニッケ
ルなどを挙げることができるが、ニッケルが好ましい。
第8〜10族金属の担持量は、触媒基準で、酸化物基準
で1〜8質量%、好ましくは2〜5質量%である。ま
た、その他の成分としては、特にリンが好ましい。リン
を添加すると、触媒の水素化活性が向上し、特に重質炭
化水素油を原料とする場合においては、脱硫活性が向上
する。その効果は添加量が、触媒基準で、酸化物基準で
3〜5質量%で顕著となる。
First, the amount of silica added to the alumina carrier is 1 to 10% by mass. If it is less than 1% by mass, the effect of increasing the surface area of alumina is small, and if it exceeds 10% by mass, the ability of the specific impregnating liquid to support the metal in the carrier in a highly dispersed manner is undesirably reduced. As for the metal supported on the carrier, molybdenum, tungsten, and the like can be given as Group 6 metals of the periodic table, and molybdenum is preferable. The supported amount of the Group 6 metal is 4 to 25% by mass, preferably 8 to 20% by mass on the basis of the catalyst and on the basis of the oxide.
Examples of metals belonging to Groups 8 to 10 of the periodic table include cobalt and nickel, with nickel being preferred.
The supported amount of the Group 8 to 10 metal is 1 to 8% by mass, preferably 2 to 5% by mass on the basis of the catalyst and on the basis of the oxide. Further, as the other component, phosphorus is particularly preferable. When phosphorus is added, the hydrogenation activity of the catalyst is improved, and particularly when heavy hydrocarbon oil is used as the raw material, the desulfurization activity is improved. The effect becomes remarkable when the addition amount is 3 to 5% by mass on the basis of the catalyst and on the basis of the oxide.

【0008】触媒の平均細孔直径(PD)は100〜1
70Åである。100Å未満であると、原料の炭化水素
油中のバナジウムやニッケルの金属の堆積及びコーク前
駆体の堆積により、短時間で細孔が閉塞し脱硫活性が低
下してしまう。170Åを超えると、運転初期におい
て、脱硫活性が著しく低くなり好ましくない。触媒の比
表面積(SA)は140〜250m2 /gである。14
0m2 /g未満であると、触媒の脱硫活性が低く、25
0m2 /gを超えると、脱硫活性が飽和してしまい、効
率が悪い。また、上記PDとSAは前記式(1)を満足
する必要がある。その式(1)を満足しないと、脱硫活
性及び触媒寿命ともに劣る触媒となる。
The average pore diameter (PD) of the catalyst is 100 to 1
70 °. If it is less than 100 °, the pores are closed in a short time due to the deposition of metals such as vanadium and nickel and the deposition of a coke precursor in the raw material hydrocarbon oil, and the desulfurization activity is reduced. If it exceeds 170 °, the desulfurization activity becomes extremely low in the initial stage of operation, which is not preferable. The specific surface area (SA) of the catalyst is from 140 to 250 m 2 / g. 14
If it is less than 0 m 2 / g, the desulfurization activity of the catalyst is low, and
If it exceeds 0 m 2 / g, the desulfurization activity is saturated and the efficiency is poor. Further, the PD and the SA need to satisfy the above-mentioned expression (1). If the formula (1) is not satisfied, the catalyst is inferior in both desulfurization activity and catalyst life.

【0009】次いで、上記水素化処理触媒の製造方法に
ついて説明する。まず、担体のシリカ含有アルミナ担体
の製造法としては、一般的には、アルミナ源とシリカ源
を混合し、沈殿を熟成させ、乾燥させ、焼成する。
Next, a method for producing the hydrotreating catalyst will be described. First, as a method for producing a silica-containing alumina carrier as a carrier, generally, an alumina source and a silica source are mixed, the precipitate is aged, dried, and fired.

【0010】用いられるアルミナ源としては、硫酸アル
ミニウム,硝酸アルミニウム等の水溶性酸性アルミナ
塩、アルミン酸ソーダ等の水溶性塩基性アルミナ塩を挙
げることができる。用いられるシリカ源としては、水ガ
ラス,珪酸ナトリウム,シリカゾル等を挙げることがで
きる。アルミナ源とシリカ源を混合する場合のpHは3
〜10、好ましくは3.3〜9.3である。混合温度は
30〜90℃、好ましくは50〜80℃である。
Examples of the alumina source used include water-soluble acidic alumina salts such as aluminum sulfate and aluminum nitrate, and water-soluble basic alumina salts such as sodium aluminate. Examples of the silica source used include water glass, sodium silicate, silica sol and the like. When the alumina source and the silica source are mixed, the pH is 3
-10, preferably 3.3-9.3. The mixing temperature is 30 to 90 ° C, preferably 50 to 80 ° C.

【0011】生成した沈殿の熟成方法については、一般
には、混合時と同じ温度にて酸性及びアルカリ性溶液を
交互に加える操作(スイング)を、pH3.0〜9.3
の間で3回以上、好ましくは5回以上行うことによって
行うことができる。また、pH9以上にて温度70℃以
上、好ましくはpH10以上にて温度80℃以上で、一
定の時間攪拌する方法を用いることもできる。これをス
イング法と組み合わせてもよい。熟成した沈殿を80〜
200℃(好ましくは100〜160℃)で乾燥させ、
400〜700℃(好ましくは500〜600℃)で焼
成する。
Regarding the ripening method of the formed precipitate, generally, an operation (swing) of alternately adding an acidic and an alkaline solution at the same temperature as during mixing is performed at pH 3.0 to 9.3.
And at least three times, preferably at least five times. Further, a method of stirring at a temperature of 70 ° C. or higher at pH 9 or higher, preferably at a temperature of 80 ° C. or higher at pH 10 or higher for a certain period of time can also be used. This may be combined with the swing method. Aged precipitate is 80 ~
Dried at 200C (preferably 100-160C),
Baking at 400 to 700 ° C (preferably 500 to 600 ° C).

【0012】上記の沈殿を得る方法として、アルミナ及
びシリカのゲルを各々予め製造しておき両者を混合する
方法、アルミナゲルにシリカ化合物の水溶液を混合する
方法、アルミニウム化合物を含む溶液とアルミニウム化
合物及びシリカ化合物を混合して沈殿を得る方法、アル
ミニウム化合物及びシリカ化合物を含む溶液のpHを変
化させて沈殿を得る方法などを採用することができる。
As a method for obtaining the above-mentioned precipitate, a method of preparing alumina gel and silica gel in advance and mixing the two, a method of mixing an aqueous solution of a silica compound with an alumina gel, a solution containing an aluminum compound and an aluminum compound, A method of obtaining a precipitate by mixing a silica compound, a method of obtaining a precipitate by changing the pH of a solution containing an aluminum compound and a silica compound, and the like can be employed.

【0013】特に望ましい担体の沈殿を得るためには、
水溶性塩基性アルミナ塩に、一旦、実質的にゲルを生じ
ない条件で水溶性シリカを混合せしめた溶液を調製し、
更に水溶性アルミナ塩を添加してゲルを生成せしめる方
法を採用すればよい。さらに詳細に述べると、実質的に
ゲルを生じない条件で水溶性塩基性アルミナ塩と水溶性
シリカの溶液を混合するには、水溶性塩基性アルミナ塩
の水溶液に、予めアンモニア水や水酸化ナトリウム等の
塩基を添加してpHを10以上に高めてから、水溶性シ
リカを添加すればよい。または、pH3以下で水ガラス
と硫酸アルミニウムを混合することによっても、実質的
にゲルを生じない混合が可能である。このようにして得
られたシリカ・アルミナの水溶液に、さらに水溶性の酸
性アルミナ溶液あるいは塩基性アルミナ溶液を添加して
沈殿を生じさせる。アルカリ側で調製したシリカ・アル
ミナ透明溶液から沈殿を得るためには、水溶性の酸性ア
ルミナ溶液を添加することが有効であり、酸性側で調製
したシリカ・アルミナ透明溶液から沈殿を得るために
は、水溶性の塩基性アルミナ溶液を添加することが有効
である。
In order to obtain a particularly desirable precipitation of the carrier,
A solution prepared by mixing a water-soluble silica with a water-soluble basic alumina salt under conditions that do not substantially cause gelation,
Further, a method of forming a gel by adding a water-soluble alumina salt may be adopted. More specifically, in order to mix a solution of a water-soluble basic alumina salt and a water-soluble silica under conditions that do not substantially form a gel, an aqueous solution of a water-soluble basic alumina salt is added to an aqueous solution of ammonia or sodium hydroxide in advance. The base may be added to raise the pH to 10 or more, and then water-soluble silica may be added. Alternatively, by mixing water glass and aluminum sulfate at a pH of 3 or less, mixing that does not substantially produce a gel is possible. A water-soluble acidic alumina solution or basic alumina solution is further added to the silica-alumina aqueous solution thus obtained to cause precipitation. In order to obtain a precipitate from the silica-alumina transparent solution prepared on the alkali side, it is effective to add a water-soluble acidic alumina solution. It is effective to add a water-soluble basic alumina solution.

【0014】以上のようにして得られたシリカ含有アル
ミナ担体に、以下の方法で金属を担持することができ
る。担持法は含浸法が好ましい。周期律表第6族のモリ
ブデン化合物としては、三酸化モリブデン,パラモリブ
デン酸アンモニウム等が使用され、タングステン化合物
としては、三酸化タングステン,タングステン酸アンモ
ニウム等が使用される。また、周期律表第8〜10族の
ニッケル化合物としては、硝酸ニッケル,塩基性炭酸ニ
ッケル等が使用され、コバルト化合物としては、硝酸コ
バルト,塩基性炭酸コバルト等が使用される。さらに、
リン化合物としては、五酸化リン,リン酸等が使用され
る。上記の金属化合物を、周期律表第6族金属は0.7
〜4.3モル/リットル、周期律表第8〜10族の金属
は0.3〜2.4モル/リットル、リン化合物は1.1
〜2.0モル/リットルの割合で純水に溶解させ、さら
に沸点又は分解温度200℃以上の水溶性有機化合物を
50〜200g/リットルの割合で溶解させたものを含
浸液とし、担体に吸水率と等量になるように調整後含浸
させる。その沸点又は分解温度200℃以上の水溶性有
機化合物として、1,3−ブタンジオール,1,4−ブ
タンジオール,ポリエチレングリコール,ポリオキシエ
チレンフェニルエーテル,ポリオキシエチレンオクチル
フェニルエーテル等のエーテル基含有水溶性高分子、ポ
リビニルアルコール等のアルコール水溶性高分子、サッ
カロース,グリコース等の各種糖類、メチルセルロー
ス,水溶性でんぷん等の水溶性多糖類及びこれらの誘導
体を使用することができるが、分子量400以上のポリ
エチレングリコールが好ましい。沸点又は分解温度20
0℃以上の水溶性有機化合物を使用することにより、金
属の担体での凝集を抑制することができる。
A metal can be supported on the silica-containing alumina carrier obtained as described above by the following method. The supporting method is preferably an impregnation method. Molybdenum trioxide, ammonium paramolybdate and the like are used as molybdenum compounds of Group 6 of the periodic table, and tungsten trioxide and ammonium tungstate are used as tungsten compounds. Nickel nitrate, basic nickel carbonate or the like is used as a nickel compound belonging to Groups 8 to 10 of the periodic table, and cobalt nitrate or basic cobalt carbonate is used as a cobalt compound. further,
As the phosphorus compound, phosphorus pentoxide, phosphoric acid and the like are used. The above-mentioned metal compound is represented by the following formula:
To 4.3 mol / l, metals of groups 8 to 10 of the periodic table are 0.3 to 2.4 mol / l, and phosphorus compounds are 1.1
A solution in which pure water is dissolved at a rate of about 2.0 mol / L and a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or more is dissolved at a rate of 50 to 200 g / L is used as an impregnation liquid, and the carrier absorbs water. Impregnation is carried out after adjustment so as to have the same amount as the ratio. Examples of the water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher include ether group-containing water-soluble compounds such as 1,3-butanediol, 1,4-butanediol, polyethylene glycol, polyoxyethylene phenyl ether, and polyoxyethylene octyl phenyl ether. Water-soluble polymers such as water-soluble polymers, alcohol-soluble polymers such as polyvinyl alcohol, various sugars such as saccharose and glucose, water-soluble polysaccharides such as methylcellulose and water-soluble starch, and derivatives thereof can be used, but polyethylene having a molecular weight of 400 or more can be used. Glycols are preferred. Boiling point or decomposition temperature 20
By using a water-soluble organic compound having a temperature of 0 ° C. or higher, aggregation of the metal on the carrier can be suppressed.

【0015】なお、含浸液のpH調整は特に限定されな
いが、硝酸,塩酸,硫酸等の無機酸、りんご酸,エチレ
ンジアミン4酢酸等の有機酸、アンモニアなどを使用し
て行うことができる。含浸後乾燥、焼成するが、乾燥温
度は80〜200℃(好ましくは100〜150℃)、
焼成温度は300〜600℃(好ましくは400〜55
0℃)である。焼成温度が低すぎると、担持成分と担体
と十分な結合を持つことができない場合があり、高すぎ
ると、担持成分の凝集が起こり易くなる。
The pH of the impregnating solution is not particularly limited, but can be adjusted by using an inorganic acid such as nitric acid, hydrochloric acid, sulfuric acid, etc., an organic acid such as malic acid, ethylenediaminetetraacetic acid, or ammonia. After impregnation, drying and firing are performed, and the drying temperature is 80 to 200 ° C (preferably 100 to 150 ° C),
The firing temperature is 300 to 600 ° C (preferably 400 to 55 ° C).
0 ° C). If the firing temperature is too low, it may not be possible to have a sufficient bond between the support component and the carrier, and if it is too high, the support component is likely to aggregate.

【0016】次に、本発明の水素化処理触媒を用いて水
素化処理を行う際には、予め安定化処理として予備硫化
を行うことが望ましい。この予備硫化処理の条件は特に
限定されないが、通常、予備硫化剤として、硫化水素,
二硫化炭素,チオフェン,ジメチルジスルフィド等を挙
げることができ、処理温度200〜400℃、処理圧力
常圧〜30MPaの範囲で行われる。
Next, when performing the hydrotreating using the hydrotreating catalyst of the present invention, it is desirable to perform preliminary sulfurization as a stabilizing process in advance. The conditions for this pre-sulfurization treatment are not particularly limited, but usually, hydrogen sulfide,
Examples thereof include carbon disulfide, thiophene, and dimethyl disulfide. The treatment is performed at a treatment temperature of 200 to 400 ° C. and a treatment pressure of normal pressure to 30 MPa.

【0017】触媒の形状については、特に重質炭化水素
油の水素化処理に使用される触媒は、通常押出成形で製
造されるものが多く、その形状は実質的に柱状をしてい
る。その断面は円形のものが多いが、三葉型、四葉型な
ど外表面を多くする工夫のあるものもある。また、球状
触媒もよく用いられる。球状触媒は圧縮強度や耐磨耗性
が特に要求される場合に使用される。
Regarding the shape of the catalyst, most of the catalysts used particularly for hydrotreating heavy hydrocarbon oils are usually produced by extrusion, and the shape is substantially columnar. The cross-section is often circular, but there are also three-lobed and four-lobed designs that have a large outer surface. Also, spherical catalysts are often used. The spherical catalyst is used when compressive strength and abrasion resistance are particularly required.

【0018】水素化処理条件については、原料油の種類
や目的により異なるが、一般的には反応温度200〜5
50℃(好ましくは220〜500℃)、水素分圧5〜
30MPa(好ましくは10〜25MPa)の範囲で行
われる。
The hydrotreating conditions vary depending on the type and purpose of the feedstock oil, but generally the reaction temperature is 200 to 5 hours.
50 ° C. (preferably 220-500 ° C.), hydrogen partial pressure 5-5
It is performed in a range of 30 MPa (preferably 10 to 25 MPa).

【0019】反応形式は特に限定されないが、通常は、
固定床,移動床,沸騰床,懸濁床等の種々のプロセスか
ら選択できるが、固定床が好ましい。固定床の場合の温
度、圧力以外の反応条件としては、液空間速度(LHS
V)は0.05〜10hr-1(好ましくは0.1〜5h
-1)、水素/オイル比は500〜2,500Nm3
kl(好ましくは700〜2,000Nm3 /kl)で
ある。
The type of reaction is not particularly limited, but usually,
The process can be selected from various processes such as a fixed bed, a moving bed, a boiling bed, and a suspended bed, but a fixed bed is preferred. Reaction conditions other than temperature and pressure in the case of a fixed bed include liquid hourly space velocity (LHS
V) is 0.05 to 10 hr -1 (preferably 0.1 to 5 h)
r -1 ), the hydrogen / oil ratio is from 500 to 2,500 Nm 3 /
kl (preferably 700 to 2,000 Nm 3 / kl).

【0020】本願の第二発明は、前記水素化処理触媒を
用いた重質炭化水素油の水素化処理方法である。該重質
炭化水素として、常圧残油,減圧残油,減圧軽油,脱蝋
減圧残油,アスファルテン油,タールサンド油及びこれ
らを一旦予備的二水素化処理した残油を挙げることがで
きる。また、上記残油と接触分解軽油との混合油(残油
/接触分解油(容量比)は1以上、好ましくは1.5以
上)も使用することができる。原料油の性状として、特
に限定されないが、代表的な性状としては下記のとおり
である。
[0020] The second invention of the present application is a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst. Examples of the heavy hydrocarbons include atmospheric residual oil, vacuum residual oil, vacuum gas oil, dewaxed vacuum residual oil, asphaltene oil, tar sands oil, and residual oils which have been subjected to preliminary dihydrogenation. Also, a mixed oil of the above-mentioned residual oil and catalytic cracking gas oil (residual oil / catalytic cracking oil (volume ratio) is 1 or more, preferably 1.5 or more) can be used. The properties of the feedstock are not particularly limited, but typical properties are as follows.

【0021】 比重(15/4℃):0.9530〜0.9940 動粘度(50℃):250〜3,000cSt 硫黄分:2.8〜4.5質量% 窒素分:1,500〜4,200ppm 金属分(V,Ni):30〜250ppm 残炭分:5〜18質量% アスファルテン分:0.5〜12.0質量% 反応条件としては、上記の原料油を、単層の水素化処理
触媒を充填して水素化処理してもよいが、より高脱硫活
性で長寿命な触媒にするために、上流側にアルミナ担体
に周期律表第6族の少なくとも一種及び周期律表第8〜
10族から選ばれる少なくとも一種を担持した脱金属触
媒を用い、下流側に本発明の水素化処理触媒を用いた触
媒システムにすればよい。
Specific gravity (15/4 ° C.): 0.9530 to 0.9940 Kinematic viscosity (50 ° C.): 250 to 3,000 cSt Sulfur content: 2.8 to 4.5 mass% Nitrogen content: 1,500 to 4 , 200 ppm Metal content (V, Ni): 30 to 250 ppm Residual carbon content: 5 to 18 mass% Asphaltene content: 0.5 to 12.0 mass% The reaction conditions are as follows: Hydrotreating may be carried out by filling the treated catalyst, but in order to obtain a catalyst with higher desulfurization activity and longer life, at least one member of Group 6 of the Periodic Table and Group 8 of the Periodic Table 8 are provided on the alumina carrier on the upstream side. ~
What is necessary is just to make the catalyst system using a demetallization catalyst carrying at least one member selected from Group 10 and using the hydrotreating catalyst of the present invention on the downstream side.

【0022】上記の上流側に使用する脱金属触媒の物性
等の例を下記に示す。周期律表第6族の金属として、モ
リブデン、タングステンなどを挙げることができるが、
モリブデンが好ましい。第6族金属の担持量は、触媒基
準で、酸化物基準で2〜15質量、好ましくは4〜12
質量%である。周期律表第8〜10族の金属として、コ
バルト、ニッケルなどを挙げることができるが、ニッケ
ルが好ましい。第8〜10族金属の担持量は、触媒基準
で、酸化物基準で1〜4質量%、好ましくは1.5〜
2.5質量%である。担体としては、アルミナが望まし
く、触媒の細孔径は100〜250Å(好ましくは15
0〜220Å)、比表面積は、80〜200m2 /g
(好ましくは100〜180m2 /g)、細孔容積は
0.4〜1.0cc/g(好ましくは0.5〜0.9c
c/g)である。
Examples of the physical properties of the demetalization catalyst used on the upstream side are shown below. Molybdenum, tungsten, and the like can be given as metals of Group 6 of the periodic table.
Molybdenum is preferred. The supported amount of the Group 6 metal is 2 to 15 mass, preferably 4 to 12 mass on the basis of the catalyst and on the basis of the oxide.
% By mass. Examples of metals belonging to Groups 8 to 10 of the periodic table include cobalt and nickel, with nickel being preferred. The supported amount of the Group 8 to 10 metal is 1 to 4% by mass, preferably 1.5 to 4% by mass, based on the catalyst and the oxide.
2.5% by mass. As the support, alumina is desirable, and the pore size of the catalyst is 100 to 250 ° (preferably 15 to 250 °).
0 to 220 °), and the specific surface area is 80 to 200 m 2 / g.
(Preferably 100 to 180 m 2 / g) and a pore volume of 0.4 to 1.0 cc / g (preferably 0.5 to 0.9 c / g).
c / g).

【0023】脱金属触媒と本発明の水素化処理触媒の充
填割合は、脱金属触媒が10〜50容量%(好ましくは
20〜40容量%)に対して、本発明の水素化処理触媒
は50〜90容量%(好ましくは60〜80容量%)で
ある。
The filling ratio of the demetallizing catalyst and the hydrotreating catalyst of the present invention is such that the demetallizing catalyst is 10 to 50% by volume (preferably 20 to 40% by volume) and the hydrotreating catalyst of the present invention is 50% by volume. To 90% by volume (preferably 60 to 80% by volume).

【0024】[0024]

【実施例】次に、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例によりなんら制限される
ものではない。 〔実施例1〕純水2.38リットルを70℃に加温し、
攪拌しながら、水ガラス16gを添加してシリカ溶液S
1を得た。溶液のpHは9.3であった。また、純水1
リットルに、水酸化ナトリウム35.4gを溶解させ、
さらに、アルミン酸ソーダ99.3gを添加して、均一
なアルミナ溶液B1を得た。さらに、純水1リットルに
硝酸アルミニウム500gを溶解させ、アルミナ溶液A
1を得た。次に、シリカ溶液S1にアルミナ溶液A1を
pH3.6になるまで添加した。この時、溶液中には白
色のゲルが生成した。次にアルミナ溶液B1をpH9.
0になるまで添加して、5分間攪拌しながらゲルを熟成
させた。続いて再びアルミナ溶液A1を添加して、pH
を3.6とし、攪拌しながら5分間ゲルを熟成させた。
このようにpHを3.6から9.0の間で変化させる操
作を10回繰り返した。その後、得られたゲルをろ過、
洗浄してシリカ含有アルミナゲルを580g得た。この
ゲルを120℃、16時間乾燥させ、さらに500℃で
2時間焼成してシリカ含有アルミナ担体C1を得た。
EXAMPLES Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. [Example 1] 2.38 liters of pure water was heated to 70 ° C,
While stirring, 16 g of water glass was added and silica solution S was added.
1 was obtained. The pH of the solution was 9.3. Also, pure water 1
Dissolve 35.4 g of sodium hydroxide in liter,
Further, 99.3 g of sodium aluminate was added to obtain a uniform alumina solution B1. Further, 500 g of aluminum nitrate was dissolved in 1 liter of pure water, and alumina solution A was used.
1 was obtained. Next, the alumina solution A1 was added to the silica solution S1 until the pH reached 3.6. At this time, a white gel was formed in the solution. Next, the alumina solution B1 was adjusted to pH9.
The mixture was added to 0, and the gel was aged while stirring for 5 minutes. Subsequently, alumina solution A1 was added again, and the pH was adjusted.
Was adjusted to 3.6, and the gel was aged for 5 minutes with stirring.
The operation of changing the pH between 3.6 and 9.0 was repeated 10 times. Then, the obtained gel is filtered,
After washing, 580 g of a silica-containing alumina gel was obtained. This gel was dried at 120 ° C. for 16 hours, and calcined at 500 ° C. for 2 hours to obtain a silica-containing alumina support C1.

【0025】三酸化モリブデン83g、塩基性炭酸ニッ
ケル37g(NiOとして20g)、正リン酸(純度8
5%)38gとポリエチレングリコール(分子量40
0,分解温度200℃以上)30gをイオン交換水に溶
解させ、全量を275ccの含浸液とした。次にその含
浸液55ccを前記のシリカ含有アルミナ担体C1の吸
水量に見合った量に調製し、100gに常圧含浸させ
た。この担持物を、120℃で3時間乾燥させて、空気
中500℃、3時間焼成して触媒Iを得た。その物性を
第1表に示す。
83 g of molybdenum trioxide, 37 g of basic nickel carbonate (20 g as NiO), orthophosphoric acid (purity 8
5 g) and polyethylene glycol (molecular weight 40)
(0, decomposition temperature of 200 ° C. or higher) 30 g was dissolved in ion-exchanged water, and the total amount was 275 cc. Next, 55 cc of the impregnating liquid was adjusted to an amount corresponding to the water absorption of the silica-containing alumina carrier C1, and 100 g of the impregnated liquid was impregnated at normal pressure. This supported material was dried at 120 ° C. for 3 hours, and calcined in air at 500 ° C. for 3 hours to obtain Catalyst I. The physical properties are shown in Table 1.

【0026】上記のようにして得られた触媒Iについ
て、下記の方法で脱硫活性試験を実施した。超小型高圧
固定床反応装置の反応管に、粉砕しメッシュにより粒径
を揃えた触媒200mgを充填し、硫化水素/水素ガス
(10%硫化水素)を50ミリリットル/分で400
℃、2時間流通させて、予備硫化した。そして、温度3
50℃でチオフェン(6%)を常圧水素気流中にて50
ミリリットル/分流通させて3時間後のチオフェンの転
化率を測定した。結果を第1表に示す。なお、脱硫活性
の評価としてはチオフェン転化の触媒質量あたりの速度
定数を用いた。
The catalyst I obtained as described above was subjected to a desulfurization activity test by the following method. A reaction tube of an ultra-small high-pressure fixed-bed reactor is filled with 200 mg of a crushed and meshed catalyst having a uniform particle size, and hydrogen sulfide / hydrogen gas (10% hydrogen sulfide) is supplied at a rate of 50 ml / min.
The mixture was allowed to flow at 2 ° C. for 2 hours to carry out preliminary sulfurization. And temperature 3
At 50 ° C., thiophene (6%) was added at 50 ° C.
The thiophene conversion was measured 3 hours after flowing at a flow rate of milliliter / minute. The results are shown in Table 1. The rate constant per thiophene conversion per catalyst mass was used to evaluate the desulfurization activity.

【0027】〔実施例2〕三酸化モリブデン108g、
塩基性炭酸ニッケル48g(NiOとして26g)、正
リン酸(純度85%)38g、りんご酸5gとポリエチ
レングリコール(分子量400,分解温度200℃以
上)30gをイオン交換水に溶解させ、全量を275c
cの含浸液とした。次にその含浸液55ccを実施例1
で調製したシリカ含有アルミナ担体C1の吸水量に見合
った量に調製し、100gに常圧含浸させた。この担持
物を、120℃で3時間乾燥させて、空気中500℃、
3時間焼成して触媒IIを得た。その物性を第1表に示
す。その触媒IIについて、実施例1と同様に脱硫活性試
験を実施した。結果を第1表に示す。
Example 2 108 g of molybdenum trioxide,
48 g of basic nickel carbonate (26 g as NiO), 38 g of orthophosphoric acid (85% purity), 5 g of malic acid and 30 g of polyethylene glycol (molecular weight 400, decomposition temperature 200 ° C. or higher) are dissolved in ion-exchanged water, and the total amount is 275 c.
The impregnating liquid of c was used. Next, 55 cc of the impregnating liquid was used in Example 1.
Was adjusted to an amount corresponding to the amount of water absorption of the silica-containing alumina carrier C1 prepared in the above section, and 100 g of the carrier was impregnated at normal pressure. The support was dried at 120 ° C. for 3 hours, and then dried in air at 500 ° C.
After calcining for 3 hours, catalyst II was obtained. The physical properties are shown in Table 1. The catalyst II was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.

【0028】〔実施例3〕実施例1において、ポリエチ
レングリコール30gを添加しなかったこと以外は同様
にして触媒III を得た。その物性を第1表に示す。その
触媒III について、実施例1と同様に脱硫活性試験を実
施した。結果を第1表に示す。
Example 3 A catalyst III was obtained in the same manner as in Example 1 except that 30 g of polyethylene glycol was not added. The physical properties are shown in Table 1. The catalyst III was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.

【0029】〔実施例4〕実施例2において、ポリエチ
レングリコール30gを添加しなかったこと以外は同様
にして触媒IVを得た。その物性を第1表に示す。その触
媒IVについて、実施例1と同様に脱硫活性試験を実施し
た。結果を第1表に示す。
Example 4 A catalyst IV was obtained in the same manner as in Example 2 except that 30 g of polyethylene glycol was not added. The physical properties are shown in Table 1. The catalyst IV was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.

【0030】〔実施例5〕実施例2において、ポリエチ
レングリコール30gの代わりに、1,3−ブタンジオ
ール(沸点204℃)を使用したこと以外は同様にして
触媒Vを得た。その物性を第1表に示す。その触媒Vに
ついて、実施例1と同様に脱硫活性試験を実施した。結
果を第1表に示す。
Example 5 A catalyst V was obtained in the same manner as in Example 2, except that 1,3-butanediol (boiling point: 204 ° C.) was used instead of 30 g of polyethylene glycol. The physical properties are shown in Table 1. The catalyst V was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.

【0031】〔比較例1〕純水1リットルに、水酸化ナ
トリウム35.4gを溶解させ、さらに、アルミン酸ソ
ーダ99.3gを添加して、均一なアルミナ溶液B2を
得た。さらに、純水1リットルに硝酸アルミニウム50
0gを溶解させ、アルミナ溶液A2を得た。純水2.3
8リットルを70℃に加温し、攪拌しながら、アルミナ
溶液A2をpH3.6になるまで添加した。次にアルミ
ナ溶液B2をpH9.0になるまで添加して、5分間攪
拌しながら熟成させた。続いて再びアルミナ溶液A2を
添加して、pHを3.6とし、攪拌しなが5分間熟成さ
せた。このようにpHを3.6から9.0の間で変化さ
せる操作を8回繰り返した。その後、得られたゲルをろ
過、洗浄してアルミナゲルを580g得た。このゲルを
120℃、16時間乾燥させ、さらに500℃で2時間
焼成してアルミナ担体C2を得た。
Comparative Example 1 35.4 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.3 g of sodium aluminate was added to obtain a uniform alumina solution B2. Furthermore, 50 l of aluminum nitrate is added to 1 liter of pure water.
0 g was dissolved to obtain an alumina solution A2. 2.3 pure water
Eight liters were heated to 70 ° C., and while stirring, alumina solution A2 was added until pH 3.6. Next, alumina solution B2 was added until the pH became 9.0, and the mixture was aged while stirring for 5 minutes. Subsequently, alumina solution A2 was added again to adjust the pH to 3.6, and the mixture was aged for 5 minutes with stirring. The operation of changing the pH between 3.6 and 9.0 was repeated eight times. Thereafter, the obtained gel was filtered and washed to obtain 580 g of an alumina gel. The gel was dried at 120 ° C. for 16 hours and calcined at 500 ° C. for 2 hours to obtain an alumina carrier C2.

【0032】三酸化モリブデン83g、塩基性炭酸ニッ
ケル37g(NiOとして20g)、正リン酸(純度8
5%)38gとポリエチレングリコール(分子量40
0,分解温度200℃以上)30gをイオン交換水に溶
解させ、全量を275ccの含浸液とした。次にその含
浸液55ccを前記のアルミナ担体C2の吸水量に見合
った量に調製し、100gに常圧含浸させた。この担持
物を、120℃で3時間乾燥させて、空気中500℃、
3時間焼成して触媒VIを得た。その物性を第1表に示
す。その触媒VIについて、実施例1と同様に脱硫活性試
験を実施した。結果を第1表に示す。
83 g of molybdenum trioxide, 37 g of basic nickel carbonate (20 g as NiO), orthophosphoric acid (purity 8
5 g) and polyethylene glycol (molecular weight 40)
(0, decomposition temperature of 200 ° C. or higher) 30 g was dissolved in ion-exchanged water, and the total amount was 275 cc. Next, 55 cc of the impregnating liquid was adjusted to an amount corresponding to the water absorption of the alumina carrier C2, and 100 g of the impregnated liquid was impregnated at normal pressure. The support was dried at 120 ° C. for 3 hours, and then dried in air at 500 ° C.
After calcining for 3 hours, catalyst VI was obtained. The physical properties are shown in Table 1. The catalyst VI was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.

【0033】〔比較例2〕純水2.38リットルを70
℃に加温し、攪拌しながら、水ガラス3.3gを添加し
てシリカ溶液S2を得た。溶液のpHは8.5であっ
た。また、純水1リットルに水酸化ナトリウム35.4
gを溶解させ、さらにアルミン酸ソーダ99.3gを添
加して均一なアルミナ溶液B3を得た。さらに、純水1
リットルに硝酸アルミニウム500gを溶解させ、アル
ミナ溶液A3を得た。次に、シリカ溶液S2にアルミナ
溶液A3をpH3.6になるまで添加した。この時、溶
液中には白色のゲルが生成した。次に、アルミナ溶液B
3をpH9.0になるまで添加して、5分間攪拌しなが
らゲルを熟成させた。続いて再びアルミナ溶液A3を添
加してpHを3.6とし、攪拌しながら5分間ゲルを熟
成させた。このようにpHを3.6〜9.0の間で変化
させる操作を10回繰り返した。その後、得られたゲル
をろ過、洗浄してシリカ含有アルミナゲルを580g得
た。このゲルを120℃、16時間乾燥させ、さらに5
00℃で2時間焼成してシリカ含有アルミン担体C3を
得た。
[Comparative Example 2] 2.38 liters of pure water was added to 70
The mixture was heated to ℃ and stirred, 3.3 g of water glass was added to obtain a silica solution S2. The pH of the solution was 8.5. Also, 35.4% sodium hydroxide was added to 1 liter of pure water.
g, and 99.3 g of sodium aluminate was further added to obtain a uniform alumina solution B3. Furthermore, pure water 1
500 g of aluminum nitrate was dissolved in 1 liter to obtain an alumina solution A3. Next, the alumina solution A3 was added to the silica solution S2 until the pH reached 3.6. At this time, a white gel was formed in the solution. Next, alumina solution B
3 was added until pH 9.0, and the gel was aged while stirring for 5 minutes. Subsequently, alumina solution A3 was added again to adjust the pH to 3.6, and the gel was aged for 5 minutes with stirring. The operation of changing the pH between 3.6 and 9.0 in this manner was repeated 10 times. Thereafter, the obtained gel was filtered and washed to obtain 580 g of a silica-containing alumina gel. The gel was dried at 120 ° C. for 16 hours, and further dried for 5 hours.
The mixture was calcined at 00 ° C. for 2 hours to obtain a silica-containing alumina carrier C3.

【0034】三酸化モリブデン108g、塩基性炭酸ニ
ッケル48g(NiOとして26g)、正リン酸(純度
85%)38g、りんご酸5gとポリエチレングリコー
ル(分子量400,分解温度200℃以上)40gをイ
オン交換水に溶解させ、全量を275ccの含浸液とし
た。次にその含浸液55ccをシリカ含有アルミナ担体
C3の吸水量に見合った量に調製し、100gに常圧含
浸させた。この担持物を、120℃で3時間乾燥させ
て、空気中500℃、3時間焼成して触媒VII を得た。
その物性を第1表に示す。その触媒VII について、実施
例1と同様に脱硫活性試験を実施した。結果を第1表に
示す。
108 g of molybdenum trioxide, 48 g of basic nickel carbonate (26 g as NiO), 38 g of orthophosphoric acid (purity 85%), 5 g of malic acid and 40 g of polyethylene glycol (molecular weight 400, decomposition temperature 200 ° C. or more) were ion-exchanged with water. To make 275 cc of the impregnating liquid. Next, 55 cc of the impregnating liquid was adjusted to an amount corresponding to the water absorption of the silica-containing alumina carrier C3, and 100 g of the impregnating liquid was impregnated at normal pressure. The supported material was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 3 hours to obtain a catalyst VII.
The physical properties are shown in Table 1. The catalyst VII was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.

【0035】〔比較例3〕比較例1において、ポリエチ
レングリコール30gを添加しなかったこと以外は同様
にして触媒VIIIを得た。その物性を第1表に示す。その
触媒VIIIについて、実施例1と同様に脱硫活性試験を実
施した。結果を第1表に示す。
Comparative Example 3 A catalyst VIII was obtained in the same manner as in Comparative Example 1, except that 30 g of polyethylene glycol was not added. The physical properties are shown in Table 1. The catalyst VIII was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.

【0036】〔比較例4〕比較例2において、ポリエチ
レングリコール30gを添加しなかったこと以外は同様
にして触媒IXを得た。その物性を第1表に示す。その触
媒IXについて、実施例1と同様に脱硫活性試験を実施し
た。結果を第1表に示す。
Comparative Example 4 A catalyst IX was obtained in the same manner as in Comparative Example 2, except that 30 g of polyethylene glycol was not added. The physical properties are shown in Table 1. The catalyst IX was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】〔実施例6〕上流側に充填する脱金属触媒の調製 純水1リットルに、水酸化ナトリウム35.4gを溶解
させ、さらに、アルミン酸ソーダ99.3gを添加し
て、均一なアルミナ溶液B4を得た。また、純水1リッ
トルに硝酸アルミニウム500gを溶解させ、アルミナ
溶液A4を得た。純水2.38リットルを70℃に加温
し、攪拌しながら、アルミナ溶液A4をpH2.6にな
るまで添加した。次にアルミナ溶液B4をpH9.0に
なるまで添加して、5分間攪拌しながら熟成させた。続
いて再びアルミナ溶液A4を添加して、pHを3.6と
し、攪拌しなが5分間熟成させた。このようにpHを
3.6から9.0の間で変化させる操作を13回繰り返
した。その後、得られたゲルをろ過、洗浄してアルミナ
ゲルを1,075g得た。このゲルを120℃、16時
間乾燥させ、さらに500℃で2時間焼成してアルミナ
担体C4を得た。
Example 6 Preparation of Demetallizing Catalyst Filled Upstream 35.4 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.3 g of sodium aluminate was added. Solution B4 was obtained. Further, 500 g of aluminum nitrate was dissolved in 1 liter of pure water to obtain an alumina solution A4. 2.38 liters of pure water was heated to 70 ° C., and while stirring, alumina solution A4 was added until pH 2.6. Next, alumina solution B4 was added until the pH became 9.0, and the mixture was aged while stirring for 5 minutes. Subsequently, alumina solution A4 was added again to adjust the pH to 3.6, and the mixture was aged for 5 minutes with stirring. The operation of changing the pH between 3.6 and 9.0 in this way was repeated 13 times. Thereafter, the obtained gel was filtered and washed to obtain 1,075 g of an alumina gel. This gel was dried at 120 ° C. for 16 hours and calcined at 500 ° C. for 2 hours to obtain an alumina carrier C4.

【0041】三酸化モリブデン31g、塩基性炭酸ニッ
ケル11g(NiOとして6g)、りんご酸50gをイ
オン交換水に溶解させ、全量を200ccの含浸液とし
た。次にその含浸液55ccを前記のアルミナ担体C4
の吸水量に見合った量に調製し、100gに常圧含浸さ
せた。この担持物を、120℃で3時間乾燥させて、空
気中500℃、3時間焼成して触媒Xを得た。その物性
を第2表に示す。
31 g of molybdenum trioxide, 11 g of basic nickel carbonate (6 g as NiO) and 50 g of malic acid were dissolved in ion-exchanged water to make a total amount of 200 cc. Next, 55 cc of the impregnating liquid was added to the alumina carrier C4.
Was adjusted to an amount corresponding to the water absorption, and 100 g was impregnated at normal pressure. The supported material was dried at 120 ° C. for 3 hours, and calcined in air at 500 ° C. for 3 hours to obtain a catalyst X. The physical properties are shown in Table 2.

【0042】[0042]

【表4】 [Table 4]

【0043】上流側に触媒Xの脱金属触媒を30容量
%、下流側に触媒Iの水素化処理触媒を70容量%を反
応管に充填して、下記のとおり触媒の性能を評価した。
結果を第4表に示す。
The reaction tube was charged with 30% by volume of the demetallizing catalyst of the catalyst X on the upstream side and 70% by volume of the hydrotreating catalyst of the catalyst I on the downstream side, and the performance of the catalyst was evaluated as follows.
The results are shown in Table 4.

【0044】・触媒の性能評価 小型高圧固定床反応装置の反応管に、上記の脱メタル触
媒と水素化処理触媒を充填した。中東系軽質軽油(LG
O,硫黄分1.18質量%、窒素分70ppm)にジメ
チルジスルフィドを添加して硫黄濃度を2.5質量%に
調整した予備硫化油を調製した。この予備硫化油を、上
記の触媒に、水素ガスとともに250℃で24時間流通
させて予備硫化した。また、原料油としては、金属(バ
ナジウム,ニッケル)含有量が非常に多い中東系原油の
常圧残油を用いた。その性状を第3表に示す。
Evaluation of catalyst performance A reaction tube of a small-sized high-pressure fixed-bed reactor was filled with the above-mentioned demetallizing catalyst and hydrotreating catalyst. Middle Eastern light oil (LG
O, sulfur content 1.18 mass%, nitrogen content 70 ppm) and dimethyl disulfide were added to prepare a preliminary sulfurized oil whose sulfur concentration was adjusted to 2.5 mass%. This pre-sulfurized oil was pre-sulfurized by flowing it through the above-mentioned catalyst together with hydrogen gas at 250 ° C. for 24 hours. In addition, as the raw material oil, an ordinary pressure residual oil of Middle Eastern crude oil having a very large metal (vanadium, nickel) content was used. The properties are shown in Table 3.

【0045】[0045]

【表5】 [Table 5]

【0046】この原料油を、上記の予備硫化後の触媒
に、水素ガスとともに流通させて、以下の条件で水素化
処理を行った。 生成油のターゲット硫黄分:0.5質量% 水素分圧:13.5MPa 液空間速度(LHSV):0.6hr-1 水素/オイル比:850Nm3 /kl
The feedstock was passed through the catalyst after the preliminary sulfurization together with hydrogen gas, and was subjected to hydrotreatment under the following conditions. Target sulfur content of generated oil: 0.5% by mass Hydrogen partial pressure: 13.5 MPa Liquid hourly space velocity (LHSV): 0.6 hr -1 Hydrogen / oil ratio: 850 Nm 3 / kl

【0047】〔比較例5〕上流側に触媒Xの脱メタル触
媒を30容量%、下流側に触媒VIIIの水素化処理触媒を
70容量%を反応管に充填して、実施例6と同様に触媒
の性能を評価した。結果を第4表に示す。
Comparative Example 5 A reaction tube was charged with 30% by volume of a demetalization catalyst for the catalyst X on the upstream side and 70% by volume of a hydrogenation catalyst for the catalyst VIII on the downstream side, in the same manner as in Example 6. The performance of the catalyst was evaluated. The results are shown in Table 4.

【0048】[0048]

【表6】 [Table 6]

【0049】[0049]

【発明の効果】本発明は、より低温における高脱硫活性
と耐金属蓄積性を有する水素化処理触媒であるので、そ
の水素化処理触媒を使用し重質炭化水素油を水素化処理
を行うと、従来より運転初期温度を低くでき、また触媒
の劣化速度を緩和できるため、触媒の寿命が長くなり、
原料油の増処理と触媒交換頻度の低減につながる。
The present invention is a hydrotreating catalyst having high desulfurization activity and metal accumulation resistance at lower temperatures. Therefore, when the hydrotreating catalyst is used to hydrotreat heavy hydrocarbon oil, In addition, since the initial operation temperature can be lowered and the deterioration rate of the catalyst can be reduced, the life of the catalyst is prolonged,
This leads to an increase in the amount of feedstock and a reduction in the frequency of catalyst replacement.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/10 301 C10G 45/08 A C10G 45/08 65/04 65/04 B01J 23/64 103M Fターム(参考) 4G069 AA03 BA03A BA03B BA03C BC57A BC59A BC59B BC59C BC65A BC68A BC68B BC68C BC69A CC02 DA06 EA02Y EC03X EC07X EC15X FA02 FB14 4H029 CA00 DA00 DA09 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B01J 35/10 301 C10G 45/08 A C10G 45/08 65/04 65/04 B01J 23/64 103M F-term (Reference) 4G069 AA03 BA03A BA03B BA03C BC57A BC59A BC59B BC59C BC65A BC68A BC68B BC68C BC69A CC02 DA06 EA02Y EC03X EC07X EC15X FA02 FB14 4H029 CA00 DA00 DA09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 シリカを1〜10質量%含有するアルミ
ナ担体に、周期律表第6族の金属の少なくとも一種及び
周期律表第8〜10族の金属から選ばれる少なくとも一
種を担持した触媒であって、該触媒の平均細孔直径(P
D)が100〜170Åで、比表面積(SA)が140
〜250m2 /gであり、かつ両者が下記の(1)式を
満足し、さらに全細孔容量が0.4〜1.0cc/gで
あることを特徴とする水素化処理触媒。 SA+1.65PD > 410 ・・・(1)
1. A catalyst in which at least one metal selected from Group 6 of the periodic table and at least one metal selected from Group 8 to 10 of the periodic table are supported on an alumina carrier containing 1 to 10% by mass of silica. Then, the average pore diameter (P
D) is 100-170 ° and the specific surface area (SA) is 140
水 素 250 m 2 / g, both satisfy the following formula (1), and have a total pore volume of 0.4 to 1.0 cc / g. SA + 1.65PD> 410 (1)
【請求項2】 周期律表第6族金属がモリブデンであ
り、周期律表第8〜10族金属がニッケルである請求項
1記載の水素化処理触媒。
2. The hydrotreating catalyst according to claim 1, wherein the metal belonging to Group 6 of the periodic table is molybdenum, and the metal belonging to Groups 8 to 10 of the periodic table is nickel.
【請求項3】 触媒がリンを3〜5質量%含有するもの
である請求項1又は2に記載の水素化処理触媒。
3. The hydrotreating catalyst according to claim 1, wherein the catalyst contains 3 to 5% by mass of phosphorus.
【請求項4】 担体への金属の担持が、沸点又は分解温
度200℃以上の水溶性有機化合物を含有する含浸液を
用いてなされたものである請求項1〜3のいずれかに記
載の水素化処理触媒。
4. The hydrogen according to claim 1, wherein the supporting of the metal on the carrier is performed using an impregnating liquid containing a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher. Conversion catalyst.
【請求項5】 水溶性有機化合物がポリエチレングリコ
ールである請求項4記載の水素化処理触媒。
5. The hydrotreating catalyst according to claim 4, wherein the water-soluble organic compound is polyethylene glycol.
【請求項6】 請求項1〜5のいずれかに記載した水素
化処理触媒を用いた重質炭化水素油の水素化処理方法。
6. A method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst according to any one of claims 1 to 5.
【請求項7】 上流側に脱金属触媒、下流側に請求項1
〜5のいずれかに記載の水素化処理触媒を用いた請求項
6記載の重質炭化水素油の水素化処理方法。
7. The demetalization catalyst on the upstream side, and the demetalization catalyst on the downstream side.
The method for hydrotreating heavy hydrocarbon oil according to claim 6, wherein the hydrotreating catalyst according to any one of (5) to (5) is used.
【請求項8】 重質炭化水素油が減圧軽油、常圧残油又
は減圧残油である請求項6又は7に記載の重質炭化水素
油の水素化処理方法。
8. The method for hydrotreating heavy hydrocarbon oil according to claim 6, wherein the heavy hydrocarbon oil is a vacuum gas oil, a normal pressure residual oil or a vacuum residual oil.
JP2000234049A 1999-09-29 2000-08-02 Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst Expired - Fee Related JP4865940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000234049A JP4865940B2 (en) 1999-09-29 2000-08-02 Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP27656399 1999-09-29
JP11-276563 1999-09-29
JP1999276563 1999-09-29
JP2000234049A JP4865940B2 (en) 1999-09-29 2000-08-02 Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst

Publications (2)

Publication Number Publication Date
JP2001162168A true JP2001162168A (en) 2001-06-19
JP4865940B2 JP4865940B2 (en) 2012-02-01

Family

ID=26551980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000234049A Expired - Fee Related JP4865940B2 (en) 1999-09-29 2000-08-02 Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst

Country Status (1)

Country Link
JP (1) JP4865940B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998488A1 (en) * 2012-11-29 2014-05-30 IFP Energies Nouvelles HYDROTREATMENT CATALYST FROM ALUMIN GEL AND METHOD OF PREPARING SUCH A CATALYST
CN103861627A (en) * 2012-12-18 2014-06-18 Ifp新能源公司 Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
FR2999454A1 (en) * 2012-12-18 2014-06-20 IFP Energies Nouvelles New catalyst comprising at least one element of group VIB, optionally at least one element of group VIII, phosphorous and at least one aluminosilicate oxide support, useful for hydrotreating heavy hydrocarbon feedstocks
CN112973717A (en) * 2019-12-16 2021-06-18 北京中能炜业科技发展有限公司 Hydrofining catalyst and preparation method thereof
CN116060022A (en) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 Hydrogenation catalyst and production method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335705A (en) * 1976-09-14 1978-04-03 Toa Nenryo Kogyo Kk Hydrogenation and purification of petroleum wax
JPS5437105A (en) * 1977-08-29 1979-03-19 Chiyoda Chem Eng & Constr Co Ltd Two-stage hydrogenation of heavy oil
US4941964A (en) * 1988-03-14 1990-07-17 Texaco Inc. Hydrotreatment process employing catalyst with specified pore size distribution
JPH0688081A (en) * 1992-04-20 1994-03-29 Texaco Dev Corp Hydrogenation conversion method
JPH06200261A (en) * 1992-09-29 1994-07-19 Texaco Dev Corp Hydroconversion and catalyst used for it
JPH06228572A (en) * 1993-02-03 1994-08-16 Idemitsu Kosan Co Ltd Hydrotreatment of kerosene or gas oil fraction
JPH0889816A (en) * 1994-09-21 1996-04-09 Tonen Corp Catalyst for processing of hydrogenation
JPH10296091A (en) * 1997-04-30 1998-11-10 Tonen Corp Catalyst for hydrogenation treatment and method for hydrogenation treatment for hydrocarbon oil using the same
JPH11246901A (en) * 1998-03-02 1999-09-14 Hitachi Zosen Corp Production of metallic particulate and method for depositing the particular on porous carrier
JP2000210565A (en) * 1999-01-26 2000-08-02 Nippon Kecchen Kk Catalyst for hydrogenation and hydrogenation method
JP2001003066A (en) * 1999-06-24 2001-01-09 Idemitsu Kosan Co Ltd Production of desulfurized fuel oil

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335705A (en) * 1976-09-14 1978-04-03 Toa Nenryo Kogyo Kk Hydrogenation and purification of petroleum wax
JPS5437105A (en) * 1977-08-29 1979-03-19 Chiyoda Chem Eng & Constr Co Ltd Two-stage hydrogenation of heavy oil
US4941964A (en) * 1988-03-14 1990-07-17 Texaco Inc. Hydrotreatment process employing catalyst with specified pore size distribution
JPH0688081A (en) * 1992-04-20 1994-03-29 Texaco Dev Corp Hydrogenation conversion method
JPH06200261A (en) * 1992-09-29 1994-07-19 Texaco Dev Corp Hydroconversion and catalyst used for it
JPH06228572A (en) * 1993-02-03 1994-08-16 Idemitsu Kosan Co Ltd Hydrotreatment of kerosene or gas oil fraction
JPH0889816A (en) * 1994-09-21 1996-04-09 Tonen Corp Catalyst for processing of hydrogenation
JPH10296091A (en) * 1997-04-30 1998-11-10 Tonen Corp Catalyst for hydrogenation treatment and method for hydrogenation treatment for hydrocarbon oil using the same
JPH11246901A (en) * 1998-03-02 1999-09-14 Hitachi Zosen Corp Production of metallic particulate and method for depositing the particular on porous carrier
JP2000210565A (en) * 1999-01-26 2000-08-02 Nippon Kecchen Kk Catalyst for hydrogenation and hydrogenation method
JP2001003066A (en) * 1999-06-24 2001-01-09 Idemitsu Kosan Co Ltd Production of desulfurized fuel oil

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998488A1 (en) * 2012-11-29 2014-05-30 IFP Energies Nouvelles HYDROTREATMENT CATALYST FROM ALUMIN GEL AND METHOD OF PREPARING SUCH A CATALYST
WO2014083273A1 (en) * 2012-11-29 2014-06-05 IFP Energies Nouvelles Hydrotreatment catalyst comprising a support obtained from an alumina gel and method for preparing said catalyst
WO2014083252A1 (en) * 2012-11-29 2014-06-05 IFP Energies Nouvelles Hydrotreatment catalyst comprising a support obtained from an alumina gel and method for preparing said catalyst
JP2015536823A (en) * 2012-11-29 2015-12-24 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Hydroprocessing catalyst from alumina gel and method for preparing the catalyst
US9931617B2 (en) 2012-11-29 2018-04-03 IFP Energies Nouvelles Hydrotreatment catalyst comprising a support obtained from an alumina gel and method for preparing said catalyst
CN103861627A (en) * 2012-12-18 2014-06-18 Ifp新能源公司 Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
FR2999453A1 (en) * 2012-12-18 2014-06-20 IFP Energies Nouvelles RESIDUAL HYDROTREATMENT CATALYST COMPRISING VANADIUM AND USE THEREOF IN A RESIDUAL HYDROCONVERSION PROCESS
FR2999454A1 (en) * 2012-12-18 2014-06-20 IFP Energies Nouvelles New catalyst comprising at least one element of group VIB, optionally at least one element of group VIII, phosphorous and at least one aluminosilicate oxide support, useful for hydrotreating heavy hydrocarbon feedstocks
EP2745931A1 (en) * 2012-12-18 2014-06-25 IFP Energies nouvelles Device for hydrotreating of hyrocarbon residues comprising vanadium and use thereof in a method for hydrocoversion of waste
CN112973717A (en) * 2019-12-16 2021-06-18 北京中能炜业科技发展有限公司 Hydrofining catalyst and preparation method thereof
CN112973717B (en) * 2019-12-16 2024-01-30 山西腾茂科技股份有限公司 Hydrofining catalyst and preparation method thereof
CN116060022A (en) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 Hydrogenation catalyst and production method thereof

Also Published As

Publication number Publication date
JP4865940B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US11642664B2 (en) Silica containing alumina supports, catalysts made therefrom and processes using the same
EP3023147B1 (en) Iron-based hydrogenation catalyst and applications thereof
US9669394B2 (en) Resid hydrotreating catalyst containing titania
EP0449144B2 (en) Catalyst composition for hydrotreating of hydrocarbons and hydrotreating process using the same
RU2573561C2 (en) Hydrodesulphurisation catalyst, method for its preparation and process of deep hydropurification of hydrocarbon raw material
KR20140079304A (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
CN103374387B (en) A kind of nickel and the high heavy oil hydrogenation treatment method of content of vanadium
JP2001162168A (en) Hydrogenation catalyst and method for hydrogenation treatment of heavy hydrocarbon oil by using that catalyst
CN103374392B (en) A kind of hydrogenation modification method of catalytically cracked stock
JPH0631164A (en) Alumina-containing carrier and catalyst for hydrogen treating of hydrocarbon oil
JP4621371B2 (en) Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed
JP4938178B2 (en) Hydrocarbon hydrotreating method
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst
JP2001104789A (en) Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst
JP4319812B2 (en) Hydroprocessing catalyst and hydrocarbon oil hydroprocessing method
JP5031790B2 (en) Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil
JPH0813328B2 (en) Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same
JP2001300325A (en) Catalyst for hydrogenative desulfurization denitration of hydrocarbon oil and manufacturing method
CN114749193A (en) Hydrogenation catalyst for producing low-sulfur marine fuel and preparation method thereof
JP3462292B2 (en) Hydrocracking method of petroleum distillate
JP2001314770A (en) Catalyst for hydrogenating heavy hydrocarbon oil and hydrogenating method to use the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees