JP4846195B2 - Lithium cobalt composite oxide, method for producing the same, and nonaqueous electrolyte secondary battery - Google Patents

Lithium cobalt composite oxide, method for producing the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4846195B2
JP4846195B2 JP2003349599A JP2003349599A JP4846195B2 JP 4846195 B2 JP4846195 B2 JP 4846195B2 JP 2003349599 A JP2003349599 A JP 2003349599A JP 2003349599 A JP2003349599 A JP 2003349599A JP 4846195 B2 JP4846195 B2 JP 4846195B2
Authority
JP
Japan
Prior art keywords
lithium
sulfate
composite oxide
cobalt composite
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003349599A
Other languages
Japanese (ja)
Other versions
JP2004149409A (en
Inventor
英和 粟野
克幸 根岸
義英 大石
信幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2003349599A priority Critical patent/JP4846195B2/en
Priority to KR1020030070539A priority patent/KR20040032796A/en
Priority to CA002462062A priority patent/CA2462062A1/en
Priority to TW093108828A priority patent/TW200514291A/en
Publication of JP2004149409A publication Critical patent/JP2004149409A/en
Application granted granted Critical
Publication of JP4846195B2 publication Critical patent/JP4846195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムコバルト複合酸化物及びその製造方法、非水電解質二次電池、並びに、携帯用電子機器に関する。   The present invention relates to a lithium cobalt composite oxide and a method for producing the same, a non-aqueous electrolyte secondary battery, and a portable electronic device.

六方晶系の層状結晶構造を持つ遷移金属酸化物は、適当なサイズの金属イオンを結晶の格子サイト及び/又は格子間に導入できることが知られている。特に、リチウム層間化合物は、特定の電位差の下でリチウムイオンを結晶格子サイト及び/又は格子間に導入し、再びこれを取り出すことができる。そして、リチウムコバルト複合酸化物、LiCoOを正極活物質としたリチウム二次電池は、高い体積エネルギー密度を有しているところ、携帯用電子機器を小型化、軽量化できるので、リチウム二次電池は携帯用パソコン、携帯電話の電源として急速に普及してきている。 It is known that a transition metal oxide having a hexagonal layered crystal structure can introduce metal ions of an appropriate size between crystal lattice sites and / or lattices. In particular, a lithium intercalation compound can introduce lithium ions between crystal lattice sites and / or lattices under a specific potential difference and extract them again. A lithium secondary battery using a lithium cobalt composite oxide and LiCoO 2 as a positive electrode active material has a high volumetric energy density, and can reduce the size and weight of a portable electronic device. Is rapidly spreading as a power source for portable PCs and mobile phones.

一方、高価なコバルトを安価な他の遷移金属、例えば、ニッケル、マンガン等に代替しようとする検討も行われている(例えば、特許文献1、特許文献2参照)。特許文献2には、LiCoNi(1−x)(0.05≦x<1)の組成式で示される原料から得られるリチウム複合酸化物が記載されており、このリチウム複合酸化物は、リチウムコバルト複合酸化物(LiCoO)のCo成分を部分的にNiに置き換えた後にも安定な結晶構造を保持し得るものである。このように従来の技術では、高価なコバルトをニッケル等に代替しようとしていた。
特開平11−71114号公報 特開平11−292550号公報
On the other hand, studies have been made to replace expensive cobalt with other inexpensive transition metals such as nickel and manganese (see, for example, Patent Document 1 and Patent Document 2). Patent Document 2 describes a lithium composite oxide obtained from a raw material represented by a composition formula of LiCo x Ni (1-x) O 2 (0.05 ≦ x <1), and this lithium composite oxide Can retain a stable crystal structure even after partially replacing the Co component of the lithium cobalt composite oxide (LiCoO 2 ) with Ni. As described above, the prior art has attempted to replace expensive cobalt with nickel or the like.
JP-A-11-71114 JP 11-292550 A

しかし、本発明者らが鋭意研究した結果、正極活物質として作用するリチウムコバルト複合酸化物(LiCoO)のCo成分を部分的にNiに代替すると、却って、リチウム二次電池の放電特性が悪化することが分かった。そこで、本発明では、放電特性が向上したリチウム二次電池を提供することを目的とする。 However, as a result of intensive studies by the present inventors, when the Co component of the lithium cobalt composite oxide (LiCoO 2 ) acting as the positive electrode active material is partially replaced with Ni, the discharge characteristics of the lithium secondary battery are deteriorated. I found out that Therefore, an object of the present invention is to provide a lithium secondary battery with improved discharge characteristics.

本発明は、より具体的には以下のようなものを提供する。   More specifically, the present invention provides the following.

(1) Ni含有量が100ppm以下であり、かつ下記化学式1で表されることを特徴とするリチウムコバルト複合酸化物。

Figure 0004846195
前記化学式1において、MはCoおよびNiを除く遷移金属元素、周期表の第2族、第13族、第14族及び第15族の元素から選ばれる1種以上の元素、Nはハロゲン原子を示す。xは0.10≦x≦1.25、yは0≦y≦0.05、zは0≦z≦0.05を表す。 (1) A lithium cobalt composite oxide having a Ni content of 100 ppm or less and represented by the following chemical formula 1.
Figure 0004846195
In Formula 1, M is a transition metal element excluding Co and Ni, one or more elements selected from Group 2, Group 13, Group 14 and Group 15 elements of the periodic table, and N is a halogen atom. Show. x represents 0.10 ≦ x ≦ 1.25, y represents 0 ≦ y ≦ 0.05, and z represents 0 ≦ z ≦ 0.05.

(2) 前記リチウムコバルト複合酸化物は、硫酸根を含有してなることを特徴とする(1)に記載のリチウムコバルト複合酸化物。   (2) The lithium cobalt composite oxide according to (1), wherein the lithium cobalt composite oxide contains a sulfate group.

(3) 前記Ni含有量が60ppm以下であることを特徴とする(1)または(2)に記載のリチウムコバルト複合酸化物。   (3) The lithium cobalt composite oxide according to (1) or (2), wherein the Ni content is 60 ppm or less.

(4) 非水電解質二次電池用リチウムコバルト酸化物であることを特徴とする(1)から(3)いずれかに記載のリチウムコバルト複合酸化物。   (4) The lithium cobalt composite oxide according to any one of (1) to (3), which is a lithium cobalt oxide for a nonaqueous electrolyte secondary battery.

(5) Ni含有量が100ppm以下のオキシ水酸化コバルトとリチウム化合物との混合体を700〜1100℃に加熱することを特徴とするリチウムコバルト複合酸化物の製造方法。   (5) A method for producing a lithium cobalt composite oxide, comprising heating a mixture of cobalt oxyhydroxide having a Ni content of 100 ppm or less and a lithium compound to 700 to 1100 ° C.

(6) Ni含有量が100ppm以下のオキシ水酸化コバルトとリチウム化合物との混合体に、ハロゲン化合物または硫酸塩化合物から選ばれる少なくとも1種以上をさらに混合して700〜1100℃に加熱することを特徴とするリチウムコバルト複合酸化物の製造方法。   (6) A mixture of cobalt oxyhydroxide having a Ni content of 100 ppm or less and a lithium compound is further mixed with at least one selected from a halogen compound or a sulfate compound and heated to 700 to 1100 ° C. A method for producing a lithium cobalt composite oxide.

(7) (1)から(3)いずれかに記載のリチウムコバルト複合酸化物が正極活物質として、正極に含まれていることを特徴とする非水電解質二次電池。   (7) A nonaqueous electrolyte secondary battery, wherein the lithium cobalt composite oxide according to any one of (1) to (3) is contained in a positive electrode as a positive electrode active material.

(8) (7)に記載の非水電解質二次電池を備えることを特徴とする携帯用電子機器。   (8) A portable electronic device comprising the nonaqueous electrolyte secondary battery according to (7).

本発明では、Ni含有量が100ppm以下であるリチウムコバルト複合酸化物を正極活物質として用いることにより、放電特性が向上したリチウム二次電池を提供することができる。このようなリチウム二次電池を用いることにより、携帯用電子機器を小型化、軽量化できる。   In the present invention, a lithium secondary battery having improved discharge characteristics can be provided by using a lithium cobalt composite oxide having a Ni content of 100 ppm or less as a positive electrode active material. By using such a lithium secondary battery, a portable electronic device can be reduced in size and weight.

以下、本発明の正極活物質及び非水電解質二次電池を更に説明する。   Hereinafter, the positive electrode active material and the nonaqueous electrolyte secondary battery of the present invention will be further described.

<リチウムコバルト複合酸化物>
本発明に係るリチウムコバルト複合酸化物は、化学式1で表されることを特徴とするリチウムコバルト複合酸化物である。すなわち、本発明に係るリチウムコバルト複合酸化物としては、例えばNiが100ppm以下であるLiCoO、LiCoO、LiCo1-y、またはLiCo1-yが挙げられ、特にNiが極めて少ないLiCoOおよびハロゲン元素が含まれるLiCoOが好ましい(xは0.10≦x≦1.25、yは0≦y≦0.05、zは0≦z≦0.05を表す。)。このようなリチウムコバルト複合酸化物は、リチウムイオン非水電解質二次電池用正極活物質に好適に用いることができる。
<Lithium cobalt composite oxide>
The lithium cobalt composite oxide according to the present invention is a lithium cobalt composite oxide represented by Chemical Formula 1. That is, as the lithium cobalt composite oxide according to the present invention, for example, Li x CoO 2 , LiCoO 2 N z , LiCo 1- y My O 2 , or LiCo 1- y My O 2 N with Ni of 100 ppm or less. z, and Li x CoO 2 containing very little Ni and Li x CoO 2 N z containing a halogen element are preferred (x is 0.10 ≦ x ≦ 1.25, y is 0 ≦ y ≦ 0.05). Z represents 0 ≦ z ≦ 0.05.) Such a lithium cobalt composite oxide can be suitably used for a positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery.

本発明に係るリチウムコバルト複合酸化物には、他の元素Mとして、例えばLi、Na、B、Ca、Mg、Si、Cu、Ce、Y、Ti、V、Mn、Fe、Sn、Zr、Sb、Nb、Ru、Pb、Hf、Ta、La、Pr及びNdからなる群より選択される少なくとも1種の元素が含まれていてもよい。また、ハロゲン原子Nとしては、フッ素、塩素、臭素及び沃素等のハロゲン原子が挙げられ、フッ素が特に好ましい。   In the lithium cobalt composite oxide according to the present invention, other elements M include, for example, Li, Na, B, Ca, Mg, Si, Cu, Ce, Y, Ti, V, Mn, Fe, Sn, Zr, and Sb. , Nb, Ru, Pb, Hf, Ta, La, Pr, and Nd may be included. Examples of the halogen atom N include halogen atoms such as fluorine, chlorine, bromine and iodine, and fluorine is particularly preferable.

本発明に係るリチウムコバルト複合酸化物では、Ni含有量が100ppm以下である。より好ましくはNi含有量が70ppm以下であり、Ni含有量が60ppm以下であることが更に好ましい。特に好ましくはNi含有量が30ppm以下である。   In the lithium cobalt composite oxide according to the present invention, the Ni content is 100 ppm or less. More preferably, the Ni content is 70 ppm or less, and the Ni content is further preferably 60 ppm or less. Particularly preferably, the Ni content is 30 ppm or less.

リチウムコバルト複合酸化物中の硫酸根の含有量は、(分析で定量された硫酸根重量)/(合成により得られた正極活物質重量)で表され、0.01重量%以上5重量%以下が好ましい。更には0.05重量%以上2重量%以下がより好ましく、0.1重量%以上1重量%以下が特に好ましい。硫酸根の定量は種々の方法を用いることができる。例えば、試料を硝酸・過酸化水素などで完全に溶解後、イオンクロマトグラフにて硫酸根を定量することができる。また、ICP発光分析法又は滴定法により、硫酸根を定量することもできる。ICP発光分析法は、試料を硝酸及び過塩素酸により溶解し、ICP発光分析により硫黄を定量して硫酸根に換算する方法である。滴定法は、試料にクロム酸バリウムと希塩酸溶液を加え、アンモニアにて中和後濾過し、硫酸根と置換して生じる濾液中のCrO 2−をヨウ素法で滴定して間接的に硫酸根を定量する方法(日本化学会編「実験化学講座15分析化学(下)」丸善株式会社出版、に記載の方法に準拠)である。 The content of sulfate radical in the lithium cobalt composite oxide is expressed by (weight of sulfate radical determined by analysis) / (weight of positive electrode active material obtained by synthesis), and 0.01 wt% or more and 5 wt% or less. Is preferred. Furthermore, 0.05 wt% or more and 2 wt% or less is more preferable, and 0.1 wt% or more and 1 wt% or less is particularly preferable. Various methods can be used for the determination of the sulfate radical. For example, the sulfate radical can be quantified by ion chromatography after completely dissolving the sample with nitric acid / hydrogen peroxide or the like. In addition, sulfate radicals can also be quantified by ICP emission analysis or titration. The ICP emission analysis method is a method in which a sample is dissolved with nitric acid and perchloric acid, sulfur is quantified by ICP emission analysis, and converted into a sulfate radical. In the titration method, barium chromate and dilute hydrochloric acid solution are added to a sample, neutralized with ammonia and filtered, and CrO 4 2- in the filtrate formed by substituting the sulfate radical is titrated by the iodine method to indirectly produce sulfate radical. (Based on the method described in “Chemical Experiment Course 15 Analytical Chemistry (below)” published by Maruzen Co., Ltd., edited by the Chemical Society of Japan).

また、リチウムコバルト複合酸化物中に含まれるハロゲン元素は、含有量が0.005〜2.5重量%であり、好ましくは0.05〜1.5重量%である。   Further, the halogen element contained in the lithium cobalt composite oxide has a content of 0.005 to 2.5% by weight, preferably 0.05 to 1.5% by weight.

リチウム二次電池の正極に含まれるリチウムコバルト複合酸化物では、リチウムコバルト複合酸化物中のNi含有量が少なくなるのに従って、リチウム二次電池の放電容量が増加し、電圧を維持し易くなる。従って、リチウム二次電池の体積エネルギー密度が増加して、携帯用電子機器を小型化、軽量化できる。また、前記リチウムコバルト複合酸化物中にフッ素化合物や硫酸根が更に存在することによって、負荷特性、サイクル特性、高温保存特性、低温特性及び安全性を向上させることができる。   In the lithium cobalt composite oxide included in the positive electrode of the lithium secondary battery, as the Ni content in the lithium cobalt composite oxide decreases, the discharge capacity of the lithium secondary battery increases and the voltage is easily maintained. Accordingly, the volume energy density of the lithium secondary battery is increased, and the portable electronic device can be reduced in size and weight. Moreover, the load characteristics, cycle characteristics, high-temperature storage characteristics, low-temperature characteristics, and safety can be improved by the presence of a fluorine compound and a sulfate group in the lithium cobalt composite oxide.

<オキシ水酸化コバルト>
本発明の製造方法では、Ni含有量が100ppm以下のオキシ水酸化コバルト(CoOOH)が用いられる。Ni含有量が70ppm以下のオキシ水酸化コバルト(CoOOH)を用いることがより好ましく、Ni含有量が60ppm以下のオキシ水酸化コバルトを用いることが更に好ましい。特に好ましくはNi含有量が30ppm以下のオキシ水酸化コバルトである。反応物中のニッケル含有量が低減するのに従って、本発明の製造方法で得られるリチウムコバルト複合酸化物中のNi含有量が低減するからである。オキシ水酸化コバルトは、CoOOHが主成分として考えられるが、その他として、Co、CoCO等が含まれていると考えられる。
<Cobalt oxyhydroxide>
In the production method of the present invention, cobalt oxyhydroxide (CoOOH) having a Ni content of 100 ppm or less is used. More preferably, cobalt oxyhydroxide (CoOOH) having a Ni content of 70 ppm or less is used, and more preferably, cobalt oxyhydroxide having a Ni content of 60 ppm or less is used. Particularly preferred is cobalt oxyhydroxide having a Ni content of 30 ppm or less. This is because the Ni content in the lithium cobalt composite oxide obtained by the production method of the present invention decreases as the nickel content in the reaction product decreases. Cobalt oxyhydroxide is considered to contain CoOOH as a main component, but it is considered that Co 3 O 4 , CoCO 3, etc. are included in addition thereto.

本発明の製造方法に用いられるオキシ水酸化コバルトがどのような製造方法で得られたかについては、特に、限定されない。例えば、硝酸コバルト、塩化コバルト、硫酸コバルト等の2価のコバルトを有する化合物を、酸化剤で酸化させた後、アルカリで中和したもの等を用いることができる。   There is no particular limitation on the production method of the cobalt oxyhydroxide used in the production method of the present invention. For example, compounds obtained by oxidizing a compound having divalent cobalt such as cobalt nitrate, cobalt chloride, and cobalt sulfate with an oxidizing agent and then neutralizing with an alkali can be used.

上記酸化剤としては特に限定されず、例えば、空気、酸素、オゾン;過マンガン酸(HMnO)及びMMnO等で表されるその塩;クロム酸(CrO)及びM Cr、M CrO、MCrOX、CrO等で表されるその関連化合物;F、Cl、Br、I等のハロゲン;H、Na、BaO等の過酸化物;ペルオキソ酸及びM 、M SO、HCO、CHCOH等で表される化合物又はその塩;酸素酸及びMMClO、MBrO、MIO、MClO、MBrO、MIO、MClO、MIO、NaIO、KIO等で表される化合物又はその塩等を挙げることができる。式中、Mは、アルカリ金属元素を表す。上記アルカリ金属元素としては特に限定されず、例えば、リチウム、ナトリウム、カリウム、ルビジウム等が挙げられる。また、Xはハロゲン元素を示す。 The oxidizing agent is not particularly limited, and examples thereof include air, oxygen, ozone; salts thereof represented by permanganic acid (HMnO 4 ) and M 3 MnO 4 ; chromic acid (CrO 3 ) and M 3 2 Cr 2. Related compounds represented by O 7 , M 3 2 CrO 4 , M 3 CrO 3 X, CrO 2 X 2, etc .; Halogens such as F 2 , Cl 2 , Br 2 , I 2 ; H 2 O 2 , Na 2 Peroxides such as O 2 and BaO 2 ; compounds represented by peroxo acids and M 3 2 S 2 O 8 , M 3 2 SO 5 , H 2 CO 3 , CH 3 CO 3 H and the like; and M 3 MClO, tables in M 3 BrO, M 3 IO, M 3 ClO 3, M 3 BrO 3, M 3 IO 3, M 3 ClO 4, M 3 IO 4, Na 3 H 2 IO 6, KIO 4 , etc. Listed compounds or their salts Can. In the formula, M 3 represents an alkali metal element. The alkali metal element is not particularly limited, and examples thereof include lithium, sodium, potassium, and rubidium. X represents a halogen element.

中和するアルカリとしては特に限定されず、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化アンモニウム等の無機水酸化物の水溶液等を好適に用いることができる。   The alkali to be neutralized is not particularly limited, and an aqueous solution of an inorganic hydroxide such as lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, ammonium hydroxide or the like is preferable. Can be used.

上記オキシ水酸化コバルトは、例えば、硝酸コバルト、塩化コバルト、硫酸コバルト等の2価のコバルトを有する化合物を水に溶解させて水溶液とし、上記酸化剤及び上記アルカリを添加して、中和と酸化とを同時に行うことにより得ることができる。また、上記2価のコバルトを有する化合物を含む水溶液に上記アルカリを加えて、2価の水酸化コバルトを合成した後、酸化剤を添加して酸化することにより上記オキシ水酸化コバルトを得ることもできる。更に、上記2価のコバルトを有する化合物を含む水溶液に上記酸化剤を添加した後、上記アルカリを添加して中和することにより上記オキシ水酸化コバルトを得ることもできる。   The cobalt oxyhydroxide is prepared by, for example, dissolving a compound having divalent cobalt such as cobalt nitrate, cobalt chloride, and cobalt sulfate in water to form an aqueous solution, and adding the oxidizing agent and the alkali to neutralize and oxidize. Can be obtained simultaneously. Moreover, after adding the said alkali to the aqueous solution containing the compound which has the said bivalent cobalt and synthesize | combining a bivalent cobalt hydroxide, the said cobalt oxyhydroxide can be obtained by adding an oxidizing agent and oxidizing. it can. Furthermore, after adding the said oxidizing agent to the aqueous solution containing the compound which has the said bivalent cobalt, the said cobalt oxyhydroxide can also be obtained by adding the said alkali and neutralizing.

<リチウム化合物>
本発明の製造方法には、リチウム化合物が使用される。リチウム化合物は特に限定されないが、例えば水酸化リチウム、炭酸リチウム、硝酸リチウム等の無機リチウム塩を好適に用いる事ができる。リチウム化合物としては、炭酸リチウムが工業的に入手し易く、安価であるため好ましい。リチウム化合物の濃度は純度が高いことが好ましい。
<Lithium compound>
A lithium compound is used in the production method of the present invention. Although a lithium compound is not specifically limited, For example, inorganic lithium salts, such as lithium hydroxide, lithium carbonate, lithium nitrate, can be used suitably. As the lithium compound, lithium carbonate is preferable because it is industrially easily available and inexpensive. The concentration of the lithium compound is preferably high in purity.

<硫酸塩化合物>
本発明に係る製造方法では、硫酸塩化合物を含有させることができる。無機あるいは有機の硫酸塩化合物を添加して用いることができ、無機塩としては、硫酸鉄、硫酸コバルト、硫酸ニッケル、硫酸亜鉛、硫酸銅、硫酸リチウム、硫酸カリウム、硫酸マグネシウム、硫酸ベリリウム、硫酸ストロンチウム、硫酸バリウム、及びこれらの水和物を用いることができる。また、有機塩としては、硫酸水素テトラブチルアンモニウム、トリフルオロメタンスルホン酸、1−ナフチルアミン−2−スルホン酸、1−ナフチルアミン−5−スルホン酸、1−ナフトール−3、6−ジスルホン酸、p−ブロモベンゼンスルホン酸、p−アニリンスルホン酸、o−キシレン−4−スルホン酸、ジメチルスルホン、o−スルホ安息香酸、及び5−スルホサリチル酸等を用いることができる。これらの中でも、硫酸コバルト、硫酸マグネシウムが好ましく用いられる。
<Sulfate compound>
In the production method according to the present invention, a sulfate compound can be contained. Inorganic or organic sulfate compounds can be added and used. Inorganic salts include iron sulfate, cobalt sulfate, nickel sulfate, zinc sulfate, copper sulfate, lithium sulfate, potassium sulfate, magnesium sulfate, beryllium sulfate, and strontium sulfate. , Barium sulfate, and hydrates thereof can be used. Organic salts include tetrabutylammonium hydrogen sulfate, trifluoromethanesulfonic acid, 1-naphthylamine-2-sulfonic acid, 1-naphthylamine-5-sulfonic acid, 1-naphthol-3, 6-disulfonic acid, p-bromo. Benzenesulfonic acid, p-aniline sulfonic acid, o-xylene-4-sulfonic acid, dimethyl sulfone, o-sulfobenzoic acid, 5-sulfosalicylic acid, and the like can be used. Among these, cobalt sulfate and magnesium sulfate are preferably used.

<ハロゲン化合物>
本発明の製造方法では、ハロゲン化合物を含有させることができる。添加するハロゲン化合物としては、Li、Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Coから選ばれた少なくとも1種以上の金属元素と、前記フッ素、塩素、臭素などのハロゲン元素とのそれぞれの組み合わせが可能であるが、この中でも、LiF、MgFが好ましく用いられる。
<Halogen compounds>
In the production method of the present invention, a halogen compound can be contained. Examples of the halogen compound to be added include at least one metal element selected from Li, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, and Co, and halogen elements such as fluorine, chlorine, and bromine. However, among these, LiF and MgF 2 are preferably used.

<製造方法>
本発明に係る製造方法では、例えば、まず、上記のオキシ水酸化コバルトとリチウム化合物、好ましくは炭酸リチウムを混合し、混合物を得る。混合は、乾式又は湿式のいずれの方法でもよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料を均一に混合するためのブレンダーを用いることが好ましい。混合工程における原料のリチウム化合物とオキシ水酸化コバルトの配合割合は、Co原子とLi原子のモル比(Li/Co)で0.99〜1.06であり、好ましくは0.99〜1.02である。
<Manufacturing method>
In the production method according to the present invention, for example, first, the above cobalt oxyhydroxide and a lithium compound, preferably lithium carbonate, are mixed to obtain a mixture. The mixing may be either a dry method or a wet method, but a dry method is preferred because the production is easy. In the case of dry mixing, it is preferable to use a blender for uniformly mixing the raw materials. The mixing ratio of the raw material lithium compound and cobalt oxyhydroxide in the mixing step is 0.99 to 1.06 in terms of the molar ratio of Co atoms to Li atoms (Li / Co), preferably 0.99 to 1.02. It is.

本発明に係る製造方法では、オキシ水酸化コバルトとリチウム化合物との混合体に更に、硫酸塩化合物又はハロゲン化合物から選ばれる少なくとも1種以上の化合物を添加して上記と同様な方法で混合することが好ましい。   In the production method according to the present invention, at least one compound selected from a sulfate compound or a halogen compound is further added to a mixture of cobalt oxyhydroxide and a lithium compound and mixed in the same manner as described above. Is preferred.

なお、オキシ水酸化コバルトの平均粒子径は、特に限定されないが、例えば1〜20μm、好ましくは8〜15μmである。また、リチウム化合物の平均粒子径は、オキシ水酸化コバルトと同様に、特に制限されないが、例えば1〜100μm、好ましくは1〜20μmである。   The average particle diameter of cobalt oxyhydroxide is not particularly limited, but is, for example, 1 to 20 μm, preferably 8 to 15 μm. The average particle size of the lithium compound is not particularly limited as in the case of cobalt oxyhydroxide, but is, for example, 1 to 100 μm, preferably 1 to 20 μm.

次に混合物を焼成する。焼成温度は、700〜1100℃が好ましく、850〜1050℃が更に好ましい。焼成時間は、1〜24時間、好ましくは2〜10時間である。焼成温度が700℃より小さくなると、リチウムコバルト複合酸化物が十分に合成できず原料となるオキシ水酸化コバルトやリチウム化合物が残存し、好ましくない。一方、焼成温度が1100℃より高くなると目的とするリチウムコバルト複合酸化物の分解が始まり、リチウムコバルト複合酸化物を正極活物質として用いたリチウム二次電池の電池特性、特に放電末期の電圧による容量劣化やサイクル特性が劣化することから好ましくない。   Next, the mixture is fired. The firing temperature is preferably 700 to 1100 ° C, and more preferably 850 to 1050 ° C. The firing time is 1 to 24 hours, preferably 2 to 10 hours. When the firing temperature is lower than 700 ° C., the lithium cobalt composite oxide cannot be sufficiently synthesized, and the raw material cobalt oxyhydroxide and the lithium compound remain, which is not preferable. On the other hand, when the firing temperature is higher than 1100 ° C., the target lithium cobalt composite oxide starts to decompose, and the battery characteristics of the lithium secondary battery using the lithium cobalt composite oxide as the positive electrode active material, particularly the capacity due to the voltage at the end of discharge. This is not preferable because deterioration and cycle characteristics deteriorate.

焼成は、大気中又は酸素雰囲気中のいずれで行ってもよく、特に制限されるものではない。焼成後は、適宜冷却し、必要に応じ粉砕してリチウムコバルト複合酸化物を得る。なお、必要に応じて行われる粉砕は、焼成して得られるリチウムコバルト複合酸化物がもろく結合したブロック状のものである場合等に適宜行うが、リチウムコバルト複合酸化物の粒子自体は特定の平均粒子径、BET比表面積を有するものである。即ち、得られるリチウムコバルト複合酸化物は、レーザー法により求められる平均粒子径が1〜30μm、好ましくは3〜20μm、特に好ましくは5〜15μmであり、BET比表面積が0.1〜2.0m/g、好ましくは0.2〜1.5m/g、特に好ましくは0.2〜1.0m/gである。 Firing may be performed either in the air or in an oxygen atmosphere, and is not particularly limited. After firing, the mixture is appropriately cooled and pulverized as necessary to obtain a lithium cobalt composite oxide. The pulverization performed as necessary is appropriately performed when the lithium cobalt composite oxide obtained by firing is in a brittlely bonded block shape, etc., but the lithium cobalt composite oxide particles themselves have a specific average. It has a particle diameter and a BET specific surface area. That is, the obtained lithium cobalt composite oxide has an average particle size determined by a laser method of 1 to 30 μm, preferably 3 to 20 μm, particularly preferably 5 to 15 μm, and a BET specific surface area of 0.1 to 2.0 m. 2 / g, preferably 0.2~1.5m 2 / g, particularly preferably 0.2~1.0m 2 / g.

上記したリチウムコバルト複合酸化物及びオキシ水酸化コバルトに対するニッケルの含有量は、重量%で0より大きく100ppm以下、格別に好ましくは0〜60ppmである。この理由として、リチウムコバルト複合酸化物中のニッケル原子はコバルト原子と同じサイトに置換されて、充放電容量に寄与するコバルトの原子数が少なくなるからである。またニッケル原子は異なる価数でコバルトに置換されるため電荷保証のために充放電に必要な3価のコバルトが更に少なくなってしまうことが考えられる。ニッケル含有量の下限値は特に限定されない。   The content of nickel relative to the above-described lithium cobalt composite oxide and cobalt oxyhydroxide is greater than 0 and less than or equal to 100 ppm by weight, and particularly preferably 0 to 60 ppm. This is because the nickel atom in the lithium cobalt composite oxide is substituted at the same site as the cobalt atom, and the number of cobalt atoms contributing to the charge / discharge capacity is reduced. Further, since nickel atoms are replaced with cobalt with different valences, it is considered that trivalent cobalt necessary for charge / discharge is further reduced for charge assurance. The lower limit of the nickel content is not particularly limited.

<Ni含有量の測定法>
過塩素酸で煮沸しながらリチウムコバルト複合酸化物(0.5g)を完全に溶解後、100mlになるように蒸留水を添加してその溶液中のNi量をICP発光分析装置(理学電機社製)により定量を行った。
<Measurement method of Ni content>
Lithium cobalt composite oxide (0.5 g) is completely dissolved while boiling with perchloric acid, and then distilled water is added to 100 ml, and the amount of Ni in the solution is determined by an ICP emission spectrometer (manufactured by Rigaku Corporation). ).

<硫酸根の測定方法>
硫酸根の定量は、以下の方法により行った。試料0.5gを30mlビーカーに秤量し、硝酸1部に対して水1部を加えた希硝酸6ml及び過酸化水素水1部に対して水1部を加えた過酸化水素水4mlを加え、ホットプレート上で加熱し、完全に溶解させる。次いで、放冷した後、100mlメスフラスコに移し、定容する。さらに、10倍に希釈し、イオンクロマトグラフ(米国DIONEX社製、2000i/s型)にて硫酸根を定量した。
<Measurement method of sulfate radical>
The sulfate radical was quantified by the following method. 0.5 g of a sample was weighed into a 30 ml beaker, 6 ml of diluted nitric acid obtained by adding 1 part of water to 1 part of nitric acid, and 4 ml of hydrogen peroxide solution obtained by adding 1 part of water to 1 part of hydrogen peroxide solution, Heat on a hot plate to dissolve completely. Then, after allowing to cool, transfer to a 100 ml volumetric flask and make a constant volume. Furthermore, it diluted 10 times and the sulfate radical was quantified with the ion chromatograph (US DONEX company make, 2000i / s type | mold).

<ハロゲン元素の測定方法>
[フッ化物イオンの定量]
得られたLiCoOについて水蒸気蒸留を行ない、ランタン−アリザリンコンプレキソン吸光光度法またはイオン電極法を適用してフッ化物イオンを定量した(JIS K 0102 34に準拠)。
<Measurement method of halogen element>
[Quantification of fluoride ion]
The obtained LiCoO 2 was subjected to steam distillation, and fluoride ions were quantified by applying a lanthanum-alizarin complexone spectrophotometric method or an ion electrode method (based on JIS K 0102 234).

<電池作成方法>
リチウム二次電池正極活物質には、上記リチウムコバルト複合酸化物が用いられる。正極活物質は、後述するリチウム二次電池の正極合剤、すなわち、正極活物質、導電剤、結着剤、及び必要に応じてフィラー等とからなる混合物の一原料である。本発明に係るリチウム二次電池正極活物質は、上記リチウムコバルト複合酸化物からなるため、他の原料と共に混合して正極合剤を調製する際に混練が容易であり、また、得られた正極合剤を正極集電体に塗布する際の塗工性が容易になる。
<Battery preparation method>
The lithium cobalt composite oxide is used as the positive electrode active material for the lithium secondary battery. The positive electrode active material is a raw material of a mixture of a positive electrode mixture of a lithium secondary battery, which will be described later, that is, a positive electrode active material, a conductive agent, a binder, and, if necessary, a filler. Since the lithium secondary battery positive electrode active material according to the present invention is composed of the above lithium cobalt composite oxide, it is easy to knead when preparing a positive electrode mixture by mixing with other raw materials, and the obtained positive electrode The coating property when the mixture is applied to the positive electrode current collector becomes easy.

本発明に係るリチウム二次電池は、上記リチウムコバルト複合酸化物を正極活物質に用いるものである。正極、負極、セパレーター、及びリチウム塩を含有する非水電解質からなる。正極は、例えば、正極集電体上に正極合剤を塗布乾燥等して形成されるものであり、正極合剤は正極活物質、導電剤、結着剤、及び必要により添加されるフィラー等からなる。   The lithium secondary battery according to the present invention uses the lithium cobalt composite oxide as a positive electrode active material. It consists of a nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt. The positive electrode is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector, and the positive electrode mixture includes a positive electrode active material, a conductive agent, a binder, and a filler added as necessary. Consists of.

正極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。   The positive electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery. For example, stainless steel, nickel, aluminum, titanium, calcined carbon, aluminum, and stainless steel Examples of the surface include carbon, nickel, titanium, and silver surface-treated.

導電剤としては、例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、炭素繊維、カーボンナノチューブや金属、ニッケル粉等の導電性材料が挙げられ、天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられる。これらは、1種又は2種以上組み合わせて用いることができる。導電剤の配合比率は、正極合剤中、1〜50重量%、好ましくは2〜30重量%である。   Examples of the conductive agent include graphite, such as natural graphite and artificial graphite, carbon black, acetylene black, carbon fiber, carbon nanotube, metal, nickel powder, and other conductive materials. Examples of natural graphite include scale-like graphite. , Scaly graphite and earthy graphite. These can be used alone or in combination of two or more. The blending ratio of the conductive agent is 1 to 50% by weight, preferably 2 to 30% by weight in the positive electrode mixture.

結着剤としては、例えば、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマー等が挙げられ、これらは1種または2種以上組み合わせて用いることができる。結着剤の配合比率は、正極合剤中、2〜30重量%、好ましくは5〜15重量%である。   Examples of the binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl pyrrolidone, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber, Polysaccharides such as fluororubber and polyethylene oxide, thermoplastic resins, polymers having rubber elasticity, and the like can be mentioned, and these can be used alone or in combination of two or more. The blending ratio of the binder is 2 to 30% by weight, preferably 5 to 15% by weight in the positive electrode mixture.

フィラーは正極合剤において正極の体積膨張等を抑制するものであり、必要により添加される。フィラーとしては、構成された電池において化学変化を起こさない繊維状材料であれば何でも用いることができるが、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、正極合剤中、0〜30重量%が好ましい。   The filler suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added as necessary. As the filler, any fibrous material can be used as long as it does not cause a chemical change in the constructed battery. For example, olefinic polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0-30 weight% is preferable in a positive mix.

負極は、負極集電体上に負極材料を塗布乾燥等して形成される。負極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれは特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素、銅やステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの、及びアルミニウム−カドミウム合金等が挙げられる。   The negative electrode is formed by applying and drying a negative electrode material on the negative electrode current collector. The negative electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constructed battery. For example, stainless steel, nickel, copper, titanium, aluminum, calcined carbon, copper or stainless steel Examples of the steel surface include carbon, nickel, titanium, silver surface-treated, and an aluminum-cadmium alloy.

負極材料としては、特に制限されるものではないが、例えば、炭素質材料や金属複合酸化物、リチウム金属、リチウム合金等が挙げられる。炭素質材料としては、例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げられる。金属複合酸化物としては、例えば、Sn-pM (式中、MはMn、Fe、Pb及びGeから選ばれる1種以上の元素を示し、MはAl、B、P、Si、周期律表第1族、第2族、第3族及びハロゲン元素から選ばれる1種以上の元素を示し、0<p≦1、1≦q≦3、1≦r≦8を示す。)等の化合物が挙げられる。 Although it does not restrict | limit especially as a negative electrode material, For example, a carbonaceous material, a metal complex oxide, lithium metal, a lithium alloy etc. are mentioned. Examples of the carbonaceous material include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide include Sn p M 1 -pM 2 q O r (wherein M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, and M 2 represents Al, B , P, Si, one or more elements selected from Group 1, Group 2, Group 3 and halogen elements of the periodic table, 0 <p ≦ 1, 1 ≦ q ≦ 3, 1 ≦ r ≦ 8 And the like.

セパレーターとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプロピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレーターの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01〜10μmである。セパレーターの厚みとしては、一般的な電池用の範囲であればよく、例えば5〜300μmである。なお、後述する電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレーターを兼ねるようであってもよい。また、放電や充放電特性を改良する目的で、ピリジン、トリエチルフォスファイト、トリエタノールアミン等の化合物を電解質に添加してもよい。   As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. Sheets and non-woven fabrics made of olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator may be in a range generally useful for batteries, and is, for example, 0.01 to 10 μm. The thickness of the separator may be in a range for a general battery, for example, 5 to 300 μm. In the case where a solid electrolyte such as a polymer is used as the electrolyte described later, the solid electrolyte may also serve as a separator. In addition, for the purpose of improving discharge and charge / discharge characteristics, a compound such as pyridine, triethyl phosphite, triethanolamine or the like may be added to the electrolyte.

リチウム塩を含有する非水電解質は、非水電解質とリチウム塩とからなるものである。非水電解質としては、非水電解液又は有機固体電解質が用いられる。非水電解液としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン等の非プロトン性有機溶媒の1種または2種以上を混合した溶媒が挙げられる。   The non-aqueous electrolyte containing a lithium salt is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolyte or an organic solid electrolyte is used. Examples of the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, and 2-methyl. Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2- One or more aprotic organic solvents such as oxazodinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3-propane sultone Mixed solvents thereof.

有機固体電解質としては、例えば、ポリエチレン誘導体又はこれを含むポリマー、ポリプロピレンオキサイド誘導体又はこれを含むポリマー、リン酸エステルポリマー等が挙げられる。リチウム塩としては、上記非水電解質に溶解するものが用いられ、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム等の1種または2種以上を混合した塩が挙げられる。 Examples of the organic solid electrolyte include a polyethylene derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, and a phosphate ester polymer. The lithium salt, which is soluble in the non-aqueous electrolyte is used, for example, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4 , salts obtained by mixing one or more of chloroborane lithium, lower aliphatic lithium carboxylate, lithium tetraphenylborate and the like.

本発明に係るリチウム二次電池の形状はボタン、シート、シリンダー、角等いずれにも適用できる。本発明に係るリチウム二次電池の用途は、特に限定されないが、例えば、ノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス電話子機、ポータブルCDプレーヤー、ラジオ等の電子機器、自動車、電動車両、ゲーム機器等の民生用電子機器が挙げられる。なお、リチウム二次電池は、非水電解質二次電池に含まれる。   The shape of the lithium secondary battery according to the present invention can be applied to any of buttons, sheets, cylinders, corners, and the like. The use of the lithium secondary battery according to the present invention is not particularly limited. For example, a notebook computer, a laptop computer, a pocket word processor, a mobile phone, a cordless telephone handset, a portable CD player, an electronic device such as a radio, an automobile, an electric motor Examples include consumer electronic devices such as vehicles and game machines. The lithium secondary battery is included in the nonaqueous electrolyte secondary battery.

<携帯用電子機器>
本発明では、上記の非水電解質二次電池を含有する携帯用電子機器が提供される。携帯用電子機器としては、例えば、ノートパソコン、ポケットワープロ、携帯電話、コードレス電話子機、ポータブルCDプレーヤー、ラジオ、ゲーム機器等が挙げられる。
<Portable electronic devices>
In this invention, the portable electronic device containing said nonaqueous electrolyte secondary battery is provided. Examples of portable electronic devices include notebook computers, pocket word processors, mobile phones, cordless telephone cordless handsets, portable CD players, radios, game machines, and the like.

以下、本発明のリチウムコバルト複合酸化物及び非水電解質二次電池を更に説明する。   Hereinafter, the lithium cobalt composite oxide and the nonaqueous electrolyte secondary battery of the present invention will be further described.

下記の実施例及び比較例では、炭酸リチウム(平均粒子径11.0μm)と、Ni含有量が25、49、98、205又は502ppmのオキシ水酸化コバルト(QNI社Chem Grade)(平均粒子径12.0μm)をLi/Co原子比が0.99〜1.060となるように秤量し、乳鉢で十分混合して均一な混合物を調製した。次いで、該混合物をアルミナ坩堝に充填し、電気加熱炉に入れて大気雰囲気下で昇温し、700〜1100℃の温度で10時間保持して焼成処理し、得られた焼成物を大気中で冷却した後、粉砕、分級することによって合成した。 In the following examples and comparative examples, lithium carbonate ( average particle diameter 11.0 μm ) and cobalt oxyhydroxide (QNI Chem Grade) having an Ni content of 25, 49, 98, 205 or 502 ppm ( average particle diameter 12 0.0 μm ) was weighed so that the Li / Co atomic ratio was 0.99 to 1.060, and thoroughly mixed in a mortar to prepare a uniform mixture. Next, the mixture is filled in an alumina crucible, put in an electric heating furnace, heated in an air atmosphere, held at a temperature of 700 to 1100 ° C. for 10 hours, and fired. After cooling, it was synthesized by pulverization and classification.

[実施例1]
950℃で10時間焼成して、Ni含有量28ppmのリチウムコバルト複合酸化物(LiCoO)を得た。平均粒子径は10.2μmであった。
[Example 1]
Firing was performed at 950 ° C. for 10 hours to obtain a lithium cobalt composite oxide (LiCoO 2 ) having a Ni content of 28 ppm. The average particle size was 10.2 μm.

[実施例2]
800℃で10時間焼成して、Ni含有量45ppmのリチウムコバルト複合酸化物(LiCoO)を得た。平均粒子径は12.0μmであった。
[Example 2]
Firing was performed at 800 ° C. for 10 hours to obtain a lithium cobalt composite oxide (LiCoO 2 ) having a Ni content of 45 ppm. The average particle size was 12.0 μm.

[実施例3]
1000℃で10時間焼成して、Ni含有量58ppmのリチウムコバルト複合酸化物(LiCoO)を得た。平均粒子径は11.2μmであった。
[Example 3]
Baking at 1000 ° C. for 10 hours gave a lithium cobalt composite oxide (LiCoO 2 ) having a Ni content of 58 ppm. The average particle size was 11.2 μm.

[実施例4]
1050℃で10時間焼成して、Ni含有量96ppmのリチウムコバルト複合酸化物(LiCoO)を得た。平均粒子径は10.5μmであった。
[Example 4]
Firing was carried out at 1050 ° C. for 10 hours to obtain a lithium cobalt composite oxide (LiCoO 2 ) having a Ni content of 96 ppm. The average particle size was 10.5 μm.

[実施例5]
Li/Coモル比1.04に相当する炭酸リチウム、オキシ水酸化コバルトとLiCoO当たりSOが2000ppmに相当する硫酸カルシウムを混合し、1060℃で5時間焼成して、Ni、SO含有量がそれぞれ40ppm、1905ppmのリチウムコバルト複合酸化物(LiCoO)を得た。平均粒子径は12.5μmであった。
[Example 5]
Li / Co molar ratio of 1.04, lithium carbonate, cobalt oxyhydroxide and calcium sulfate corresponding to 2000 ppm of SO 4 per LiCoO 2 were mixed and calcined at 1060 ° C. for 5 hours to obtain Ni and SO 4 contents. Obtained 40 ppm and 1905 ppm of lithium cobalt composite oxide (LiCoO 2 ), respectively. The average particle size was 12.5 μm.

[実施例6]
Li/Coモル比1.04に相当する炭酸リチウム、オキシ水酸化コバルトにLiCoO当たりFが3000ppmに相当するMgF2を混合し、1060℃で5時間焼成して、Ni、F含有量がそれぞれ40ppm、820ppmのリチウムコバルト複合酸化物(LiCoO)を得た。平均粒子径は12.2μmであった。
[Example 6]
Lithium carbonate corresponding to a Li / Co molar ratio of 1.04 and cobalt oxyhydroxide were mixed with MgF 2 corresponding to 3000 ppm of F per LiCoO 2 and fired at 1060 ° C. for 5 hours. 40 ppm and 820 ppm of lithium cobalt composite oxide (LiCoO 2 ) were obtained. The average particle size was 12.2 μm.

[実施例7]
Li/Coモル比1.04に相当する炭酸リチウム、オキシ水酸化コバルトにLiCoO当たりSOが1500ppmに相当する硫酸カルシウムとFが2000ppmに相当するMgF2を混合し、1060℃で5時間焼成して、Ni、F、SOがそれぞれ40ppm、540ppm、1950ppmのリチウムコバルト複合酸化物(LiCoO)を得た。平均粒子径は12.9μmであった。
[Example 7]
Lithium carbonate equivalent to li / Co molar ratio 1.04, F and calcium sulfate LiCoO 2 per SO 4 corresponds to 1500ppm were mixed with MgF 2 corresponding to 2000ppm to cobalt oxyhydroxide, 5 hours firing at 1060 ° C. Thus, lithium cobalt composite oxide (LiCoO 2 ) having Ni, F, and SO 4 of 40 ppm, 540 ppm, and 1950 ppm, respectively, was obtained. The average particle size was 12.9 μm.

[比較例1]
1060℃で10時間焼成して、Ni含有量201ppmのリチウムコバルト複合酸化物(LiCoO)を得た。平均粒子径は10.7μmであった。
[Comparative Example 1]
Firing was performed at 1060 ° C. for 10 hours to obtain a lithium cobalt composite oxide (LiCoO 2 ) having a Ni content of 201 ppm. The average particle size was 10.7 μm.

[比較例2]
820℃で10時間焼成して、Ni含有量490ppmのリチウムコバルト複合酸化物(LiCoO)を得た。平均粒子径は11.2μmであった。
[Comparative Example 2]
Firing was performed at 820 ° C. for 10 hours to obtain a lithium cobalt composite oxide (LiCoO 2 ) having a Ni content of 490 ppm. The average particle size was 11.2 μm.

<粒度分布測定法>
ここで、本明細書に記載する平均粒子径はレーザー散乱粒度分布測定装置により得られた値を示すものとする。測定装置は特に限定されるものではないが、本明細書では日機装社製レーザー式粒度分布測定装置(Microtrac)を用いた。
<Particle size distribution measurement method>
Here, the average particle diameter described in the present specification indicates a value obtained by a laser scattering particle size distribution measuring apparatus. The measuring device is not particularly limited, but a laser particle size distribution measuring device (Microtrac) manufactured by Nikkiso Co., Ltd. was used in this specification.

<電池性能試験>
(I)リチウム2次電池の作製;
上記のように製造した実施例1〜7及び比較例1〜2のリチウムコバルト複合酸化物91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布した後に乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
<Battery performance test>
(I) Production of lithium secondary battery;
91% by weight of the lithium cobalt composite oxides of Examples 1 to 7 and Comparative Examples 1 and 2 prepared as described above, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride were mixed to obtain a positive electrode agent. A kneaded paste was prepared by dispersing in -methyl-2-pyrrolidinone. The kneaded paste was applied to an aluminum foil, dried and pressed, and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.

図1で、この正極板を用いて、セパレーター1、負極2、正極3、集電板4、取り付け金具5、外部端子6、電解液7等の各部材を使用してリチウム二次電池、即ち、非水電解質二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとジエチルカーボネートの1:1混練液1リットルにLiPF1モルを溶解したものを使用した。 In FIG. 1, using this positive electrode plate, a lithium secondary battery, that is, a separator 1, a negative electrode 2, a positive electrode 3, a current collector plate 4, a mounting bracket 5, an external terminal 6, an electrolyte solution 7, etc. A non-aqueous electrolyte secondary battery was manufactured. Among these, a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and diethyl carbonate was used for the electrolyte.

(II)電池の性能評価;
作製したリチウム二次電池を室温で作動させ、初期放電容量を測定して電池性能を評価した。
(II) battery performance evaluation;
The produced lithium secondary battery was operated at room temperature, and the initial discharge capacity was measured to evaluate the battery performance.

(III)評価方法;
放電容量は正極に対してCCCV(1.0C)で4.3Vまで充電した後、2.7Vまで放電させ放電容量を測定した。また、実施例1〜7、並びに、比較例1及び2で調製したリチウムコバルト複合酸化物を正極活物質として作成したリチウム二次電池について、電圧と放電容量の関係を図2に示した。
(III) Evaluation method;
The discharge capacity was charged to 4.3 V with CCCV (1.0 C) with respect to the positive electrode, and then discharged to 2.7 V, and the discharge capacity was measured. Moreover, the relationship between the voltage and the discharge capacity is shown in FIG. 2 for the lithium secondary batteries prepared by using the lithium cobalt composite oxide prepared in Examples 1 to 7 and Comparative Examples 1 and 2 as the positive electrode active material.

<実験結果>
実施例1〜7、並びに、比較例1及び2で得られた活物質を電極塗布して2.7V〜4.3V(vs.Li/Li)で定電流充放電試験を行った。その充放電カーブを示す。充放電電流は0.2Cで行った。実施例1〜7で得られた活物質はいずれも初期放電容量が158mAH/g以上であり、比較例1及び2で得られた活物質に比べて大きな放電容量が得られることが分かった。これは、リチウムコバルト複合酸化物に含有されているNiがCoに置換されて固溶体を形成するために、容量として使われているCo量が減少して容量減少が生じているからであると考えられる。これらの結果から、実施例1〜7のリチウム複合酸化物は、非水電解質二次電池として優れているものであることが確認された。
<Experimental result>
The active materials obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were applied with an electrode, and a constant current charge / discharge test was performed at 2.7 V to 4.3 V (vs. Li / Li + ). The charge / discharge curve is shown. The charge / discharge current was 0.2C. All of the active materials obtained in Examples 1 to 7 had an initial discharge capacity of 158 mAH / g or more, and it was found that a large discharge capacity was obtained as compared with the active materials obtained in Comparative Examples 1 and 2. This is because Ni contained in the lithium cobalt composite oxide is replaced with Co to form a solid solution, and thus the amount of Co used as a capacity is reduced, resulting in a decrease in capacity. It is done. From these results, it was confirmed that the lithium composite oxides of Examples 1 to 7 are excellent as nonaqueous electrolyte secondary batteries.

本発明の一実施態様の非水電解質二次電池の断面図である。It is sectional drawing of the nonaqueous electrolyte secondary battery of one embodiment of this invention. 本発明に係る非水電解質リチウム二次電池について、電圧と放電容量の関係を示したグラフである。It is the graph which showed the relationship between a voltage and discharge capacity about the nonaqueous electrolyte lithium secondary battery which concerns on this invention.

符号の説明Explanation of symbols

1 セパレーター
2 負極
3 正極
4 集電板
5 取り付け金具
6 外部端子
7 電解液
DESCRIPTION OF SYMBOLS 1 Separator 2 Negative electrode 3 Positive electrode 4 Current collector plate 5 Mounting bracket 6 External terminal 7 Electrolyte

Claims (7)

Ni含有量が100ppm以下であり、かつ下記化学式1で表され、さらに硫酸根を0.01重量%以上5重量%以下含有することを特徴とするリチウムコバルト複合酸化物。
Figure 0004846195
前記化学式1において、MはLi、Na、B、Ca、Mg、Si、Cu、Ce、Y、Ti、V、Mn、Fe、Sn、Zr、Sb、Nb、Ru、Pb、Hf、Ta、La、Pr、及びNdからなる群より選択される少なくとも1種の元素、NはF、Cl、Br及びIからなる群より選択される少なくとも1種の元素を示す。xは0.10≦x≦1.25、yは0≦y≦0.05、zは0≦z≦0.05を表す。
Ni content is not more 100ppm or less, and is represented by the following Chemical Formula 1, further lithium-cobalt composite oxide which is characterized that you containing 0.01 wt% to 5 wt% of sulfate ion.
Figure 0004846195
In the chemical formula 1, M is Li, Na, B, Ca, Mg, Si, Cu, Ce, Y, Ti, V, Mn, Fe, Sn, Zr, Sb, Nb, Ru, Pb, Hf, Ta, La , Pr and Nd, at least one element selected from the group consisting of Nd, and N represents at least one element selected from the group consisting of F, Cl, Br and I. x represents 0.10 ≦ x ≦ 1.25, y represents 0 ≦ y ≦ 0.05, and z represents 0 ≦ z ≦ 0.05.
前記Ni含有量が60ppm以下であることを特徴とする請求項1記載のリチウムコバルト複合酸化物。 2. The lithium cobalt composite oxide according to claim 1 , wherein the Ni content is 60 ppm or less. 非水電解質二次電池用リチウムコバルト酸化物であることを特徴とする請求項1または2に記載のリチウムコバルト複合酸化物。 Lithium cobalt composite oxide according to claim 1 or 2, characterized in that a non-aqueous electrolyte lithium cobalt oxide for a secondary battery. Ni含有量が100ppm以下のオキシ水酸化コバルトとリチウム化合物とを均一に乾式混合したCo原子とLi原子のモル比(Li/Co)が0.99〜1.06である混合体を、大気中又は酸素雰囲気中、700〜1100℃で1〜24時間加熱することを特徴とする下記化学式1で表されるリチウムコバルト複合酸化物の製造方法。
Figure 0004846195
前記化学式1において、MはLi、Na、B、Ca、Mg、Si、Cu、Ce、Y、Ti、V、Mn、Fe、Sn、Zr、Sb、Nb、Ru、Pb、Hf、Ta、La、Pr、及びNdからなる群より選択される少なくとも1種の元素、NはF、Cl、Br及びIからなる群より選択される少なくとも1種の元素を示す。xは0.10≦x≦1.25、yは0≦y≦0.05、zは0≦z≦0.05を表す。
The molar ratio of Co atoms and Li atoms Ni content was uniformly dry mixed with the following cobalt oxyhydroxide 100ppm and a lithium compound (Li / Co) is from 0.99 to 1.06 the mixture in the atmosphere Or it heats at 700-1100 degreeC for 1 to 24 hours in oxygen atmosphere, The manufacturing method of the lithium cobalt complex oxide represented by following Chemical formula 1 characterized by the above-mentioned .
Figure 0004846195
In the chemical formula 1, M is Li, Na, B, Ca, Mg, Si, Cu, Ce, Y, Ti, V, Mn, Fe, Sn, Zr, Sb, Nb, Ru, Pb, Hf, Ta, La , Pr and Nd, at least one element selected from the group consisting of Nd, and N represents at least one element selected from the group consisting of F, Cl, Br and I. x represents 0.10 ≦ x ≦ 1.25, y represents 0 ≦ y ≦ 0.05, and z represents 0 ≦ z ≦ 0.05.
前記混合体に、硫酸鉄、硫酸コバルト、硫酸ニッケル、硫酸亜鉛、硫酸銅、硫酸リチウム、硫酸カリウム、硫酸マグネシウム、硫酸ベリリウム、硫酸ストロンチウム、硫酸バリウム、及びこれらの水和物、硫酸水素テトラブチルアンモニウム、トリフルオロメタンスルホン酸、1−ナフチルアミン−2−スルホン酸、1−ナフチルアミン−5−スルホン酸、1−ナフトール−3、6−ジスルホン酸、p−ブロモベンゼンスルホン酸、p−アニリンスルホン酸、o−キシレン−4−スルホン酸、ジメチルスルホン、o−スルホ安息香酸、5−スルホサリチル酸、LiF並びにMgF からなる群より選ばれる少なくとも1種以上をさらに混合して、大気中又は酸素雰囲気中、700〜1100℃で1〜24時間加熱することを特徴とする請求項4に記載のリチウムコバルト複合酸化物の製造方法。 In the mixture, iron sulfate, cobalt sulfate, nickel sulfate, zinc sulfate, copper sulfate, lithium sulfate, potassium sulfate, magnesium sulfate, beryllium sulfate, strontium sulfate, barium sulfate, and hydrates thereof, tetrabutylammonium hydrogen sulfate , Trifluoromethanesulfonic acid, 1-naphthylamine-2-sulfonic acid, 1-naphthylamine-5-sulfonic acid, 1-naphthol-3, 6-disulfonic acid, p-bromobenzenesulfonic acid, p-anilinesulfonic acid, o- At least one selected from the group consisting of xylene-4-sulfonic acid, dimethylsulfone, o-sulfobenzoic acid, 5-sulfosalicylic acid, LiF and MgF 2 is further mixed in the atmosphere or in an oxygen atmosphere, 700- claims, characterized in that the heating at 1100 ° C. 1 to 24 hours Method for producing a lithium-cobalt composite oxide according to 4. 請求項1または2に記載のリチウムコバルト複合酸化物が正極活物質として、正極に含まれていることを特徴とする非水電解質二次電池。 A nonaqueous electrolyte secondary battery, wherein the lithium cobalt composite oxide according to claim 1 or 2 is contained in a positive electrode as a positive electrode active material. 請求項に記載の非水電解質二次電池を備えることを特徴とする携帯用電子機器。 A portable electronic device comprising the nonaqueous electrolyte secondary battery according to claim 6 .
JP2003349599A 2002-10-10 2003-10-08 Lithium cobalt composite oxide, method for producing the same, and nonaqueous electrolyte secondary battery Expired - Lifetime JP4846195B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003349599A JP4846195B2 (en) 2002-10-10 2003-10-08 Lithium cobalt composite oxide, method for producing the same, and nonaqueous electrolyte secondary battery
KR1020030070539A KR20040032796A (en) 2002-10-10 2003-10-10 Lithium Cobalt Composite Oxide, Method for preparing the Same and Nonaqueous Electrolyte Secondary Battery
CA002462062A CA2462062A1 (en) 2003-10-08 2004-03-26 Lithium cobalt compound oxide and manufacturing methods thereof, and non-aqeuous eletrolyte secondary cell
TW093108828A TW200514291A (en) 2003-10-08 2004-03-31 Lithium-cobalt compound oxide, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002297976 2002-10-10
JP2002297976 2002-10-10
JP2003349599A JP4846195B2 (en) 2002-10-10 2003-10-08 Lithium cobalt composite oxide, method for producing the same, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004149409A JP2004149409A (en) 2004-05-27
JP4846195B2 true JP4846195B2 (en) 2011-12-28

Family

ID=32473575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349599A Expired - Lifetime JP4846195B2 (en) 2002-10-10 2003-10-08 Lithium cobalt composite oxide, method for producing the same, and nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP4846195B2 (en)
KR (1) KR20040032796A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652791B2 (en) * 2004-12-08 2011-03-16 株式会社田中化学研究所 Mg solid solution cobalt oxyhydroxide particles and production method thereof
JP5172231B2 (en) * 2007-07-20 2013-03-27 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
US8945770B2 (en) 2008-11-10 2015-02-03 Lg Chem, Ltd. Cathode active material exhibiting improved property in high voltage

Also Published As

Publication number Publication date
KR20040032796A (en) 2004-04-17
JP2004149409A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP5584456B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5897356B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5382025B2 (en) Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
WO2011065391A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP2003292309A (en) Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP2015099722A (en) Positive electrode active material for lithium secondary battery, manufacturing method of the same, and lithium secondary battery
JP2020513145A (en) Positive electrode additive, method for producing the same, positive electrode containing the same, and lithium secondary battery
KR20140111045A (en) Manganese spinel-type lithium transition metal oxide
JP2020521285A (en) Positive electrode additive, method for producing the same, positive electrode containing the same, and lithium secondary battery
JP3959333B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2015072801A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2013182758A (en) Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery and lithium secondary battery
JP4754209B2 (en) Method for producing lithium cobalt composite oxide powder
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP4156358B2 (en) Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery
JP5019548B2 (en) Lithium manganese composite oxide, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP6935380B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
EP2824074B1 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including the same
JP4114918B2 (en) Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
JP4846195B2 (en) Lithium cobalt composite oxide, method for producing the same, and nonaqueous electrolyte secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JP6855427B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP5704056B2 (en) Method for producing positive electrode active material for secondary battery, positive electrode active material for secondary battery, and secondary battery using the same
JP4765254B2 (en) Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term