JP2004284845A - Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery - Google Patents

Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery Download PDF

Info

Publication number
JP2004284845A
JP2004284845A JP2003076912A JP2003076912A JP2004284845A JP 2004284845 A JP2004284845 A JP 2004284845A JP 2003076912 A JP2003076912 A JP 2003076912A JP 2003076912 A JP2003076912 A JP 2003076912A JP 2004284845 A JP2004284845 A JP 2004284845A
Authority
JP
Japan
Prior art keywords
lithium
copper oxide
nickel
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076912A
Other languages
Japanese (ja)
Inventor
Fumihiro Yonekawa
川 文 広 米
Nobuyuki Yamazaki
崎 信 幸 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2003076912A priority Critical patent/JP2004284845A/en
Publication of JP2004284845A publication Critical patent/JP2004284845A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active substance which has excellent cycle properties, and has high safety to overcharging. <P>SOLUTION: In the lithium-nickel-copper oxide, the positive electrode active substance is expressed by compositional formula of Li<SB>2</SB>Cu<SB>x</SB>Ni<SB>1-x</SB>O<SB>2</SB>(0<x<1). In the production method, lithium hydroxide, a nickel compound and a copper compound are mixed, and the mixture is thereafter fired to obtain the lithium-nickel-copper oxide, and the method is industrially advantageous. The lithium-nickel-copper oxide is a compound useful as the positive electrode active substance of a lithium secondary battery, and is preferably used in the combination with a positive electrode active substance such as LiCoO<SB>2</SB>, LiNiO<SB>2</SB>, LiNi<SB>x</SB>Co<SB>1-x</SB>O<SB>2</SB>(0<x<1), LiMnO<SB>2</SB>, LiMn<SB>2</SB>O<SB>4</SB>and LiMPO<SB>4</SB>(M is Co, Mn, Fe or the like) in particular. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムニッケル銅酸化物及びその製造方法並びに非水電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源として非水電解質二次電池が実用化されている。
この非水電解質二次電池については、コバルト酸リチウムやニッケル酸リチウム、マンガン酸リチウム等の正極活物質に関する研究開発が活発に進められており、これまで多くの提案がなされている。
【0003】
また、新たな正極活物質として、LiNiO2+y(0.0<y<0.3)で表されるリチウムニッケル複合酸化物が提案されている(例えば、特許文献1参照)。
【0004】
更にまた、スピネル構造を有するリチウムマンガン酸化物、LiCuOおよび層状構造を有するリチウムニッケル酸化物を活物質として含むことを特徴とするリチウム二次電池用正極材料が提案されている。(例えば、特許文献2参照)
【0005】
【特許文献1】
特開平9−241027号公報
【特許文献2】
特開2001−160395号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1で提案されているLiNiO2+y(0.0<y<0.3)の化合物は、その製造に不活性ガス−酸素雰囲気中で焼成しなけれならず、工業的に不利である。
また、特許文献2で提案されているスピネル構造を有するリチウムマンガン酸化物、LiCuOおよび層状構造を有するリチウムニッケル酸化物の混合物が提案されているが、該混合物に使用されているLiCuOは、実質的に放電容量を持たない物質である。したがってサイクルに伴って正極、負極間で動くLiイオン量が減少するという現象が生じるリチウム二次電池において、そのときにLiイオンを補給することができないという欠点を有する。
【0007】
【課題を解決するための手段】
本発明者らは、上記実情において鋭意研究を重ねた結果、組成式LiCuNi1−x(0<x<1)で表されたリチウムニッケル銅酸化物は、初期充電容量と初期放電容量との差で表される初期充放電容量差が大きく、Liイオンの供給量が大きい。更に可逆性を有することから充放電サイクル途中で不足するLiイオンを供給することができる。
【0008】
本発明は、組成式LiCuNi1−x(0<x<1)で表されることを特徴とするリチウムニッケル銅酸化物を提供することにある。
【0009】
また、本発明は、BET比表面積が0.1〜30m/gである前記記載のリチウムニッケル銅酸化物を提供することにある。
【0010】
また、本発明は、平均粒子径が0.1〜50μmである前記記載のリチウムニッケル銅酸化物を提供することにある。
【0011】
また、本発明は、水酸化リチウムとニッケル化合物および銅化合物を混合した後、該混合物を焼成することを特徴するリチウムニッケル銅酸化物の製造方法を提供することにある。
【0012】
また、本発明は、前記焼成を大気中で行なうことを特徴とする前記記載のリチウムニッケル銅酸化物の製造方法を提供することにある。
【0013】
また、本発明は、正極が、前記記載のいずれかに記載のリチウムニッケル銅酸化物が少なくとも正極活物質として含まれていることを特徴とする非水電解質二次電池を提供することにある。
【0014】
【発明の実施形態】
以下、本発明について詳細に説明する。
即ち、本発明のリチウムニッケル銅酸化物は、組成式LiCuNi1−xで表されるものである。なお、式中xは、0<x<1、好ましくは0.50<x<0.95の範囲である。
係るリチウムニッケル銅酸化物は、BET比表面積が0.1〜30m/g、好ましくは0.3〜10m/g、更に好ましくは0.5〜1.0m/gである。
また、リチウムニッケル銅酸化物の平均粒子径は、0.1〜50μm、好ましくは1〜10μmである。
本発明のリチウムニッケル銅酸化物は、他の正極活物質、例えばコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等と併用することが好ましい。
【0015】
本発明のリチウムニッケル銅酸化物の製造方法は、水酸化リチウムとニッケル化合物および銅化合物を混合した後、該混合物を焼成することを特徴するものである。
水酸化リチウムは、工業的に入手することが可能なものであれば特に制限されないが、粒子径が小さい方が好ましい。例えば、平均粒子径75μm以下である。
ニッケル化合物は、例えば酸化ニッケル、水酸化ニッケル、炭酸ニッケル等が挙げられるが、好ましくは酸化ニッケルである。酸化ニッケルが好ましい理由は、本発明の製法時に水分や炭酸ガスが大量に存在すると水酸化リチウムや水酸化ニッケル、炭酸ニッケルの分解反応が抑制され、反応が十分進まない恐れがあるためである。
銅化合物は、例えば酸化銅、亜酸化銅等が挙げられるが、好ましくは酸化銅である。
【0016】
本発明の製造方法は、例えば、上記水酸化リチウムと酸化ニッケル、酸化銅を混合し、混合物を得る。混合は、乾式または湿式の何れの方法でもよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するためのブレンダーを用いることが好ましい。
混合工程の原料の水酸化リチウムとニッケル化合物および銅化合物との配合割合は、Ni+Cu原子とLi原子のモル比[Li/(Ni+Cu)]で、1.80〜2.30、好ましくは2.00〜2.14である。
【0017】
次に、混合物を焼成する。焼成温度は400〜1100℃、好ましくは600〜900℃である。焼成時間は1〜24時間、好ましくは2〜10時間である。
係る焼成の前に仮焼工程を入れるのが好ましい。仮焼温度は150〜350℃、好ましくは200〜300℃である。仮焼時間は30分〜5時間、好ましくは2〜3時間である。
【0018】
焼成は、大気中又は不活性雰囲気中のいずれかで行ってもよいが、大気中で製造できることが本願の特徴である。大気中(酸素雰囲気下)で焼成できる理由は、次のとおりとなる。
すなわち、焼成雰囲気中に酸素が高い分圧で存在するとニッケルが2価から3価に酸化され、目的化合物であるLiNiO構造からNiの価数が3価であるLiNiO構造に変化してしまう。
一方Cuは高酸素存在下でも2価までしか酸化されず、LiNiOと同じ構造をもつLiCuOを形成する。従って、NiとCuが共存する場合には、NiとCuは同じ構造をとるために固溶しやすく、固溶体中のNiが3価となるためにはCuとの固溶体を壊す必要があり、エネルギー的に不利となる。従って、NiはCuと共に焼成する事によってLiNiO構造をとりやすくなるため、高い酸素分圧下でも合成が可能になる。言いかえれば、LiNiO中にCuが存在することにより構造を安定化し、構造の変化を伴うNiの酸化を抑制する事ができるため、高い酸素分圧下でも合成が可能になる。
焼成後は、適宜冷却し、必要に応じ粉砕してリチウムニッケル銅酸化物を得る。なお、必要に応じて行われる粉砕は、焼成して得られるリチウムニッケル銅酸化物がもろく結合したブロック状のものである場合適宜行われる。
【0019】
上記方法で得られるリチウムニッケル銅酸化物は、リチウム二次電池用正極活物質としても使用されるが、他の正極材、例えばLiCoO、LiNiO、LiNiCo1−x(0<x<1)、LiMnO、LiMn、LiMPO(MはCo、Mn、Fe等)等と併用して使用することが好ましい。その添加量は、1重量%〜20重量%である。
即ち、本発明のリチウムニッケル銅酸化物は、初期充電容量と初期放電容量との差で表される初期充放電容量差が大きい。また、現在正極活物質として広く用いられているLiCoO等と併用する場合のように、併用する正極材と比べて本発明のリチウムニッケル銅酸化物の平均放電電圧が低い場合には、充放電サイクルに伴ってLiイオンが負極で不活性化した際に、併用する正極材にLiイオンを補給する事ができ、併用する正極材の劣化を抑制する事ができる。
【0020】
リチウム二次電池では負極において生じるLiイオンの不活性化により、正極に移動する(放電する)Liイオン量が減少し、充電容量に対して放電容量が低くなる可逆容量の低下を引き起こすことが問題となっている。この現象による電池性能の低下を抑制するためには、負極において不活性化されるLiイオン量分のLiイオンを適宜供給する必要がある。負極におけるLiイオンの不活性化は特に初期充放電サイクル時に大きく、また2サイクル目以降の充放電サイクル中にも生じる。
初期充放電時に不活性化されるLiイオンはリチウムニッケル銅酸化物の初期充放電容量差によって表わされる不可逆容量部分によって補償され、2サイクル目以降の充放電サイクル中に生じるLiイオン不足はリチウムニッケル銅酸化物の初期放電容量で表わされる可逆容量部分から補償される。
初期充放電サイクル時に不活性化されるLiイオン量および2サイクル目以降に不活性化されるLiイオン量の割合は用いる負極によって異なっている。従って、用いる負極に応じて初期充放電サイクル時に補償するLiイオン量と2サイクル目以降に補償するLiイオン量が異なり、用いる負極に応じた初期充放電容量差(不可逆容量)と初期放電容量(可逆容量)を有するリチウムニッケル銅酸化物を用いることでリチウムニッケル銅酸化物の使用量を最少にでき、この時全体の電池性能として最大の性能を得る事ができる。そのためにはリチウムニッケル銅酸化物の初期充放電容量差(不可逆容量)と初期放電容量(可逆容量)の割合を制御する必要がある。
本発明ではCuとNiの割合を変える事で初期充電容量差と初期放電容量の割合を制御することができるため、幅広い負極に対して最少の添加量で最大の電池性能をもつ電池の構成が可能である。
【0021】
従って、初期充放電サイクル時に大きなLiイオン供給量、すなわち大きな初期充放電容量差を持ち、可逆的な充放電サイクルを示し、同時に使用する他の正極活物質よりも単位重量あるいは単位容量あたりの充電容量が大きく、平均放電電圧が低い正極活物質を用いることによって初期充放電時ならびにその後の充放電サイクル中にLiイオンを供給し、不活性化によって生じたLiイオン不足を補う事で電池性能の低下を抑制する事ができる。また、低い平均放電電圧を持つ事によって、過放電に対する安全性の高い電池を構成する事ができる。
【0022】
更に可逆性を有することから、すでに提案されており実質的に放電しないLiCuOとは異なり、充放電サイクル途中で不足するLiイオンを供給することができるためサイクル特性を向上させることができる。
【0023】
本発明の非水電解質二次電池は、正極、負極、セパレータ、非水電解質(例えばリチウム塩含有電解質)等から構成され、正極は、正極板(正極集電体:例えばアルミニウム板)上に正極活物質、導電剤及び結着剤を含有してなる正極合剤を塗布してなるものである。本発明の非水電解質二次電池は、正極板を構成する正極活物質として上記正極活物質を使用するものである。なお、正極活物質を予め製造するのではなく、正極合剤を調製する際に、上記本発明の正極活物質の条件を満足する構成のリチウム複合酸化物粒子を配合して均一に混合しても良い。
【0024】
本発明の非水電解質二次電池の負極に用いられる負極材料としては、特に制限されるものではないが、例えば炭素質材料、金属複合酸化物、リチウム金属またはリチウム合金などが挙げられる。炭素質材料としては、難黒鉛化炭素材料、黒鉛系炭素材料などが挙げられ、金属複合酸化物としては、SnM 1−x (式中、Mは、Mn、Fe、PbまたはGeから選ばれる1種以上を表し、Mは、Al、B、P、Si、周期律表第1族、第2族、第3族またはハロゲン元素から選ばれる2種以上の元素を表し、xは、0<x≦1の範囲内の数を表し、yは、1≦y≦3の範囲内の数を表し、zは、1≦z≦8の範囲内の数を表す)などの化合物が挙げられる。
【0025】
正極合剤は、正極活物質に加えて導電剤、結着剤及びフィラーなどを添加することができる。導電剤としては、例えば天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、炭素繊維、ニッケル粉のような金属粉等からなる群から選択された導電性材料の1種または2種以上を使用することができる。上述のなかで、黒鉛とアセチレンブラックを導電剤として併用することが好ましい。なお、正極合剤への導電剤の配合量は、1〜50重量%、好ましくは2〜30重量%の範囲内である。
【0026】
また、結着剤としては、例えばポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、エチレン−プロピレン−ジエンターボリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマーなどの1種または2種以上を使用することができる。なお、正極合剤への結着剤の配合量は、2〜30重量%の範囲内が好ましい。
更に、フィラーは、非水電解質二次電池において、化学変化を起こさない繊維状材料であればいずれのものも使用可能であるが、通常ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス繊維、炭素繊維のような繊維が用いられる。正極合剤へのフィラー配合量は、特に限定されるものではないが、0〜30重量%の範囲内が好ましい。
なお、本発明の正極活物質の正極合剤への配合量は、特に限定されるものではないが、好ましくは60〜95重量%、特に好ましくは70〜94重量%の範囲内である。
【0027】
次に、非水電解質二次電池に用いられる非水電解液は、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチルラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、礒酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒の少なくとも1種以上を混合した溶媒と、その溶媒に溶解するリチウム塩例えばLiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウムなどの1種以上のリチウム塩から構成される。
また、非水電解液の他に、有機固体電解質を用いることもできる。例えばポリエチレン誘導体またはこれを含むポリマー、ポリプロピレンオキサイド誘導体またはこれを含むポリマー、燐酸エステルポリマーなどが挙げられる。
【0028】
上記化合物を所望の量混合して非水電解質二次電池を構成させることができる。電極の集電体は、構成された非水電解質二次電池において化学変化を起こさない電子伝導体であれば特に制限されるものではないが、例えばステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面をカーボン、ニッケル、銅、チタンまたは銀で表面処理したもの、負極にはステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素などの他に、銅やステンレス鋼の表面をカーボン、ニッケル、チタンまたは銀などで処理したもの、Al−Cd合金などが用いられる。
【0029】
非水電解質二次電池の形状は、コイン、ボタン、シート、シリンダー、角などのいずれにも適用できる。
本発明の非水電解質二次電池の用途は、特に制限されないが、例えばノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス電話機、ポータブルCD、ラジオなどの電子機器、自動車、電動車両、ゲーム機器などの民生用電子機器などが挙げられる。
【0030】
【実施例】
次に実施例をあげて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
【0031】
実施例1
酸化銅(日進ケムコ社製 グレード:N−120)19.06gと、酸化ニッケル(OMG社製)0.94g、水酸化リチウム・1水塩21.16g(日本化学工業社製)を混合し、大気雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径18.4μm、BET比表面積0.61m/gのリチウムニッケル銅酸化物を得た。
【0032】
測定条件は、以下の条件で行った。
(平均粒子径の測定)
Microtrac粒度分布計9320 −X100(Leed &Northrup 社製)を用いて以下の条件で行った。上記粒度分布計に内蔵されているサンプルセルに超純水を300ml 投入し、次いで10 %ヘキサメタりん酸ソーダ水溶液2mlを添加した。次いで、試料を粒度分布計に適した濃度になるまで添加した。尚、前記操作は環流量40ml /sec で行った。次いで、超音波を出力40W で60 秒かけて分散処理した後、平均粒子径を測定した。
(BET比表面積の測定)
BETの測定はフローソーブ2300型(島津製作所製)を用いて行った。
【0033】
実施例2
酸化銅(日進ケムコ社製 グレード:N−120)18.11gと、酸化ニッケル(OMG社製)1.89g、水酸化リチウム・1水塩21.23g(日本化学工業社製)を混合し、大気雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径17.0μm、BET比表面積0.60m/gのリチウムニッケル銅酸化物を得た。
【0034】
実施例3
酸化銅(日進ケムコ社製 グレード:N−120)17.16gと、酸化ニッケル(OMG社製)2.84g、水酸化リチウム・1水塩21.29g(日本化学工業社製)を混合し、大気雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径17.0μm、BET比表面積0.67m/gのリチウムニッケル銅酸化物を得た。
【0035】
実施例4
酸化銅(日進ケムコ社製 グレード:N−120)15.24gと、酸化ニッケル(OMG社製)4.76g、水酸化リチウム・1水塩21.42g(日本化学工業社製)を混合し、大気雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径18.4μm、BET比表面積0.77m/gのリチウムニッケル銅酸化物を得た。
【0036】
実施例5
酸化銅(日進ケムコ社製 グレード:N−120)10.32gと、酸化ニッケル(OMG社製)9.68g、水酸化リチウム・1水塩21.98g(日本化学工業社製)を混合し、大気雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径 19.0μm、BET比表面積0.68m/gのリチウムニッケル銅酸化物を得た。
【0037】
実施例6
酸化銅(日進ケムコ社製 グレード:N−120)5.24gと、酸化ニッケル(OMG社製)14.76g、水酸化リチウム・1水塩22.33g(日本化学工業社製)を混合し、大気雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径21.0μm、BET比表面積0.72m/gのリチウムニッケル銅酸化物を得た。
【0038】
実施例7
酸化銅(日進ケムコ社製 グレード:N−120)18.11gと、酸化ニッケル(OMG社製)1.89g、水酸化リチウム・1水塩21.23g(日本化学工業社製)を混合し、窒素雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径17.5μm、BET比表面積0.63m/gのリチウムニッケル銅酸化物を得た。
【0039】
実施例8
酸化銅(日進ケムコ社製 グレード:N−120)15.24gと、酸化ニッケル(OMG社製)4.76g、水酸化リチウム・1水塩21.42g(日本化学工業社製)を混合し、窒素雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径18.3μm、BET比表面積0.77m/gのリチウムニッケル銅酸化物を得た。
【0040】
実施例9
酸化銅(日進ケムコ社製 グレード:N−120)10.32gと、酸化ニッケル(OMG社製)9.68g、水酸化リチウム・1水塩21.98g(日本化学工業社製)を混合し、大気雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径 18.1μm、BET比表面積0.69m/gのリチウムニッケル銅酸化物を得た。
【0041】
実施例10
酸化銅(日進ケムコ社製 グレード:N−120)5.24gと、酸化ニッケル(OMG社製)14.76g、水酸化リチウム・1水塩22.33g(日本化学工業社製)を混合し、大気雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径19.2μm、BET比表面積0.68m/gのリチウムニッケル銅酸化物を得た。
【0042】
比較例1
酸化銅(日進ケムコ社製 グレード:N−120)20.00gと、水酸化リチウム・1水塩21.10g(日本化学工業社製)を混合し、大気雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径18.4μm、BET比表面積0.85m/gのリチウムニッケル銅酸化物を得た。
【0043】
比較例2
酸化ニッケル(OMG社製)20.00g、酸化リチウム8.00g(日本化学工業社製)を混合し、窒素雰囲気中で300℃で2時間仮焼し、次いで650℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径20.0μm、BET比表面積0.38m2/gのリチウムニッケル銅酸化物を得た。
【0044】
比較例3
酸化銅(日進ケムコ社製 グレード:N−120)20.00gと、水酸化リチウム・1水塩21.10g(日本化学工業社製)を混合し、窒素雰囲気中で300℃で2時間仮焼し、次いで700℃で7時間焼成した。焼成後、冷却し、粉砕を行なった。目開き75μmの篩で分級した。
平均粒子径18.2μm、BET比表面積0.83m/gのリチウムニッケル銅酸化物を得た。
【0045】
<電池性能試験>
(I)コイン型非水電解質ニ次電池の作製;
上記のように製造した実施例1〜10及び比較例1〜3のリチウムニッケル銅酸化物70重量%、黒鉛粉末20重量%、ポリフッ化ビニリデン10重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用して非水電解質ニ次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF 1モルを溶解したものを使用した。その結果を表1に示す。
【0046】
(II)コイン型非水電解質ニ次電池による試験;
上記により作製したコイン型非水電解質二次電池を0.1Cに相当する電流で定電流定電圧で4.25Vまで24時間充電し、次いで0.1Cに相当する電流で3.0Vまで定電流定電圧で電流値が0.1C電流値の2.5%の値になるまで放電する充放電試験を行った。その結果を表1に併記する。
【0047】
【表1】

Figure 2004284845
【0048】
【発明の効果】
本発明の組成式LiCuNi1−x(0<x<1)で表されることを特徴とするリチウムニッケル銅酸化物を非水電解質二次電池用正極剤として使用すると、優れたサイクル特性や過放電に対する安全性が高い電池を構成することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium nickel copper oxide, a method for producing the same, and a nonaqueous electrolyte secondary battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as home appliances become more portable and cordless, non-aqueous electrolyte secondary batteries have been put into practical use as power sources for small electronic devices such as laptop personal computers, mobile phones, and video cameras.
For this nonaqueous electrolyte secondary battery, research and development on positive electrode active materials such as lithium cobaltate, lithium nickelate, and lithium manganate have been actively promoted, and many proposals have been made so far.
[0003]
Further, as a new positive electrode active material, a lithium nickel composite oxide represented by Li 2 NiO 2 + y (0.0 <y <0.3) has been proposed (for example, see Patent Document 1).
[0004]
Furthermore, a positive electrode material for a lithium secondary battery has been proposed, which comprises, as active materials, lithium manganese oxide having a spinel structure, Li 2 CuO 2, and lithium nickel oxide having a layered structure. (For example, see Patent Document 2)
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-241027 [Patent Document 2]
JP 2001-160395 A
[Problems to be solved by the invention]
However, the compound of Li 2 NiO 2 + y (0.0 <y <0.3) proposed in Patent Document 1 must be calcined in an inert gas-oxygen atmosphere for the production thereof, which is industrially disadvantageous. It is.
Further, lithium manganese oxide having a spinel structure has been proposed in Patent Document 2, Li 2 CuO 2 and mixtures of the lithium nickel oxide having a layered structure has been proposed, Li 2 used in the mixture CuO 2 is a substance having substantially no discharge capacity. Therefore, in a lithium secondary battery in which a phenomenon that the amount of Li ions moving between the positive electrode and the negative electrode decreases with the cycle occurs, there is a disadvantage that Li ions cannot be replenished at that time.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in the above situation, and as a result, the lithium nickel copper oxide represented by the composition formula Li 2 Cu x Ni 1-x O 2 (0 <x <1) has an initial charge capacity and The initial charge / discharge capacity difference represented by the difference from the initial discharge capacity is large, and the supply amount of Li ions is large. Furthermore, since it has reversibility, shortage of Li ions can be supplied during a charge / discharge cycle.
[0008]
An object of the present invention is to provide a lithium nickel copper oxide characterized by being represented by a composition formula of Li 2 Cu x Ni 1-x O 2 (0 <x <1).
[0009]
Further, the present invention is to provide the above-mentioned lithium nickel copper oxide having a BET specific surface area of 0.1 to 30 m 2 / g.
[0010]
Further, the present invention is to provide the above-described lithium nickel copper oxide having an average particle diameter of 0.1 to 50 µm.
[0011]
Another object of the present invention is to provide a method for producing a lithium nickel copper oxide, comprising mixing lithium hydroxide, a nickel compound and a copper compound, and then firing the mixture.
[0012]
The present invention also provides a method for producing a lithium nickel copper oxide as described above, wherein the calcination is performed in the atmosphere.
[0013]
Another object of the present invention is to provide a nonaqueous electrolyte secondary battery in which the positive electrode contains at least the lithium nickel copper oxide described in any of the above as a positive electrode active material.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
That is, the lithium nickel copper oxide of the present invention is represented by the compositional formula Li 2 Cu x Ni 1-x O 2. In the formula, x is in the range of 0 <x <1, preferably 0.50 <x <0.95.
Such a lithium nickel copper oxide has a BET specific surface area of 0.1 to 30 m 2 / g, preferably 0.3 to 10 m 2 / g, more preferably 0.5 to 1.0 m 2 / g.
The average particle size of the lithium nickel copper oxide is 0.1 to 50 μm, preferably 1 to 10 μm.
The lithium nickel copper oxide of the present invention is preferably used in combination with other positive electrode active materials, for example, lithium cobaltate, lithium nickelate, lithium manganate and the like.
[0015]
The method for producing a lithium nickel copper oxide of the present invention is characterized in that lithium hydroxide is mixed with a nickel compound and a copper compound, and then the mixture is fired.
The lithium hydroxide is not particularly limited as long as it is commercially available, but a smaller particle diameter is preferable. For example, the average particle diameter is 75 μm or less.
Examples of the nickel compound include nickel oxide, nickel hydroxide, nickel carbonate and the like, and preferably nickel oxide. The reason why nickel oxide is preferable is that when a large amount of moisture or carbon dioxide gas is present during the production method of the present invention, the decomposition reaction of lithium hydroxide, nickel hydroxide and nickel carbonate is suppressed, and the reaction may not proceed sufficiently.
Examples of the copper compound include copper oxide and cuprous oxide, but copper oxide is preferable.
[0016]
In the production method of the present invention, for example, the above-described lithium hydroxide, nickel oxide, and copper oxide are mixed to obtain a mixture. The mixing may be performed by either a dry method or a wet method, but the dry method is preferred because of easy production. In the case of dry mixing, it is preferable to use a blender for uniformly mixing the raw materials.
The mixing ratio of lithium hydroxide and the nickel compound and the copper compound as the raw materials in the mixing step is 1.80 to 2.30, preferably 2.00, in terms of the molar ratio of Ni + Cu atoms to Li atoms [Li / (Ni + Cu)]. 2.12.14.
[0017]
Next, the mixture is fired. The firing temperature is 400 to 1100C, preferably 600 to 900C. The firing time is 1 to 24 hours, preferably 2 to 10 hours.
Preferably, a calcination step is performed before such calcination. The calcination temperature is 150 to 350 ° C, preferably 200 to 300 ° C. The calcination time is 30 minutes to 5 hours, preferably 2 to 3 hours.
[0018]
The sintering may be performed in the air or in an inert atmosphere, but it is a feature of the present invention that the sintering can be performed in the air. The reason for firing in the air (under an oxygen atmosphere) is as follows.
That is, when oxygen is present at a high partial pressure in the firing atmosphere, nickel is oxidized from divalent to trivalent, and the Li 2 NiO 2 structure, which is the target compound, is changed to a LiNiO 2 structure in which the valence of Ni is trivalent. Would.
On the other hand, Cu is oxidized only up to divalent even in the presence of high oxygen, and forms Li 2 CuO 2 having the same structure as Li 2 NiO 2 . Therefore, when Ni and Cu coexist, Ni and Cu have the same structure and are liable to form a solid solution. In order for Ni in the solid solution to be trivalent, it is necessary to break the solid solution with Cu, Disadvantageous. Therefore, Ni becomes easy to take a Li 2 NiO 2 structure by firing together with Cu, so that synthesis becomes possible even under a high oxygen partial pressure. In other words, since the presence of Cu in Li 2 NiO 2 can stabilize the structure and suppress the oxidation of Ni accompanied by a change in the structure, synthesis can be performed even under a high oxygen partial pressure.
After calcination, the mixture is appropriately cooled and pulverized as necessary to obtain lithium nickel copper oxide. The pulverization performed as necessary is appropriately performed when the lithium-nickel-copper oxide obtained by firing is in the form of a brittlely bonded block.
[0019]
The lithium nickel copper oxide obtained by the above method is also used as a positive electrode active material for a lithium secondary battery. However, other positive electrode materials such as LiCoO 2 , LiNiO 2 , and LiNi x Co 1-x O 2 (0 < x <1), preferably used in combination with LiMnO 2 , LiMn 2 O 4 , LiMPO 4 (M is Co, Mn, Fe, etc.). The added amount is from 1% by weight to 20% by weight.
That is, the lithium nickel copper oxide of the present invention has a large initial charge / discharge capacity difference represented by the difference between the initial charge capacity and the initial discharge capacity. Further, when the average discharge voltage of the lithium nickel copper oxide of the present invention is lower than that of the positive electrode material used in combination, such as when used in combination with LiCoO 2 widely used as a positive electrode active material at present, the charge / discharge When Li ions are inactivated at the negative electrode during the cycle, Li ions can be supplied to the positive electrode material used in combination, and deterioration of the positive electrode material used in combination can be suppressed.
[0020]
In a lithium secondary battery, the amount of Li ions migrating (discharging) to the positive electrode decreases due to the inactivation of Li ions generated at the negative electrode, causing a decrease in the reversible capacity, in which the discharge capacity becomes lower than the charge capacity. It has become. In order to suppress a decrease in battery performance due to this phenomenon, it is necessary to appropriately supply Li ions corresponding to the amount of Li ions inactivated at the negative electrode. Inactivation of Li ions in the negative electrode is particularly large during the initial charge / discharge cycle, and also occurs during the second and subsequent charge / discharge cycles.
The Li ions inactivated during the initial charge and discharge are compensated by the irreversible capacity portion represented by the initial charge and discharge capacity difference of the lithium nickel copper oxide. Compensation is made from the reversible capacity portion represented by the initial discharge capacity of the copper oxide.
The ratio of the amount of Li ions inactivated during the initial charge / discharge cycle and the amount of Li ions inactivated in the second and subsequent cycles differs depending on the negative electrode used. Accordingly, the amount of Li ions to be compensated during the initial charge / discharge cycle and the amount of Li ions to be compensated in the second and subsequent cycles differ depending on the negative electrode used, and the difference in initial charge / discharge capacity (irreversible capacity) and the initial discharge capacity ( By using lithium nickel copper oxide having a reversible capacity), the amount of lithium nickel copper oxide used can be minimized, and at this time, the maximum performance can be obtained as the overall battery performance. For that purpose, it is necessary to control the ratio between the initial charge / discharge capacity difference (irreversible capacity) and the initial discharge capacity (reversible capacity) of the lithium nickel copper oxide.
In the present invention, since the ratio of the initial charge capacity difference and the ratio of the initial discharge capacity can be controlled by changing the ratio of Cu and Ni, the configuration of the battery having the maximum battery performance with a minimum amount of addition for a wide range of negative electrodes can be achieved. It is possible.
[0021]
Therefore, a large Li ion supply amount during the initial charge / discharge cycle, that is, having a large initial charge / discharge capacity difference, showing a reversible charge / discharge cycle, and charging per unit weight or unit capacity more than other positive electrode active materials used simultaneously. By using a positive electrode active material with a large capacity and a low average discharge voltage, Li ions are supplied during the initial charge and discharge and during the subsequent charge and discharge cycle, and the battery performance is improved by compensating for the Li ion shortage caused by inactivation. The decrease can be suppressed. Also, by having a low average discharge voltage, a battery with high safety against overdischarge can be formed.
[0022]
Further, unlike Li 2 CuO 2 , which has already been proposed and does not substantially discharge, because it has reversibility, it is possible to supply insufficient Li ions during the charge / discharge cycle, so that cycle characteristics can be improved. .
[0023]
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte (for example, a lithium salt-containing electrolyte), and the like. The positive electrode is formed on a positive electrode plate (a positive electrode current collector: for example, an aluminum plate). It is obtained by applying a positive electrode mixture containing an active material, a conductive agent and a binder. The nonaqueous electrolyte secondary battery of the present invention uses the above-mentioned positive electrode active material as a positive electrode active material constituting a positive electrode plate. Note that, instead of preparing the positive electrode active material in advance, when preparing a positive electrode mixture, lithium composite oxide particles having a configuration that satisfies the conditions of the positive electrode active material of the present invention are blended and uniformly mixed. Is also good.
[0024]
The negative electrode material used for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and examples thereof include a carbonaceous material, a metal composite oxide, a lithium metal, and a lithium alloy. The carbonaceous material, non-graphitizable carbon material, such as graphite carbon material. Examples of the metal composite oxide, SnM 1 1-x M 2 y O z ( wherein, M 1 is, Mn, Fe, It represents one or more selected from Pb or Ge, M 2 is, Al, B, P, Si, group 1 of the periodic table, group 2, two or more elements selected from the third group or a halogen element X represents a number in the range of 0 <x ≦ 1, y represents a number in the range of 1 ≦ y ≦ 3, and z represents a number in the range of 1 ≦ z ≦ 8. And the like.
[0025]
The positive electrode mixture can include a conductive agent, a binder, a filler, and the like in addition to the positive electrode active material. Examples of the conductive agent include a conductive powder selected from the group consisting of natural graphite (scale graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, carbon fiber, metal powder such as nickel powder, and the like. One or more of the conductive materials can be used. Among the above, it is preferable to use graphite and acetylene black in combination as the conductive agent. The amount of the conductive agent mixed in the positive electrode mixture is in the range of 1 to 50% by weight, preferably 2 to 30% by weight.
[0026]
Examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl pyrrolidone, ethylene-propylene-diene turbomer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluororubber, One or more of polysaccharides such as polyethylene oxide, a thermoplastic resin, and a polymer having rubber elasticity can be used. In addition, the compounding quantity of the binder to the positive electrode mixture is preferably in the range of 2 to 30% by weight.
Further, as the filler, in a nonaqueous electrolyte secondary battery, any material can be used as long as it is a fibrous material that does not cause a chemical change, but usually, an olefin-based polymer such as polypropylene or polyethylene, glass fiber, or carbon fiber is used. Such fibers are used. The amount of the filler mixed in the positive electrode mixture is not particularly limited, but is preferably in the range of 0 to 30% by weight.
The amount of the positive electrode active material of the present invention in the positive electrode mixture is not particularly limited, but is preferably in the range of 60 to 95% by weight, and particularly preferably in the range of 70 to 94% by weight.
[0027]
Next, the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery is, for example, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyl lactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolan, formamide, dimethylformamide, dioxolan, acetonitrile, nitromethane, methyl isoform, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl -2-oxazodinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, at least one or more aprotic organic solvents such as 1,3-propanesultone. And solvent combined, lithium salts such as LiClO 4 is dissolved in the solvent, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, chloroborane lithium, It is composed of one or more lithium salts such as lithium lower aliphatic carboxylate and lithium tetraphenylborate.
In addition to the non-aqueous electrolyte, an organic solid electrolyte can also be used. For example, a polyethylene derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, a phosphate ester polymer, and the like can be given.
[0028]
The above compounds can be mixed in desired amounts to form a non-aqueous electrolyte secondary battery. The current collector of the electrode is not particularly limited as long as it is an electron conductor that does not cause a chemical change in the configured nonaqueous electrolyte secondary battery, for example, stainless steel, nickel, aluminum, titanium, calcined carbon, Aluminum or stainless steel surface treated with carbon, nickel, copper, titanium, or silver.The negative electrode has the surface of copper or stainless steel in addition to stainless steel, nickel, copper, titanium, aluminum, calcined carbon, etc. A material treated with carbon, nickel, titanium or silver, an Al-Cd alloy, or the like is used.
[0029]
The shape of the nonaqueous electrolyte secondary battery can be applied to any of coins, buttons, sheets, cylinders, corners and the like.
The use of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited. For example, electronic devices such as notebook computers, laptop computers, pocket word processors, mobile phones, cordless phones, portable CDs, radios, automobiles, electric vehicles, and games Consumer electronic devices such as devices.
[0030]
【Example】
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention.
[0031]
Example 1
19.06 g of copper oxide (Grade: N-120, manufactured by Nisshin Chemco), 0.94 g of nickel oxide (manufactured by OMG), and 21.16 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry) were mixed. It was calcined at 300 ° C. for 2 hours in the air atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 18.4 μm and a BET specific surface area of 0.61 m 2 / g was obtained.
[0032]
The measurement was performed under the following conditions.
(Measurement of average particle size)
The measurement was performed under the following conditions using a Microtrac particle size distribution analyzer 9320-X100 (manufactured by Leed & Northrup). 300 ml of ultrapure water was charged into the sample cell built in the particle size distribution meter, and then 2 ml of a 10% aqueous sodium hexametaphosphate solution was added. The sample was then added to a concentration suitable for the particle size distribution meter. In addition, the said operation was performed at a circulation flow rate of 40 ml / sec. Next, after the ultrasonic wave was subjected to dispersion treatment at an output of 40 W for 60 seconds, the average particle diameter was measured.
(Measurement of BET specific surface area)
The BET was measured using Flowsorb 2300 (manufactured by Shimadzu Corporation).
[0033]
Example 2
18.11 g of copper oxide (Grade: N-120, manufactured by Nisshin Chemco), 1.89 g of nickel oxide (manufactured by OMG), and 21.23 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry) were mixed. It was calcined at 300 ° C. for 2 hours in the air atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 17.0 μm and a BET specific surface area of 0.60 m 2 / g was obtained.
[0034]
Example 3
17.16 g of copper oxide (Grade: N-120, manufactured by Nissin Chemco), 2.84 g of nickel oxide (manufactured by OMG), and 21.29 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry) were mixed. It was calcined at 300 ° C. for 2 hours in the air atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 17.0 μm and a BET specific surface area of 0.67 m 2 / g was obtained.
[0035]
Example 4
A mixture of 15.24 g of copper oxide (Grade: N-120, manufactured by Nisshin Chemco), 4.76 g of nickel oxide (manufactured by OMG), and 21.42 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry), It was calcined at 300 ° C. for 2 hours in the air atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 18.4 μm and a BET specific surface area of 0.77 m 2 / g was obtained.
[0036]
Example 5
10.32 g of copper oxide (Grade: N-120, manufactured by Nisshin Chemco), 9.68 g of nickel oxide (manufactured by OMG), and 21.98 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry) were mixed. It was calcined at 300 ° C. for 2 hours in the air atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 19.0 μm and a BET specific surface area of 0.68 m 2 / g was obtained.
[0037]
Example 6
5.24 g of copper oxide (Grade: N-120, manufactured by Nisshin Chemco), 14.76 g of nickel oxide (manufactured by OMG), and 22.33 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry) were mixed. It was calcined at 300 ° C. for 2 hours in the air atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 21.0 μm and a BET specific surface area of 0.72 m 2 / g was obtained.
[0038]
Example 7
18.11 g of copper oxide (Grade: N-120 manufactured by Nisshin Chemco), 1.89 g of nickel oxide (manufactured by OMG), and 21.23 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry) were mixed. It was calcined at 300 ° C. for 2 hours in a nitrogen atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 17.5 μm and a BET specific surface area of 0.63 m 2 / g was obtained.
[0039]
Example 8
A mixture of 15.24 g of copper oxide (Grade: N-120, manufactured by Nisshin Chemco), 4.76 g of nickel oxide (manufactured by OMG), and 21.42 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry), It was calcined at 300 ° C. for 2 hours in a nitrogen atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 18.3 μm and a BET specific surface area of 0.77 m 2 / g was obtained.
[0040]
Example 9
10.32 g of copper oxide (Grade: N-120, manufactured by Nisshin Chemco), 9.68 g of nickel oxide (manufactured by OMG), and 21.98 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry) were mixed. It was calcined at 300 ° C. for 2 hours in the air atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 18.1 μm and a BET specific surface area of 0.69 m 2 / g was obtained.
[0041]
Example 10
5.24 g of copper oxide (Grade: N-120, manufactured by Nisshin Chemco), 14.76 g of nickel oxide (manufactured by OMG), and 22.33 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry) were mixed. It was calcined at 300 ° C. for 2 hours in the air atmosphere, and then calcined at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 19.2 μm and a BET specific surface area of 0.68 m 2 / g was obtained.
[0042]
Comparative Example 1
A mixture of 20.00 g of copper oxide (grade: N-120, manufactured by Nisshin Chemco) and 21.10 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry Co., Ltd.) was calcined at 300 ° C. for 2 hours in an air atmosphere. Then, it was baked at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 18.4 μm and a BET specific surface area of 0.85 m 2 / g was obtained.
[0043]
Comparative Example 2
20.00 g of nickel oxide (manufactured by OMG) and 8.00 g of lithium oxide (manufactured by Nippon Chemical Industry) were mixed, calcined at 300 ° C. for 2 hours in a nitrogen atmosphere, and then calcined at 650 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 20.0 μm and a BET specific surface area of 0.38 m 2 / g was obtained.
[0044]
Comparative Example 3
A mixture of 20.00 g of copper oxide (grade: N-120, manufactured by Nisshin Chemco) and 21.10 g of lithium hydroxide monohydrate (manufactured by Nippon Chemical Industry Co., Ltd.) was calcined at 300 ° C. for 2 hours in a nitrogen atmosphere. Then, it was baked at 700 ° C. for 7 hours. After baking, it was cooled and pulverized. The particles were classified with a sieve having openings of 75 μm.
A lithium nickel copper oxide having an average particle diameter of 18.2 μm and a BET specific surface area of 0.83 m 2 / g was obtained.
[0045]
<Battery performance test>
(I) Production of coin type non-aqueous electrolyte secondary battery;
70% by weight of the lithium nickel copper oxide, 20% by weight of graphite powder and 10% by weight of polyvinylidene fluoride prepared in Examples 1 to 10 and Comparative Examples 1 to 3 prepared as described above were mixed to form a positive electrode. -Methyl-2-pyrrolidinone was dispersed to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a non-aqueous electrolyte secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among them, a metal lithium foil was used for the negative electrode, and an electrolytic solution obtained by dissolving 1 mol of LiPF 6 in 1 liter of a 1: 1 kneading solution of ethylene carbonate and methyl ethyl carbonate was used. Table 1 shows the results.
[0046]
(II) a test using a coin-type non-aqueous electrolyte secondary battery;
The coin-type non-aqueous electrolyte secondary battery prepared as described above is charged at a constant current and a constant voltage of 4.25 V for 24 hours at a current corresponding to 0.1 C, and then a constant current of 3.0 C at a current corresponding to 0.1 C. A charge / discharge test was performed in which discharge was performed at a constant voltage until the current value reached 2.5% of the 0.1 C current value. The results are also shown in Table 1.
[0047]
[Table 1]
Figure 2004284845
[0048]
【The invention's effect】
Using formula Li 2 Cu x Ni 1-x O 2 lithium nickel copper oxide is characterized by being represented by (0 <x <1) of the present invention as a positive electrode material for a non-aqueous electrolyte secondary battery, A battery having excellent cycle characteristics and high safety against overdischarge can be configured.

Claims (6)

組成式LiCuNi1−x(0<x<1)で表されることを特徴とするリチウムニッケル銅酸化物。Compositional formula Li 2 Cu x Ni 1-x O 2 (0 <x <1) lithium nickel copper oxide is characterized by being represented by. BET比表面積が0.1〜30m/gである請求項1記載のリチウムニッケル銅酸化物。Lithium nickel copper oxide according to claim 1, wherein a BET specific surface area of 0.1~30m 2 / g. 平均粒子径が0.1〜50μmである請求項1又は2記載のリチウムニッケル銅酸化物。The lithium nickel copper oxide according to claim 1, wherein the average particle diameter is 0.1 to 50 μm. 水酸化リチウムとニッケル化合物および銅化合物を混合した後、該混合物を焼成することを特徴するリチウムニッケル銅酸化物の製造方法。A method for producing lithium nickel copper oxide, comprising: mixing lithium hydroxide with a nickel compound and a copper compound, and then firing the mixture. 前記焼成を大気中で行なうことを特徴とする請求項4記載のリチウムニッケル銅酸化物の製造方法。The method for producing a lithium nickel copper oxide according to claim 4, wherein the calcination is performed in the atmosphere. 正極が、請求項1〜3記載のいずれかに記載のリチウムニッケル銅酸化物が少なくとも正極活物質として含まれていることを特徴とする非水電解質二次電池。A nonaqueous electrolyte secondary battery, wherein the positive electrode contains at least the lithium nickel copper oxide according to any one of claims 1 to 3 as a positive electrode active material.
JP2003076912A 2003-03-20 2003-03-20 Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery Pending JP2004284845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076912A JP2004284845A (en) 2003-03-20 2003-03-20 Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076912A JP2004284845A (en) 2003-03-20 2003-03-20 Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JP2004284845A true JP2004284845A (en) 2004-10-14

Family

ID=33291813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076912A Pending JP2004284845A (en) 2003-03-20 2003-03-20 Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JP2004284845A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142156A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system
JP2012221681A (en) * 2011-04-07 2012-11-12 Nec Corp Lithium secondary battery and manufacturing method thereof
JP2014063645A (en) * 2012-09-21 2014-04-10 Kri Inc Lithium ion battery
JP2014525130A (en) * 2011-09-20 2014-09-25 エルジー・ケム・リミテッド High capacity positive electrode active material and lithium secondary battery including the same
CN104466146A (en) * 2013-09-25 2015-03-25 株式会社东芝 Nonaqueous electrolyte secondary battery and battery pack
KR20190056997A (en) * 2017-11-17 2019-05-27 주식회사 엘지화학 Method for preparing irreversible additive comprised in cathod material for lithium secondary battery, cathode material comprising irreversible additive prepared by the same, and lithium secondary battery comprising cathod active material
KR20190059242A (en) * 2017-11-22 2019-05-30 주식회사 엘지화학 Method for preparing positive electrode additives of lithium secondary battery
WO2020086718A1 (en) * 2018-10-25 2020-04-30 Tesla, Inc. Active material for electrode and method of manufacturing thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142156A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system
JP2012221681A (en) * 2011-04-07 2012-11-12 Nec Corp Lithium secondary battery and manufacturing method thereof
JP2014525130A (en) * 2011-09-20 2014-09-25 エルジー・ケム・リミテッド High capacity positive electrode active material and lithium secondary battery including the same
US9698413B2 (en) 2011-09-20 2017-07-04 Lg Chem, Ltd. High-capacity cathode active material and lithium secondary battery including the same
JP2014063645A (en) * 2012-09-21 2014-04-10 Kri Inc Lithium ion battery
CN104466146A (en) * 2013-09-25 2015-03-25 株式会社东芝 Nonaqueous electrolyte secondary battery and battery pack
US9831492B2 (en) 2013-09-25 2017-11-28 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
KR102346153B1 (en) * 2017-11-17 2022-01-03 주식회사 엘지에너지솔루션 Method for preparing irreversible additive comprised in cathod material for lithium secondary battery, cathode material comprising irreversible additive prepared by the same, and lithium secondary battery comprising cathod active material
KR20190056997A (en) * 2017-11-17 2019-05-27 주식회사 엘지화학 Method for preparing irreversible additive comprised in cathod material for lithium secondary battery, cathode material comprising irreversible additive prepared by the same, and lithium secondary battery comprising cathod active material
CN110431109A (en) * 2017-11-17 2019-11-08 株式会社Lg化学 Preparation includes the method for irreversible additive in anode materials for lithium secondary cells, the positive electrode comprising irreversible additive prepared therefrom and comprising the lithium secondary battery of the positive electrode
US11476466B2 (en) 2017-11-17 2022-10-18 Lg Energy Solution, Ltd. Method of preparing irreversible additive included in cathode material for lithium secondary battery, cathode material including irreversible additive prepared by the same, and lithium secondary battery including cathode material
JP7094598B2 (en) 2017-11-17 2022-07-04 エルジー エナジー ソリューション リミテッド A method for producing an irreversible additive contained in a positive electrode material for a lithium secondary battery, a positive electrode material containing the irreversible additive produced thereby, and a lithium secondary battery containing the positive electrode material.
JP2020516039A (en) * 2017-11-17 2020-05-28 エルジー・ケム・リミテッド Method for producing irreversible additive contained in positive electrode material for lithium secondary battery, positive electrode material containing irreversible additive produced thereby, and lithium secondary battery containing positive electrode material
CN110431109B (en) * 2017-11-17 2022-06-24 株式会社Lg化学 Method for preparing irreversible additive, positive electrode material comprising irreversible additive, and lithium secondary battery
EP3604229A4 (en) * 2017-11-17 2020-07-08 LG Chem, Ltd. Method for preparing irreversible additive contained in positive electrode material for lithium secondary battery, positive electrode material containing irreversible additive prepared thereby, and lithium secondary battery comprising positive electrode material
CN110573459B (en) * 2017-11-22 2022-06-17 株式会社Lg化学 Method for preparing positive electrode additive for lithium secondary battery
JP7045557B2 (en) 2017-11-22 2022-04-01 エルジー エナジー ソリューション リミテッド Manufacturing method of positive electrode additive for lithium secondary battery
KR20190059242A (en) * 2017-11-22 2019-05-30 주식회사 엘지화학 Method for preparing positive electrode additives of lithium secondary battery
JP2020518967A (en) * 2017-11-22 2020-06-25 エルジー・ケム・リミテッド Method for producing positive electrode additive for lithium secondary battery
US11398623B2 (en) 2017-11-22 2022-07-26 Lg Energy Solution, Ltd. Method for preparing positive electrode additives of lithium secondary battery
CN110573459A (en) * 2017-11-22 2019-12-13 株式会社Lg化学 Method for preparing positive electrode additive for lithium secondary battery
KR102646712B1 (en) 2017-11-22 2024-03-12 주식회사 엘지에너지솔루션 Method for preparing positive electrode additives of lithium secondary battery
WO2020086718A1 (en) * 2018-10-25 2020-04-30 Tesla, Inc. Active material for electrode and method of manufacturing thereof

Similar Documents

Publication Publication Date Title
JP5115697B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5325888B2 (en) Electrode active material, electrode for non-aqueous secondary battery and non-aqueous secondary battery
KR102140969B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP5534595B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP4539816B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP4853608B2 (en) Lithium secondary battery
JP5671831B2 (en) Method for producing lithium nitride-transition metal composite oxide, lithium nitride-transition metal composite oxide, and lithium battery
JP5078113B2 (en) Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5169850B2 (en) Non-aqueous electrolyte secondary battery
US20080241693A1 (en) Lithium transition metal complex oxide for lithium ion secondary battery cathode active material and method for producing the same, lithium ion secondary battery cathode active material, and lithium ion secondary battery
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JP2004241339A (en) Electrolyte liquid for secondary battery, and secondary battery of nonaqueous electrolyte liquid
KR20160083227A (en) Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same
JP2007200646A (en) Lithium secondary battery
JP5017778B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2009176583A (en) Lithium secondary battery
US11289688B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
JP2004022379A (en) Secondary cell, electrolyte therefor and usage thereof
JP2004014270A (en) Rechargeable battery
KR20170076348A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US9716264B2 (en) Electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery including the electrode
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JP4114918B2 (en) Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
JP5447615B2 (en) Electrolyte and non-aqueous electrolyte secondary battery