JP4754209B2 - Method for producing lithium cobalt composite oxide powder - Google Patents

Method for producing lithium cobalt composite oxide powder Download PDF

Info

Publication number
JP4754209B2
JP4754209B2 JP2004364439A JP2004364439A JP4754209B2 JP 4754209 B2 JP4754209 B2 JP 4754209B2 JP 2004364439 A JP2004364439 A JP 2004364439A JP 2004364439 A JP2004364439 A JP 2004364439A JP 4754209 B2 JP4754209 B2 JP 4754209B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
oxide powder
positive electrode
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004364439A
Other languages
Japanese (ja)
Other versions
JP2006169048A (en
Inventor
英和 粟野
義英 大石
克幸 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2004364439A priority Critical patent/JP4754209B2/en
Priority to KR1020050123637A priority patent/KR101202143B1/en
Priority to CNB2005101320101A priority patent/CN100521307C/en
Publication of JP2006169048A publication Critical patent/JP2006169048A/en
Application granted granted Critical
Publication of JP4754209B2 publication Critical patent/JP4754209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はリチウム二次電池の正極活物質として有用なリチウムコバルト系複合酸化物粉末、その製造方法、これを含有するリチウム二次電池正極活物質及び特にサイクル特性に優れたリチウム二次電池に関するものである。   The present invention relates to a lithium cobalt composite oxide powder useful as a positive electrode active material of a lithium secondary battery, a method for producing the same, a lithium secondary battery positive electrode active material containing the same, and a lithium secondary battery particularly excellent in cycle characteristics It is.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアル リサーチブレティン」vol15,P783-789(1980)〕)がなされて以来、リチウム系複合酸化物に関する研究開発が活発に進められており、これまで多くの提案がなされている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries (“Material Research Bulletin” vol15, P783-789 (1980)). ) Has been actively researched and developed on lithium-based composite oxides, and many proposals have been made so far.

しかしながら、コバルト酸リチウムを用いたリチウム二次電池にはコバルト原子の溶出等によるサイクル特性の劣化と言う問題がある。   However, a lithium secondary battery using lithium cobaltate has a problem of deterioration of cycle characteristics due to elution of cobalt atoms.

また、正極活物質としてコバルト酸リチウムのCo原子をMg原子で一部置換したリチウムコバルト系複合酸化物が提案されている(例えば、特許文献1〜3参照。)。
前記特許文献1〜3を含めリチウムコバルト系複合酸化物に、Mg原子を含有させるためのMg源は酸化マグネシウムや炭酸マグネシウムであり、また、本出願人が知る限りAl、Zr、Ca及びTi源として用いる化合物においても、これらの金属の酸化物や炭酸塩で、実際に該金属の燐酸塩や燐酸水素塩を用いたものはなく、また、これらの従来技術の方法に至っても、未だサイクル特性の劣化と言う問題が残されていた。
Further, lithium cobalt composite oxides in which Co atoms of lithium cobaltate are partially substituted with Mg atoms have been proposed as positive electrode active materials (see, for example, Patent Documents 1 to 3).
Mg sources for including Mg atoms in lithium cobalt based composite oxides including Patent Documents 1 to 3 are magnesium oxide and magnesium carbonate, and as far as the applicant knows, Al, Zr, Ca and Ti sources. Among these compounds, there are no oxides or carbonates of these metals that actually use the phosphates or hydrogen phosphates of these metals, and even when these conventional methods are used, cycle characteristics are still not achieved. The problem of deterioration was left.

また、本出願人も先にコバルト酸リチウムの粒子表面をこれらの金属の酸化物又は硫酸塩で表面処理したこれらの金属原子を含有するリチウムコバルト系複合酸化物を提案した(特許文献4〜5)。
特開平5−54889号公報、第1頁、第8頁。 特開2000−11993号公報、第2頁、第3頁。 特開2004−79386号公報、第2頁、第7頁。 特開2003−20229号公報。 特開2003−221234号公報。
In addition, the present applicant has previously proposed lithium cobalt-based composite oxides containing these metal atoms obtained by treating the surface of lithium cobalt oxide particles with oxides or sulfates of these metals (Patent Documents 4 to 5). ).
JP-A-5-54889, page 1, page 8. JP 2000-11993 A, page 2, page 3. JP, 2004-79386, A, 2nd page, 7th page. JP2003-20229A. JP2003-221234A.

本出願人が提案した前記方法によるとサイクル特性を向上させることはできるが、コバルト酸リチウムを製造した後、該コバルト酸リチウムを表面処理するという別工程を設けなければならず、正極活物質を製造するメーカーの立場から工業的に有利でない。   According to the method proposed by the present applicant, the cycle characteristics can be improved. However, after producing lithium cobaltate, a separate process of surface-treating the lithium cobaltate must be provided. It is not industrially advantageous from the standpoint of the manufacturer.

従って、本発明の目的はリチウム二次電池の正極活物質として用いたときに、特にリチウム二次電池のサイクル特性を向上させることができるリチウムコバルト系複合酸化物粉末、その工業的に有利な製造方法、これを含有するリチウム二次電池正極活物質及び該正極活物質を用いるサイクル特性に優れたリチウム二次電池を提供することにある。   Accordingly, an object of the present invention is to provide a lithium-cobalt composite oxide powder that can improve the cycle characteristics of a lithium secondary battery, particularly when used as a positive electrode active material of a lithium secondary battery, and an industrially advantageous production thereof. It is an object to provide a method, a positive electrode active material for a lithium secondary battery containing the same, and a lithium secondary battery excellent in cycle characteristics using the positive electrode active material.

本発明者らは、これらの課題を解決すべく鋭意研究を重ねた結果、Mg、Al、Zr、Ca及びTiから選ばれる少なくとも1種以上の金属原子を特定範囲含有するリチウムコバルト系複合酸化物で、尚且つ前記金属原子を含む化合物として該金属の燐酸塩又は/及び燐酸水素塩を用いて工業的に有利な方法で得られるこれらの金属原子を含有するリチウムコバルト系複合酸化物粉末を正極活物質とするリチウム二次電池は、特にサイクル特性に優れたものになることを知見し本発明を完成するに至った。   As a result of intensive studies to solve these problems, the present inventors have obtained a lithium cobalt-based composite oxide containing a specific range of at least one metal atom selected from Mg, Al, Zr, Ca and Ti. Further, a lithium cobalt composite oxide powder containing these metal atoms obtained by an industrially advantageous method using the metal phosphate or / and hydrogen phosphate as the compound containing the metal atom is used as the positive electrode. The lithium secondary battery used as the active material has been found to be particularly excellent in cycle characteristics, and the present invention has been completed.

即ち、本発明が提供しようとする発明は、リチウム化合物、コバルト化合物及びMg、Al、Zr、Ca及びTiから選ばれる少なくとも1種以上の金属原子を含む化合物を混合し焼成を行うリチウムコバルト系複合酸化物の製造方法において、前記金属原子を含む化合物として該金属の燐酸塩又は燐酸水素塩を用い、リチウム化合物、コバルト化合物及び前記金属原子を含む化合物とをCo原子に対するモル比で、Li原子0.90〜1.20、金属原子0.001〜0.04で混合し、得られる混合物を焼成することを特徴とするリチウムコバルト系複合酸化物粉末の製造方法である。 That is, inventions present invention you attempt to provide a lithium compound, a cobalt compound及beauty M g, Al, Zr, mixed by firing a compound containing at least one metal atom selected from Ca and Ti In the method for producing a lithium cobalt composite oxide, a metal phosphate or hydrogen phosphate is used as the metal atom-containing compound, and the molar ratio of the lithium compound, the cobalt compound, and the metal atom-containing compound to the Co atom. Then, Li is mixed with 0.90 to 1.20 Li atoms and 0.001 to 0.04 metal atoms, and the resulting mixture is fired.

本発明のリチウムコバルト系複合酸化物粉末はリチウム二次電池の正極活物質として有用であり、また、該リチウムコバルト系複合酸化物を正極活物質として用いたリチウム二次電池は、特にサイクル特性に優れたものとなる。   The lithium cobalt composite oxide powder of the present invention is useful as a positive electrode active material of a lithium secondary battery, and a lithium secondary battery using the lithium cobalt composite oxide as a positive electrode active material particularly has cycle characteristics. It will be excellent.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明に係るリチウムコバルト系複合酸化物粉末粉末は、Mg、Al、Zr、Ca及びTiから選ばれる少なくとも1種以上の金属原子(以下、「金属原子」と略記する。)を0.025〜1.0重量%、好ましくは0.025〜0.5重量%含有するリチウムコバルト系複合酸化物で、リチウム化合物、コバルト化合物及び前記金属の燐酸塩又は燐酸水素塩から選ばれる1種以上の金属原子を含む化合物とを混合し、該混合物を焼成して生成されたものであることを特徴とするものであり、かかる構成を持つ本発明のリチウムコバルト系複合酸化物粉末は、従来の金属原子を含む化合物としてこれらの金属の酸化物や炭酸塩を用いたものと比べ、該リチウムコバルト系複合酸化物粉末を正極活物質とするリチウム二次電池に、優れたサイクル特性を付与することができる。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The lithium cobalt composite oxide powder according to the present invention has at least one metal atom selected from Mg, Al, Zr, Ca, and Ti (hereinafter abbreviated as “metal atom”) in an amount of 0.025 to 0.025. One or more metals selected from lithium compounds, cobalt compounds, and phosphates or hydrogen phosphates of the above-mentioned lithium cobalt-based composite oxides containing 1.0% by weight, preferably 0.025 to 0.5% by weight The lithium-cobalt composite oxide powder of the present invention having such a structure is produced by mixing a compound containing atoms and firing the mixture. Compared to those using oxides or carbonates of these metals as compounds containing lithium, the lithium secondary battery using the lithium cobalt composite oxide powder as a positive electrode active material has an excellent cycle. It is possible to impart the characteristics.

なお、本発明において、前記金属原子の含有量を当該範囲とする理由は金属原子の含有量が0.025重量%未満ではリチウム二次電池のサイクル特性の向上がみられなく、一方、1.0重量%を越えるとリチウム二次電池の容量が低下する傾向があるからである。   In the present invention, the reason why the metal atom content falls within the above range is that when the metal atom content is less than 0.025% by weight, the cycle characteristics of the lithium secondary battery are not improved. This is because if the content exceeds 0% by weight, the capacity of the lithium secondary battery tends to decrease.

本発明において、含有させる前記金属原子がMg原子であるとリチウム二次電池のサイクル特性を一層向上させることができる点で前記金属原子はMg原子であることが特に好ましい。   In the present invention, it is particularly preferable that the metal atom is an Mg atom in that the metal atom to be contained is an Mg atom, so that the cycle characteristics of the lithium secondary battery can be further improved.

本発明にかかるリチウムコバルト系複合酸化物粉末の他の物性としては、レーザー法粒度分布測定法から求められる平均粒径が0.5〜30μm、好ましくは10〜25μmであり、平均粒径が該範囲内にあると均一な厚さの塗膜の形成が可能となるため好ましく、特に好ましくは10〜20μmであると該リチウムコバルト系複合酸化物粉末を正極活物質とするリチウム二次電池の安全性を更に向上させることができる。   As other physical properties of the lithium cobalt based composite oxide powder according to the present invention, the average particle size determined from the laser particle size distribution measurement method is 0.5 to 30 μm, preferably 10 to 25 μm, and the average particle size is When the thickness is within the range, it is preferable because a coating film having a uniform thickness can be formed. Particularly preferably, when the thickness is 10 to 20 μm, the safety of the lithium secondary battery using the lithium cobalt-based composite oxide powder as the positive electrode active material The property can be further improved.

また、本発明に係るリチウムコバルト系複合酸化物粉末は、BET比表面積が0.05〜1m2/g,好ましくは0.15〜0.6m2/gである。BET比表面積が該範囲内にあると、安全性が良好であるため好ましい。 The lithium cobalt composite oxide powder according to the present invention has a BET specific surface area of 0.05 to 1 m 2 / g, preferably 0.15 to 0.6 m 2 / g. It is preferable that the BET specific surface area be within this range because safety is good.

本発明のリチウムコバルト系複合酸化物粉末において前記金属の燐酸塩又は/及び燐酸水素塩は、リチウム化合物とコバルト化合物との焼成によりその金属分はリン酸分の作用等により該リチウムコバルト系複合酸化物の粒子表面に優先的に酸化物として存在し、一方、燐酸分はリチウムと反応しリン酸リチウムとして粒子表面に化学的な結合でもって固定化されて存在するものと考えられるが、このリン酸リチウムは不純物として作用しリチウム二次電池のインピーダンスの増加につながり、充放電サイクル特性を劣化させる要因となる。従って、本発明のリチウムコバルト系複合酸化物粉末において、このリン酸リチウムに由来する水に溶出するPO4 2-の量が1重量%以下、好ましくは0.2重量%以下のものであると、これらの電池性能の劣化がなく、優れたサイクル特性をリチウム二次電池に付与することができる点で特に好ましい。
なお、本発明において、この水に溶出するPO4 2-の量は該リチウムコバルト系複合酸化物粉末30gを純水100mlに5分間25℃で分散させたときの分散液中のPO4 2-の量をイオンクロマトグラフィー法で求めたものである。
In the lithium-cobalt composite oxide powder of the present invention, the metal phosphate or / and hydrogen phosphate is obtained by firing a lithium compound and a cobalt compound so that the metal component is oxidized by the action of the phosphate, etc. On the other hand, it is considered that the phosphoric acid content is preferentially present on the particle surface of the product as a oxide, while the phosphoric acid component reacts with lithium and is immobilized on the particle surface as a lithium phosphate by a chemical bond. Lithium acid acts as an impurity and leads to an increase in the impedance of the lithium secondary battery, which causes deterioration of charge / discharge cycle characteristics. Therefore, in the lithium cobalt composite oxide powder of the present invention, the amount of PO 4 2− eluted in water derived from this lithium phosphate is 1% by weight or less, preferably 0.2% by weight or less. The battery performance is not particularly deteriorated, and it is particularly preferable in that excellent cycle characteristics can be imparted to the lithium secondary battery.
In the present invention, PO in the dispersion when the amount of PO 4 2-eluting in water is dispersed in 5 minutes 25 ° C. The lithium cobalt composite oxide powder 30g of pure water 100 ml 4 2- Is determined by ion chromatography.

次いで、本発明のリチウムコバルト系複合酸化物粉末の製造方法について説明する。
本発明のリチウムコバルト系複合酸化物粉末の製造方法はリチウム化合物、コバルト化合物及び、Mg、Al、Zr、Ca及びTiから選ばれる少なくとも1種以上の金属原子を含む化合物とを混合し焼成を行うリチウムコバルト系複合酸化物の製造方法において、前記金属原子を含む化合物として該金属の燐酸塩又は燐酸水素塩を用い、リチウム化合物、コバルト化合物及び金属原子を含む化合物とをCo原子に対するモル比で、Li原子0.90〜1.20、金属原子0.001〜0.04で混合し、得られる混合物を焼成することを特徴とするものである。
Next, a method for producing the lithium cobalt composite oxide powder of the present invention will be described.
The method for producing a lithium cobalt composite oxide powder according to the present invention is performed by mixing a lithium compound, a cobalt compound, and a compound containing at least one metal atom selected from Mg, Al, Zr, Ca, and Ti, and firing. In the method for producing a lithium-cobalt-based composite oxide, a phosphate or hydrogen phosphate of the metal is used as the compound containing the metal atom, and the lithium compound, the cobalt compound, and the compound containing the metal atom are in a molar ratio to the Co atom, It mixes with Li atom 0.90-1.20 and metal atom 0.001-0.04, and the obtained mixture is baked.

用いることができる第1の原料のリチウム化合物としては、例えば、リチウムの酸化物、水酸化物、炭酸塩、硝酸塩及び有機酸塩等が挙げられるが、この中、工業的に安価な炭酸リチウムが好ましい。また、このリチウム化合物はレーザー法粒度分布測定法から求められる平均粒径が0.1〜200μm、好ましくは2〜50μmであると反応性が良好であるため特に好ましい。   Examples of the first raw material lithium compound that can be used include lithium oxide, hydroxide, carbonate, nitrate, and organic acid salt. Among these, industrially inexpensive lithium carbonate is used. preferable. Further, this lithium compound has an average particle size determined by a laser particle size distribution measurement method of 0.1 to 200 μm, preferably 2 to 50 μm, because the reactivity is good, and thus it is particularly preferable.

用いることができる第2の原料のコバルト化合物は、例えば、コバルトの酸化物、水酸化物、炭酸塩、硝酸塩及び有機酸塩等が挙げられるが、工業的に安価で、反応性、更には焼成中に副生する副生物の安全性の面で四酸化三コバルト(Co34)又はオキシ水酸化コバルト(CoOOH)を用いることが特に好ましい。また、このコバルト化合物はレーザー法粒度分布測定法から求められる平均粒径が0.1〜20μm、好ましくは1〜15μmであると均一な原料混合物が得られるため特に好ましい。 Examples of the second raw material cobalt compound that can be used include cobalt oxides, hydroxides, carbonates, nitrates, and organic acid salts, which are industrially inexpensive, reactive, and calcined. It is particularly preferable to use tricobalt tetroxide (Co 3 O 4 ) or cobalt oxyhydroxide (CoOOH) in terms of safety of by-products generated as by-products therein. Further, this cobalt compound is particularly preferred when the average particle size determined by the laser particle size distribution measurement method is 0.1 to 20 μm, preferably 1 to 15 μm, since a uniform raw material mixture can be obtained.

用いることができる第3の原料のMg、Al、Zr、Ca及びTiから選ばれる少なくとも1種以上の金属原子を含む化合物はこれらの金属の燐酸塩又は/及び燐酸水素塩であり、該燐酸水素塩は燐酸一水素塩又は燐酸二水素塩であってもよい。特に本発明では燐酸マグネシウムを用いて得られるリチウムコバルト系複合酸化物粉末を正極活物質とするリチウム二次電池は高いサイクル特性の向上を示す点で、燐酸マグネシウムが特に好ましく用いられる。また、用いられる前記金属原子を含む化合物は含水物でも無水物であってもよい。また、この金属原子を含む化合物はレーザー法粒度分布測定法から求められる平均粒径が0.1〜20μm、好ましくは2〜15μmであると反応性が良好であるため特に好ましい。   A compound containing at least one metal atom selected from Mg, Al, Zr, Ca and Ti as a third raw material that can be used is a phosphate or / and hydrogen phosphate of these metals, and the hydrogen phosphate The salt may be monohydrogen phosphate or dihydrogen phosphate. In particular, in the present invention, a magnesium secondary phosphate is particularly preferably used in that a lithium secondary battery using a lithium cobalt based composite oxide powder obtained using magnesium phosphate as a positive electrode active material exhibits improved high cycle characteristics. In addition, the compound containing the metal atom used may be a hydrate or an anhydride. The compound containing a metal atom has an average particle size determined by a laser particle size distribution measurement method of 0.1 to 20 μm, and preferably 2 to 15 μm, because the reactivity is good.

また、前記第1〜第3の原料のリチウム化合物、コバルト化合物及び金属原子を含む化合物は、製造履歴は問わないが、高純度リチウムコバルト系複合酸化物粉末を製造するために、可及的に不純物含有量が少ないものであることが好ましい。   The lithium compound, cobalt compound, and compound containing metal atoms as the first to third raw materials are not limited in production history, but in order to produce high purity lithium cobalt based composite oxide powder as much as possible. It is preferable that the impurity content is low.

反応操作は、まず、前記第1〜第3の原料のリチウム化合物、コバルト化合物及び金属原子を含む化合物を所定量混合する。混合は、乾式又は湿式のいずれの方法でもよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するようなブレンダー等を用いることが好ましい。   In the reaction operation, first, a predetermined amount of the lithium compound, the cobalt compound, and the compound containing metal atoms as the first to third raw materials are mixed. The mixing may be either a dry method or a wet method, but a dry method is preferred because the production is easy. In the case of dry mixing, it is preferable to use a blender or the like that uniformly mixes the raw materials.

上記した第1〜第3の原料のリチウム化合物、コバルト化合物及び金属原子を含む化合物の配合割合は、Co原子に対するモル比で、Li原子0.90〜1.20、好ましくは0.98〜1.10、金属原子0.001〜0.04、好ましくは0.01〜0.02であり、この配合割合で後述する焼成を行うことにより、得られるリチウムコバルト系複合酸化物に対して前記金属原子を0.025〜1.0重量%、好ましくは0.025〜0.5重量%含有したリチウムコバルト系複合酸化物粉末を得ることができる。   The compounding ratio of the lithium compound, cobalt compound and metal atom-containing compound as the first to third raw materials described above is a molar ratio with respect to Co atom, and Li atom is 0.90 to 1.20, preferably 0.98 to 1. 10 and metal atoms 0.001 to 0.04, preferably 0.01 to 0.02, and the above-mentioned metal is obtained with respect to the lithium cobalt based composite oxide obtained by firing described later at this blending ratio. A lithium cobalt based composite oxide powder containing 0.025 to 1.0% by weight, preferably 0.025 to 0.5% by weight of atoms can be obtained.

次いで、前記第1〜第3の原料が均一混合された混合物を焼成する。本発明において焼成温度は800〜1150℃、好ましくは900〜1100℃であり、焼成温度を当該範囲とする理由は800℃未満では場合により原料のコバルト化合物が残存して容量の減少を引き起こすことになり、一方、1150℃を越えるとリチウムコバルト系複合酸化物が分解し容量の減少となる傾向があるためである。   Next, the mixture in which the first to third raw materials are uniformly mixed is fired. In the present invention, the firing temperature is 800 to 1150 ° C., preferably 900 to 1100 ° C. The reason for setting the firing temperature in the range is that if it is less than 800 ° C., the raw material cobalt compound may remain and cause a decrease in capacity. On the other hand, if the temperature exceeds 1150 ° C., the lithium cobalt composite oxide tends to decompose and the capacity tends to decrease.

焼成時間は1〜30時間、好ましくは1〜5時間とすることが好ましい。焼成は大気中又は酸素雰囲気中のいずれで行ってもよく、特に制限されるものではない。また、これら焼成は必要により何度でも行うことができる。   The firing time is 1 to 30 hours, preferably 1 to 5 hours. Firing may be performed in the air or in an oxygen atmosphere, and is not particularly limited. Moreover, these baking can be performed as many times as necessary.

焼成後は、適宜冷却し、必要に応じ粉砕してリチウムコバルト系複合酸化物粉末を得る。
なお、必要に応じて行われる粉砕は、焼成して得られるリチウムコバルト系複合酸化物粉末がもろく結合したブロック状のものである場合等に適宜行うが、リチウムコバルト系複合酸化物の粒子自体は特定の平均粒径、BET比表面積を有するものである。即ち、得られるリチウムコバルト系複合酸化物粉末は、平均粒径が0.5〜30μm、好ましくは10〜25μmであり、BET比表面積が0.05〜1m2/g、好ましくは0.15〜0.6m2/gである。
After firing, the mixture is appropriately cooled and pulverized as necessary to obtain a lithium cobalt composite oxide powder.
In addition, the pulverization performed as necessary is appropriately performed when the lithium cobalt composite oxide powder obtained by firing is in a brittlely bonded block shape, etc., but the lithium cobalt composite oxide particles themselves are It has a specific average particle size and BET specific surface area. That is, the obtained lithium cobalt composite oxide powder has an average particle size of 0.5 to 30 μm, preferably 10 to 25 μm, and a BET specific surface area of 0.05 to 1 m 2 / g, preferably 0.15 to 5. 0.6 m 2 / g.

かくして得られるリチウムコバルト系複合酸化物粉末はMg、Al、Zr、Ca及びTiから選ばれる少なくとも1種以上の金属原子を0.025〜1重量%、好ましくは0.025〜0.5重量%含有するリチウムコバルト系複合酸化物であり、また、前記粒度特性を有することに加え、水に溶出するPO4 2-の量が1重量%以下、好ましくは0.5重量%以下である。このような本発明のリチウムコバルト系複合酸化物粉末は、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなるリチウム二次電池の正極活物質として好適に用いることができる。 The lithium cobalt composite oxide powder thus obtained contains 0.025 to 1% by weight, preferably 0.025 to 0.5% by weight, of at least one metal atom selected from Mg, Al, Zr, Ca and Ti. In addition to having the above-mentioned particle size characteristics, the amount of PO 4 2− eluted in water is 1% by weight or less, preferably 0.5% by weight or less. Such a lithium cobalt composite oxide powder of the present invention can be suitably used as a positive electrode active material for a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.

本発明に係るリチウム二次電池正極活物質は、上記リチウムコバルト系複合酸化物粉末が用いられる。正極活物質は、後述するリチウム二次電池の正極合剤、すなわち、正極活物質、導電剤、結着剤、及び必要に応じてフィラー等とからなる混合物の一原料である。本発明に係るリチウム二次電池正極活物質は、上記リチウムコバルト系複合酸化物粉末で、上述したような好ましい粒度特性を有するものを用いることにより、他の原料と共に混合して正極合剤を調製する際に混練が容易であり、また、得られた正極合剤を正極集電体に塗布する際の塗工性が容易になる。   The lithium cobalt composite oxide powder is used for the positive electrode active material of the lithium secondary battery according to the present invention. The positive electrode active material is a raw material of a mixture of a positive electrode mixture of a lithium secondary battery, which will be described later, that is, a positive electrode active material, a conductive agent, a binder, and, if necessary, a filler. The lithium secondary battery positive electrode active material according to the present invention is a lithium cobalt composite oxide powder having the above-mentioned preferable particle size characteristics and mixed with other raw materials to prepare a positive electrode mixture. In this case, kneading is easy, and the coating property when the obtained positive electrode mixture is applied to the positive electrode current collector becomes easy.

本発明に係るリチウム二次電池は、上記リチウム二次電池正極活物質を用いるものであり、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなる。正極は、例えば、正極集電体上に正極合剤を塗布乾燥等して形成されるものであり、正極合剤は正極活物質、導電剤、結着剤、及び必要により添加されるフィラー等からなる。本発明に係るリチウム二次電池は、正極に正極活物質である前記のリチウムコバルト系複合酸化物が均一に塗布されている。
このため本発明に係るリチウム二次電池は、特に負荷特性とサイクル特性の低下が生じ難い。
The lithium secondary battery according to the present invention uses the above-described lithium secondary battery positive electrode active material, and includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt. The positive electrode is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector, and the positive electrode mixture includes a positive electrode active material, a conductive agent, a binder, and a filler added as necessary. Consists of. In the lithium secondary battery according to the present invention, the lithium cobalt composite oxide, which is a positive electrode active material, is uniformly applied to the positive electrode.
For this reason, especially the lithium secondary battery which concerns on this invention does not produce a fall of a load characteristic and cycling characteristics easily.

正極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The positive electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery. For example, stainless steel, nickel, aluminum, titanium, calcined carbon, aluminum, and stainless steel Examples of the surface include carbon, nickel, titanium, and silver surface-treated. The surface of these materials may be oxidized and used, or the current collector surface may be provided with irregularities by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

導電剤としては、構成された電池において化学変化を起こさない電子伝導材料であれば特に限定はない。例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維や金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム、ニッケル粉等の金属粉末類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、或いはポリフェニレン誘導体等の導電性材料が挙げられ、天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられる。これらは、1種又は2種以上組み合わせて用いることができる。導電剤の配合比率は、正極合剤中、1〜50重量%、好ましくは2〜30重量%である。   The conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the constructed battery. For example, graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, carbon black such as thermal black, conductive fibers such as carbon fiber and metal fiber, Examples include metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive materials such as polyphenylene derivatives. Examples of graphite include scaly graphite, scaly graphite, and earthy graphite. These can be used alone or in combination of two or more. The blending ratio of the conductive agent is 1 to 50% by weight, preferably 2 to 30% by weight in the positive electrode mixture.

結着剤としては、例えば、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体またはその(Na+)イオン架橋体、エチレン−メタクリル酸共重合体またはその(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体またはその(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体またはその(Na+)イオン架橋体、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマー等が挙げられ、これらは1種または2種以上組み合わせて用いることができる。なお、多糖類のようにリチウムと反応するような官能基を含む化合物を用いるときは、例えば、イソシアネート基のような化合物を添加してその官能基を失活させることが好ましい。結着剤の配合比率は、正極合剤中、1〜50重量%、好ましくは5〜15重量%である。   Examples of the binder include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer ( EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, fluorinated Vinylidene-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene Oroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetra Fluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or its (Na +) ionic crosslinked product, ethylene-methacrylic acid copolymer or its (Na + ) Ionic crosslinked body, ethylene-methyl acrylate copolymer or its (Na +) ionic crosslinked body, ethylene-methyl methacrylate copolymer or its (Na +) ionic crosslinked body, polysaccharide such as polyethylene oxide, thermoplastic resin Polymers having rubber elasticity, and these may be used individually or in combination. In addition, when using the compound containing a functional group which reacts with lithium like a polysaccharide, it is preferable to add the compound like an isocyanate group and to deactivate the functional group, for example. The blending ratio of the binder is 1 to 50% by weight, preferably 5 to 15% by weight in the positive electrode mixture.

フィラーは正極合剤において正極の体積膨張等を抑制するものであり、必要により添加される。フィラーとしては、構成された電池において化学変化を起こさない繊維状材料であれば何でも用いることができるが、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、正極合剤中、0〜30重量%が好ましい。   The filler suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added as necessary. As the filler, any fibrous material can be used as long as it does not cause a chemical change in the constructed battery. For example, olefinic polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0-30 weight% is preferable in a positive mix.

負極は、負極集電体上に負極材料を塗布乾燥等して形成される。負極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素、銅やステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの及びアルミニウム−カドミウム合金等が挙げられる。また、これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The negative electrode is formed by applying and drying a negative electrode material on the negative electrode current collector. The negative electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in a configured battery. For example, stainless steel, nickel, copper, titanium, aluminum, calcined carbon, copper or stainless steel Examples of the steel surface include carbon, nickel, titanium, silver surface-treated, and an aluminum-cadmium alloy. Further, the surface of these materials may be used after being oxidized, or the surface of the current collector may be used with surface roughness by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

負極材料としては、特に制限されるものではないが、例えば、炭素質材料、金属複合酸化物、リチウム金属、リチウム合金、ケイ素系合金、錫系合金、金属酸化物、導電性高分子、カルコゲン化合物、Li−Co−Ni系材料等が挙げられる。炭素質材料としては、例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げられる。金属複合酸化物としては、例えば、Snp1 1-p2 qr (式中、M1 はMn、Fe、Pb及びGeから選ばれる1種以上の元素を示し、M2 はAl、B、P、Si、周期律表第1族、第2族、第3族及びハロゲン元素から選ばれる1種以上の元素を示し、0<p≦1、1≦q≦3、1≦r≦8を示す。)、LixFe23 (0≦x≦1)、LixWO2(0≦x≦1)等の化合物が挙げられる。金属酸化物としては、GeO、GeO2、SnO、SnO2、PbO、PbO2、Pb23、Pb34、Sb23、Sb24、Sb25、Bi23、Bi24、Bi25等が挙げられる。導電性高分子としては、ポリアセチレン、ポリ−p−フェニレン等が挙げられる。 The negative electrode material is not particularly limited, and examples thereof include carbonaceous materials, metal composite oxides, lithium metals, lithium alloys, silicon-based alloys, tin-based alloys, metal oxides, conductive polymers, and chalcogen compounds. And Li—Co—Ni-based materials. Examples of the carbonaceous material include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide include Sn p M 1 1-p M 2 q Or (wherein M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, and M 2 represents Al. , B, P, Si, one or more elements selected from Group 1, Group 2, Group 3 of the periodic table and halogen elements, 0 <p ≦ 1, 1 ≦ q ≦ 3, 1 ≦ r ≦ 8.), LixFe 2 O 3 (0 ≦ x ≦ 1), LixWO 2 (0 ≦ x ≦ 1) and the like. As the metal oxide, GeO, GeO 2, SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, Bi 2 O 3 Bi 2 O 4 , Bi 2 O 5 and the like. Examples of the conductive polymer include polyacetylene and poly-p-phenylene.

セパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプロピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレーターの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01〜10μm である。セパレターの厚みとしては、一般的な電池用の範囲であればよく、例えば5〜300μm である。なお、後述する電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレーターを兼ねるようなものであってもよい。   As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. Sheets and non-woven fabrics made of olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator may be in a range generally useful for batteries, for example, 0.01 to 10 μm. The thickness of the separator may be in a range for a general battery, for example, 5 to 300 μm. When a solid electrolyte such as a polymer is used as the electrolyte described later, the solid electrolyte may also serve as a separator.

リチウム塩を含有する非水電解質は、非水電解質とリチウム塩とからなるものである。非水電解質としては、非水電解液、有機固体電解質、無機固体電解質が用いられる。非水電解液としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン、プロピオン酸メチル、プロピオン酸エチル等の非プロトン性有機溶媒の1種または2種以上を混合した溶媒が挙げられる。   The non-aqueous electrolyte containing a lithium salt is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolyte, an organic solid electrolyte, or an inorganic solid electrolyte is used. Examples of the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, and 2-methyl. Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 3-methyl -2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3- Ropansaruton, methyl propionate, and a solvent obtained by mixing one or more aprotic organic solvents such as ethyl propionate.

有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキサイド誘導体又はこれを含むポリマー、ポリプロピレンオキサイド誘導体又はこれを含むポリマー、リン酸エステルポリマー、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のイオン性解離基を含むポリマー、イオン性解離基を含むポリマーと上記非水電解液の混合物等が挙げられる。   Examples of the organic solid electrolyte include a polyethylene derivative, a polyethylene oxide derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, a phosphate ester polymer, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, Examples thereof include a polymer containing an ionic dissociation group such as polyhexafluoropropylene, and a mixture of a polymer containing an ionic dissociation group and the above non-aqueous electrolyte.

無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩、硫化物等を用いることができ、例えば、Li3N、LiI、Li5NI2、Li3N−LiI−LiOH、LiSiO4、LiSiO4−LiI−LiOH、Li2SiS3、Li4SiO4、Li4SiO4−LiI−LiOH、P25、Li2S又はLi2S−P25、Li2S−SiS2、Li2S−GeS2、Li2S−Ga23、Li2S−B23、Li2S−P25−X、Li2S−SiS2−X、Li2S−GeS2−X、Li2S−Ga23−X、Li2S−B23−X、(式中、XはLiI、B23、又はAl23から選ばれる少なくとも1種以上)等が挙げられる。 As the inorganic solid electrolytes, nitrides Li, halides, oxygen acid salts, can be used sulfides, for example, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, P 2 S 5, Li 2 S or Li 2 S-P 2 S 5 , Li 2 S-SiS 2 , Li 2 S—GeS 2 , Li 2 S—Ga 2 S 3 , Li 2 S—B 2 S 3 , Li 2 S—P 2 S 5 —X, Li 2 S—SiS 2 —X, Li 2 S -GeS in 2 -X, Li 2 S-Ga 2 S 3 -X, Li 2 S-B 2 S 3 -X, ( wherein at least X is selected LiI, B 2 S 3, or from Al 2 S 3 One or more).

更に、無機固体電解質が非晶質(ガラス)の場合は、リン酸リチウム(Li3PO4)、酸化リチウム(Li2O)、硫酸リチウム(Li2SO4)、酸化リン(P25)、硼酸リチウム(Li3BO3)等の酸素を含む化合物、Li3PO4-x2x/3(xは0<x<4)、Li4SiO4-x2x/3(xは0<x<4)、Li4GeO4-x2x/3(xは0<x<4)、Li3BO3-x2x/3(xは0<x<3)等の窒素を含む化合物を無機固体電解質に含有させることができる。この酸素を含む化合物又は窒素を含む化合物の添加により、形成される非晶質骨格の隙間を広げ、リチウムイオンが移動する妨げを軽減し、更にイオン伝導性を向上させることができる。 Further, when the inorganic solid electrolyte is amorphous (glass), lithium phosphate (Li 3 PO 4 ), lithium oxide (Li 2 O), lithium sulfate (Li 2 SO 4 ), phosphorus oxide (P 2 O 5) ), Compounds containing oxygen such as lithium borate (Li 3 BO 3 ), Li 3 PO 4-x N 2x / 3 (x is 0 <x <4), Li 4 SiO 4-x N 2x / 3 (x is Nitrogen such as 0 <x <4), Li 4 GeO 4-x N 2x / 3 (x is 0 <x <4), Li 3 BO 3-x N 2x / 3 (x is 0 <x <3) The compound to be contained can be contained in the inorganic solid electrolyte. By adding the compound containing oxygen or the compound containing nitrogen, the gap between the formed amorphous skeletons can be widened, the hindrance to movement of lithium ions can be reduced, and ion conductivity can be further improved.

リチウム塩としては、上記非水電解質に溶解するものが用いられ、例えば、LiCl、LiBr、LiI、LiClO4 、LiBF4 、LiB10Cl10、LiPF6 、LiCF3 SO3 、LiCF3 CO2 、LiAsF6 、LiSbF6 、LiB10Cl10、LiAlCl4 、CH3SO3Li、CF3SO3Li、(CF3SO22NLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミド類等の1種または2種以上を混合した塩が挙げられる。 As the lithium salt, those dissolved in the non-aqueous electrolyte are used. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium tetraphenylborate, Examples thereof include salts in which one kind or two or more kinds such as imides are mixed.

また、非水電解質には、放電、充電特性、難燃性を改良する目的で、以下に示す化合物を添加することができる。例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ポリエチレングルコール、ピロール、2−メトキシエタノール、三塩化アルミニウム、導電性ポリマー電極活物質のモノマー、トリエチレンホスホンアミド、トリアルキルホスフィン、モルフォリン、カルボニル基を持つアリール化合物、ヘキサメチルホスホリックトリアミドと4−アルキルモルフォリン、二環性の三級アミン、オイル、ホスホニウム塩及び三級スルホニウム塩、ホスファゼン、炭酸エステル等が挙げられる。また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化エチレンを電解液に含ませることができる。また、高温保存に適性を持たせるために電解液に炭酸ガスを含ませることができる。   Moreover, the compound shown below can be added to a nonaqueous electrolyte for the purpose of improving discharge, a charge characteristic, and a flame retardance. For example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether , Ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compounds with carbonyl group, hexamethylphosphine Examples include hollic triamide and 4-alkylmorpholine, bicyclic tertiary amines, oils, phosphonium salts and tertiary sulfonium salts, phosphazenes, and carbonates. That. In order to make the electrolyte nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride can be included in the electrolyte. In addition, carbon dioxide gas can be included in the electrolytic solution in order to make it suitable for high-temperature storage.

本発明に係るリチウム二次電池は、電池性能、特にサイクル特性に優れたリチウム二次電池であり、電池の形状はボタン、シート、シリンダー、角、コイン型等いずれの形状であってもよい。   The lithium secondary battery according to the present invention is a lithium secondary battery excellent in battery performance, particularly in cycle characteristics, and the shape of the battery may be any shape such as a button, a sheet, a cylinder, a corner, or a coin type.

本発明に係るリチウム二次電池の用途は、特に限定されないが、例えば、ノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス子機、ポータブルCDプレーヤー、ラジオ、液晶テレビ、バックアップ電源、電気シェーバー、メモリーカード、ビデオムービー等の電子機器、自動車、電動車両、ゲーム機器等の民生用電子機器が挙げられる。   The use of the lithium secondary battery according to the present invention is not particularly limited. For example, a laptop computer, a laptop computer, a pocket word processor, a mobile phone, a cordless cordless handset, a portable CD player, a radio, an LCD TV, a backup power source, and an electric shaver. And electronic devices such as memory cards and video movies, and consumer electronic devices such as automobiles, electric vehicles, and game machines.

本発明のリチウムコバルト系複合酸化物粉末を正極活物質とするリチウム二次電池において、特にサイクル特性が向上する理由は明らかでないが、従来の前記金属原子を含む化合物として、これらの金属の酸化物や炭酸塩を用いて得られるリチウムコバルト系複合酸化物粉末は、該金属がリチウムコバルト系複合酸化物の粒子内部まで均一に固溶して存在するものと考えられるが、本発明のように金属原子を含む化合物として、これらの金属の燐酸塩又は/及び燐酸水素塩を用い、該金属原子を含む化合物、リチウム化合物及びコバルト化合物との混合物を焼成したものは、積極的に含有させる金属成分がもう一方の成分のPO4の作用等により該リチウムコバルト系複合酸化物の粒子表面に優先的に酸化物として存在し、更にこれと含有させる金属原子の量の微妙なバランスによりリチウム二次電池のサイクル特性の劣化の原因の一つのリチウムコバルト系複合酸化物中のCo4+の溶出を効果的に抑制するためと考えられる。 In the lithium secondary battery using the lithium cobalt-based composite oxide powder of the present invention as the positive electrode active material, it is not clear why the cycle characteristics are particularly improved. However, as a conventional compound containing the metal atom, oxides of these metals are used. Lithium-cobalt composite oxide powder obtained by using a metal salt or carbonate is considered to be present in which the metal is uniformly dissolved in the interior of the lithium-cobalt composite oxide particles. As a compound containing an atom, a phosphoric acid salt or / and hydrogen phosphate of these metals is used, and a mixture of the compound containing the metal atom, a lithium compound and a cobalt compound is baked. It presents as preferentially oxide on the particle surfaces of the lithium-cobalt composite oxide by the action or the like of PO 4 in the other components, further of content with this It believed to effectively suppress the elution of Co 4+ in a lithium-cobalt composite oxide of the causes of deterioration in cycle characteristics of the lithium secondary battery by delicate balance of the amount of the metal atoms that.

以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1〜3及び比較例1
表1に示したCo原子とLi原子のモル比となるようにCo34(平均粒径2μm)、Li2CO3(平均粒径7μm)を秤量し、更に表1に示したMg原子のモル比となるように市販のMg3(PO42・8H2O(平均粒径10.6μm)を乾式で十分に混合した後表1に示す温度と時間で焼成した。該焼成物を粉砕、分級してMg原子を含有したリチウムコバルト系複合酸化物を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
Examples 1 to 3 and Comparative Example 1
Co 3 O 4 (average particle size 2 μm) and Li 2 CO 3 (average particle size 7 μm) were weighed so that the molar ratio of Co atoms to Li atoms shown in Table 1 was reached, and Mg atoms shown in Table 1 were further measured. Then, commercially available Mg 3 (PO 4 ) 2 · 8H 2 O (average particle size 10.6 μm) was thoroughly mixed in a dry method so as to have a molar ratio of 5 and then fired at the temperature and time shown in Table 1. The fired product was pulverized and classified to obtain a lithium cobalt composite oxide containing Mg atoms.

比較例2
表1に示したCo原子とLi原子のモル比となるようにCo34(平均粒径2 μm)、Li2CO3(平均粒径9μm)を秤量し、更に表1に示したMg原子のモル比となるように市販のMgO(平均粒径8μm)を乾式で十分に混合した後表1に示す温度と時間で焼成した。該焼成物を粉砕、分級してMg原子を含有したリチウムコバルト系複合酸化物を得た。
Comparative Example 2
Co 3 O 4 (average particle size 2 μm) and Li 2 CO 3 (average particle size 9 μm) were weighed so that the molar ratio of Co atoms to Li atoms shown in Table 1 was obtained. Commercially available MgO (average particle size 8 μm) was thoroughly mixed in a dry manner so as to obtain an atomic molar ratio, and then fired at the temperatures and times shown in Table 1. The fired product was pulverized and classified to obtain a lithium cobalt composite oxide containing Mg atoms.

比較例3
表1に示したCo原子とLi原子のモル比となるようにCo34(平均粒径4.3μm)、Li2CO3(平均粒径13μm)を秤量し、更に表1に示したMg原子のモル比となるように市販のMgCO3(平均粒径5.2μm)を乾式で十分に混合した後表1に示す温度と時間で焼成した。該焼成物を粉砕、分級してMg原子を含有したリチウムコバルト系複合酸化物を得た。
Comparative Example 3
Co 3 O 4 (average particle size 4.3 μm) and Li 2 CO 3 (average particle size 13 μm) were weighed so that the molar ratio of Co atoms to Li atoms shown in Table 1 was obtained. Commercially available MgCO 3 (average particle size 5.2 μm) was thoroughly mixed in a dry manner so as to obtain a molar ratio of Mg atoms, and then fired at the temperature and time shown in Table 1. The fired product was pulverized and classified to obtain a lithium cobalt composite oxide containing Mg atoms.

比較例4
表1に示したCo原子とLi原子のモル比となるようにCo34(平均粒径12.1μm)、Li2CO3(平均粒径13μm)を秤量し、乾式で十分に混合した後1080℃で5時間焼成した。該焼成物を粉砕、分級してLiCoO2を得た。
Comparative Example 4
Co 3 O 4 (average particle size 12.1 μm) and Li 2 CO 3 (average particle size 13 μm) were weighed so as to have the molar ratio of Co atom to Li atom shown in Table 1, and thoroughly mixed by dry method. Thereafter, it was baked at 1080 ° C. for 5 hours. The fired product was pulverized and classified to obtain LiCoO 2 .

Figure 0004754209
Figure 0004754209

(リチウムコバルト系複合酸化物の物性評価)
実施例1〜3及び比較例1〜4で得られたリチウムコバルト系複合酸化物粉末について平均粒径、BET比表面積及び溶出するPO4 2-の量を測定し、その結果を表2に示した。なお、平均粒径はレーザー法粒度分布測定法により求め、溶出するPO4 2-の量は下記の方法で求めた。
(Physical property evaluation of lithium cobalt complex oxide)
The lithium cobalt composite oxide powders obtained in Examples 1 to 3 and Comparative Examples 1 to 4 were measured for average particle diameter, BET specific surface area and eluted PO 4 2- amount, and the results are shown in Table 2. It was. The average particle size was determined by a laser particle size distribution measurement method, and the amount of PO 4 2− eluted was determined by the following method.

(1)溶出するPO4 2-の量の測定
リチウムコバルト系複合酸化物粉末30gを純水100mlに5分間25℃で分散させ、粒子表面からPO4 2-を溶出させ、該溶液中のPO4 2-の量をイオンクロマトグラフィーにより定量した。
(1) Measurement of the amount of PO 4 2- to be eluted 30 g of lithium cobalt complex oxide powder is dispersed in 100 ml of pure water at 25 ° C. for 5 minutes to elute PO 4 2- from the particle surface, and the PO in the solution The amount of 4 2- was quantified by ion chromatography.

Figure 0004754209
注)表中のMg含有量は試料を酸で溶解し、その溶解液をICPにより測定して求めた値である。
Figure 0004754209
Note) The Mg content in the table is a value obtained by dissolving a sample with an acid and measuring the dissolved solution by ICP.

<電池性能試験>
(1)リチウム二次電池の作製;
実施例1〜3及び比較例1〜4で得られたリチウムコバルト系複合酸化物粉末91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF6 1モルを溶解したものを使用した。
<Battery performance test>
(1) Production of lithium secondary battery;
91% by weight of the lithium cobalt composite oxide powder obtained in Examples 1 to 3 and Comparative Examples 1 to 4, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride were mixed to obtain a positive electrode agent. A kneaded paste was prepared by dispersing in methyl-2-pyrrolidinone. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate was used for the electrolyte.

(2)電池の性能評価
作製したリチウム二次電池を室温で下記条件で作動させ、下記の電池性能を評価した。
(2) Battery performance evaluation The produced lithium secondary battery was operated at room temperature under the following conditions, and the following battery performance was evaluated.

<サイクル特性の評価>
実施例1〜3及び比較例1〜4で調製した活物質を電極塗布して2.7V〜4.3V(vs.Li/Li+)で定電流充放電試験を行った。その結果の放電特性図を図1〜7に示す。なお、充放電電流は0.2Cで行った。
図1〜7の結果より、実施例1〜3で得られた活物質が比較例1〜4で得られた活物質に比べて良好なサイクル特性が得られることが分る。これはコバルト酸リチウムに含有されているMgが酸化物として表面に残り、表面をコートしてサイクル特性に悪影響を及ぼすCoイオンの溶出を抑制しているものと考えられる。
<Evaluation of cycle characteristics>
The active materials prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were applied with an electrode and subjected to a constant current charge / discharge test at 2.7 V to 4.3 V (vs. Li / Li +). The resulting discharge characteristics are shown in FIGS. The charge / discharge current was 0.2 C.
From the results of FIGS. 1 to 7, it can be seen that the active materials obtained in Examples 1 to 3 have better cycle characteristics than the active materials obtained in Comparative Examples 1 to 4. This is presumably because Mg contained in lithium cobaltate remains on the surface as an oxide and coats the surface to suppress elution of Co ions that adversely affect cycle characteristics.

実施例1で得られたリチウムコバルト系複合酸化物粉末を正極活物質として用いたリチウム二次電池の放電特性図。The discharge characteristic figure of the lithium secondary battery which used the lithium cobalt type complex oxide powder obtained in Example 1 as a positive electrode active material. 実施例2で得られたリチウムコバルト系複合酸化物粉末を正極活物質として用いたリチウム二次電池の放電特性図。The discharge characteristic figure of the lithium secondary battery which used the lithium cobalt type complex oxide powder obtained in Example 2 as a positive electrode active material. 実施例3で得られたリチウムコバルト系複合酸化物粉末を正極活物質として用いたリチウム二次電池の放電特性図。The discharge characteristic figure of the lithium secondary battery which used the lithium cobalt type complex oxide powder obtained in Example 3 as a positive electrode active material. 比較例1で得られたリチウムコバルト系複合酸化物粉末を正極活物質として用いたリチウム二次電池の放電特性図。The discharge characteristic view of the lithium secondary battery which used the lithium cobalt type complex oxide powder obtained by the comparative example 1 as a positive electrode active material. 比較例2で得られたリチウムコバルト系複合酸化物粉末を正極活物質として用いたリチウム二次電池の放電特性図。The discharge characteristic figure of the lithium secondary battery which used the lithium cobalt type complex oxide powder obtained by the comparative example 2 as a positive electrode active material. 比較例3で得られたリチウムコバルト系複合酸化物粉末を正極活物質として用いたリチウム二次電池の放電特性図。The discharge characteristic figure of the lithium secondary battery which used the lithium cobalt type complex oxide powder obtained by the comparative example 3 as a positive electrode active material. 比較例4で得られたリチウムコバルト系複合酸化物粉末を正極活物質として用いたリチウム二次電池の放電特性図。The discharge characteristic figure of the lithium secondary battery which used the lithium cobalt type complex oxide powder obtained by the comparative example 4 as a positive electrode active material.

Claims (3)

リチウム化合物、コバルト化合物及びMg、Al、Zr、Ca及びTiから選ばれる少なくとも1種以上の金属原子を含む化合物を混合し焼成を行うリチウムコバルト系複合酸化物の製造方法において、前記金属原子を含む化合物として該金属の燐酸塩又は燐酸水素塩を用い、リチウム化合物、コバルト化合物及び前記金属原子を含む化合物とをCo原子に対するモル比で、Li原子0.90〜1.20、金属原子0.001〜0.04で混合し、得られる混合物を焼成することを特徴とするリチウムコバルト系複合酸化物粉末の製造方法。 A lithium compound, a cobalt compound及beauty M g, Al, Zr, in the method for producing a lithium cobalt composite oxide for mixing and firing a compound containing at least one metal atom selected from Ca and Ti, the metal Using the metal phosphate or hydrogen phosphate as the compound containing atoms, the lithium compound, the cobalt compound, and the compound containing the metal atom in a molar ratio to Co atoms, Li atoms 0.90 to 1.20, metal atoms A method for producing a lithium cobalt based composite oxide powder, comprising mixing at 0.001 to 0.04 and firing the resulting mixture. 前記焼成は800〜1150℃で行う請求項記載のリチウムコバルト系複合酸化物粉末の製造方法。 The sintering method for producing a lithium cobalt composite oxide powder of claim 1 wherein performing at 800 to 1,150 ° C.. 前記金属原子を含む化合物が燐酸マグネシウムである請求項又は記載のリチウムコバルト系複合酸化物粉末の製造方法。 The method for producing a lithium cobalt composite oxide powder according to claim 1 or 2, wherein the compound containing a metal atom is magnesium phosphate.
JP2004364439A 2004-12-16 2004-12-16 Method for producing lithium cobalt composite oxide powder Active JP4754209B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004364439A JP4754209B2 (en) 2004-12-16 2004-12-16 Method for producing lithium cobalt composite oxide powder
KR1020050123637A KR101202143B1 (en) 2004-12-16 2005-12-15 Lithium-Cobalt Based Composite Oxide Powder, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Battery and Lithium Secondary Battery
CNB2005101320101A CN100521307C (en) 2004-12-16 2005-12-16 Lithium-cobalt composite oxides powder, its preparation method, lithium secondary cell and lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364439A JP4754209B2 (en) 2004-12-16 2004-12-16 Method for producing lithium cobalt composite oxide powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011053016A Division JP5508322B2 (en) 2011-03-10 2011-03-10 Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2006169048A JP2006169048A (en) 2006-06-29
JP4754209B2 true JP4754209B2 (en) 2011-08-24

Family

ID=36670191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364439A Active JP4754209B2 (en) 2004-12-16 2004-12-16 Method for producing lithium cobalt composite oxide powder

Country Status (3)

Country Link
JP (1) JP4754209B2 (en)
KR (1) KR101202143B1 (en)
CN (1) CN100521307C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137844B2 (en) 2006-11-17 2012-03-20 Nippon Chemical Industrial Co., Ltd. Cathode active material for lithium rechargeable battery, manufacturing method thereof and lithium rechargeable battery
KR100814831B1 (en) 2006-11-20 2008-03-20 삼성에스디아이 주식회사 Lithium secondary battery
KR101330616B1 (en) 2007-04-04 2013-11-18 삼성에스디아이 주식회사 Positive electrode for rechargable lithium battery and rechargable lithium battery comprising same
JP5172231B2 (en) 2007-07-20 2013-03-27 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5141675B2 (en) 2009-12-16 2013-02-13 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
JP5521899B2 (en) 2010-08-26 2014-06-18 トヨタ自動車株式会社 Sulfide solid electrolyte material and lithium solid state battery
WO2012141180A1 (en) * 2011-04-11 2012-10-18 三菱化学株式会社 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
JP5678826B2 (en) * 2011-07-13 2015-03-04 日亜化学工業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5888610B2 (en) * 2011-12-22 2016-03-22 国立大学法人東京工業大学 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
WO2021190650A1 (en) * 2020-03-27 2021-09-30 宁德时代新能源科技股份有限公司 Secondary battery, battery module comprising same, battery pack, and device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162437B2 (en) * 1990-11-02 2001-04-25 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery
JP3212639B2 (en) * 1991-07-31 2001-09-25 株式会社東芝 Non-aqueous solvent secondary battery
JPH06243897A (en) * 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08111218A (en) * 1994-10-07 1996-04-30 Honda Motor Co Ltd Positive electrode material for lithium secondary battery and manufacture of the positive electrode material
JP3633223B2 (en) * 1997-04-25 2005-03-30 ソニー株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP2000200607A (en) * 1998-07-13 2000-07-18 Ngk Insulators Ltd Lithium secondary battery
JP4963532B2 (en) * 2001-06-01 2012-06-27 日本化学工業株式会社 Lithium secondary battery positive electrode active material and lithium secondary battery
US7135251B2 (en) * 2001-06-14 2006-11-14 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
JP4995382B2 (en) * 2001-07-05 2012-08-08 日本化学工業株式会社 Lithium cobalt complex oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
KR100437339B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 A method of preparing active material for battery and active material prepared therefrom
JP4502664B2 (en) * 2004-02-24 2010-07-14 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP4679112B2 (en) * 2004-10-29 2011-04-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
KR101202143B1 (en) 2012-11-15
CN100521307C (en) 2009-07-29
CN1790780A (en) 2006-06-21
KR20060069283A (en) 2006-06-21
JP2006169048A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5749650B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5172231B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5584456B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2011065391A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP5490458B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5341325B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4187523B2 (en) Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4968872B2 (en) Lithium secondary battery positive electrode active material, method for producing the same, and lithium secondary battery
JP5897356B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR101202143B1 (en) Lithium-Cobalt Based Composite Oxide Powder, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Battery and Lithium Secondary Battery
JP5490457B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2008066028A (en) Lithium manganate for lithium secondary battery positive electrode secondary active material, and manufacturing method of lithium manganate, lithium secondary battery positive electrode active material, and lithium secondary battery
JP3959333B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5897357B2 (en) Lithium secondary battery positive electrode active material manufacturing method, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4271488B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5134292B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5508322B2 (en) Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery
JP6855427B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP4319663B2 (en) Lithium manganate, lithium secondary battery positive electrode secondary active material, lithium secondary battery positive electrode active material, and lithium secondary battery
WO2021246215A1 (en) Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery
JP2005235416A (en) Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery
JP2009167100A (en) Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100524

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100527

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100621

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250