JP4803412B2 - Photoalignment material containing maleimide derivative and method for producing photoalignment film - Google Patents

Photoalignment material containing maleimide derivative and method for producing photoalignment film Download PDF

Info

Publication number
JP4803412B2
JP4803412B2 JP2001071975A JP2001071975A JP4803412B2 JP 4803412 B2 JP4803412 B2 JP 4803412B2 JP 2001071975 A JP2001071975 A JP 2001071975A JP 2001071975 A JP2001071975 A JP 2001071975A JP 4803412 B2 JP4803412 B2 JP 4803412B2
Authority
JP
Japan
Prior art keywords
group
photo
alignment
bond
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001071975A
Other languages
Japanese (ja)
Other versions
JP2002265541A (en
Inventor
昌宣 福田
宏和 高田
均 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2001071975A priority Critical patent/JP4803412B2/en
Publication of JP2002265541A publication Critical patent/JP2002265541A/en
Application granted granted Critical
Publication of JP4803412B2 publication Critical patent/JP4803412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photoorientation film which has a voltage retention at a high temperature, a good orientation stability, and a sufficient durability to light or heat. SOLUTION: A photoorientation material which contains an alkenyl- substituted nadimide derivative and a polyfunctional maleimide derivative having constituting units exhibiting photoorientation properties is provided. The photoorientation film capable of orientating liquid crystal molecules without the necessity for rubbing is produced by using the material.

Description

【0001】
【発明の属する技術分野】
本発明は、液晶の配向方法に関し、特に光を照射することで、ラビングを行うことなく液晶分子を配向させることのできる光配向膜に関する。本発明の光配向膜は、液晶表示素子用等の液晶配向膜として好適に用いられる。
【0002】
【従来の技術】
液晶表示装置においては、液晶の分子配列の状態を電場等の作用によって変化させて、これに伴う光学的特性の変化を表示に利用している。
多くの場合、液晶は二枚の基板の間隙に挟んだ状態で用いられるが、ここで液晶分子を特定の方向に配列させるために、基板の内側に配向処理が行われる。
【0003】
通常、配向処理は、ガラス等の基板にポリイミド等の高分子の膜を設け、これを一方向に布等で摩擦する、ラビングという方法が用いられる。これにより、基板に接する液晶分子はその長軸(ダイレクタ)がラビングの方向に平行になるように配列する。
たとえば、ツイストネマチック(TN)セルでは二枚の直交した偏光板の間に、内側に配向膜が塗布された二枚の基板を対向させ、そのラビング方向が互いに直交するように配置し、光透過率の変化による表示を可能にしている。
【0004】
しかしながら、ラビング法は製造装置が簡単であるという利点を有するものの、製造工程において静電気や埃が発生するため、配向処理後に洗浄工程が必要となるとともに、特に近年多く用いられているTFT方式の液晶セルでは静電気によりあらかじめ基板に設けられたTFT素子が破壊され、これが製造における歩留まりを下げる原因にもなっている。また、布で摩擦する際の微細な傷が、マイクロディスプレイなどの高精細度表示素子製造の際に、表示不良をおこす原因となる。
【0005】
一方、液晶表示素子においては構成されている液晶分子の傾きに方向性があるため、表示素子を見る方向によって表示色やコントラストが変化する等といった視野角依存性が問題となっている。これを改善する方法の一つとして、一画素を分割して領域ごとに液晶分子のプレチルト角(特開昭62−159119号公報)や配向方向(特開昭63−106624号公報)を変える配向分割法が考案されているが、このような分割領域ごとの配向は、従来のラビング法ではプロセスが煩雑で、実用に適さない。
【0006】
かかる問題を解決するために、近年ラビングを行わない液晶配向制御技術が注目されている。このようなラビングレスの配向技術としては、斜方蒸着法、LB(ラングミュアー−ブロジェット)膜法、フォトリソグラフィ法、光配向法等が検討されてきた。とりわけ、偏光された光を基板上に設けられた塗膜に照射して、液晶配向性を生じさせる光配向法は簡便であり、配向処理後に洗浄工程が不必要であり、さらにフォトマスク等を用いることにより上記の配向分割を容易に行うことができるため、盛んに研究が行われている。
この光配向機構としては、例えばアゾベンゼン基等の光異性化反応によるもの、シンナモイル基、クマリン基、カルコン基、ベンゾフェノン等の光二量化反応によるもの、ポリイミド樹脂等の光分解反応によるもの等が報告されている。
【0007】
これらの光異性化、光二量化や光分解反応を利用した光配向材料は、ガラス等の基板に塗布した際に均一な膜が得られるように、ポリマー等の高分子化合物が用いられることが多く、アゾベンゼン基、シンナモイル基等の光配向性を示す構成単位がこの高分子化合物の側鎖や主鎖に導入される場合が多い。また、光配向性を有する分子をゲスト分子とし、高分子化合物からなるホスト化合物に分散させて用いる場合もある。
【0008】
しかし、光異性化型の場合、偏光紫外線の照射による分子の可逆的な異性化反応を利用していることが多いため、光配向処理後の光安定性に問題がある。また、光分解型の場合、光配向処理を行った際に生じる分解生成物により液晶が汚染されるおそれがあるため、処理後に基板を洗浄する必要があり、光配向膜の洗浄不要といった特長が失われる。また、高分子化合物を用いた光配向材料の多くは溶剤に対する溶解性が低く、基板に塗布する際に使用できる溶媒の種類が限られるといった問題がある。
【0009】
例えば、WO9637807号公報には、光異性化可能であって二色性を示す構成単位及び反応性官能基を有する樹脂を使用した液晶配向膜が開示されているが、この材料は高分子化合物であり、基板に塗布する際に使用できる溶媒の種類が限られ、一般にN,N−ジメチルアセトアミドやN−メチル−2−ピロリドンのような高沸点の極性溶媒が使用される。この場合、塗布後に溶媒を揮発させるために長時間を要し、生産性を低下させる。さらに、従来の光配向膜材料の多くは熱的安定性に関しても不十分であるという問題もある。
【0010】
これらの問題点を解決し、光配向膜の液晶配向能が長期間安定に得られるようにする方法の例としては、偏光照射によって配向性を示す構成単位を付加した重合性モノマーを熱もしくは光重合させ、かつ偏光照射によって光配向させる方法がある。しかし多くの場合、モノマーを熱もしくは光重合させるには重合開始剤の添加が必要となる。この重合開始剤は低分子化合物であるため、光配向膜の硬化後であっても、長期間が経過すると、セル内の液晶層に重合開始剤が拡散し、液晶表示素子としての特性、例えば電圧保持率を劣化させるおそれがある。
【0011】
重合開始剤の不要な光重合性基としては、マレイミド基がある。このマレイミド基を有する化合物を用いた光配向膜は特開2000−53766号公報や特許2962473号公報に開示されている。これらはポリマレイミドに光配向性基を側鎖として付加した高分子化合物であり、やはり前記したような溶剤に対する溶解性の問題がある他、耐熱性や液晶配向能の長期安定性についても未だ不十分である。
【0012】
そこで本発明者らは、特願平2000−260764号で、特定のマレイミド誘導体を用いることにより、良好な液晶表示素子特性を有する光配向膜を提供することのできる光配向材料を提案したが、この材料は、マレイミド基を完全に硬化させるために、加熱や光硬化を十分に行う必要があり、これが不十分であると、作成された液晶セルの電圧保持率が低下する問題があった。
【0013】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、良好な液晶表示素子特性、特に高温時において高い電圧保持率を有し、かつ良好な配向安定性と光や熱に対する十分な耐久性を有する光配向膜を提供することにある。
【0014】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、特定のマレイミド誘導体、及びアルケニル置換ナジイミド誘導体を含有する材料を用いることにより、驚くべきことに、加熱、あるいは光照射により硬化がきわめて速やかに進行し、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は上記課題を解決するために、
【0015】
(A) 光配向性を示す構成単位を有する多官能マレイミド誘導体、及びアルケニル置換ナジイミド誘導体を含有する光配向材料を提供する。
【0016】
また、本発明は、(B) 上記(A)の光配向材料を用いた光配向膜の製造方法を提供する。
【0017】
【発明の実施の形態】
本発明は、光配向性を示す構成単位を有する多官能マレイミド誘導体、及びアルケニル置換ナジイミド誘導体を併用して用いることを特徴とする光配向材料、及びそれを用いた光配向膜に関するものである。
【0018】
本発明で使用する多官能マレイミド誘導体は、光を照射することで二量化反応、異性化反応のような、配向性を示す光反応を生じる構成単位(以下、光配向性を示す構成単位と略す)を有する。光配向性を示す構成単位としては特に限定されないが、C=C、C=N、N=N、及びC=Oからなる群より選ばれる少なくとも一つの二重結合(但し、芳香環を形成する二重結合を除く)を有する構成単位が特に好ましく用いられる。
【0019】
これらの光配向性を示す構成単位としては、以下のものが挙げられる。
例えば、C=C結合を有する構成単位としては、ポリエン、スチルベン、スチルバゾール、スチルバゾリウム、シンナメート、ヘミチオインジゴ、カルコン等の骨格が挙げられる。C=N結合を有する構成単位としては、芳香族シッフ塩基、芳香族ヒドラゾン等の骨格が挙げられる。N=N結合を有する構成単位としては、アゾベンゼン、アゾナフタレン、芳香族複素環アゾ、ビスアゾ、ホルマザン等のアゾ骨格や、アゾキシベンゼンが挙げられる。C=O結合を有する構成単位としては、ベンゾフェノン、クマリン、アントラキノン等の骨格が挙げられる。
【0020】
具体的には、例えば、以下の骨格が挙げられる。勿論、これらの骨格に以下の骨格中Xで示すように、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基等の1つ以上の残基が結合していても差支えない。
【0021】
【化4】

Figure 0004803412
【0022】
中でも、光二量化反応により光配向性を示すシンナメート、クマリン、カルコン、又はベンゾフェノンの骨格、あるいは、光異性化反応により光配向性を示すアゾベンゼン又はアントラキノンの骨格を有するマレイミド誘導体は、光配向に必要な光の照射量が少なく、かつ得られた光配向膜の熱安定性、経時安定性が優れているため、特に好ましい。中でも、ベンゾフェノン骨格を有するマレイミド誘導体が最も好ましい。
【0023】
本発明で使用する多官能マレイミド誘導体は、光配向性を示す構成単位を有し、かつ少なくとも2個のマレイミド基を有する誘導体であるならば特に限定されないが、中でも、一般式(1−1)、
【0024】
【化5】
Figure 0004803412
【0025】
(式中、R1は、各々独立して、置換基を有していても良い、アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。R2は光配向性を示す構成単位を表し、R3、R4は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表し、nは2から10までの整数を表す。)で表されるマレイミド誘導体が好ましい。
【0026】
一般式(1−1)において、R1は、アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基を表す。
【0027】
これらの炭化水素基としては、具体的には、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基の如き直鎖状アルキレン基、シクロペンチレン基、シクロヘキシレン基の如きシクロアルキレン基、フェニレン基の如きアリーレン基が挙げられる。
【0028】
また、これらの炭化水素基は置換基を有していても良い。この置換基としては特に限定されないが、例えば、メチル基、エチル基、プロピル基等のアルキル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、アルコキシ基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基等が挙げられる。また、アクリル基、エポキシ基、マレイミド基等の反応性官能基が、置換基として直接炭化水素基に結合していてもよく、エステル結合、エーテル結合、アミド結合、およびウレタン結合等の結合基で連結された炭化水素基を介し置換基として結合していても差支えない。
【0029】
また、R1は、これら上記に挙げた炭化水素基の複数個がそれぞれ単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結していてもよい。
【0030】
このような連結された有機基としては、例えば、少なくとも2つの炭化水素基がエーテル結合で結合された(ポリ)エーテルから構成される基、少なくとも2つの炭化水素基がエステル結合で結合された(ポリ)エステルから構成される基、少なくとも2つの炭化水素基がアミド結合で結合された(ポリ)アミドから構成される基、少なくとも2つの炭化水素基がウレタン結合で結合された(ポリ)ウレタンから構成される基や、少なくとも2つの炭化水素基がエーテル結合された(ポリ)エーテル(ポリ)オールと、(ポリ)カルボン酸とをエステル化して得られる(ポリ)カルボン酸{(ポリ)エーテル(ポリ)オール}エステルから構成される基等が挙げられる。
【0031】
上記一般式(1−1)において、R2は、上記に挙げたような光配向性を示す構成単位を表す。ここで、R2は単結合、あるいはエステル結合、エーテル結合、アミド結合、又はウレタン結合等の結合基を介してR1と結合している。
【0032】
上記一般式(1−1)において、R3及びR4は、それぞれ水素原子、メチル基、エチル基等の1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表し、nは、2〜10までの整数を表す。中でも、マレイミド基の重合が容易に進行し、安定なマレイミド重合体を形成することと、光配向に必要な光エネルギーの量が比較的少ないことから、nは2〜8が好ましく、2〜4であることが特に好ましい。
【0033】
一般式(1−1)で表されるマレイミド誘導体は、中でも、下記一般式(1−2)、
【化6】
Figure 0004803412
【0034】
(式中、R5は各々独立して、単結合、直鎖アルキレン基、分岐アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。R6は光配向性を示す構成単位を表し、R7、R8、R9、およびR10は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。)で表されるマレイミド誘導体が好ましい。
【0035】
一般式(1−2)におけるR5は各々独立して、単結合、直鎖アルキレン基、分岐アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。
【0036】
これらの炭化水素基としては、具体的には、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基の如き直鎖状アルキレン基;シクロペンチレン基、シクロヘキシレン基の如きシクロアルキレン基;フェニレン基の如きアリーレン基が挙げられる。
【0037】
また、R5は、これら上記に挙げた炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結していてもよい。このような連結された基としては、具体的には、例えば、少なくとも2つの炭化水素基が、エーテル結合で結合された(ポリ)エーテルから構成される基、少なくとの2つの炭化水素基がエステル結合で結合された(ポリ)エステルから構成される基、少なくとも2つの炭化水素基が、アミド結合で結合された(ポリ)アミドから構成される基、少なくとも2つの炭化水素基がウレタン結合で結合された、(ポリ)ウレタンから構成される基や、少なくとも2つの炭化水素基が、エーテル結合された(ポリ)エーテル(ポリ)オールと(ポリ)カルボン酸とをエステル化して得られる(ポリ)カルボン酸{(ポリ)エーテル(ポリ)オール}エステルから構成される基等が挙げられる。
【0038】
6は光配向性を示す構成単位を表す。これらの光配向性を示す構成単位の具体例としては、一般式(1−1)のR2で説明したものと同様の構成単位が挙げられる。また、R7、R8、R9、およびR10は、各々水素原子、メチル基、エチル基等の1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。
【0039】
また、式(1−1)は、下記一般式(1−3)、
【化7】
Figure 0004803412
【0040】
(式中、R11は各々独立して、単結合、アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。R12は3価の炭化水素基を表す。R13は光配向性を示す構成単位を表し、R14、R15、R16及びR17は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。)で表されるマレイミド誘導体も好ましい。
【0041】
一般式(1−3)におけるR11は各々独立して、単結合、アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。これらの基は、一般式(1−2)のR5で説明したものと同様の炭化水素基、もしくは有機基が挙げられる。
また、R11は、一般(1−2)のR5と同様、上記に挙げた炭化水素基、もしくは有機基の複数個が、単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結されたものでも良い。
【0042】
一般式(1−3)におけるR12は、3価の炭化水素基を表す。価すなわち遊離原子価は炭化水素基のどの部位に存在しても良く、3つの価のうち2つに、上記R1、R2で表される有機基を介してマレイミド基が、1つに、R3で表される有機基を介しR5で表される光配向性を示す構成単位が結合する。これらの炭化水素基は、直鎖状でも分岐状でも構わない。具体的には、例えばメチリジン基、1−エタニル−2−イリデン基、1,2,3−プロパントリイル基、1−プロパニル−3−イリデン基、1,2,4−ブタントリイル基、1−ブタニル−4−イリデン基、1,2,5−ペンタントリイル基、1,3,5−ペンタントリイル基、1−ペンタニル−5−イリデン基、1,2,6−ヘキサントリイル基、1,3,6−ヘキサントリイル基、1−ヘキサニル−6−イリデン基、2−プロパニル−1−イリデン基、2−メチレン−1,3−プロパンジイル基、1−プロパニル−3−イリデン基、3−ブタニル−1−イリデン基、1,2,3−ブタントリイル基、1−ブタニル−2−イリデン基、2−メチル−1−プロパニル−3−イリデン基、2−メチル−1,2,3−プロパントリイル基、
【0043】
2−エチル−1,2,3−プロパントリイル基、2−ブタニル−1−イリデン基、2−ブタニル−3−イリデン基、2−ブタニル−4−イリデン基の如き3価の非環式炭化水素よりなる基;1,2,3−シクロペンタントリイル基、1,2,5−シクロペンタントリイル基、1−シクロペンチル−2−イリデン基、1−シクロペンチル−3−イリデン基、1,2,3−シクロヘキサントリイル基、1,2,4−シクロヘキサントリイル基、1,3,5−シクロヘキサントリイル基、1−シクロヘキシル−2−イリデン基、1−シクロヘキシル−3−イリデン基、1−シクロヘキシル−4−イリデン基、シクロヘキシルメチリジン基、4−シクロへキシレンメチレン基、1−シクロヘキシル−2−エタニル−1−イリデンの如き環式脂肪族炭化水素を含む3価の炭化水素よりなる有機基;1,3,5−ベンゼントリイル基、ベンジリジン基、2−フェニル−1,2,3−プロパントリイル基の如き芳香族炭化水素を含む3価の炭化水素よりなる有機基等が挙げられる。
【0044】
13は光配向性を示す構成単位を表す。これらの光配向性を示す構成単位の具体例としては、一般式(1−1)のR2で説明したものと同様の構成単位が挙げられる。また、R14、R15、R16、及びR17は、各々水素原子、メチル基、エチル基等の1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。
【0045】
次に、本発明で使用するアルケニル置換ナジイミド誘導体は、一般式(2)の構造を含むものであれば特に限定されず公知慣用のものが使用できる。
【0046】
【化8】
Figure 0004803412
【0047】
(式中、R18及びR19は各々、水素原子又はメチル基を表す)
アルケニル置換ナジイミド誘導体の具体例としては、例えば、N−メチル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルヘキシル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0048】
N−(2−エチルヘキシル)−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−フェニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0049】
N−フェニル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2′−ヒドロキシエチル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2′−ヒドロキシエチル)−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2′−ヒドロキシエチル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0050】
N−(2′,2′−ジメチル−3′−ヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2′,2′−ジメチル−3′−ヒドロキシプロピル)−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2′,3′−ジヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2′,3′−ジヒドロキシプロピル)−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3′−ヒドロキシ−1′−プロペニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4′−ヒドロキシ−シクロヘキシル)−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0051】
N−(4′−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4′−ヒドロキシフェニル)−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4′−ヒドロキシフェニル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4′−ヒドロキシフェニル)−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3′−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3′−ヒドロキシフェニル)−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(p−ヒドロキシベンジル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2′−(2″−ヒドロキシエトキシ)エチル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0052】
N−{2′−(2″−ヒドロキシエトキシ)エチル}−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2′−(2″−ヒドロキシエトキシ)エチル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2′−(2″−ヒドロキシエトキシ)エチル}−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2′−{2″−(2′″−ヒドロキシエトキシ)エトキシ}エチル〕−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2′−{2″−(2′″−ヒドロキシエトキシ)エトキシ}エチル〕−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2′−{2″−(2′″−ヒドロキシエトキシ)エトキシ}エチル〕−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4′−(4″−ヒドロキシフェニルイソプロピリデン)フェニル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4′−(4″−ヒドロキシフェニルイソプロピリデン)フェニル}−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4′−(4″−ヒドロキシフェニルイソプロピリデン)フェニル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、及びこれらのオリゴマー等が挙げられる。
【0053】
また、N,N′−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
【0054】
1,2−ビス{3′−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3′−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3′−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、ビス〔2′−{3″−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、ビス〔2′−{3″−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、1,4−ビス{3′−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、1,4−ビス{3′−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、
【0055】
N,N′−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
【0056】
2,2−ビス〔4′−{4″−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4′−{4″−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4′−{4″−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、
【0057】
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、
【0058】
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、1,6−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3−ヒドロキシ−ヘキサン、1,12−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3,6−ジヒドロキシ−ドデカン、1,3−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−シクロヘキサン、1,5−ビス{3′−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}−3−ヒドロキシ−ペンタン、1,4−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−ベンゼン、
【0059】
1,4−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2,5−ジヒドロキシ−ベンゼン、N,N′−p−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−p−(2−ヒドロキシ)キシリレン−ビス(アリルメチルシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−m−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−m−(2−ヒドロキシ)キシリレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N′−p−(2,3−ジヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
【0060】
2,2−ビス〔4′−{4″−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2″−ヒドロキシ−フェノキシ}フェニル〕プロパン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェニル}メタン、ビス{3−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−4−ヒドロキシ−フェニル}エーテル、ビス{3−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−フェニル}スルホン、1,1,1−トリ{4´−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)}フェノキシメチルプロパン、N,N’,N”−トリ(エチレンメタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)イソシアヌレート、及びこれらのオリゴマー等が挙げられる。
【0061】
さらに、非対称なアルキレン・フェニレン基を含む次のようなものでも良い。
【0062】
【化9】
Figure 0004803412
【0063】
また、これらのアルケニル置換ナジイミド誘導体には、上記一般式(2)で表される主たる構造以外の部分に、置換基として、ポリエン、スチルベン、スチルバゾール、スチルバゾリウム、桂皮酸、ヘミチオインジゴ、カルコン、芳香族シッフ塩基、芳香族ヒドラゾン、アゾベンゼン、アゾナフタレン、芳香族複素環アゾ、ビスアゾ、ホルマザン、ベンゾフェノン、クマリン構造などの感光性基、アクリル基、エポキシ基、マレイミド基等の反応性官能基を含有していても差支えないのはもちろんである。
このようなアルケニル置換ナジイミド誘導体は、単独で用いてもよいし、これらの混合物として用いてもよい。
【0064】
上記に示した光配向性を示す構成単位を有するマレイミド誘導体と、アルケニル置換ナジイミド誘導体は、重量比にして15/80〜95/5の割合となることが好ましく、35/65〜70/30の割合となることが特に好ましい。マレイミド誘導体が15%未満であると光反応性が低下し、また、アルケニル置換ナジイミド誘導体が5%未満であると硬化反応促進効果が見られない。
【0065】
本発明の光配向材料においては、光配向性を示す構成単位の導入密度を調整し、液晶の配向状態を向上させる目的、あるいは一般式(1−1)で表されるようなマレイミド誘導体の結晶性を下げ、基板に対する塗布性、成膜性を改善する目的等で、下記一般式(3)で示されるような光配向性を示す構成単位を含まないマレイミド誘導体を適宜混合したものを塗布し、光配向性を示す構成単位を含むマレイミド誘導体、およびアルケニル置換ナジイミド誘導体と混合して反応させても良い。
【0066】
【化10】
Figure 0004803412
【0067】
(式中、R20は直鎖アルキレン基、分岐アルキレン鎖、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。R21、R22、R23、及びR24は各々独立して、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。)
【0068】
上記一般式(3)において、R20は、一般式(1−1)のR1で説明したものと同様の有機基を表す。また、R20は、これら一般式(1−1)と同様、上記に挙げた有機基の複数個が、単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結してされたものでも良い。また、R21、R22、R23、及びR24は水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。
【0069】
上記一般式(3)に示す光配向性を示す構成単位を含まないマレイミド誘導体の混合割合は、光配向材料全体に対し0〜80重量%の範囲内であることが好ましく、特に好ましくは0〜50重量%の範囲である。
【0070】
このほか、本発明の光配向材料は、本発明の趣旨をそこなわない範囲で、硬化可能なエチレン性化合物、エポキシ化合物、またポリビニルアルコール、ポリビニルシンナメートなどのポリビニル化合物、ポリ(メタ)アクリレート化合物、ポリエステル、ポリアミド、ポリイミド、ポリカーボネートなどの高分子材料、さらには界面活性剤、キレート剤、酸化防止剤、粘度調製剤など、光配向膜材料として公知の材料を含有することができる。
【0071】
本発明の光配向材料は、上記に記載した光配向性を示す構成単位(以下、光配向性を示す構成単位を光配向性基と略す)を有する多官能マレイミド誘導体およびアルケニル置換ナジイミド誘導体を含有することを特徴とする。次に、本発明の光配向材料を用いて、光配向膜とこれを具備した液晶表示素子を製造する方法の例を述べる。
【0072】
本発明の光配向材料は、適切な溶媒に溶解して用いる。この際、溶媒は特に限定されないが、N−メチルピロリドン、ジメチルホルムアミド、ブチルセロソルブ、γ−ブチロラクトン、クロロベンゼン、ジメチルスルホキシド、ジメチルアセトアミド、テトラヒドロフラン等が一般的に用いられる。中でもN−メチルピロリドン、ブチルセロソルブ、γ−ブチロラクトン、は塗布性が良好で、均一な膜が得られることから、特に好ましい。
【0073】
上記光配向材料の溶液をガラス等の基板にスピンコーティング法、印刷法等の方法によって塗布し、乾燥後、マレイミド基とアルケニル置換ナジイミド誘導体との硬化および光配向性基の配向操作を行う。マレイミド基とアルケニル置換ナジイミド誘導体との硬化は光照射もしくは加熱によって行われる。光や熱による硬化操作は、既に配向した光配向性基に影響を与える恐れがあるため、光配向性基の配向に先立って行うことが好ましいが、アゾベンゼンのような可逆的な光異性化による光配向の状態を固定化する目的で、光配向を行った後に硬化操作を行う場合もある。
【0074】
マレイミド基とアルケニル置換ナジイミド誘導体とが硬化する光の波長と光配向性基の配向が生ずる光の波長とが異なる場合、光による硬化操作は、光配向の生じない、マレイミド基が硬化する光の波長にできるだけ近い波長の光を用いることが好ましい。一方、硬化する光の波長と光配向性基の配向が生ずる光の波長とが近い場合には、マレイミド基およびアルケニル置換ナジイミド誘導体との硬化と光配向性基の光配向操作を一回の光照射で同時に行うことが可能である。このような光硬化に用いる照射光は特に限定されないが、紫外線が好ましく用いられる。照射方法についても特に限定されず、無偏光あるいは直線偏光、楕円偏光などの偏光が用いられる。
【0075】
一方、マレイミド誘導体およびアルケニル置換ナジイミド誘導体の硬化操作を加熱によって行う場合は、その工程は光配向性基の配向操作の前後いずれでも良い。また、完全に硬化させるために、最初に光照射又は加熱で硬化を行い、次に光配向操作を行った後、再び光照射又は加熱を行っても良い。
【0076】
光配向性基の配向操作は偏光もしくは無偏光の光を照射することによって行われる。照射光の波長は光配向性基が効率よく光反応する波長が選ばれ、可視光線、紫外線等が挙げられるが、特に紫外線が好ましい。照射方法は特に限定されないが、例えば、偏光を照射して光配向操作を行う場合は、直線偏光や楕円偏光が多く用いられる。このとき、液晶分子のプレチルトを得るために、偏光を基板に対して斜め方向から照射する方法や、偏光照射後に斜め方向から無偏光の光を照射する方法を用いても良い。また、無偏光のみを照射して光配向を行う場合は、基板に対して斜め方向から照射する方法が好ましい。
【0077】
本発明の光配向材料を用いた液晶セルは、前記配向膜が形成された2枚の基板を配向膜に照射した偏光の方向が所定の角度となるようにした上で、所定の大きさのスペーサーを介して対向させることによって構成される。この液晶セルに液晶を充填する際には、液晶が等方相となる温度にまで加熱した後、毛細管法、真空注入法等によって充填することが好ましい。
【0078】
液晶材料としては、例えば、4−置換安息香酸4’−置換フェニルエステル、4−置換シクロヘキサンカルボン酸4’−置換フェニルエステル、4−置換シクロヘキサンカルボン酸4’−置換ビフェニルエステル、4−(4−置換シクロヘキサンカルボニルオキシ)安息香酸4’−置換フェニルエステル、4−(4−置換シクロヘキシル)安息香酸4’−置換フェニルエステル、4−(4−置換シクロヘキシル)安息香酸4’−置換シクロヘキシルエステル、4−置換4’−置換ビフェニル、4−置換フェニル−4’−置換シクロヘキサン、4−置換4”―置換ターフェニル、4−置換ビフェニル4’―置換シクロヘキサン、2−(4−置換フェニル)−5−置換ピリミジン等を挙げることができる。
【0079】
本発明においては、光配向性基を有するマレイミド誘導体及びアルキレン置換ナジイミド誘導体を含有する光配向材料を基板に塗布した後、硬化操作および、光配向操作を行うことによって光配向膜を得る。塗布する材料がモノマーであるため、溶剤溶解性が高く、塗布が容易であるという特徴を有する。また、硬化後は架橋構造の中に光配向性基を有する構造となるため、光や熱に対する安定性が高い光配向膜が得られる。
【0080】
また、マレイミド誘導体及びアルキレン置換ナジイミド誘導体の硬化反応は、反応開始剤を必要とせず、かつ硬化速度が速いため、硬化操作が短時間で済み、液晶セル作製後に、液晶中に反応開始剤が溶出することがなく、電圧保持率の低下等、液晶表示素子の性能劣化の原因を取り除くことができる。
【0081】
【実施例】
以下、合成例、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。
【0082】
[参考例1]マレイミド酢酸の合成
撹拌機、温度計、滴下ロート、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの4つ口フラスコに、トルエン140g、p−トルエンスルホン酸一水和物5.2g及びトリエチルアミン2.8gを順次仕込み、撹拌しながら無水マレイン酸30gを加えた後、30℃まで昇温させながら溶解させた。さらにグリシン23gを加えた後、撹拌しながら70℃で3時間反応させた。トルエン50g、トリエチルアミン60gを加え、溶媒を加熱還流させて生成する水を除去しながら1時間反応させた。反応混合物から溶媒を留去して得られた残留物に、4mol/dm3の塩酸を加えてpH2に調整した後、加熱−再結晶して、マレイミド酢酸の淡黄色固体7.3gを得た。
【0083】
[参考例2]4,4’−ビス(2−ヒドロキシエトキシ)ベンゾフェノンの合成撹拌機、温度計、滴下ロート及び冷却管を備えた容量300ミリリットル4つ口フラスコに、2−ブロモエタノール62.5gを入れ、氷浴による冷却下、撹拌しながらN−メチルピロリドン100gを加えた。これにp−トルエンスルホン酸一水和物10mgを加え、ジヒドロピラン42.1gを約10分かけて滴下した。氷冷下で2時間撹拌し、さらに室温で2時間撹拌した後、4,4’−ジヒドロキシベンゾフェノン42.8gおよび炭酸カリウム69.1gを加え、120℃で3時間反応した。冷却後、400mlの水に反応混合物を加え、400mlのトルエンで2回抽出し、得られたトルエン層を無水硫酸ナトリウムで乾燥し、エバポレータで溶媒を留去した。
得られた残渣にメタノール450g、水70g、濃塩酸1.0gを加え、室温で一晩撹拌し、生成した沈殿を濾過し、メタノールでよく洗浄した後に乾燥させ、4,4’−ビス(2−ヒドロキシエトキシ)ベンゾフェノン52gを得た。
【0084】
[合成例1]ベンゾフェノンを含有するマレイミド誘導体の合成
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、参考例1で得たマレイミド酢酸8.8g、参考例2で得た4,4’−ビス(2−ヒドロキシエトキシ)ベンゾフェノン6.1g、p−トルエンスルホン酸一水和物0.4g、ヒドロキノン20mg及びトルエン150mlを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応混合物を熱時濾過し、得られた固体をメタノールでよく洗浄し、乾燥させることにより式(4)
【0085】
【化11】
Figure 0004803412
で表される2官能マレイミド誘導体8.6gを得た。
【0086】
[合成例2]
ベンゾフェノンを含有しないマレイミド誘導体の合成
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、参考例1で得たマレイミド酢酸8.8g、数平均分子量400のポリプロピレングリコール5.0g、p−トルエンスルホン酸一水和物0.4g、ヒドロキノン20mg及びトルエン150mlを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応混合物を希水酸化ナトリウム溶液で2回、次いで純水で3回洗浄し、トルエンを留去して式(5)
【0087】
【化12】
Figure 0004803412
で表されるマレイミド誘導体7.7gを得た。
【0088】
[参考例3]4−(2−ヒドロキシエトキシ)シンナミックアシッド−2−ヒドロキシエチルエステルの合成
容量500mlのオートクレーブに水酸化ナトリウム40.0g(1.0mol)のエタノール80ml、水100mlの混合溶液を仕込み、4−ヒドロキシケイ皮酸82.1g(0.5mol)を加えて溶解させる。氷冷しながらオキシラン132.2g(3.0mol)を加えて密閉し、80℃で6時間反応させる。水200mlを加えて希釈し、酢酸エチル100mlで2回抽出する。抽出液をシリカゲルクロマトグラフィーで精製した後、酢酸エチルを減圧下留去、乾固し、ブタノールで再結晶して、4−(2−ヒドロキシエトキシ)シンナミックアシッド−2−ヒドロキシエチルエステル90.8g(72%)を得た。
【0089】
[合成例3]シンナモイル基を含有するマレイミド誘導体の合成
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、参考例1で得たマレイミド酢酸8.8g、参考例3で得た4−(2−ヒドロキシエトキシ)シンナミックアシッド−2−ヒドロキシエチルエステル5.1g、p−トルエンスルホン酸一水和物0.4g、ヒドロキノン20mg及びトルエン150mlを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応混合物を熱時濾過し、得られた固体をメタノールでよく洗浄し、乾燥させることにより式(6)
【0090】
【化13】
Figure 0004803412
で表される2官能マレイミド誘導体7.8gを得た。
【0091】
[参考例4]2,2−ジメチル−5−エチル−5−(ブロモメチル)−1,3−ジオキサンの合成
撹拌機、温度計及び塩化カルシウム乾燥管を付けた冷却管を備えた容量500ミリリットル4つ口フラスコに、トリメチロールプロパン 67.1g、2,2−ジメトキシプロパン57.3g、トルエン100g及びp−トルエンスルホン酸一水和物2.9gを入れ、60℃で3時間撹拌した。冷却後、炭酸カリウム2.5gを加え、一晩室温で撹拌した。フラスコ内の固体を濾過で除き、減圧下、溶媒を留去して2,2−ジメチル−5−エチル−5−(ブロモメチル)−1,3−ジオキサンの中間体80.6g(液体)を得た。
【0092】
撹拌機、温度計、窒素導入管及び塩化カルシウム乾燥管を付けた冷却管を備えた容量500ミリリットル4つ口フラスコに上記中間体43.8g、四臭化炭素116.6g及びN,N−ジメチルホルムアミド300mlを加え、窒素雰囲気下、撹拌しながら氷塩浴で充分に冷却させ、トリフェニルフォスフィン91.9gを少しずつ、液温が0℃を越えないように加えた。トリフェニルフォスフィン添加終了後、30分氷塩浴中で撹拌し、その後、氷浴中で1時間、室温で2時間撹拌した後、溶媒を50℃で減圧下、留去した。濃縮された混合物をアセトン−ヘキサン混合溶媒(1/3)200gで3回抽出し、得られた抽出液をシリカゲルを用いたカラムクロマトグラフィーで精製して2,2−ジメチル−5−エチル−5−(ブロモメチル)−1,3−ジオキサン47gを得た。(収率 79%)
【0093】
[合成例4]側鎖にクマリン基を有するマレイミド誘導体の合成(1)
撹拌機、温度計及び塩化カルシウム乾燥管を付けた冷却管を備えた容量100ミリリットルの3つ口フラスコに、2,2−ジメチル−5−エチル−5−(ブロモメチル)−1,3−ジオキサン11.9g、7−ヒドロキシクマリン8.3g、N−メチルピロリドン40gを加えて撹拌した。均一な溶液になったところで、炭酸カリウム7.1gを加え、150℃で2時間反応させた。冷却後、減圧下溶媒を留去し、濃縮された混合物を4リットルの酢酸エチルに溶解した。この溶液を500gの水で3回洗浄し、硫酸ナトリウムで乾燥した後に溶媒を減圧下、留去した。
得られた13.5gの固体をテトラヒドロフラン100gに溶かし、6%塩酸30gを加え、室温で4時間撹拌した。減圧下、溶媒を留去し、得られた固体を水洗後、濾過、乾燥した。
【0094】
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、上で得られた固体9.4g、参考例1で得たマレイミド酢酸12.6g、p−トルエンスルホン酸一水和物0.8g、ヒドロキノン40mg及びトルエン200ミリリットルを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応液にトルエン200ミリリットルを加えて希釈し、50gの水で4回洗浄した。このトルエン溶液を硫酸ナトリウムで乾燥後、減圧下、溶媒を留去して得られた固体をシリカゲルを用いたカラムクロマトグラフィーで精製することにより式(7)
【0095】
【化14】
Figure 0004803412
で表される2官能マレイミド誘導体12gを得た。
【0096】
[合成例5]側鎖にクマリン基を有するマレイミド誘導体の合成(2)
撹拌機、温度計、滴下ロート及び冷却管を備えた容量300ミリリットル4つ口フラスコに、2−ブロモエタノール6.3gをいれ、氷浴による冷却下、撹拌しながらN−メチルピロリドン10gを加えた。これにp−トルエンスルホン酸一水和物2mgを加え、ジヒドロピラン4.2gを約10分かけて滴下した。氷冷下で2時間撹拌し、さらに室温で2時間撹拌した後、7−ヒドロキシクマリン8.5gおよび炭酸カリウム6.9gを加え、120℃で3時間反応した。冷却後、100mlの水に反応混合物を加え、100mlのトルエンで2回抽出し、得られたトルエン層を無水硫酸ナトリウムで乾燥し、エバポレータで溶媒を留去した。得られた残渣にメタノール45g、水7g、濃塩酸0.5gを加え、室温で一晩撹拌した。溶媒を留去後、トルエン250gを加えて溶液とし、50gの水で2回洗浄した。
【0097】
撹拌機、温度計及び冷却管を備えた容量500ミリリットル3つ口フラスコに、上で得られたトルエン溶液を入れ、参考例4で合成した化合物10.5g、テトラブチルアンモニウムブロミド0.9g及び40パーセント水酸化ナトリウム水溶液80gを加え、撹拌しながら5時間還流した。冷却後、この混合物を分液ロートに移して、水層を分離、除去し、20gの水で3回洗浄した。
得られたトルエン溶液を減圧下で溶媒を留去し、残渣をテトラヒドロフラン100gに溶かし、6%塩酸30gを加え、室温で4時間撹拌した。減圧下、溶媒を留去し、得られた固体を水洗後、濾過、乾燥した。
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、上で得られた固体10.8g、参考例1で得たマレイミド酢酸12.6g、p−トルエンスルホン酸一水和物0.8g、ヒドロキノン40mg及びトルエン200ミリリットルを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応液にトルエン200ミリリットルを加えて希釈し、50gの水で4回洗浄した。このトルエン溶液を硫酸ナトリウムで乾燥後、減圧下、溶媒を留去して得られた固体をシリカゲルを用いたカラムクロマトグラフィーで精製することにより式(8)
【化15】
Figure 0004803412
で表される2官能マレイミド誘導体16gを得た。
【0098】
[合成例6]側鎖にカルコン基を有する2官能マレイミド誘導体の合成
攪拌機、温度計及び塩化カルシウム乾燥管を付けた冷却管を備えた容量100ミリリットルの3つ口フラスコに参考例4で得られた化合物11.9g、4−ヒドロキシカルコン11.5g、N−メチルピロリドン40gを加えて撹拌した。均一な溶液になったところで、炭酸カリウム7.1gを加え、150℃で2時間反応させた。冷却後、減圧下、溶媒を留去し、濃縮された混合物4リットルの酢酸エチルに溶解した。この溶液を500gの水で3回洗浄し、硫酸ナトリウムで乾燥した後に溶媒を減圧下、留去した。得られた15.0gの固体をテトラヒドロフラン100gに溶かし、6%塩酸30gを加え、室温で4時間撹拌した。減圧下、溶媒を留去し、得られた固体を水洗後、濾過、乾燥した。
【0099】
攪拌機、温度計、ディーンスターク分留器及び冷却管を備えた500ミリリットルの3つ口フラスコに、上で得られた固体10.4g、参考例1で得たマレイミド酢酸12.6g、p−トルエンスルホン酸一水和物0.8g、ヒドロキノン40mg及びトルエン200ミリリットルを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応液にトルエン200ミリリットルを加えて希釈し、50gの水で4回洗浄した。このトルエン溶液を硫酸ナトリウムで乾燥後、減圧下、溶媒を留去して得られた固体をシリカゲルを用いたカラムクロマトグラフィーで精製することにより、式(9)
【化16】
Figure 0004803412
で表される2官能マレイミド誘導体13gを得た。
【0100】
[合成例7]アルケニル置換ナジイミド誘導体(N,N′−2,2−ビス(4−フェニレン)プロパン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、以下NI−Mと略す)の合成
窒素置換した内容量500mlのフラスコに、アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸無水物(純度98%品)151.0g(0.74mol)およびトルエン200mlを仕込み、加熱、攪拌しながら、トルエンの還流下、81.4g(0.36mol)の2,2−ビス(4−アミノフェニル)プロパンを60分かけて少量ずつ加えた。生成した水を水分分離器で分離、除去しながら反応を4時間続けた後、微量の固形残渣を濾別し、溶媒のトルエンを留去した。次に内容物を200℃、1mmHgの減圧下で1.5時間熱処理したところ、208.8g(アミン基準の収率:97%)の目的物であるN,N′−2,2−ビス(4−フェニレン)プロパン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)(NI−M)が得られた。
【0101】
[合成例8]アルケニル置換ナジイミド誘導体(N,N′m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、以下NI−Xと略す)の合成
窒素置換した内容量500mlのフラスコに、アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸無水物(純度98%品)161.3g(0.74mol)およびトルエン200mlを仕込み、加熱、攪拌しながら、トルエンの還流下、49.0g(0.36mol)のm−キシリレンジアミンを60分かけて少量ずつ加えた。生成した水を水分分離器で分離、除去しながら反応を4時間続けた後、微量の固形残渣を濾別し、溶媒のトルエンを留去した。次に内容物を200℃、1mmHgの減圧下で1.5時間熱処理したところ、208.8g(アミン基準の収率:97%)の目的物であるN,N′m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)(NI−X)が得られた。
【0102】
[比較合成例1]
ベンゾフェノンを含有するアクリル酸誘導体の合成
合成例1のマレイミド誘導体の合成において、マレイミド酢酸の代りにアクリル酸を用いて式(10)
【0103】
【化17】
Figure 0004803412
で表される2官能アクリル酸誘導体を得た。
【0104】
[比較合成例2]
側鎖にクマリン基を有するアクリル酸誘導体の合成
合成例4のマレイミド誘導体の合成において、マレイミド酢酸の代りにアクリル酸を用いて式(11)
【0105】
【化18】
Figure 0004803412
で表される2官能アクリレートを得た。
【0106】
[比較参考例1]ポリヒドロキシフェニルマレイミドの合成
窒素が充填された3つ口丸底フラスコに米国、ポリサイエンス社(Polyscience co.,U.S.A.)の無水マレイン酸ポリマー5gとアミノフェノール3gをキシレン100mlに入れて常温で30分間攪拌し、さらにイソキノリン2.9gを入れ、徐々に昇温して150℃まで上げた後、反応中に生成した水を続けて除去しながら3時間程度反応を続けた。水が生成しなくなったことを確認して反応を終了し、温度を常温に下げた後、メタノール500mlに注いで生成物を沈殿させ、減圧濾過後100℃で真空乾燥してポリヒドロキシフェニルマレイミドを得た。
【0107】
[比較参考例2]側鎖(パラフルオロベンゾイルシンナモイルクロライド)の合成
パラヒドロキシケイ皮酸16.42g(0.1モル)と水酸化ナトリウム8gを水100mlとジメチルスルホオキシド(DMSO)100mlに溶解し、0℃で激しく攪拌しながら、パラフルオロベンゾイルクロライド15.86g(0.1モル)を徐々に滴下した。常温で約2時間反応した後、薄い塩酸でpH=6〜7に中和した。得られた固体状の中間体を濾過して水で完全に洗滌した。真空下で完全に乾燥させた後、エタノールの中で再結晶させてパラフルオロベンゾイルオキシケイ皮酸を収率90%で得た。これを塩化チオニル1.2当量と塩化メチレン約50mlを添加し、常温で透明な溶液が得られるまで反応させた。反応後、溶媒と塩化チオニルを真空下で除去し、完全に乾燥させてパラフルオロベンゾイルシンナモイルクロライドを得た。
【0108】
[比較合成例3]マレイミドを主鎖に持ち、光配向性基を側鎖に有する高分子光配向材料の合成
比較参考例1で得られたポリヒドロキシフェニルマレイミド1.7gをN−メチルピロリドン(NMP)50mlに溶解した後、トリエチルアミン1.0gを入れて30分間攪拌した。反応温度を5℃に下げて激しく攪拌しながら前記の比較参考例2で得られたパラフルオロベンゾイルシンナモイルクロライド2.13gをゆっくり滴下した。パラフルオロベンゾイルシンナモイルクロライドのすべてを滴下した後、1時間程度続けて攪拌し、反応を終了した。反応液を、水とメタノール各々200mlを混合したビーカーに注いで生成物を沈殿させ、その後続けて過量の水とメタノールで徹底的に洗滌した後、減圧濾過し真空乾燥させて、最終的に側鎖にパラフルオロベンゾイルシンナモイル基を有し、マレイミドを主鎖に持つ高分子光配向材料を得た。
【0109】
以上の合成例及び比較合成例により得られた光配向材料を用いて、光配向膜を作成し、物性評価を行った。光配向膜の作成方法及び物性評価方法は、下記の方法に従い行った。
【0110】
[光配向膜の作成方法]
a.光配向材料溶液の調製
合成例で得られたマレイミド誘導体およびアルキレン置換ナジイミド誘導体を、N−メチルピロリドン/ブチルセロソルブ=1/1の混合溶媒に溶かして、固形分濃度5%溶液とし、これを0.1μmのフィルターでろ過し、光配向材料溶液とした。
【0111】
b−1.光配向膜作成(熱硬化方法)
上記a.の方法で得られた光配向材料溶液を、スピンコーターにてITO電極付ガラス基板上に均一に塗布し、190℃、1時間で乾燥及び硬化を行った。次に、得られた塗膜表面に超高圧水銀ランプより、積算光量で10J/cm2の365nm付近の直線偏光した紫外光を照射し、光配向膜を作成した。
【0112】
b−2.光配向膜作成(光硬化方法)
上記a.の方法で得られた光配向膜溶液を、スピンコーターにてITO電極付ガラス基板上に均一に塗布し、100℃、15分乾燥したのち、塗膜表面に超高圧水銀ランプより、積算光量で10J/cm2の波長313nm付近の直線偏光した紫外光を照射し、マレイミド誘導体、及びアルケニル置換ナジイミド誘導体の光硬化と光配向性基の二量化による配向とを同時に行うことにより、光配向膜を作成した。
【0113】
c.液晶セルの作成
上記b−1または2で得られた光配向膜基板の周囲に直径8μmのスチレンビーズを含んだエポキシ系接着剤を液晶注入口を残して塗布し、配向面が相対するように、かつ偏光光の方向が直交する向きに重ねあわせて圧着し、接着剤を150℃、90分かけて硬化させた。
次いで、液晶注入口より一例としてカイラルネマチック液晶組成物(4−(4−エトキシフェニル)シクロヘキシルプロパン 19%、4−(4−(3,4−ジフルオロフェニル)シクロヘキシル)シクロヘキシルエタン 18%、4−(4−(3,4−ジフルオロフェニル)シクロヘキシル)シクロヘキシルペンタン 18%、4−(4−(3,4−ジフルオロフェニル)シクロヘキシル)シクロヘキシルプロパン 18%、4−(4−ブチルシクロヘキシル)シクロヘキシルプロパン 7%、4−フルオロフェニル−4−(4−ペンチルシクロヘキシル)シクロヘキシルカルボン酸エステル 6%4−フルオロフェニル−4−(4−プロピルシクロヘキシル)シクロヘキシルカルボン酸エステル 6%4−(4−クロロフェニル)シクロヘキシルペンタン 5%、4−(4−(4−クロロフェニル)シクロヘキシル)シクロヘキシルブタン 3%、および大日本インキ化学工業社製カイラル材SPE−01を0.1%外添したもの)をアイソトロピック相で真空注入し充填した後、エポキシ系接着剤で液晶注入口を封止した。
【0114】
[光配向膜の評価方法]
d.液晶配向性評価
上記c.の方法で得られた液晶セルを、偏光方向が直交する2枚の偏光板の間に挟み、電極間に5Vの電圧を印加してON/OFFし、明暗をスイッチングさせることにより、液晶の配向性を評価した。
【0115】
e.電圧保持率の測定
上記c.の方法で得られた液晶セルに、80℃に保持した状態で5Vの直流電圧を64マイクロ秒間印加し、つづいて16.6ミリ秒間開放した間の保持電圧を測定し、その時間積分値と、初期印加電圧×開放時間との比を保持率として表した。
【0116】
f.耐久性の測定
この液晶セルを80℃にて1000時間保持したのちの、配向性を目視評価した。
【0117】
[実施例1]
合成例1で得られたマレイミド誘導体(4)/合成例7で得られたアルキレン置換ナジイミド誘導体(NI−M)=50/50重量比からなる光配向材料を用いて、上記a.の調製方法に従い、光配向材料溶液を調製し、次にb−1.の光配向膜の熱硬化作成方法に従い、光配向膜を作成した。得られた光配向膜を用いて上記c.に従って液晶セルを作成し、上記評価方法に従い物性評価を行った。この結果、80℃に保持した状態での電圧保持率は94%、また液晶配向性、耐久性共に良好であった。
【0118】
[実施例2]
合成例1で得られたマレイミド誘導体(4)/合成例7で得られたアルキレン置換ナジイミド誘導体=50/50重量比からなる光配向材料(NI−M)を用いて、上記a.の調製方法に従い、光配向材料溶液を調製し、次にb−2.の光配向膜の光硬化作成方法に従い、光配向膜を作成した。得られた光配向膜を用いて液晶セルを作成し、上記評価方法に従い物性評価を行った。この結果、80℃に保持した状態での電圧保持率は95%、また液晶配向性、耐久性共に良好であった。
【0119】
[実施例3]
光配向材料を、合成例1で得られたマレイミド誘導体(4)/合成例2で得られたマレイミド誘導体(5)/合成例7で得られたナジイミド誘導体(NI−M)=40/20/40混合物とした他は、実施例1と同様にして評価を行った。この結果、80℃に保持した状態での電圧保持率は93%、また液晶配向性、耐久性共に良好であった。
【0120】
[実施例4]
合成例1で得られたマレイミド誘導体(4)を、合成例3で得られたマレイミド誘導体(6)に代えた他は、実施例1と同様にして、評価を行った。この結果、80℃に保持した状態での電圧保持率は94%、また液晶配向性、耐久性共に良好であった。
【0121】
[実施例5]
光配向材料を、合成例1で得られたマレイミド誘導体(4)/合成例2で得られたマレイミド誘導体(5)/合成例8で得られたナジイミド誘導体(NI−X)=65/10/25の混合物とした他は、実施例1と同様にして、評価を行った。この結果、80℃に保持した状態での電圧保持率は94%、また液晶配向性、耐久性共に良好であった。
【0122】
[実施例6]
合成例1で得られたマレイミド誘導体(4)を、合成例4で得られたマレイミド誘導体(7)に代えた他は、実施例1と同様にして、評価を行った。この結果、80℃に保持した状態での電圧保持率は94%、また液晶配向性、耐久性共に十分なものであった。
【0123】
[実施例6]
合成例1で得られたマレイミド誘導体(4)を、合成例4で得られたマレイミド誘導体(7)に代えた他は、実施例2と同様にして、評価を行った。この結果、80℃に保持した状態での電圧保持率は94%、また液晶配向性、耐久性共に十分なものであった。
【0124】
[実施例7]
合成例1で得られたマレイミド誘導体(4)を、合成例5で得られたマレイミド誘導体(8)に代えた他は、実施例1と同様にして評価を行った。この結果、80℃に保持した状態での電圧保持率は95%、また液晶配向性、耐久性共に十分なものであった。
【0125】
[実施例8]
光配向材料を、合成例6で得られたマレイミド誘導体(9)/合成例2で得られたマレイミド誘導体(5)/合成例8で得られたナジイミド誘導体(NI−X)=40/30/30混合物とした他は、実施例1と同様にして評価を行った。この結果、80℃に保持した状態での電圧保持率は94%、また液晶配向性、耐久性共に十分なものであった。
【0126】
[比較例1]
合成例1で得られたマレイミド誘導体(4)を、比較合成例1で合成したアクリル酸誘導体(10)及びそれに対して2,2‘−アゾビスイソブチロニトリルを0.1%加えたものに代えた他は、実施例2と同様にして評価を行った。この結果、液晶配向性、耐久性は良好であったが、80℃に保持した状態での電圧保持率は80%と低かった。
【0127】
[比較例2]
比較合成例3で合成した側鎖にパラフルオロベンゾイルシンナモイル基を有し、マレイミドを主鎖に持つ高分子を光配向材料に用いた他は、実施例1と同様にして評価を行った。この結果、80℃に保持した状態での電圧保持率は94%で、液晶配向性も良好であったが、耐久性試験後は、明暗のスイッチングが不明瞭であり、配向性が低下していた。
【0128】
[比較例3]
合成例1で得られたマレイミド誘導体(4)を、比較合成例2で合成したアクリル酸誘導体(11)及びそれに対して2,2‘−アゾビスイソブチロニトリルを0.1%加えたものに代えた他は、実施例2と同様にして、評価を行った。この結果、液晶配向性、耐久性は良好であったが、80℃に保持した状態での電圧保持率は80%と低かった。
【0129】
[比較例4]
アルケニル置換ナジイミド誘導体を使用せず、合成例1で得られたマレイミド誘導体(4)のみを用いて、上記a.の調製方法に準じて光配向材料溶液を調製し、次にb−1.の光配向膜の熱硬化作成方法に従い、光配向膜を作成した。得られた光配向膜を用いて上記c.に従って液晶セルを作成し、上記評価方法に従い物性評価を行った。この結果、液晶配向性、耐久性共に良好であったが、80℃に保持した状態での電圧保持率は83%と低かった。
【発明の効果】
本発明のマレイミド誘導体およびアルケニル置換ナジイミド誘導体よりなる光配向材料を用いることにより、良好な液晶表示素子特性、特に高温時において高い電圧保持率を有し、かつ良好な配向安定性と光や熱に対する十分な耐久性を有する光配向膜を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal alignment method, and more particularly to a photo-alignment film that can align liquid crystal molecules without being rubbed by irradiating light. The photo-alignment film of the present invention is suitably used as a liquid crystal alignment film for liquid crystal display elements.
[0002]
[Prior art]
In the liquid crystal display device, the state of the molecular arrangement of the liquid crystal is changed by the action of an electric field or the like, and the change in the optical characteristics accompanying this is used for display.
In many cases, the liquid crystal is used in a state of being sandwiched between two substrates. Here, in order to align liquid crystal molecules in a specific direction, an alignment process is performed on the inside of the substrate.
[0003]
Usually, the alignment treatment is performed by a method called rubbing, in which a polymer film such as polyimide is provided on a substrate such as glass and is rubbed with a cloth or the like in one direction. As a result, the liquid crystal molecules in contact with the substrate are arranged so that their long axes (directors) are parallel to the rubbing direction.
For example, in a twisted nematic (TN) cell, two substrates with an alignment film coated inside are placed between two orthogonal polarizing plates so that the rubbing directions are orthogonal to each other. Enables display by change.
[0004]
However, although the rubbing method has an advantage that the manufacturing apparatus is simple, since static electricity and dust are generated in the manufacturing process, a cleaning process is required after the alignment process, and in particular, a TFT-type liquid crystal that has been widely used in recent years. In the cell, the TFT element previously provided on the substrate is destroyed by static electricity, which causes a decrease in manufacturing yield. In addition, fine scratches caused by rubbing with a cloth cause display defects when manufacturing a high-definition display element such as a micro display.
[0005]
On the other hand, in the liquid crystal display element, since the inclination of the liquid crystal molecules is directional, there is a problem of viewing angle dependency such that the display color and contrast change depending on the direction in which the display element is viewed. As one method for improving this, alignment is performed by dividing one pixel and changing the pretilt angle (Japanese Patent Laid-Open No. Sho 62-159119) and the orientation direction (Japanese Patent Laid-Open No. Sho 63-106624) of the liquid crystal molecules for each region. Although a division method has been devised, the orientation of each divided region is not suitable for practical use because the process is complicated by the conventional rubbing method.
[0006]
In order to solve such a problem, a liquid crystal alignment control technique that does not perform rubbing has recently attracted attention. As such a rubbing-less alignment technique, an oblique deposition method, an LB (Langmuir-Blodget) film method, a photolithography method, a photo-alignment method, and the like have been studied. In particular, a photo-alignment method for irradiating polarized light onto a coating film provided on a substrate to produce liquid crystal alignment is simple, and no cleaning step is required after the alignment treatment. Since the above-described orientation division can be easily carried out by using it, research has been actively conducted.
As this photo-alignment mechanism, for example, a photoisomerization reaction such as an azobenzene group, a photodimerization reaction such as a cinnamoyl group, a coumarin group, a chalcone group, or a benzophenone, a photodecomposition reaction such as a polyimide resin, etc. have been reported. ing.
[0007]
These photo-isomerization, photo-dimerization and photo-decomposition reaction photo-alignment materials often use polymer compounds such as polymers so that a uniform film can be obtained when applied to a substrate such as glass. In many cases, structural units exhibiting photo-alignment properties such as azobenzene group and cinnamoyl group are introduced into the side chain or main chain of the polymer compound. In some cases, molecules having photo-alignment properties are used as guest molecules and dispersed in a host compound made of a polymer compound.
[0008]
However, in the case of the photoisomerization type, there is a problem in light stability after the photo-alignment treatment because the reversible isomerization reaction of molecules by irradiation with polarized ultraviolet rays is often used. In the case of the photolytic type, the liquid crystal may be contaminated by decomposition products generated during the photo-alignment process, so that it is necessary to clean the substrate after the process, and the photo-alignment film does not need to be cleaned. Lost. In addition, many photo-alignment materials using a polymer compound have low solubility in a solvent, and there is a problem that the types of solvents that can be used when applied to a substrate are limited.
[0009]
For example, WO9637807 discloses a liquid crystal alignment film using a resin having a structural unit and a reactive functional group that can be photoisomerized and exhibit dichroism. This material is a polymer compound. There are limited types of solvents that can be used for coating on the substrate, and polar solvents having a high boiling point such as N, N-dimethylacetamide and N-methyl-2-pyrrolidone are generally used. In this case, it takes a long time to volatilize the solvent after coating, and productivity is lowered. Furthermore, there is a problem that many of the conventional photo-alignment film materials are insufficient in terms of thermal stability.
[0010]
As an example of a method for solving these problems and ensuring that the liquid crystal alignment ability of the photo-alignment film can be stably obtained for a long period of time, a polymerizable monomer to which a structural unit showing orientation is added by polarized light irradiation is heated or irradiated. There is a method of polymerizing and photo-aligning by irradiation with polarized light. However, in many cases, it is necessary to add a polymerization initiator in order to thermally or photopolymerize the monomer. Since this polymerization initiator is a low molecular weight compound, the polymerization initiator diffuses into the liquid crystal layer in the cell after a long period of time even after the photo-alignment film is cured. There is a possibility of deteriorating the voltage holding ratio.
[0011]
As an unnecessary photopolymerizable group of the polymerization initiator, there is a maleimide group. A photo-alignment film using a compound having a maleimide group is disclosed in Japanese Patent Application Laid-Open No. 2000-53766 and Japanese Patent No. 29602473. These are high molecular compounds in which photo-alignment groups are added as side chains to polymaleimide, which still has the problem of solubility in solvents as described above, as well as the long-term stability of heat resistance and liquid crystal alignment ability. It is enough.
[0012]
In view of this, the present inventors have proposed a photo-alignment material that can provide a photo-alignment film having good liquid crystal display element characteristics by using a specific maleimide derivative in Japanese Patent Application No. 2000-260764. This material needs to be sufficiently heated and photocured in order to completely cure the maleimide group. If this is insufficient, there is a problem in that the voltage holding ratio of the produced liquid crystal cell is lowered.
[0013]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a photo-alignment film having good liquid crystal display element characteristics, particularly a high voltage holding ratio at high temperatures, and good alignment stability and sufficient durability against light and heat. It is to provide.
[0014]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have surprisingly cured by heating or light irradiation by using a material containing a specific maleimide derivative and an alkenyl-substituted nadiimide derivative. Has progressed very quickly and found that the above-mentioned problems can be solved, and the present invention has been completed.
That is, the present invention solves the above-described problems,
[0015]
(A) Provided is a photoalignment material containing a polyfunctional maleimide derivative having a structural unit exhibiting photoalignment and an alkenyl-substituted nadiimide derivative.
[0016]
Moreover, this invention provides the manufacturing method of the photo-alignment film using the photo-alignment material of (B) said (A).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a photoalignment material characterized by using a polyfunctional maleimide derivative having a structural unit exhibiting photoalignment and an alkenyl-substituted nadiimide derivative, and a photoalignment film using the photoalignment material.
[0018]
The polyfunctional maleimide derivative used in the present invention is a structural unit (hereinafter abbreviated as a structural unit exhibiting photo-orientation property) that undergoes a photoreaction exhibiting orientation such as dimerization reaction and isomerization reaction when irradiated with light. ). The structural unit exhibiting photo-alignment is not particularly limited, but at least one double bond selected from the group consisting of C = C, C = N, N = N, and C = O (however, forms an aromatic ring) A structural unit having (except for a double bond) is particularly preferably used.
[0019]
Examples of the structural unit exhibiting photo-alignment include the following.
For example, structural units having a C═C bond include skeletons such as polyene, stilbene, stilbazole, stilbazolium, cinnamate, hemithioindigo, and chalcone. Examples of the structural unit having a C═N bond include skeletons such as aromatic Schiff bases and aromatic hydrazones. Examples of the structural unit having an N═N bond include azo skeletons such as azobenzene, azonaphthalene, aromatic heterocyclic azo, bisazo, formazan, and azoxybenzene. Examples of the structural unit having a C═O bond include skeletons such as benzophenone, coumarin, and anthraquinone.
[0020]
Specific examples include the following skeletons. Of course, as shown by X in the following skeletons, one of an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, a halogenated alkyl group, etc. The above residues may be bound.
[0021]
[Formula 4]
Figure 0004803412
[0022]
Among them, maleimide derivatives having a skeleton of cinnamate, coumarin, chalcone, or benzophenone that exhibits photoalignment by a photodimerization reaction, or an azobenzene or anthraquinone skeleton that exhibits photoalignment by a photoisomerization reaction are necessary for photoalignment. This is particularly preferable because the amount of light irradiation is small, and the obtained photo-alignment film has excellent thermal stability and stability over time. Of these, a maleimide derivative having a benzophenone skeleton is most preferable.
[0023]
The polyfunctional maleimide derivative used in the present invention is not particularly limited as long as it is a derivative having a structural unit exhibiting photo-alignment properties and having at least two maleimide groups. Among them, the general formula (1-1) ,
[0024]
[Chemical formula 5]
Figure 0004803412
[0025]
(Wherein R 1 Are each independently at least one hydrocarbon group selected from the group consisting of an alkylene group, a cycloalkylene group, and an arylene group, which may have a substituent, or a plurality of these hydrocarbon groups Represents an organic group linked by a bonding group selected from the group consisting of a single bond, an ester bond, an ether bond, an amide bond, and a urethane bond. R 2 Represents a structural unit exhibiting photo-alignment, and R Three , R Four Each represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom, and n represents an integer of 2 to 10. ) Is preferred.
[0026]
In general formula (1-1), R 1 Represents at least one hydrocarbon group selected from the group consisting of an alkylene group, a cycloalkylene group, and an arylene group.
[0027]
Specific examples of these hydrocarbon groups include methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, Examples thereof include linear alkylene groups such as undecamethylene group and dodecamethylene group, cycloalkylene groups such as cyclopentylene group and cyclohexylene group, and arylene groups such as phenylene group.
[0028]
Further, these hydrocarbon groups may have a substituent. Although this substituent is not particularly limited, for example, an alkyl group such as a methyl group, an ethyl group or a propyl group, a cycloalkyl group such as a cyclobutyl group, a cyclopentyl group or a cyclohexyl group, an aryl group such as a phenyl group, an alkoxy group, an allyloxy group Group, cyano group, alkoxycarbonyl group, hydroxyl group, sulfonic acid group, halogenated alkyl group and the like. In addition, a reactive functional group such as an acrylic group, an epoxy group, or a maleimide group may be directly bonded to a hydrocarbon group as a substituent, and may be a bonding group such as an ester bond, an ether bond, an amide bond, or a urethane bond. It may be bonded as a substituent through a linked hydrocarbon group.
[0029]
R 1 The plural hydrocarbon groups listed above may be linked by a linking group selected from the group consisting of a single bond, an ester bond, an ether bond, an amide bond, and a urethane bond.
[0030]
Examples of such linked organic groups include a group composed of (poly) ether in which at least two hydrocarbon groups are bonded by an ether bond, and at least two hydrocarbon groups bonded by an ester bond ( A group composed of a poly) ester, a group composed of a (poly) amide in which at least two hydrocarbon groups are bonded by an amide bond, and a (poly) urethane in which at least two hydrocarbon groups are bonded by a urethane bond (Poly) carboxylic acid {(poly) ether () obtained by esterifying (poly) ether (poly) ol having at least two hydrocarbon groups ether-bonded with (poly) ether (poly) ol and (poly) carboxylic acid A group composed of (poly) ol} ester.
[0031]
In the general formula (1-1), R 2 Represents a structural unit exhibiting photo-alignment as described above. Where R 2 Is R through a bonding group such as a single bond or an ester bond, an ether bond, an amide bond, or a urethane bond. 1 Is combined with.
[0032]
In the general formula (1-1), R Three And R Four Represents an alkyl group containing 1 to 8 carbon atoms such as a hydrogen atom, a methyl group or an ethyl group, a phenyl group or a halogen atom, and n represents an integer of 2 to 10. Among them, n is preferably from 2 to 8, since the polymerization of maleimide groups easily proceeds to form a stable maleimide polymer and the amount of light energy required for photo-alignment is relatively small. It is particularly preferred that
[0033]
Among the maleimide derivatives represented by the general formula (1-1), the following general formula (1-2),
[Chemical 6]
Figure 0004803412
[0034]
(Wherein R Five Each independently represents at least one hydrocarbon group selected from the group consisting of a single bond, a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an arylene group, or a plurality of these hydrocarbon groups. An organic group connected by a bonding group selected from the group consisting of a bond, an ester bond, an ether bond, an amide bond, and a urethane bond. R 6 Represents a structural unit exhibiting photo-alignment, and R 7 , R 8 , R 9 And R Ten Each represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom. ) Is preferred.
[0035]
R in the general formula (1-2) Five Each independently represents at least one hydrocarbon group selected from the group consisting of a single bond, a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an arylene group, or a plurality of these hydrocarbon groups. An organic group connected by a bonding group selected from the group consisting of a bond, an ester bond, an ether bond, an amide bond, and a urethane bond.
[0036]
Specific examples of these hydrocarbon groups include methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, Examples thereof include a linear alkylene group such as an undecamethylene group and a dodecamethylene group; a cycloalkylene group such as a cyclopentylene group and a cyclohexylene group; and an arylene group such as a phenylene group.
[0037]
R Five A plurality of the hydrocarbon groups listed above may be linked by a linking group selected from the group consisting of a single bond, an ester bond, an ether bond, an amide bond, and a urethane bond. Specific examples of such linked groups include, for example, a group composed of (poly) ether in which at least two hydrocarbon groups are linked by an ether bond, and at least two hydrocarbon groups. A group composed of (poly) ester linked by an ester bond, a group composed of (poly) amide linked by an amide bond, at least two hydrocarbon groups, and a urethane bond made of at least two hydrocarbon groups A group composed of (poly) urethane bonded or at least two hydrocarbon groups is obtained by esterifying (poly) ether (poly) ol and (poly) carboxylic acid bonded with ether (poly). ) Groups composed of carboxylic acid {(poly) ether (poly) ol} esters, and the like.
[0038]
R 6 Represents a structural unit exhibiting photo-orientation. Specific examples of the structural unit showing these photo-alignment properties include R in the general formula (1-1). 2 The structural unit similar to what was demonstrated in (5) is mentioned. R 7 , R 8 , R 9 And R Ten Represents an alkyl group containing 1 to 8 carbon atoms such as a hydrogen atom, a methyl group or an ethyl group, a phenyl group or a halogen atom.
[0039]
Formula (1-1) is represented by the following general formula (1-3),
[Chemical 7]
Figure 0004803412
[0040]
(Wherein R 11 Are each independently at least one hydrocarbon group selected from the group consisting of a single bond, an alkylene group, a cycloalkylene group, and an arylene group, or a plurality of these hydrocarbon groups are a single bond, an ester bond, an ether An organic group connected by a bonding group selected from the group consisting of a bond, an amide bond, and a urethane bond. R 12 Represents a trivalent hydrocarbon group. R 13 Represents a structural unit exhibiting photo-alignment, and R 14 , R 15 , R 16 And R 17 Each represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom. ) Is also preferred.
[0041]
R in the general formula (1-3) 11 Are each independently at least one hydrocarbon group selected from the group consisting of a single bond, an alkylene group, a cycloalkylene group, and an arylene group, or a plurality of these hydrocarbon groups are a single bond, an ester bond, an ether An organic group connected by a bonding group selected from the group consisting of a bond, an amide bond, and a urethane bond. These groups are represented by R in the general formula (1-2). Five And the same hydrocarbon group or organic group as described in the above.
R 11 Is R in general (1-2) Five In the same manner as described above, a plurality of the hydrocarbon groups or organic groups listed above may be linked by a linking group selected from the group consisting of a single bond, an ester bond, an ether bond, an amide bond, and a urethane bond.
[0042]
R in the general formula (1-3) 12 Represents a trivalent hydrocarbon group. The valence or free valence may be present at any part of the hydrocarbon group, and two of the three 1 , R 2 Via the organic group represented by Three Through an organic group represented by Five The structural unit showing photo-alignment represented by These hydrocarbon groups may be linear or branched. Specifically, for example, methylidyne group, 1-ethanyl-2-ylidene group, 1,2,3-propanetriyl group, 1-propanyl-3-ylidene group, 1,2,4-butanetriyl group, 1-butanyl -4-ylidene group, 1,2,5-pentanetriyl group, 1,3,5-pentanetriyl group, 1-pentanyl-5-ylidene group, 1,2,6-hexanetriyl group, 1, 3,6-hexanetriyl group, 1-hexanyl-6-ylidene group, 2-propanyl-1-ylidene group, 2-methylene-1,3-propanediyl group, 1-propanyl-3-ylidene group, 3- Butanyl-1-ylidene group, 1,2,3-butanetriyl group, 1-butanyl-2-ylidene group, 2-methyl-1-propanyl-3-ylidene group, 2-methyl-1,2,3-propanetri Il group,
[0043]
Trivalent acyclic carbonization such as 2-ethyl-1,2,3-propanetriyl group, 2-butanyl-1-ylidene group, 2-butanyl-3-ylidene group, 2-butanyl-4-ylidene group Groups consisting of hydrogen; 1,2,3-cyclopentanetriyl group, 1,2,5-cyclopentanetriyl group, 1-cyclopentyl-2-ylidene group, 1-cyclopentyl-3-ylidene group, 1,2 , 3-cyclohexanetriyl group, 1,2,4-cyclohexanetriyl group, 1,3,5-cyclohexanetriyl group, 1-cyclohexyl-2-ylidene group, 1-cyclohexyl-3-ylidene group, 1- Cycloaliphatic carbonization such as cyclohexyl-4-ylidene group, cyclohexylmethylidine group, 4-cyclohexyleneethylene group, 1-cyclohexyl-2-ethanyl-1-ylidene An organic group composed of a trivalent hydrocarbon containing silicon; 3 containing an aromatic hydrocarbon such as 1,3,5-benzenetriyl group, benzidine group, 2-phenyl-1,2,3-propanetriyl group And an organic group composed of a valent hydrocarbon.
[0044]
R 13 Represents a structural unit exhibiting photo-orientation. Specific examples of the structural unit showing these photo-alignment properties include R in the general formula (1-1). 2 The structural unit similar to what was demonstrated in (5) is mentioned. R 14 , R 15 , R 16 And R 17 Represents an alkyl group containing 1 to 8 carbon atoms such as a hydrogen atom, a methyl group or an ethyl group, a phenyl group or a halogen atom.
[0045]
Next, the alkenyl-substituted nadiimide derivative used in the present invention is not particularly limited as long as it contains the structure of the general formula (2), and known and conventional ones can be used.
[0046]
[Chemical 8]
Figure 0004803412
[0047]
(Wherein R 18 And R 19 Each represents a hydrogen atom or a methyl group)
Specific examples of the alkenyl-substituted nadiimide derivative include, for example, N-methyl-allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-methyl-allylmethylbicyclo [2.2. .1] Hept-5-ene-2,3-dicarboximide, N-methyl-methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-methyl-meta Rylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-ethylhexyl) -allylbicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide,
[0048]
N- (2-ethylhexyl) -allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-allyl-allylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximide, N-allyl-allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-allyl-methallylbicyclo [2.2.1]. ] Hept-5-ene-2,3-dicarboximide, N-isopropenyl-allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-isopropenyl-allylmethyl Bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-isopropenyl-methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide , N Cyclohexyl-allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-cyclohexyl-allylmethylbicyclo [2.2.1] hept-5-ene-2,3-di Carboximide, N-cyclohexyl-methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-phenyl-allylbicyclo [2.2.1] hept-5-ene- 2,3-dicarboximide,
[0049]
N-phenyl-allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-benzyl-allylbicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide, N-benzyl-allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-benzyl-methallylbicyclo [2.2.1] hept-5. -Ene-2,3-dicarboximide, N- (2'-hydroxyethyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2'- Hydroxyethyl) -allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2'-hydroxyethyl) -methallylbicyclo [2.2.1] hept- 5-ene-2 3-dicarboximide,
[0050]
N- (2 ', 2'-dimethyl-3'-hydroxypropyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2', 2'- Dimethyl-3'-hydroxypropyl) -allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2 ', 3'-dihydroxypropyl) -allylbicyclo [2 2.1] hept-5-ene-2,3-dicarboximide, N- (2 ′, 3′-dihydroxypropyl) -allylmethylbicyclo [2.2.1] hept-5-ene-2, 3-dicarboximide, N- (3'-hydroxy-1'-propenyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4'-hydroxy -Cyclohexyl) -a Rumechirubishikuro [2.2.1] hept-5-ene-2,3-dicarboximide,
[0051]
N- (4′-hydroxyphenyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4′-hydroxyphenyl) -allylmethylbicyclo [2.2 .1] Hept-5-ene-2,3-dicarboximide, N- (4'-hydroxyphenyl) -methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide N- (4′-hydroxyphenyl) -methallylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (3′-hydroxyphenyl) -allylbicyclo [2 2.1] hept-5-ene-2,3-dicarboximide, N- (3′-hydroxyphenyl) -allylmethylbicyclo [2.2.1] hept-5-ene-2,3-di Carboximi N- (p-hydroxybenzyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {2 '-(2 "-hydroxyethoxy) ethyl} -allyl Bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide,
[0052]
N- {2 '-(2 "-hydroxyethoxy) ethyl} -allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {2'-(2"- Hydroxyethoxy) ethyl} -methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {2 '-(2 "-hydroxyethoxy) ethyl} -methallylmethylbicyclo [2.2.1] Hept-5-ene-2,3-dicarboximide, N- [2 ′-{2 ″-(2 ′ ″-hydroxyethoxy) ethoxy} ethyl] -allylbicyclo [2.2 .1] Hept-5-ene-2,3-dicarboximide, N- [2 ′-{2 ″-(2 ′ ″-hydroxyethoxy) ethoxy} ethyl] -allylmethylbicyclo [2.2.1] Hept-5-ene-2,3-dica Boxyimide, N- [2 ′-{2 ″-(2 ′ ″-hydroxyethoxy) ethoxy} ethyl] -methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N -{4 '-(4 "-hydroxyphenylisopropylidene) phenyl} -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {4'-(4"- Hydroxyphenylisopropylidene) phenyl} -allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {4 '-(4 "-hydroxyphenylisopropylidene) phenyl}- Examples include methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide and oligomers thereof.
[0053]
Further, N, N′-ethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-ethylene-bis (allylmethylbicyclo [2. 2.1] Hept-5-ene-2,3-dicarboximide), N, N′-ethylene-bis (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxy Imide), N, N′-trimethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-hexamethylene-bis (allylbicyclo [2 2.1] hept-5-ene-2,3-dicarboximide), N, N′-hexamethylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3- Dicarboximide), N, N′-dodecame Ren-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-dodecamethylene-bis (allylmethylbicyclo [2.2.1] hept- 5-ene-2,3-dicarboximide), N, N′-cyclohexylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N '-Cyclohexylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide),
[0054]
1,2-bis {3 '-(allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) propoxy} ethane, 1,2-bis {3'-(allylmethylbicyclo) [2.2.1] Hept-5-ene-2,3-dicarboximido) propoxy} ethane, 1,2-bis {3 '-(methallylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximido) propoxy} ethane, bis [2 '-{3 "-(allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) propoxy} ethyl] Ether, bis [2 '-{3 "-(allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) propoxy} ethyl] ether, 1,4-bis {3' -(Allylbicyclo [2.2.1] he To-5-ene-2,3-dicarboximido) propoxy} butane, 1,4-bis {3 '-(allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxy Imido) propoxy} butane,
[0055]
N, N′-p-phenylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-p-phenylene-bis (allylmethylbicyclo [ 2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-m-phenylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide), N, N'-m-phenylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N '-{(1 -Methyl) -2,4-phenylene} -bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-p-xylylene-bis (allylbicyclo) [2.2.1] Hept-5-ene-2,3-dica Boxoxyimide), N, N′-p-xylylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-xylylene-bis ( Allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-m-xylylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximide),
[0056]
2,2-bis [4 '-{4 "-(allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, 2,2-bis [4 '-{4 "-(allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, 2,2-bis [4'-{4"- (Methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, bis {4- (allylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximido) phenyl} methane, bis {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} methane,
[0057]
Bis {4- (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} methane, bis {4- (methallylmethylbicyclo [2.2.1] hept -5-ene-2,3-dicarboximido) phenyl} methane, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} ether, bis {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} ether, bis {4- (methallylbicyclo [2.2.1] hept-5 -Ene-2,3-dicarboximido) phenyl} ether, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} sulfone, bis {4 -(Ant Methylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) phenyl} sulfone,
[0058]
Bis {4- (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} sulfone, 1,6-bis (allylbicyclo [2.2.1] hept- 5-ene-2,3-dicarboximide) -3-hydroxy-hexane, 1,12-bis (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide)- 3,6-dihydroxy-dodecane, 1,3-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) -5-hydroxy-cyclohexane, 1,5-bis { 3 '-(allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) propoxy} -3-hydroxy-pentane, 1,4-bis (allylbicyclo [2.2.1 ] Hept-5-ene 2,3-dicarboximide) -2-hydroxy - benzene,
[0059]
1,4-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) -2,5-dihydroxy-benzene, N, N'-p- (2-hydroxy ) Xylylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-p- (2-hydroxy) xylylene-bis (allylmethylcyclo [2] 2.1] hept-5-ene-2,3-dicarboximide), N, N′-m- (2-hydroxy) xylylene-bis (allylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximide), N, N'-m- (2-hydroxy) xylylene-bis (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) N, N'-p- (2,3-dihi Proxy) xylylene - bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide),
[0060]
2,2-bis [4 '-{4 "-(allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) -2" -hydroxy-phenoxy} phenyl] propane, bis {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) -2-hydroxy-phenyl} methane, bis {3- (allylbicyclo [2.2.1] ] Hept-5-ene-2,3-dicarboximido) -4-hydroxy-phenyl} ether, bis {3- (methallylbicyclo [2.2.1] hept-5-ene-2,3-di Carboximido) -5-hydroxy-phenyl} sulfone, 1,1,1-tri {4 ′-(allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide)} phenoxy Methylpropane N, N ', N "- tri (ethylene methallyl ruby [2.2.1] hept-5-ene-2,3-dicarboximide) isocyanurate, and the like of these oligomers and the like.
[0061]
Further, the following one containing an asymmetric alkylene-phenylene group may be used.
[0062]
[Chemical 9]
Figure 0004803412
[0063]
In addition, these alkenyl-substituted nadiimide derivatives have a polyene, stilbene, stilbazole, stilbazolium, cinnamic acid, hemithioindigo, chalcone, aromatic shift as a substituent other than the main structure represented by the general formula (2). Contains reactive functional groups such as base, aromatic hydrazone, azobenzene, azonaphthalene, aromatic heterocyclic azo, bisazo, formazan, benzophenone, coumarin structure, acrylic group, epoxy group, maleimide group, etc. Of course, there is no problem.
Such alkenyl-substituted nadiimide derivatives may be used alone or as a mixture thereof.
[0064]
The maleimide derivative having a structural unit exhibiting photo-orientation and the alkenyl-substituted nadiimide derivative described above preferably have a weight ratio of 15/80 to 95/5, and 35/65 to 70/30. It is particularly preferable that the ratio is obtained. When the maleimide derivative is less than 15%, the photoreactivity decreases, and when the alkenyl-substituted nadiimide derivative is less than 5%, the curing reaction promoting effect is not observed.
[0065]
In the photo-alignment material of the present invention, the purpose of adjusting the introduction density of structural units exhibiting photo-orientation and improving the alignment state of liquid crystal, or crystals of maleimide derivatives as represented by the general formula (1-1) For the purpose of lowering the coating property and improving the coating property to the substrate and the film-forming property, etc., a suitable mixture of maleimide derivatives not containing a structural unit exhibiting photo-alignment property as shown in the following general formula (3) is applied. Further, a maleimide derivative containing a structural unit exhibiting photo-alignment property and an alkenyl-substituted nadiimide derivative may be mixed and reacted.
[0066]
[Chemical Formula 10]
Figure 0004803412
[0067]
(Wherein R 20 Is at least one hydrocarbon group selected from the group consisting of a linear alkylene group, a branched alkylene chain, a cycloalkylene group, and an arylene group, or a plurality of these hydrocarbon groups are a single bond, an ester bond, an ether bond, It represents an organic group linked by a bonding group selected from the group consisting of an amide bond and a urethane bond. R twenty one , R twenty two , R twenty three And R twenty four Each independently represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom. )
[0068]
In the general formula (3), R 20 Is R in the general formula (1-1) 1 Represents the same organic group as described in the above. R 20 In the same manner as in the general formula (1-1), a plurality of the organic groups listed above are linked by a bonding group selected from the group consisting of a single bond, an ester bond, an ether bond, an amide bond, and a urethane bond. It may be what was done. R twenty one , R twenty two , R twenty three And R twenty four Represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom.
[0069]
The mixing ratio of the maleimide derivative not containing the structural unit showing photoalignment shown in the general formula (3) is preferably in the range of 0 to 80% by weight, particularly preferably 0 to 0% by weight with respect to the entire photoalignment material. It is in the range of 50% by weight.
[0070]
In addition, the photo-alignment material of the present invention includes a curable ethylenic compound, an epoxy compound, a polyvinyl compound such as polyvinyl alcohol and polyvinyl cinnamate, and a poly (meth) acrylate compound within the scope of the present invention. In addition, polymer materials such as polyester, polyamide, polyimide, polycarbonate, and the like, and materials known as photo-alignment film materials such as surfactants, chelating agents, antioxidants, and viscosity modifiers can be contained.
[0071]
The photo-alignment material of the present invention contains a polyfunctional maleimide derivative and an alkenyl-substituted nadiimide derivative having the above-described structural units exhibiting photo-alignment properties (hereinafter, the structural units exhibiting photo-alignment properties are abbreviated as photo-aligning groups). It is characterized by doing. Next, an example of a method for producing a photo-alignment film and a liquid crystal display device having the photo-alignment film using the photo-alignment material of the present invention will be described.
[0072]
The photo-alignment material of the present invention is used after being dissolved in an appropriate solvent. At this time, the solvent is not particularly limited, but N-methylpyrrolidone, dimethylformamide, butyl cellosolve, γ-butyrolactone, chlorobenzene, dimethyl sulfoxide, dimethylacetamide, tetrahydrofuran and the like are generally used. Among these, N-methylpyrrolidone, butyl cellosolve, and γ-butyrolactone are particularly preferable because they have good coatability and a uniform film can be obtained.
[0073]
The solution of the photo-alignment material is applied to a substrate such as glass by a method such as spin coating or printing, and after drying, the maleimide group and the alkenyl-substituted nadiimide derivative are cured and the photo-alignment group is aligned. Curing of the maleimide group and the alkenyl-substituted nadiimide derivative is performed by light irradiation or heating. Since the curing operation by light or heat may affect the photo-alignment group that has already been aligned, it is preferable to carry out prior to the alignment of the photo-alignment group, but by reversible photoisomerization such as azobenzene. For the purpose of fixing the state of photo-alignment, a curing operation may be performed after photo-alignment.
[0074]
When the light wavelength at which the maleimide group and the alkenyl-substituted nadiimide derivative are cured differs from the light wavelength at which the alignment of the photo-alignable group is generated, the light-curing operation does not cause photo-alignment, and the maleimide group is cured. It is preferable to use light having a wavelength as close as possible to the wavelength. On the other hand, when the wavelength of the light to be cured is close to the wavelength of the light that causes the alignment of the photo-alignable group, the curing with the maleimide group and the alkenyl-substituted nadiimide derivative and the photo-alignment operation of the photo-alignable group are performed once. It can be done simultaneously by irradiation. Irradiation light used for such photocuring is not particularly limited, but ultraviolet rays are preferably used. The irradiation method is not particularly limited, and polarized light such as non-polarized light, linearly polarized light, or elliptically polarized light is used.
[0075]
On the other hand, when the curing operation of the maleimide derivative and the alkenyl-substituted nadiimide derivative is performed by heating, the process may be performed either before or after the alignment operation of the photoalignable group. Further, in order to completely cure, curing may be performed first by light irradiation or heating, and after performing a photo-alignment operation, light irradiation or heating may be performed again.
[0076]
The alignment operation of the photoalignable group is performed by irradiating polarized or non-polarized light. The wavelength of the irradiation light is selected such that the photo-alignment group efficiently photoreacts, and examples thereof include visible light and ultraviolet light, and ultraviolet light is particularly preferable. Although the irradiation method is not particularly limited, for example, when performing light alignment operation by irradiating polarized light, linearly polarized light and elliptically polarized light are often used. At this time, in order to obtain a pretilt of liquid crystal molecules, a method of irradiating polarized light to the substrate from an oblique direction or a method of irradiating non-polarized light from an oblique direction after irradiating polarized light may be used. Moreover, when irradiating only non-polarized light and performing photo-alignment, a method of irradiating the substrate from an oblique direction is preferable.
[0077]
The liquid crystal cell using the photo-alignment material of the present invention has a predetermined size after the direction of polarized light illuminating the alignment film on the two substrates on which the alignment film is formed has a predetermined angle. It is comprised by making it oppose through a spacer. When filling the liquid crystal cell with the liquid crystal, it is preferable that the liquid crystal cell is heated to a temperature at which the liquid crystal is in an isotropic phase and then filled by a capillary method, a vacuum injection method, or the like.
[0078]
Examples of the liquid crystal material include 4-substituted benzoic acid 4′-substituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4′-substituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4′-substituted biphenyl ester, 4- (4- Substituted cyclohexanecarbonyloxy) benzoic acid 4′-substituted phenyl ester, 4- (4-substituted cyclohexyl) benzoic acid 4′-substituted phenyl ester, 4- (4-substituted cyclohexyl) benzoic acid 4′-substituted cyclohexyl ester, 4- Substituted 4′-substituted biphenyl, 4-substituted phenyl-4′-substituted cyclohexane, 4-substituted 4 ″ -substituted terphenyl, 4-substituted biphenyl 4′-substituted cyclohexane, 2- (4-substituted phenyl) -5-substituted A pyrimidine etc. can be mentioned.
[0079]
In this invention, after apply | coating the photo-alignment material containing the maleimide derivative which has a photo-alignment group, and an alkylene substituted nadiimide derivative to a board | substrate, a photo-alignment film is obtained by performing hardening operation and photo-alignment operation. Since the material to be applied is a monomer, the solvent has high solubility and is easy to apply. Moreover, since it becomes a structure which has a photo-alignment group in a crosslinked structure after hardening, the photo-alignment film | membrane with high stability with respect to light or a heat | fever is obtained.
[0080]
In addition, the curing reaction of maleimide derivatives and alkylene-substituted nadiimide derivatives does not require a reaction initiator, and the curing speed is fast, so the curing operation is short and the reaction initiator elutes into the liquid crystal after the liquid crystal cell is prepared. Thus, it is possible to eliminate the cause of the performance deterioration of the liquid crystal display element such as a decrease in voltage holding ratio.
[0081]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using a synthesis example, an Example, and a comparative example, this invention is not limited to the range of these Examples.
[0082]
[Reference Example 1] Synthesis of maleimidoacetic acid
In a 500 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel, Dean-Stark fractionator and condenser, 140 g of toluene, 5.2 g of p-toluenesulfonic acid monohydrate and 2.8 g of triethylamine Were added in order, 30 g of maleic anhydride was added with stirring, and then dissolved while heating up to 30 ° C. Further, 23 g of glycine was added, and the mixture was reacted at 70 ° C. for 3 hours with stirring. 50 g of toluene and 60 g of triethylamine were added, and the reaction was carried out for 1 hour while removing the water produced by heating and refluxing the solvent. The residue obtained by distilling off the solvent from the reaction mixture was adjusted to pH 2 by adding 4 mol / dm 3 hydrochloric acid, and then heated and recrystallized to obtain 7.3 g of a pale yellow solid of maleimidoacetic acid.
[0083]
Reference Example 2 Synthesis of 4,4′-bis (2-hydroxyethoxy) benzophenone In a 300 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel and condenser, 62.5 g of 2-bromoethanol And 100 g of N-methylpyrrolidone was added with stirring under cooling in an ice bath. To this was added 10 mg of p-toluenesulfonic acid monohydrate, and 42.1 g of dihydropyran was added dropwise over about 10 minutes. After stirring for 2 hours under ice-cooling and further stirring for 2 hours at room temperature, 42.8 g of 4,4′-dihydroxybenzophenone and 69.1 g of potassium carbonate were added and reacted at 120 ° C. for 3 hours. After cooling, the reaction mixture was added to 400 ml of water and extracted twice with 400 ml of toluene. The obtained toluene layer was dried over anhydrous sodium sulfate, and the solvent was distilled off with an evaporator.
To the obtained residue, 450 g of methanol, 70 g of water, and 1.0 g of concentrated hydrochloric acid were added, and the mixture was stirred overnight at room temperature. The resulting precipitate was filtered, washed well with methanol, dried, and then 4,4′-bis (2 -Hydroxyethoxy) benzophenone 52 g was obtained.
[0084]
[Synthesis Example 1] Synthesis of maleimide derivative containing benzophenone
Into a 500 ml three-necked flask equipped with a stirrer, a thermometer, a Dean-Stark fractionator and a condenser tube, 8.8 g of maleimide acetic acid obtained in Reference Example 1 and 4,4′- obtained in Reference Example 2 were added. 6.1 g of bis (2-hydroxyethoxy) benzophenone, 0.4 g of p-toluenesulfonic acid monohydrate, 20 mg of hydroquinone and 150 ml of toluene are sequentially added, and heated to 90 ° C. under reduced pressure to produce a solvent by refluxing. The reaction was allowed to proceed for 15 hours while removing the water. After completion of the reaction, the reaction mixture was filtered while hot, and the resulting solid was washed thoroughly with methanol and dried to obtain the formula (4).
[0085]
Embedded image
Figure 0004803412
8.6 g of a bifunctional maleimide derivative represented by the formula:
[0086]
[Synthesis Example 2]
Synthesis of maleimide derivatives without benzophenone
To a 500 ml three-necked flask equipped with a stirrer, thermometer, Dean-Stark fractionator and condenser tube, 8.8 g of maleimide acetic acid obtained in Reference Example 1, 5.0 g of polypropylene glycol having a number average molecular weight of 400, 0.4 g of p-toluenesulfonic acid monohydrate, 20 mg of hydroquinone and 150 ml of toluene were sequentially added, and the mixture was heated to 90 ° C. under reduced pressure to react for 15 hours while refluxing the solvent to remove the water produced. After completion of the reaction, the reaction mixture was washed twice with dilute sodium hydroxide solution and then three times with pure water, and toluene was distilled off to obtain the formula (5)
[0087]
Embedded image
Figure 0004803412
7.7 g of a maleimide derivative represented by the formula:
[0088]
Reference Example 3 Synthesis of 4- (2-hydroxyethoxy) cinnamic acid-2-hydroxyethyl ester
A mixed solution of 40.0 g (1.0 mol) of sodium hydroxide in 80 ml of ethanol and 100 ml of water is charged into an autoclave having a capacity of 500 ml, and 82.1 g (0.5 mol) of 4-hydroxycinnamic acid is added and dissolved. While cooling with ice, 132.2 g (3.0 mol) of oxirane was added and sealed, and reacted at 80 ° C. for 6 hours. Dilute with 200 ml of water and extract twice with 100 ml of ethyl acetate. After the extract was purified by silica gel chromatography, ethyl acetate was distilled off under reduced pressure, dried and recrystallized from butanol to give 90.8 g of 4- (2-hydroxyethoxy) cinnamic acid-2-hydroxyethyl ester. (72%) was obtained.
[0089]
[Synthesis Example 3] Synthesis of maleimide derivative containing cinnamoyl group
Into a 500 ml three-necked flask equipped with a stirrer, thermometer, Dean-Stark fractionator and condenser tube, 8.8 g of maleimide acetic acid obtained in Reference Example 1 and 4- (2- Hydroxyethoxy) cinnamic acid-2-hydroxyethyl ester (5.1 g), p-toluenesulfonic acid monohydrate (0.4 g), hydroquinone (20 mg) and toluene (150 ml) were sequentially added, and heated to 90 ° C. under reduced pressure to remove the solvent. The reaction was carried out for 15 hours while removing water produced by refluxing. After completion of the reaction, the reaction mixture was filtered while hot, and the resulting solid was washed thoroughly with methanol and dried to obtain the formula (6).
[0090]
Embedded image
Figure 0004803412
7.8 g of a bifunctional maleimide derivative represented by the formula:
[0091]
Reference Example 4 Synthesis of 2,2-dimethyl-5-ethyl-5- (bromomethyl) -1,3-dioxane
To a 500 ml four-necked flask equipped with a stirrer, a thermometer and a condenser tube equipped with a calcium chloride drying tube, 67.1 g of trimethylolpropane, 57.3 g of 2,2-dimethoxypropane, 100 g of toluene and p-toluene 2.9 g of sulfonic acid monohydrate was added and stirred at 60 ° C. for 3 hours. After cooling, 2.5 g of potassium carbonate was added and stirred overnight at room temperature. The solid in the flask was removed by filtration, and the solvent was distilled off under reduced pressure to obtain 80.6 g (liquid) of an intermediate of 2,2-dimethyl-5-ethyl-5- (bromomethyl) -1,3-dioxane. It was.
[0092]
Into a 500 ml four-necked flask equipped with a stirrer, a thermometer, a nitrogen inlet tube and a condenser tube equipped with a calcium chloride drying tube, 43.8 g of the above intermediate, 116.6 g of carbon tetrabromide and N, N-dimethyl were added. 300 ml of formamide was added, and the mixture was sufficiently cooled in an ice-salt bath with stirring under a nitrogen atmosphere, and 91.9 g of triphenylphosphine was added little by little so that the liquid temperature did not exceed 0 ° C. After completion of the addition of triphenylphosphine, the mixture was stirred in an ice salt bath for 30 minutes, and then stirred in an ice bath for 1 hour and at room temperature for 2 hours, and then the solvent was distilled off at 50 ° C. under reduced pressure. The concentrated mixture was extracted three times with 200 g of acetone-hexane mixed solvent (1/3), and the resulting extract was purified by column chromatography using silica gel to obtain 2,2-dimethyl-5-ethyl-5. 47 g of-(bromomethyl) -1,3-dioxane was obtained. (Yield 79%)
[0093]
[Synthesis Example 4] Synthesis of maleimide derivative having coumarin group in side chain (1)
2,2-Dimethyl-5-ethyl-5- (bromomethyl) -1,3-dioxane 11 was added to a 100 ml three-necked flask equipped with a condenser equipped with a stirrer, a thermometer and a calcium chloride drying tube. .9 g, 7-hydroxycoumarin 8.3 g, and N-methylpyrrolidone 40 g were added and stirred. When a uniform solution was obtained, 7.1 g of potassium carbonate was added and reacted at 150 ° C. for 2 hours. After cooling, the solvent was distilled off under reduced pressure, and the concentrated mixture was dissolved in 4 liters of ethyl acetate. This solution was washed with 500 g of water three times and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure.
13.5 g of the obtained solid was dissolved in 100 g of tetrahydrofuran, 30 g of 6% hydrochloric acid was added, and the mixture was stirred at room temperature for 4 hours. The solvent was distilled off under reduced pressure, and the resulting solid was washed with water, filtered and dried.
[0094]
In a 500 ml three-necked flask equipped with a stirrer, thermometer, Dean-Stark fractionator and condenser, 9.4 g of the solid obtained above, 12.6 g of maleimide acetic acid obtained in Reference Example 1, p -Toluenesulfonic acid monohydrate 0.8g, hydroquinone 40mg, and toluene 200ml were charged in order, heated to 90 ° C under reduced pressure, and reacted for 15 hours while refluxing the solvent to remove the generated water. After completion of the reaction, the reaction solution was diluted with 200 ml of toluene and washed with 50 g of water four times. The toluene solution was dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resulting solid was purified by column chromatography using silica gel to obtain the formula (7).
[0095]
Embedded image
Figure 0004803412
12 g of a bifunctional maleimide derivative represented by the formula:
[0096]
[Synthesis Example 5] Synthesis of maleimide derivative having coumarin group in side chain (2)
To a 300 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel and condenser, 6.3 g of 2-bromoethanol was added, and 10 g of N-methylpyrrolidone was added with stirring under cooling in an ice bath. . To this, 2 mg of p-toluenesulfonic acid monohydrate was added, and 4.2 g of dihydropyran was added dropwise over about 10 minutes. After stirring for 2 hours under ice-cooling and further stirring for 2 hours at room temperature, 8.5 g of 7-hydroxycoumarin and 6.9 g of potassium carbonate were added and reacted at 120 ° C. for 3 hours. After cooling, the reaction mixture was added to 100 ml of water and extracted twice with 100 ml of toluene. The obtained toluene layer was dried over anhydrous sodium sulfate, and the solvent was distilled off with an evaporator. To the obtained residue, 45 g of methanol, 7 g of water and 0.5 g of concentrated hydrochloric acid were added and stirred overnight at room temperature. After distilling off the solvent, 250 g of toluene was added to form a solution, which was washed twice with 50 g of water.
[0097]
The toluene solution obtained above was placed in a 500 ml three-necked flask equipped with a stirrer, a thermometer and a condenser tube, and 10.5 g of the compound synthesized in Reference Example 4, 0.9 g of tetrabutylammonium bromide and 40 80 g of a percent aqueous sodium hydroxide solution was added and refluxed for 5 hours with stirring. After cooling, the mixture was transferred to a separatory funnel, the aqueous layer was separated and removed, and washed with 20 g of water three times.
The obtained toluene solution was evaporated under reduced pressure, the residue was dissolved in 100 g of tetrahydrofuran, 30 g of 6% hydrochloric acid was added, and the mixture was stirred at room temperature for 4 hours. The solvent was distilled off under reduced pressure, and the resulting solid was washed with water, filtered and dried.
To a 500 ml three-necked flask equipped with a stirrer, thermometer, Dean-Stark fractionator and condenser, 10.8 g of the solid obtained above, 12.6 g of maleimidoacetic acid obtained in Reference Example 1, p -Toluenesulfonic acid monohydrate 0.8g, hydroquinone 40mg, and toluene 200ml were charged in order, heated to 90 ° C under reduced pressure, and reacted for 15 hours while refluxing the solvent to remove the generated water. After completion of the reaction, the reaction solution was diluted with 200 ml of toluene and washed with 50 g of water four times. The toluene solution was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The resulting solid was purified by column chromatography using silica gel to obtain the formula (8)
Embedded image
Figure 0004803412
16 g of a bifunctional maleimide derivative represented by the formula:
[0098]
[Synthesis Example 6] Synthesis of a bifunctional maleimide derivative having a chalcone group in the side chain
11.9 g of the compound obtained in Reference Example 4, 11.5 g of 4-hydroxychalcone, N-methylpyrrolidone in a 100 ml three-necked flask equipped with a stirrer, a thermometer and a condenser tube equipped with a calcium chloride drying tube 40 g was added and stirred. When a uniform solution was obtained, 7.1 g of potassium carbonate was added and reacted at 150 ° C. for 2 hours. After cooling, the solvent was distilled off under reduced pressure, and the concentrated mixture was dissolved in 4 liters of ethyl acetate. This solution was washed with 500 g of water three times and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. 15.0 g of the obtained solid was dissolved in 100 g of tetrahydrofuran, 30 g of 6% hydrochloric acid was added, and the mixture was stirred at room temperature for 4 hours. The solvent was distilled off under reduced pressure, and the resulting solid was washed with water, filtered and dried.
[0099]
In a 500 ml three-necked flask equipped with a stirrer, thermometer, Dean-Stark fractionator and condenser, 10.4 g of the solid obtained above, 12.6 g of maleimidoacetic acid obtained in Reference Example 1, p-toluene 0.8 g of sulfonic acid monohydrate, 40 mg of hydroquinone and 200 ml of toluene were sequentially added, and the mixture was heated to 90 ° C. under reduced pressure to react for 15 hours while refluxing the solvent to remove the generated water. After completion of the reaction, the reaction solution was diluted with 200 ml of toluene and washed with 50 g of water four times. The toluene solution was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The resulting solid was purified by column chromatography using silica gel to obtain a compound of formula (9)
Embedded image
Figure 0004803412
13 g of a bifunctional maleimide derivative represented by the formula:
[0100]
[Synthesis Example 7] Alkenyl-substituted nadiimide derivative (N, N'-2,2-bis (4-phenylene) propane-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxy Imido), hereinafter abbreviated as NI-M)
Into a flask with an internal volume of 500 ml purged with nitrogen, 151.0 g (0.74 mol) of allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid anhydride (purity 98%) and 200 ml of toluene. Then, 81.4 g (0.36 mol) of 2,2-bis (4-aminophenyl) propane was added little by little over 60 minutes under reflux of toluene while heating and stirring. The reaction was continued for 4 hours while separating and removing the produced water with a water separator, and then a small amount of solid residue was filtered off, and the solvent toluene was distilled off. Next, when the contents were heat-treated at 200 ° C. under a reduced pressure of 1 mmHg for 1.5 hours, 208.8 g (yield based on amine: 97%) of the target product, N, N′-2,2-bis ( 4-Phenylene) propane-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) (NI-M) was obtained.
[0101]
[Synthesis Example 8] Alkenyl-substituted nadiimide derivative (N, N'm-xylylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), hereinafter referred to as NI-X Abbreviated)
Into a 500-ml flask purged with nitrogen, 161.3 g (0.74 mol) of allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic anhydride (purity 98%) and toluene 200 ml was charged, and 49.0 g (0.36 mol) of m-xylylenediamine was added little by little over 60 minutes under reflux of toluene while heating and stirring. The reaction was continued for 4 hours while separating and removing the produced water with a water separator, and then a small amount of solid residue was filtered off, and the solvent toluene was distilled off. Next, the contents were heat-treated at 200 ° C. under reduced pressure of 1 mmHg for 1.5 hours. As a result, 208.8 g (yield based on amine: 97%) of the target product, N, N′m-xylylene-bis (allyl) was obtained. Methylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) (NI-X) was obtained.
[0102]
[Comparative Synthesis Example 1]
Synthesis of acrylic acid derivatives containing benzophenone
In the synthesis of the maleimide derivative of Synthesis Example 1, using acrylic acid instead of maleimide acetic acid, the formula (10)
[0103]
Embedded image
Figure 0004803412
The bifunctional acrylic acid derivative represented by these was obtained.
[0104]
[Comparative Synthesis Example 2]
Synthesis of acrylic acid derivatives having a coumarin group in the side chain
In the synthesis of the maleimide derivative of Synthesis Example 4, acrylic acid is used in place of maleimide acetic acid, and the formula (11)
[0105]
Embedded image
Figure 0004803412
The bifunctional acrylate represented by this was obtained.
[0106]
[Comparative Reference Example 1] Synthesis of polyhydroxyphenylmaleimide
In a three-necked round bottom flask filled with nitrogen, 5 g of maleic anhydride polymer from Polyscience Co., USA and 3 g of aminophenol in 100 ml of xylene are stirred for 30 minutes at room temperature. Further, 2.9 g of isoquinoline was added, the temperature was gradually raised to 150 ° C., and the reaction was continued for about 3 hours while continuously removing water generated during the reaction. After confirming that water was no longer formed, the reaction was terminated, and the temperature was lowered to room temperature. Then, the product was precipitated by pouring it into 500 ml of methanol, filtered under reduced pressure and vacuum-dried at 100 ° C. to obtain polyhydroxyphenylmaleimide. Obtained.
[0107]
[Comparative Reference Example 2] Synthesis of side chain (parafluorobenzoylcinnamoyl chloride)
16.42 g (0.1 mol) of parahydroxycinnamic acid and 8 g of sodium hydroxide were dissolved in 100 ml of water and 100 ml of dimethyl sulfoxide (DMSO), and 15.86 g of parafluorobenzoyl chloride was stirred vigorously at 0 ° C. 0.1 mol) was gradually added dropwise. After reacting at room temperature for about 2 hours, the mixture was neutralized with dilute hydrochloric acid to pH = 6-7. The resulting solid intermediate was filtered and washed thoroughly with water. After complete drying under vacuum, recrystallization in ethanol gave parafluorobenzoyloxycinnamic acid in 90% yield. To this, 1.2 equivalents of thionyl chloride and about 50 ml of methylene chloride were added and reacted at room temperature until a clear solution was obtained. After the reaction, the solvent and thionyl chloride were removed under vacuum and completely dried to obtain parafluorobenzoylcinnamoyl chloride.
[0108]
[Comparative Synthesis Example 3] Synthesis of polymeric photoalignment material having maleimide in the main chain and photoalignable groups in the side chain
After 1.7 g of polyhydroxyphenylmaleimide obtained in Comparative Reference Example 1 was dissolved in 50 ml of N-methylpyrrolidone (NMP), 1.0 g of triethylamine was added and stirred for 30 minutes. The reaction temperature was lowered to 5 ° C., and 2.13 g of parafluorobenzoylcinnamoyl chloride obtained in Comparative Reference Example 2 was slowly added dropwise with vigorous stirring. After all of the parafluorobenzoyl cinnamoyl chloride was added dropwise, the mixture was stirred for about 1 hour to complete the reaction. The reaction solution is poured into a beaker in which 200 ml of water and methanol are mixed to precipitate the product. Subsequently, the product is thoroughly washed with an excessive amount of water and methanol, and then filtered under reduced pressure and vacuum-dried. A polymer photo-alignment material having a parafluorobenzoylcinnamoyl group in the chain and maleimide in the main chain was obtained.
[0109]
A photo-alignment film was prepared using the photo-alignment materials obtained in the above synthesis examples and comparative synthesis examples, and physical properties were evaluated. The preparation method of the photo-alignment film and the physical property evaluation method were performed according to the following methods.
[0110]
[Method for creating photo-alignment film]
a. Preparation of photo-alignment material solution
The maleimide derivative and alkylene-substituted nadiimide derivative obtained in the synthesis example are dissolved in a mixed solvent of N-methylpyrrolidone / butyl cellosolve = 1/1 to obtain a 5% solid concentration solution, which is filtered through a 0.1 μm filter. A photo-alignment material solution was obtained.
[0111]
b-1. Photo-alignment film creation (thermosetting method)
A. The photo-alignment material solution obtained by the above method was uniformly applied on a glass substrate with an ITO electrode by a spin coater, and dried and cured at 190 ° C. for 1 hour. Next, from the ultra high pressure mercury lamp on the surface of the obtained coating film, the integrated light quantity is 10 J / cm. 2 Was irradiated with linearly polarized ultraviolet light in the vicinity of 365 nm to prepare a photo-alignment film.
[0112]
b-2. Photo-alignment film creation (photo-curing method)
A. The photo-alignment film solution obtained by the above method is uniformly applied on a glass substrate with an ITO electrode with a spin coater, dried at 100 ° C. for 15 minutes, and then the surface of the coating film is applied with an integrated light amount from an ultrahigh pressure mercury lamp. 10 J / cm 2 Was irradiated with linearly polarized ultraviolet light having a wavelength of about 313 nm, and photocuring of the maleimide derivative and the alkenyl-substituted nadiimide derivative and alignment by dimerization of the photoalignable group were performed simultaneously to prepare a photoalignment film.
[0113]
c. Creation of liquid crystal cell
An epoxy-based adhesive containing styrene beads having a diameter of 8 μm is applied around the photo-alignment film substrate obtained in the above b-1 or 2, leaving the liquid crystal injection port, so that the alignment plane faces and polarized light. The adhesives were stacked and pressed in a direction perpendicular to each other, and the adhesive was cured at 150 ° C. for 90 minutes.
Next, as an example, a chiral nematic liquid crystal composition (4- (4-ethoxyphenyl) cyclohexylpropane 19%, 4- (4- (3,4-difluorophenyl) cyclohexyl) cyclohexylethane 18%, 4- ( 4- (3,4-difluorophenyl) cyclohexyl) cyclohexylpentane 18%, 4- (4- (3,4-difluorophenyl) cyclohexyl) cyclohexylpropane 18%, 4- (4-butylcyclohexyl) cyclohexylpropane 7%, 4-fluorophenyl-4- (4-pentylcyclohexyl) cyclohexylcarboxylate 6% 4-fluorophenyl-4- (4-propylcyclohexyl) cyclohexylcarboxylate 6% 4- (4-chlorophenyl) cyclohexylpe Vacuum in an isotropic phase of 5% Ntan, 4- (4- (4-Chlorophenyl) cyclohexyl) cyclohexylbutane 3%, and 0.1% of the chiral material SPE-01 manufactured by Dainippon Ink & Chemicals, Inc. After filling and filling, the liquid crystal injection port was sealed with an epoxy adhesive.
[0114]
[Evaluation method of photo-alignment film]
d. Liquid crystal alignment evaluation
C. The liquid crystal cell obtained by the above method is sandwiched between two polarizing plates whose polarization directions are orthogonal to each other, and a voltage of 5 V is applied between the electrodes to turn it on and off, thereby switching the light and darkness. evaluated.
[0115]
e. Voltage holding ratio measurement
C. A 5 V DC voltage was applied to the liquid crystal cell obtained by the above method for 64 microseconds while maintaining the temperature at 80 ° C., and then the holding voltage was measured while being released for 16.6 milliseconds. The ratio of initial applied voltage × opening time was expressed as a retention rate.
[0116]
f. Durability measurement
After maintaining this liquid crystal cell at 80 ° C. for 1000 hours, the orientation was visually evaluated.
[0117]
[Example 1]
Using the photo-alignment material consisting of maleimide derivative (4) obtained in Synthesis Example 1 / alkylene-substituted nadiimide derivative (NI-M) obtained in Synthesis Example 7 = 50/50 weight ratio, the a. A photo-alignment material solution is prepared according to the preparation method of b-1. A photo-alignment film was prepared according to the method for preparing a photo-alignment film by thermosetting. Using the obtained photo-alignment film, c. A liquid crystal cell was prepared according to the above and physical properties were evaluated according to the above evaluation method. As a result, the voltage holding ratio when held at 80 ° C. was 94%, and the liquid crystal orientation and durability were good.
[0118]
[Example 2]
Using the photo-alignment material (NI-M) having the maleimide derivative (4) obtained in Synthesis Example 1 / the alkylene-substituted nadiimide derivative obtained in Synthesis Example 7 = 50/50 weight ratio, the a. A photo-alignment material solution is prepared according to the preparation method of b-2. A photo-alignment film was prepared according to the photo-curing method for photo-alignment film. A liquid crystal cell was prepared using the obtained photo-alignment film, and physical properties were evaluated according to the above evaluation method. As a result, the voltage holding ratio in the state kept at 80 ° C. was 95%, and the liquid crystal orientation and durability were good.
[0119]
[Example 3]
The photo-alignment material was maleimide derivative (4) obtained in Synthesis Example 1 / maleimide derivative (5) obtained in Synthesis Example 2 / nadiimide derivative (NI-M) obtained in Synthesis Example 7 = 40/20 / Evaluation was performed in the same manner as in Example 1 except that 40 mixture was used. As a result, the voltage holding ratio in a state where the temperature was held at 80 ° C. was 93%, and the liquid crystal orientation and durability were both good.
[0120]
[Example 4]
Evaluation was performed in the same manner as in Example 1, except that the maleimide derivative (4) obtained in Synthesis Example 1 was replaced with the maleimide derivative (6) obtained in Synthesis Example 3. As a result, the voltage holding ratio when held at 80 ° C. was 94%, and the liquid crystal orientation and durability were good.
[0121]
[Example 5]
The photo-alignment material was maleimide derivative (4) obtained in Synthesis Example 1 / maleimide derivative (5) obtained in Synthesis Example 2 / nadiimide derivative (NI-X) obtained in Synthesis Example 8 = 65/10 / Evaluation was performed in the same manner as in Example 1 except that the mixture of 25 was used. As a result, the voltage holding ratio when held at 80 ° C. was 94%, and the liquid crystal orientation and durability were good.
[0122]
[Example 6]
Evaluation was performed in the same manner as in Example 1 except that the maleimide derivative (4) obtained in Synthesis Example 1 was replaced with the maleimide derivative (7) obtained in Synthesis Example 4. As a result, the voltage holding ratio in a state where the temperature was held at 80 ° C. was 94%, and the liquid crystal orientation and durability were sufficient.
[0123]
[Example 6]
Evaluation was performed in the same manner as in Example 2 except that the maleimide derivative (4) obtained in Synthesis Example 1 was replaced with the maleimide derivative (7) obtained in Synthesis Example 4. As a result, the voltage holding ratio in a state where the temperature was held at 80 ° C. was 94%, and the liquid crystal orientation and durability were sufficient.
[0124]
[Example 7]
Evaluation was performed in the same manner as in Example 1 except that the maleimide derivative (4) obtained in Synthesis Example 1 was replaced with the maleimide derivative (8) obtained in Synthesis Example 5. As a result, the voltage holding ratio in the state kept at 80 ° C. was 95%, and the liquid crystal orientation and durability were sufficient.
[0125]
[Example 8]
The photo-alignment material was maleimide derivative (9) obtained in Synthesis Example 6 / maleimide derivative (5) obtained in Synthesis Example 2 / nadiimide derivative (NI-X) obtained in Synthesis Example 8 = 40/30 / Evaluation was performed in the same manner as in Example 1 except that 30 mixture was used. As a result, the voltage holding ratio in a state where the temperature was held at 80 ° C. was 94%, and the liquid crystal orientation and durability were sufficient.
[0126]
[Comparative Example 1]
A maleimide derivative (4) obtained in Synthesis Example 1 was added to acrylic acid derivative (10) synthesized in Comparative Synthesis Example 1 and 0.1% of 2,2′-azobisisobutyronitrile was added thereto. The evaluation was performed in the same manner as in Example 2 except that. As a result, the liquid crystal orientation and durability were good, but the voltage holding ratio in a state kept at 80 ° C. was as low as 80%.
[0127]
[Comparative Example 2]
Evaluation was performed in the same manner as in Example 1 except that a polymer having a parafluorobenzoylcinnamoyl group in the side chain synthesized in Comparative Synthesis Example 3 and a maleimide in the main chain was used as the photoalignment material. As a result, the voltage holding ratio when held at 80 ° C. was 94% and the liquid crystal alignment was good, but after the durability test, the switching between light and dark was unclear and the alignment was lowered. It was.
[0128]
[Comparative Example 3]
The maleimide derivative (4) obtained in Synthesis Example 1 was added to the acrylic acid derivative (11) synthesized in Comparative Synthesis Example 2 and 0.1% of 2,2′-azobisisobutyronitrile was added thereto. The evaluation was carried out in the same manner as in Example 2 except that was replaced with. As a result, the liquid crystal orientation and durability were good, but the voltage holding ratio in a state kept at 80 ° C. was as low as 80%.
[0129]
[Comparative Example 4]
Without using an alkenyl-substituted nadiimide derivative, only the maleimide derivative (4) obtained in Synthesis Example 1 was used, and the a. A photo-alignment material solution is prepared according to the preparation method of b-1. A photo-alignment film was prepared according to the method for preparing a photo-alignment film by thermosetting. Using the obtained photo-alignment film, c. A liquid crystal cell was prepared according to the above and physical properties were evaluated according to the above evaluation method. As a result, the liquid crystal orientation and durability were both good, but the voltage holding ratio in a state maintained at 80 ° C. was as low as 83%.
【The invention's effect】
By using a photo-alignment material comprising the maleimide derivative and alkenyl-substituted nadiimide derivative of the present invention, it has good liquid crystal display element characteristics, particularly high voltage retention at high temperatures, and good alignment stability and resistance to light and heat A photo-alignment film having sufficient durability can be obtained.

Claims (6)

光二量化反応又は光異性化反応により光配向性を示す構成単位を有する多官能マレイミド誘導体、及びアルケニル置換ナジイミド誘導体を含有し、該光二量化反応により光配向性を示す構成単位が、シンナメート、クマリン、カルコン、及びベンゾフェノンからなる群より選ばれる骨格であり、該光異性化反応により光配向性を示す構成単位が、アゾベンゼン骨格又はアントラキノン骨格であり、該マレイミド誘導体が、一般式(1−1)
Figure 0004803412
(式中、R1は、各々独立して、アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。R2は光配向性を示す構成単位を表し、R3及びR4は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表し、nは2から10までの整数を表す。)
で表される光配向材料。
A polyfunctional maleimide derivative having a structural unit that exhibits photoalignment by a photodimerization reaction or a photoisomerization reaction, and an alkenyl-substituted nadiimide derivative, and the structural unit that exhibits photoalignment by the photodimerization reaction includes cinnamate, coumarin, The skeleton selected from the group consisting of chalcone and benzophenone, the structural unit exhibiting photoalignment by the photoisomerization reaction is an azobenzene skeleton or an anthraquinone skeleton, and the maleimide derivative is represented by the general formula (1-1)
Figure 0004803412
(In the formula, each R 1 independently represents at least one hydrocarbon group selected from the group consisting of an alkylene group, a cycloalkylene group, and an arylene group, or a plurality of these hydrocarbon groups are a single bond, An organic group connected by a linking group selected from the group consisting of an ester bond, an ether bond, an amide bond, and a urethane bond, R 2 represents a structural unit exhibiting photo-alignment, and R 3 and R 4 are each And represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom, and n represents an integer of 2 to 10.)
A photo-alignment material represented by
マレイミド誘導体が、一般式(1−2)
Figure 0004803412
(式中、R5は各々独立して、単結合、直鎖アルキレン基、分岐アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。
6は光配向性を示す構成単位を表し、R7、R8、R9及びR10は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。)
で表される請求項1記載の光配向材料。
The maleimide derivative has the general formula (1-2)
Figure 0004803412
(In the formula, each R 5 independently represents at least one hydrocarbon group selected from the group consisting of a single bond, a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an arylene group, or a hydrocarbon thereof. An organic group in which a plurality of groups are connected by a bonding group selected from the group consisting of a single bond, an ester bond, an ether bond, an amide bond, and a urethane bond.
R 6 represents a structural unit exhibiting photoalignment, and R 7 , R 8 , R 9 and R 10 each represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom. )
The photo-alignment material of Claim 1 represented by these.
光二量化反応又は光異性化反応により光配向性を示す構成単位を有する多官能マレイミド誘導体、及びアルケニル置換ナジイミド誘導体を含有し、該光二量化反応により光配向性を示す構成単位が、シンナメート、クマリン、カルコン、及びベンゾフェノンからなる群より選ばれる骨格であり、該光異性化反応により光配向性を示す構成単位が、アゾベンゼン骨格又はアントラキノン骨格であり、該マレイミド誘導体が、一般式(1−3)
Figure 0004803412
(式中、R11は各々独立して、単結合、アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。R12は3価の炭化水素基を表す。R13は光配向性を示す構成単位を表し、R14、R15、R16及びR17は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。)で表される光配向材料。
A polyfunctional maleimide derivative having a structural unit that exhibits photoalignment by a photodimerization reaction or a photoisomerization reaction, and an alkenyl-substituted nadiimide derivative, and the structural unit that exhibits photoalignment by the photodimerization reaction includes cinnamate, coumarin, A skeleton selected from the group consisting of chalcone and benzophenone, the structural unit exhibiting photoalignment by the photoisomerization reaction is an azobenzene skeleton or an anthraquinone skeleton, and the maleimide derivative is represented by the general formula (1-3)
Figure 0004803412
(In the formula, each R 11 independently represents at least one hydrocarbon group selected from the group consisting of a single bond, an alkylene group, a cycloalkylene group, and an arylene group, or a plurality of these hydrocarbon groups. R 12 represents an organic group connected by a bonding group selected from the group consisting of a bond, an ester bond, an ether bond, an amide bond, and a urethane bond, R 12 represents a trivalent hydrocarbon group, and R 13 represents photoalignment. R 14 , R 15 , R 16 and R 17 each represent a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom. Alignment material.
光配向性を示す構成単位を有する多官能マレイミド誘導体とアルケニル置換ナジイミド誘導体の重量比が35/65〜70/30である請求項1〜3のいずれか1つに記載の光配向材料。  The photo-alignment material according to any one of claims 1 to 3, wherein a weight ratio of the polyfunctional maleimide derivative having a structural unit exhibiting photo-alignment and the alkenyl-substituted nadiimide derivative is 35/65 to 70/30. 請求項1〜4のいずれか1つに記載の光配向材料を基板上に塗布し、次いで光照射によりマレイミド誘導体とアルケニル置換ナジイミド誘導体の硬化、及び光配向性を示す構成単位の光反応とを行う光配向膜の製造方法。  The photo-alignment material according to any one of claims 1 to 4 is applied onto a substrate, and then the maleimide derivative and the alkenyl-substituted nadiimide derivative are cured by light irradiation, and the photoreaction of the structural unit exhibiting photo-alignment is performed. A method for producing a photo-alignment film. 請求項1〜4のいずれか1つに記載の光配向材料を基板上に塗布し、加熱によりマレイミド誘導体とアルケニル置換ナジイミド誘導体の硬化を行い、次いで光照射により光配向性を示す構成単位の光反応を行う光配向膜の製造方法。  The photo-alignment material according to any one of claims 1 to 4 is applied onto a substrate, the maleimide derivative and the alkenyl-substituted nadiimide derivative are cured by heating, and then light of a structural unit that exhibits photo-alignment by light irradiation. A method for producing a photo-alignment film that performs a reaction.
JP2001071975A 2001-03-14 2001-03-14 Photoalignment material containing maleimide derivative and method for producing photoalignment film Expired - Fee Related JP4803412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071975A JP4803412B2 (en) 2001-03-14 2001-03-14 Photoalignment material containing maleimide derivative and method for producing photoalignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071975A JP4803412B2 (en) 2001-03-14 2001-03-14 Photoalignment material containing maleimide derivative and method for producing photoalignment film

Publications (2)

Publication Number Publication Date
JP2002265541A JP2002265541A (en) 2002-09-18
JP4803412B2 true JP4803412B2 (en) 2011-10-26

Family

ID=18929621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071975A Expired - Fee Related JP4803412B2 (en) 2001-03-14 2001-03-14 Photoalignment material containing maleimide derivative and method for producing photoalignment film

Country Status (1)

Country Link
JP (1) JP4803412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759119A (en) * 2018-04-28 2018-11-06 中国科学院工程热物理研究所 Solar energy cascade energy storage device

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900632B2 (en) * 2000-08-30 2012-03-21 Dic株式会社 Photo-alignment film material, photo-alignment film and method for producing the same
JP4756296B2 (en) * 2001-03-14 2011-08-24 Dic株式会社 Maleimide derivative and method for producing photoalignment film using the same
JP4604438B2 (en) * 2001-09-26 2011-01-05 Dic株式会社 Photo-alignment film material, photo-alignment film and method for producing the same
US7432331B2 (en) 2002-12-31 2008-10-07 Nektar Therapeutics Al, Corporation Hydrolytically stable maleimide-terminated polymers
KR101025143B1 (en) 2002-12-31 2011-04-01 넥타르 테라퓨틱스 Hydrolytically stable maleimide-terminated polymers
JP4192670B2 (en) * 2003-05-13 2008-12-10 チッソ株式会社 Liquid crystal aligning agent varnish, alignment film using the varnish, and liquid crystal display element having the alignment film
US7632906B2 (en) * 2003-07-16 2009-12-15 Rolic Ag Polymerizable copolymers for alignment layers
JP2005148443A (en) * 2003-11-17 2005-06-09 Toppan Printing Co Ltd Substrate having projection for controlling liquid crystal alignment, and liquid crystal display device using the same
JP2006124425A (en) * 2004-10-26 2006-05-18 Chukyo Yushi Kk Aqueous resin emulsion
TWI391424B (en) * 2005-01-12 2013-04-01 Taiyo Holdings Co Ltd A hardened resin composition for inkjet and a hardened product thereof, and a printed circuit board using the same
JP2006281731A (en) * 2005-04-05 2006-10-19 Mitsubishi Polyester Film Copp Laminated film
JP2007171916A (en) 2005-11-22 2007-07-05 Fuji Xerox Co Ltd Hologram recording material, hologram recording medium, and hologram recording method
JP5140212B2 (en) * 2005-11-29 2013-02-06 三菱樹脂株式会社 Optical laminated polyester film
JP4902844B2 (en) * 2006-01-09 2012-03-21 三菱樹脂株式会社 Laminated polyester film
JP2008020538A (en) 2006-07-11 2008-01-31 Fuji Xerox Co Ltd Hologram recording material, hologram recording medium and method therefor
JP4936048B2 (en) * 2006-07-11 2012-05-23 日東電工株式会社 Polyfunctional compound, optical recording material, optical recording medium, optical recording / reproducing apparatus, optical waveguide material, and optical alignment film material
JP5090370B2 (en) * 2007-01-04 2012-12-05 エルジー・ケム・リミテッド Liquid crystal alignment composition, liquid crystal alignment film produced thereby, and liquid crystal display including the same
JP2008203500A (en) 2007-02-20 2008-09-04 Fuji Xerox Co Ltd Hologram recording material, hologram recording medium and hologram recording method
JP5315765B2 (en) * 2007-06-27 2013-10-16 Jnc株式会社 Allyl-substituted nadiimide compound, liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP5293943B2 (en) * 2007-08-16 2013-09-18 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101106083B1 (en) 2007-10-09 2012-01-18 제이엔씨 주식회사 Liquid crystal aligning agent, liquid crystal alignment layer and liquid crystal display device
CN101903494B (en) * 2007-12-21 2016-03-02 罗利克有限公司 Photoalignment composition
JP5157831B2 (en) * 2008-10-31 2013-03-06 Jnc株式会社 Composition comprising alkenyl-substituted nadiimide, solvent and curing agent and use of the composition part
JP5525213B2 (en) 2009-08-28 2014-06-18 富士フイルム株式会社 Polarizing film, laminate, and liquid crystal display device
JP5657243B2 (en) 2009-09-14 2015-01-21 ユー・ディー・シー アイルランド リミテッド Color filter and light emitting display element
JP5442518B2 (en) 2010-03-31 2014-03-12 富士フイルム株式会社 Light-absorbing anisotropic film, polarizing film, method for producing the same, and display device using the same
JP5566160B2 (en) 2010-03-31 2014-08-06 富士フイルム株式会社 Liquid crystal compound, liquid crystal composition, light absorption anisotropic film, and liquid crystal display device
JP5300776B2 (en) 2010-03-31 2013-09-25 富士フイルム株式会社 Polarizing film, display device, and manufacturing method thereof
JP5031883B2 (en) * 2010-11-16 2012-09-26 三菱樹脂株式会社 Laminated polyester film
KR101906842B1 (en) 2011-08-22 2018-12-06 엘지디스플레이 주식회사 Method of forming an alignment layer
KR101480996B1 (en) * 2012-04-24 2015-01-14 한국생산기술연구원 Chalcone light alignment material comprising imide group
JP6098818B2 (en) * 2012-11-07 2017-03-22 Jsr株式会社 Liquid crystal alignment agent
JP6163801B2 (en) * 2013-03-13 2017-07-19 Jnc株式会社 Cured film
KR101482621B1 (en) 2013-04-30 2015-01-14 한국생산기술연구원 Chalcone photoalignment material with maleimide derivative as main chain
KR101482622B1 (en) 2013-05-02 2015-01-14 한국생산기술연구원 Cinnamate photoalignment material with maleimide derivative as main chain
US10017697B2 (en) * 2014-02-13 2018-07-10 Dai Nippon Printing Co., Ltd. Thermosetting composition with photo-alignment property, alignment layer, substrate with alignment layer, retardation plate, and device
JP6993618B2 (en) * 2016-12-27 2022-01-13 日産化学株式会社 New polymers and diamine compounds, liquid crystal alignment agents, liquid crystal alignment films and liquid crystal display elements
WO2020008961A1 (en) 2018-07-02 2020-01-09 富士フイルム株式会社 Decorative film, decoration method, decorative molded body production method, and decorative molded film
JP2022505282A (en) * 2018-10-18 2022-01-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Dielectric copolymer material
EP3923263A4 (en) 2019-02-08 2022-11-09 Toyobo Co., Ltd. Foldable display and portable terminal device
EP3932665B1 (en) 2019-02-27 2024-04-17 FUJIFILM Corporation Layered body
US20220187503A1 (en) 2019-03-28 2022-06-16 Toyobo Co., Ltd. Anti-reflection circular polariser and image display device using same
WO2020241278A1 (en) 2019-05-28 2020-12-03 東洋紡株式会社 Multilayer film and use of same
EP3978554A4 (en) 2019-05-28 2023-06-21 Toyobo Co., Ltd. Polyester film, laminated film, and use thereof
US11926720B2 (en) 2019-05-28 2024-03-12 Toyobo Co., Ltd. Polyester film and application therefor
CN113874767A (en) 2019-05-30 2021-12-31 东洋纺株式会社 Folding display
US20220236467A1 (en) 2019-05-30 2022-07-28 Toyobo Co., Ltd. Polarization plate for folding display
WO2020262474A1 (en) 2019-06-27 2020-12-30 富士フイルム株式会社 Decorative film for molding, molded article, and display
JPWO2021049255A1 (en) * 2019-09-09 2021-03-18
WO2023120726A1 (en) * 2021-12-24 2023-06-29 日産化学株式会社 Weak-anchoring liquid crystal alignment agent, and liquid cyrstal display element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224121A (en) * 1994-02-07 1995-08-22 Maruzen Petrochem Co Ltd Thermosetting resin composition
WO2000010974A2 (en) * 1998-08-20 2000-03-02 Dsm N.V. Process for the preparation of a maleimide compound, maleimide compound, radiation-curable compositions comprising said compound and coated products
JP4094764B2 (en) * 1999-03-30 2008-06-04 Jsr株式会社 Liquid crystal alignment agent
JP4900632B2 (en) * 2000-08-30 2012-03-21 Dic株式会社 Photo-alignment film material, photo-alignment film and method for producing the same
JP4756296B2 (en) * 2001-03-14 2011-08-24 Dic株式会社 Maleimide derivative and method for producing photoalignment film using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759119A (en) * 2018-04-28 2018-11-06 中国科学院工程热物理研究所 Solar energy cascade energy storage device

Also Published As

Publication number Publication date
JP2002265541A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP4803412B2 (en) Photoalignment material containing maleimide derivative and method for producing photoalignment film
JP4900632B2 (en) Photo-alignment film material, photo-alignment film and method for producing the same
JP6710196B2 (en) Monomer compound for side chain type polymer
US6733958B2 (en) Material for photo-alignment layer, photo-alignment layer and method of manufacturing the same
US9360708B2 (en) Cinnamic acid derivative, polymer thereof, and liquid crystal alignment layer comprising cured product thereof
JP5186734B2 (en) Azo compound, composition for photo-alignment film, photo-alignment film and liquid crystal display element
TW201231476A (en) Photoactive polymer materials
JP4957976B2 (en) Composition for vertical alignment layer
WO2011122598A1 (en) Polymer for use in a liquid-crystal alignment layer
TWI810273B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and compound
CN107003577B (en) Composition for producing liquid crystal alignment film, liquid crystal alignment film using same, liquid crystal display element, and method for producing same
JP2022036952A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP4522662B2 (en) Composition for liquid crystal alignment film, liquid crystal alignment film, method for producing liquid crystal alignment film, and maleimide compound
JP7409388B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP2003270638A (en) Composition for photo-alignment layer, and method for manufacturing photo-alignment layer using the same
TW201041912A (en) Maleimide-N-vinyllactam based sidechain polymers for LCD alignment layers
JP6872315B2 (en) Liquid crystal alignment film for polymer composition and transverse electric field drive type liquid crystal display element
JP6744717B2 (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching type liquid crystal display device
JP4756296B2 (en) Maleimide derivative and method for producing photoalignment film using the same
TWI477589B (en) Polymerizable compounds
KR20060062308A (en) Photoreactive compounds, liquid crystal alignment layer using the same, method for manufacturing thereof, and liquid crystal display device containing the alignment layer
JP4604438B2 (en) Photo-alignment film material, photo-alignment film and method for producing the same
CN107924092B (en) Composition for producing liquid crystal alignment film, liquid crystal alignment film using same, method for producing same, liquid crystal display element having liquid crystal alignment film, and method for producing same
TW202018068A (en) Liquid crystal aligning agent, method for manufacturing same, liquid crystal aligning film, and liquid crystal element
JP2019148716A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4803412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees