JP4756296B2 - Maleimide derivative and method for producing photoalignment film using the same - Google Patents

Maleimide derivative and method for producing photoalignment film using the same Download PDF

Info

Publication number
JP4756296B2
JP4756296B2 JP2001071974A JP2001071974A JP4756296B2 JP 4756296 B2 JP4756296 B2 JP 4756296B2 JP 2001071974 A JP2001071974 A JP 2001071974A JP 2001071974 A JP2001071974 A JP 2001071974A JP 4756296 B2 JP4756296 B2 JP 4756296B2
Authority
JP
Japan
Prior art keywords
group
photo
alignment
maleimide
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001071974A
Other languages
Japanese (ja)
Other versions
JP2002265442A (en
Inventor
宏和 高田
均 早川
昌宣 福田
英也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2001071974A priority Critical patent/JP4756296B2/en
Publication of JP2002265442A publication Critical patent/JP2002265442A/en
Application granted granted Critical
Publication of JP4756296B2 publication Critical patent/JP4756296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photo-orienting film having excellent properties as a liquid crystal display device such as voltage retention, and manifesting an excellent stability of orienting, durability against to light and heat. SOLUTION: This maleimide derivative is a difunctional maleimide derivative obtained by grafting a structural unit manifesting photo-orienting properties caused to a photodimerization or a photoisomerization reaction, and the invention includes a photo-orienting material including the derivative and the method of manufacturing the photo-orienting film by using the same capable of orienting liquid crystal molecules without rubbing.

Description

【0001】
【発明の属する技術分野】
本発明は、液晶の配向方法に関し、特に光を照射することで、ラビングを行うことなく液晶分子を配向させることのできる光配向膜に関する。本発明の光配向膜は、液晶表示素子用等の液晶配向膜として好適に用いられる。
【0002】
【従来の技術】
液晶表示装置においては、液晶の分子配列の状態を電場等の作用によって変化させて、これに伴う光学的特性の変化を表示に利用している。
多くの場合、液晶は二枚の基板の間隙に挟んだ状態で用いられるが、ここで液晶分子を特定の方向に配列させるために、基板の内側に配向処理が行われる。
【0003】
通常、配向処理は、ガラス等の基板にポリイミド等の高分子の膜を設け、これを一方向に布等で摩擦する、ラビングという方法が用いられる。これにより、基板に接する液晶分子はその長軸(ダイレクタ)がラビングの方向に平行になるように配列する。
例えば、ツイストネマチック(TN)セルでは二枚の直交した偏光板の間に、内側に配向膜が塗布された二枚の基板を対向させ、そのラビング方向が互いに直交するように配置し、光透過率の変化による表示を可能にしている。
【0004】
しかしながら、ラビング法は製造装置が簡単であるという利点を有するものの、製造工程において静電気や埃が発生するため、配向処理後に洗浄工程が必要となるとともに、特に近年多く用いられているTFT方式の液晶セルでは静電気によりあらかじめ基板に設けられたTFT素子が破壊され、これが製造における歩留まりを下げる原因にもなっている。
一方、液晶表示素子においては構成されている液晶分子の傾きに方向性があるため、表示素子を見る方向によって表示色やコントラストが変化する等といった視野角依存性が問題となっている。
【0005】
これを改善する方法の一つとしては、一画素を分割して、領域ごとに液晶分子のプレチルト角(特開昭62−159119号公報)や配向方向(特開昭63−106624号公報)を変える配向分割法が考案されている。このような、分割領域ごとの配向は、従来のラビング法ではプロセスが煩雑で実用には適さない。
【0006】
かかる問題を解決するために、近年ラビングを行わない液晶配向制御技術が注目されている。このようなラビングレスの配向技術としては、斜方蒸着法、LB(ラングミュアー−ブロジェット)膜法、フォトリソグラフィ法、光配向法等が検討されてきた。とりわけ、偏光された光を基板上に設けられた塗膜に照射して、液晶配向性を生じさせる光配向法は簡便であり、配向処理後に洗浄工程が不必要であり、さらにフォトマスク等を用いることにより上記の配向分割を容易に行うことができるため、盛んに研究が行われている。
この光配向機構としては、例えばアゾベンゼン基等の光異性化によるもの、シンナモイル基、クマリン基、カルコン基、ベンゾフェノン基等の光二量化反応によるもの、ポリイミド樹脂等の光分解によるもの等が報告されている。
【0007】
これらの光異性化、光二量化や光分解反応を利用した光配向材料は、ガラス等の基板に塗布した際に均一な膜が得られるように、ポリマーなどの高分子化合物が用いられることが多く、アゾベンゼン基、シンナモイル基等の光配向性を示す構成単位がこの高分子化合物の側鎖や主鎖に導入される場合が多い。また、光配向性を有する分子をゲスト分子とし、高分子化合物からなるホスト化合物に分散させて用いる場合もある。
【0008】
しかし、光異性化型の場合、偏光紫外線の照射による分子の可逆的な異性化反応を利用していることが多いため、光配向処理後の光安定性に問題がある。また、光分解型の場合、光配向処理を行った際に生じる分解生成物により液晶が汚染されるおそれがあるため、処理後に基板を洗浄する必要があり、光配向膜の洗浄不要といった特長が失われる。また、高分子化合物を用いた光配向材料の多くは溶剤に対する溶解性が低く、基板に塗布する際に使用できる溶媒の種類が限られるといった問題がある。
【0009】
例えば、WO9637807号公報には、光異性化可能であって二色性を示す構成単位及び反応性官能基を有する樹脂を使用した液晶配向膜が開示されているが、この材料は高分子化合物であり、基板に塗布する際に使用できる溶媒の種類が限られ、一般にN,N−ジメチルアセトアミドやN−メチル−2−ピロリドンのような高沸点の極性溶媒が使用される。この場合、塗布後に溶媒を揮発させるために長時間を要し、生産性を低下させる。さらに、従来の光配向膜材料の多くは熱的安定性に関しても不十分であるという問題もある。
【0010】
これらの問題点を解決し、光配向膜の液晶配向能が長期間安定に得られるようにする方法の例としては、偏光照射によって配向性を示す構成単位付加した重合性モノマーを熱もしくは光重合させ、かつ偏光照射によって光配向させる方法がある。しかし多くの場合、モノマーを熱もしくは光重合させるには重合開始剤の添加が必要となる。この重合開始剤は低分子化合物であるため、光配向膜の硬化後であっても、長期間が経過すると、セル内の液晶層に重合開始剤が拡散し、液晶表示素子としての特性、例えば電圧保持率を劣化させるおそれがある。
【0011】
重合開始剤の不要な光重合性基としては、マレイミド基がある。このマレイミド基を有する化合物を用いた光配向膜は特開2000−53766号公報や特許2962473号公報に開示されている。これらはポリマレイミドに光配向性基を側鎖として付加した高分子化合物であり、やはり前記したような溶剤に対する溶解性の問題がある他、耐熱性や液晶配向能の長期安定性についても未だ不十分である可能性がある。
【0012】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、溶剤溶解性が高く生産性に優れ、かつ良好な電圧保持率等の液晶表示素子特性を有し、良好な配向安定性と光や熱に対する十分な耐久性を有する光配向材料を提供することにある。
【0013】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、特定のマレイミド誘導体を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は上記課題を解決するために、
【0014】
(A) 一般式(1)
【化2】

Figure 0004756296
【0015】
(式中、R1、R2及びR3は各々、単結合、アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。R4は3価の炭化水素基を表す。R5は光配向性を示す構成単位を表し、R6、R7、R8及びR9は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。)で表されるマレイミド誘導体を提供する。
【0016】
また、本発明は、(B) 上記(A)を含有する光配向材料、及び、それを用いた光配向膜の製造方法を提供する。
【0017】
【発明の実施の形態】
本発明は、光配向性を示す構成単位を含む特定の2官能マレイミド誘導体を含有する光配向材料、及びそれを用いた光配向膜に関するものである。
【0018】
本発明のマレイミド誘導体は、光を照射することで二量化、異性化等の配向性が得られるような光反応を生じる構成単位を有するマレイミド誘導体であり、具体的には一般式(1)、
【0019】
【化3】
Figure 0004756296
【0020】
(式中、R1、R2及びR3は各々、単結合、アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。R4は3価の炭化水素基を表す。R5は光配向性を示す構成単位を表し、R6、R7、R8及びR9は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。)で表される。
【0021】
一般式(1)において、R1、R2及びR3は各々、単結合、直鎖アルキレン基、分岐アルキレン基、シクロアルキレン基、及びアリーレン基からなる群より選ばれる少なくとも1つの炭化水素基を表す。これらの炭化水素基としては、具体的には、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基の如き直鎖状アルキレン基;シクロペンチレン基、シクロヘキシレン基の如きシクロアルキレン基;フェニレン基の如きアリーレン基が挙げられる。
【0022】
また、R1、R2及びR3は各々、上記に挙げた炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結していてもよい。中でも、エステル結合、エーテル結合が好ましい。このような連結された有機基としては、具体的には、例えば、少なくとも2つの炭化水素基が、エーテル結合で結合された(ポリ)エーテルから構成される基、少なくとの2つの炭化水素基がエステル結合で結合された(ポリ)エステルから構成される基、少なくとも2つの炭化水素基が、アミド結合で結合された(ポリ)アミドから構成される基、少なくとも2つの炭化水素基がウレタン結合で結合された、(ポリ)ウレタンから構成される基や、少なくとも2つの炭化水素基が、エーテル結合された(ポリ)エーテル(ポリ)オールと(ポリ)カルボン酸とをエステル化して得られる(ポリ)カルボン酸{(ポリ)エーテル(ポリ)オール}エステルから構成される基等が挙げられる。
【0023】
一般式(1)におけるR4は、3価の炭化水素基を表す。価すなわち遊離原子価は炭化水素基のどの部位に存在しても良く、3つの価のうち2つに、上記R1、R2で表される有機基を介してマレイミド基が、1つに、R3で表される有機基を介しR5で表される光配向性を示す構成単位が結合する。これらの炭化水素基は、直鎖状でも分岐状でも構わない。具体的には、例えばメチリジン基、エチリジン基、プロパニリジン基、ブタニリジン基、1−エタニル−2−イリデン基、1,2,3−プロパントリイル基、1−プロパニル−3−イリデン基、1,2,4−ブタントリイル基、1−ブタニル−4−イリデン基、1,2,5−ペンタントリイル基、1,3,5−ペンタントリイル基、1−ペンタニル−5−イリデン基、1,2,6−ヘキサントリイル基、1,3,6−ヘキサントリイル基、1−ヘキサニル−6−イリデン基、2−プロパニル−1−イリデン基、2−メチレン−1,3−プロパンジイル基、1−プロパニル−3−イリデン基、3−ブタニル−1−イリデン基、1,2,3−ブタントリイル基、1−ブタニル−2−イリデン基、2−メチル−1−プロパニル−3−イリデン基、2−メチル−1,2,3−プロパントリイル基、
【0024】
2−エチル−1,2,3−プロパントリイル基、2−ブタニル−1−イリデン基、2−ブタニル−3−イリデン基、2−ブタニル−4−イリデン基、の如き3価の非環式炭化水素よりなる基;1,2,3−シクロペンタントリイル基、1,2,5−シクロペンタントリイル基、1−シクロペンチル−2−イリデン基、1−シクロペンチル−3−イリデン基、1,2,3−シクロヘキサントリイル基、1,2,4−シクロヘキサントリイル基、1,3,5−シクロヘキサントリイル基、1−シクロヘキシル−2−イリデン基、1−シクロヘキシル−3−イリデン基、1−シクロヘキシル−4−イリデン基、シクロヘキシルメチリジン基、4−シクロへキシレンメチレン基、1−シクロヘキシル−2−エタニル−1−イリデンの如き環式脂肪族炭化水素を含む3価の炭化水素よりなる基;1,3,5−ベンゼントリイル基、ベンジリジン基、2−フェニル−1,2,3−プロパントリイル基の如き芳香族炭化水素を含む3価の炭化水素よりなる基等が挙げられる。
【0025】
上記一般式(1)において、R5は、光を照射することで二量化反応又は異性化反応のような、配向性を示す光反応を生じる構成単位(以下、光配向性を示す構成単位と略す)を表す。光配向性を示す構成単位としては特に限定されないが、中でも、C=C、C=N、N=N、及びC=Oからなる群より選ばれる少なくとも一つの二重結合(但し、芳香環を形成する二重結合を除く)を有する構成単位が特に好ましく用いられる。
【0026】
これらの光配向性を示す構成単位としては、以下のものが挙げられる。
例えば、C=C結合を有する構成単位としては、ポリエン、スチルベン、スチルバゾール、スチルバゾリウム、シンナメート、ヘミチオインジゴ、カルコン等の骨格が挙げられる。C=N結合を有する構成単位としては、芳香族シッフ塩基、芳香族ヒドラゾン等の骨格が挙げられる。N=N結合を有する構成単位としては、アゾベンゼン、アゾナフタレン、芳香族複素環アゾ、ビスアゾ、ホルマザン等のアゾ骨格や、アゾキシベンゼンを基本構造とするものが挙げられる。C=O結合を有する構成単位としては、ベンゾフェノン、クマリン、アントラキノン等の骨格が挙げられる。
【0027】
具体的には、例えば、以下の構造が挙げられる。勿論、これらの構造にアルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基等の1つ以上の残基が結合していても差し支えない。
【0028】
【化4】
Figure 0004756296
【0029】
中でも、光二量化により光配向性を示すシンナメート、クマリン、カルコン、又はベンゾフェノンの骨格、あるいは、光異性化反応により光配向性を示すアゾベンゼン又はアントラキノンの骨格を有する光配向性基を有するマレイミド誘導体は、光配向に必要な偏光の照射量が少なく、かつ得られた光配向膜の熱安定性、経時安定性が優れているため、特に好ましく、シンナメート、クマリン、カルコン、又はベンゾフェノンの骨格を有するマレイミド誘導体が最も好ましい。
【0030】
上記一般式においてR5は、単結合あるいはエステル結合、エーテル結合、アミド結合、又はウレタン結合等の結合基を介してR1と結合している。
【0031】
6、R7、R8及びR9は各々、水素原子、メチル基、エチル基等の1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。
【0032】
本発明の光配向材料においては、光配向性を示す構成単位の導入密度を調整し、液晶の配向状態を向上させる目的、あるいは一般式(1)で表される光配向性を示す構成単位を含むマレイミド誘導体の結晶性を下げ、基板に対する塗布性、成膜性を改善する目的等で下記一般式(2)で示されるような光配向性を示す構成単位を含まないマレイミド化合物を適宜混合したものを塗布し、一般式(1)で表される光配向性を示す構成単位を含むマレイミド誘導体と共重合させても良い。この光配向性を示す構成単位を含まないマレイミド誘導体の混合割合は全体に対し0〜80重量%の範囲内であることが好ましく、特に好ましくは0〜50重量%の範囲である。
【0033】
【化5】
Figure 0004756296
【0034】
(式中、R10は、直鎖アルキレン基、分岐アルキレン鎖、シクロアルキレン基、及びアリール基からなる群より選ばれる少なくとも1つの炭化水素基、もしくは、これらの炭化水素基の複数個が単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結している有機基を表す。R11、R12、R13及びR14は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。)
【0035】
上記一般式(2)において、R10は各々独立して、直鎖アルキレン基、分岐アルキレン鎖、シクロアルキレン基、及びアリール基からなる群より選ばれる少なくとも1つの炭化水素基を表す。
【0036】
これらの炭化水素基としては、具体的には、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基の如き直鎖状アルキレン基;1−メチルエチレン基、1−メチル−トリメチレン基、2−メチル−トリメチレン基、1−メチル−テトラメチレン基、2−メチル−テトラメチレン基、1−メチル−ペンタメチレン基、2−メチル−ペンタメチレン基、3−メチルペンタメチレン基、ネオペンチル基の如き分岐アルキル基を有するアルキレン基;
【0037】
シクロペンチレン基、シクロヘキシレン基の如きシクロアルキレン基;ベンジレン基、2,2−ジフェニル−トリメチレン基、1−フェニル−エチレン基、1−フェニル−テトラエチレン基の如き主鎖または側鎖にアリール基を有するアリールアルキレン基;シクロヘキシルメチレン基、1−シクロヘキシル−エチレン基、1−シクロヘキシル−テトラエチレン基の如き主鎖あるいは側鎖にシクロアルキル基を有するシクロアルキル−アルキレン基等が挙げられる。
【0038】
また、R10は、これら上記に挙げた炭化水素基の複数個が、単結合、エステル結合、エーテル結合、アミド結合、及びウレタン結合からなる群より選ばれる結合基で連結しても良い。
【0039】
このような連結された基としては、具体的には、例えば、少なくとも2つの炭化水素基が、エーテル結合で結合された(ポリ)エーテルから構成される基、少なくとの1つの炭化水素基がエステル結合で結合された(ポリ)エステルから構成される基、少なくとも2つの炭化水素基が、エーテル結合された(ポリ)エーテル(ポリ)オールと(ポリ)カルボン酸とをエステル化して得られる(ポリ)カルボン酸{(ポリ)エーテル(ポリ)オール}エステルから構成される基等が挙げられる。
【0040】
11、R12、R13及びR14は、各々水素原子、メチル基、エチル基等の1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。
【0041】
本発明の光配向材料は、光配向性を示す構成単位(以下、光配向性を示す構成単位を光配向性基と略す。)を有する一般式(1)のマレイミド誘導体を含有することを特徴とする。次に、本発明の光配向材料を用いて、光配向膜とこれを具備した液晶表示素子を製造する方法の例を述べる。
【0042】
本発明の光配向材料は、適切な溶媒に溶解して用いる。この際、溶媒は特に限定されないが、N−メチルピロリドン、ジメチルホルムアミド、ブチルセロソルブ、γ−ブチロラクトン、クロロベンゼン、ジメチルスルホキシド、ジメチルアセトアミド、テトラヒドロフラン等が一般的に用いられる。中でもN−メチルピロリドン、ブチルセロソルブ、γ−ブチロラクトン、は塗布性が良好で、均一な膜が得られることから、特に好ましい。
【0043】
上記光配向材料の溶液をガラス等の基板にスピンコーティング法、印刷法等の方法によって塗布し、乾燥後、マレイミド基の重合および光配向性基の配向操作を行う。マレイミド基の重合は光照射もしくは加熱によって行われる。光による重合操作は、既に配向した光配向性基に影響を与える恐れがあるため、光配向性基の配向に先立って行うことが好ましいが、アゾベンゼンのような可逆的な光異性化による光配向の状態を固定化する目的で、光配向を行った後にマレイミド基の重合操作を行う場合もある。
【0044】
マレイミド基が重合する光の波長と光配向性基の配向が生ずる光の波長とが異なる場合、光による重合操作は、光配向の生じない、マレイミド基が重合する光の波長にできるだけ近い波長の光を用いることが好ましい。一方、マレイミド基が重合する光の波長と光配向性基の配向が生ずる光の波長とが近い場合には、マレイミド基の重合と光配向性基の光配向操作を一回の光照射で同時に行うことが可能である。このようなマレイミド基の光重合に用いる照射光は特に限定されないが、紫外線が好ましく用いられる。照射方法についても特に限定されず、無偏光あるいは直線偏光、楕円偏光などの偏光が用いられる。
【0045】
一方、マレイミド基の重合操作を加熱によって行う場合は、その工程は光配向性基の配向操作の前後いずれでも良い。また、マレイミド基を完全に重合させるために、最初に光照射又は加熱で重合を行い、次に光配向操作を行った後、再び光照射又は加熱を行っても良い。
【0046】
光配向性基の配向操作は偏光もしくは無偏光の光を照射することによって行われる。照射光の波長は光配向性基が効率よく光反応する波長が選ばれ、可視光線、紫外線等が挙げられるが、特に紫外線が好ましい。照射方法は特に限定されないが、例えば、偏光を照射して光配向操作を行う場合は、直線偏光や楕円偏光が多く用いられる。このとき、液晶分子のプレチルトを得るために、偏光を基板に対して斜め方向から照射する方法や、偏光照射後に斜め方向から無偏光の光を照射する方法を用いても良い。また、無偏光のみを照射して光配向を行う場合は、基板に対して斜め方向から照射する方法が好ましい。
【0047】
本発明の光配向材料を用いた液晶セルは、前記配向膜が形成された2枚の基板を配向膜に照射した偏光の方向が所定の角度となるようにした上で、所定の大きさのスペーサーを介して対向させることによって構成される。この液晶セルに液晶を充填する際には、液晶が等方相となる温度にまで加熱した後、毛細管法、真空注入法によって充填することが好ましい。
【0048】
液晶材料としては、例えば、4−置換安息香酸4’−置換フェニルエステル、4−置換シクロヘキサンカルボン酸4’−置換フェニルエステル、4−置換シクロヘキサンカルボン酸4’−置換ビフェニルエステル、4−(4−置換シクロヘキサンカルボニルオキシ)安息香酸4’−置換フェニルエステル、4−(4−置換シクロヘキシル)安息香酸4’−置換フェニルエステル、4−(4−置換シクロヘキシル)安息香酸4’−置換シクロヘキシルエステル、4−置換4’−置換ビフェニル、4−置換フェニル−4’−置換シクロヘキサン、4−置換4”―置換ターフェニル、4−置換ビフェニル4’―置換シクロヘキサン、2−(4−置換フェニル)−5−置換ピリミジン等を挙げることができる。
【0049】
本発明においては、光配向性基を有するマレイミド誘導体を含有する光配向材料を基板に塗布した後、マレイミド基を重合させ、さらに光配向性基を配向することによって光配向膜を得る。塗布する材料がモノマーであるため、溶剤溶解性が高く、塗布が容易であるという特徴を有する。また、両末端にマレイミド基を有していることから、重合後は架橋構造となるため、光や熱に対する安定性が高い光配向膜が得られる。また、光配向性基がマレイミド基を有する主鎖に対して側鎖となるように結合しているため、マレイミド基が重合した後も、光配向性基の自由度が高く、光の照射により高感度でかつ大きなプレチルト角を有する配向膜が得られる。
【0050】
また、マレイミドによる重合は重合開始剤を必要としないため、液晶セル作製後に、液晶中に重合開始剤が溶出することがなく、電圧保持率の低下等、液晶表示素子の性能劣化の原因を取り除くことができる。
【0051】
【実施例】
以下、合成例、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明は、これらの実施例の範囲に限定されるものではない。
【0052】
[参考例1]マレイミド酢酸の合成
撹拌機、温度計、滴下ロート、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの4つ口フラスコに、トルエン140g、p−トルエンスルホン酸一水和物5.2g及びトリエチルアミン2.8gを順次仕込み、撹拌しながら無水マレイン酸30gを加えた後、30℃まで昇温させながら溶解させた。さらにグリシン23gを加えた後、撹拌しながら70℃で3時間反応させた。トルエン50g、トリエチルアミン60gを加え、溶媒を加熱還流させて生成する水を除去しながら1時間反応させた。反応混合物から溶媒を留去して得られた残留物に、4mol/dm3塩酸を加えてpH2に調整した後、加熱−再結晶して、マレイミド酢酸の淡黄色固体7.3gを得た。
【0053】
[参考例2]2,2−ジメチル−5−エチル−5−(ブロモメチル)−1,3−ジオキサン(化合物A)の合成
撹拌機、温度計及び塩化カルシウム乾燥管を付けた冷却管を備えた容量500ミリリットル4つ口フラスコに、トリメチロールプロパン67.1g、2,2−ジメトキシプロパン57.3g、トルエン100g及びp−トルエンスルホン酸一水和物2.9gを入れ、60℃で3時間撹拌した。冷却後、炭酸カリウム 2.5gを加え、一晩室温で撹拌した。フラスコ内の固体を濾過で除き、減圧下、溶媒を留去して中間体A80.6g(液体)を得た。
【0054】
撹拌機、温度計、窒素導入管及び塩化カルシウム乾燥管を付けた冷却管を備えた容量500ミリリットル4つ口フラスコに中間体A43.8g、四臭化炭素116.6g及びN,N−ジメチルホルムアミド300mlを加え、窒素雰囲気下、撹拌しながら氷塩浴で充分に冷却させ、トリフェニルフォスフィン91.9gを少しずつ、液温が0℃を越えないように加えた。トリフェニルフォスフィン添加終了後、30分氷塩浴中で撹拌し、その後、氷浴中で1時間、室温で2時間撹拌した後、溶媒を50℃で減圧下、留去した。濃縮された混合物をアセトン−ヘキサン混合溶媒(1/3)200gで3回抽出し、得られた抽出液をシリカゲルを用いたカラムクロマトグラフィーで精製して目的の化合物A 47gを得た。(収率 79%)
【0055】
[合成例1]
撹拌機、温度計及び塩化カルシウム乾燥管を付けた冷却管を備えた容量100ミリリットルの3つ口フラスコに化合物A11.9g、7−ヒドロキシクマリン 8.3g、N−メチルピロリドン40gを加えて撹拌した。均一な溶液になったところで、炭酸カリウム7.1gを加え、150℃で2時間反応させた。冷却後、減圧下、溶媒を留去し、濃縮された混合物を4リットルの酢酸エチルに溶解した。この溶液を500gの水で3回洗浄し、硫酸ナトリウムで乾燥した後に溶媒を減圧下、留去した。得られた13.5gの固体をテトラヒドロフラン100gに溶かし、6%塩酸 30gを加え、室温で4時間撹拌した。減圧下、溶媒を留去し、得られた固体を水洗後、濾過、乾燥した。
【0056】
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、上で得られた固体9.4g、マレイミド酢酸12.6g、p−トルエンスルホン酸一水和物0.8g、ヒドロキノン40mg及びトルエン200ミリリットルを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応液にトルエン 200ミリリットルを加えて希釈し、50gの水で4回洗浄した。このトルエン溶液を硫酸ナトリウムで乾燥後、減圧下、溶媒を留去して得られた固体をシリカゲルを用いたカラムクロマトグラフィーで精製することにより式(3)
【0057】
【化6】
Figure 0004756296
で表される2官能マレイミド誘導体12gを得た。
【0058】
[合成例2]
撹拌機、温度計、滴下ロート及び冷却管を備えた容量300ミリリットル4つ口フラスコに、2−ブロモエタノール6.3gをいれ、氷浴による冷却下、撹拌しながらN−メチルピロリドン10gを加えた。これにp−トルエンスルホン酸一水和物2mgを加え、ジヒドロピラン4.2gを約10分かけて滴下した。氷冷下で2時間撹拌し、さらに室温で2時間撹拌した後、7−ヒドロキシクマリン 8.5gおよび炭酸カリウム6.9gを加え、120℃で3時間反応した。冷却後、100mlの水に反応混合物を加え、100mlのトルエンで2回抽出し、得られたトルエン層を無水硫酸ナトリウムで乾燥し、エバポレータで溶媒を留去した。得られた残渣にメタノール45g、水7g、濃塩酸0.5gを加え、室温で一晩撹拌した。溶媒を留去後、トルエン250gを加えて溶液とし、50gの水で2回洗浄した。
【0059】
撹拌機、温度計及び冷却管を備えた容量500ミリリットル3つ口フラスコに、上で得られたトルエン溶液を入れ、参考例2で合成した化合物A10.5g、テトラブチルアンモニウムブロミド0.9g及び40パーセント水酸化ナトリウム水溶液80gを加え、撹拌しながら5時間還流した。冷却後、この混合物を分液ロートに移して、水層を分離、除去し、20gの水で3回洗浄した。
得られたトルエン溶液を減圧下で溶媒を留去し、残渣をテトラヒドロフラン100gに溶かし、6%塩酸30gを加え、室温で4時間撹拌した。減圧下、溶媒を留去し、得られた固体を水洗後、濾過、乾燥した。
【0060】
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、上で得られた固体10.8g、マレイミド酢酸12.6g、p−トルエンスルホン酸一水和物0.8g、ヒドロキノン40mg及びトルエン200ミリリットルを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応液にトルエン200ミリリットルを加えて希釈し、50gの水で4回洗浄した。このトルエン溶液を硫酸ナトリウムで乾燥後、減圧下、溶媒を留去して得られた固体をシリカゲルを用いたカラムクロマトグラフィーで精製することにより式(4)、
【0061】
【化7】
Figure 0004756296
で表される2官能マレイミド誘導体16gを得た。
【0062】
[合成例3]
攪拌機、温度計及び塩化カルシウム乾燥管を付けた冷却管を備えた容量100ミリリットルの3つ口フラスコに参考例1で得られた化合物A11.9g、4−ヒドロキシカルコン11.5g、N−メチルピロリドン40gを加えて撹拌した。均一な溶液になったところで、炭酸カリウム7.1gを加え、150℃で2時間反応させた。冷却後、減圧下、溶媒を留去し、濃縮された混合物4リットルの酢酸エチルに溶解した。この溶液を500gの水で3回洗浄し、硫酸ナトリウムで乾燥した後に溶媒を減圧下、留去した。
得られた15.0gの固体をテトラヒドロフラン100gに溶かし、6%塩酸30gを加え、室温で4時間撹拌した。減圧下、溶媒を留去し、得られた固体を水洗後、濾過、乾燥した。
【0063】
攪拌機、温度計、ディーンスターク分留器及び冷却管を備えた500ミリリットルの3つ口フラスコに、上で得られた固体10.4g、マレイミド酢酸12.6g、p−トルエンスルホン酸一水和物0.8g、ヒドロキノン40mg及びトルエン200ミリリットルを順次仕込み、減圧下90℃に加熱して、溶媒を乾留させて生成する水を除去しながら15時間反応させた。反応終了後、反応液にトルエン200ミリリットルを加えて希釈し、50gの水で4回洗浄した。このトルエン溶液を硫酸ナトリウムで乾燥後、減圧下溶媒を留去して得られた固体をシリカゲルを用いたカラムクロマトグラフィーで精製することにより、式(5)
【0064】
【化8】
Figure 0004756296
で表される2官能マレイミド誘導体13gを得た。
【0065】
[合成例4]
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、参考例1のaで得たマレイミド酢酸8.8g、数平均分子量400のポリプロピレングリコール5.0g、p−トルエンスルホン酸一水和物0.4g、ヒドロキノン20mg及びトルエン150mlを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応混合物を希水酸化ナトリウム溶液で2回、次いで純水で3回洗浄し、トルエンを留去して式(5)、
【0066】
【化9】
Figure 0004756296
で表されるマレイミド誘導体7.7gを得た。
【0067】
[比較合成例1]
合成例1のマレイミド誘導体の合成において、マレイミド酢酸の代りにアクリル酸を用いて式(7)
【0068】
【化10】
Figure 0004756296
で表される2官能アクリレートを得た。
【0069】
以上の合成例及び比較合成例によって得られたマレイミド誘導体及び光配向材料を用いて、光配向膜を作製し、物性評価を行った。光配向膜の作成方法及び物性評価方法は下記の方法に従って行った。
【0070】
[光配向膜の作製方法]
a.光配向膜溶液の調整
合成例で得られたマレイミド誘導体を、N−メチルピロリドン/ブチルセロソルブ=1/1の混合溶媒に溶かして、固形分濃度5%溶液とし、これを0.1μmのフィルターで濾過し、光配向材料溶液とした。
【0071】
b−1.光配向膜作製(熱硬化方法)
上記a.の方法で得られた光配向材料溶液を、スピンコーターにてITO電極付ガラス基板上に均一に塗布し、190℃、1時間で乾燥及び硬化を行った。次に、得られた塗膜表面に超高圧水銀ランプより、積算光量で10J/cm2の365nm付近の直線偏光した紫外光を照射し、光配向膜を作製した。
【0072】
b−2.光配向膜作製(光硬化方法)
上記a.の方法で得られた光配向膜溶液を、スピンコーターにてITO電極付ガラス基板上に塗布し、100℃、15分乾燥した後、塗膜表面に超高圧水銀ランプより、積算光量で10J/cm2の波長313nm付近の直線偏光した紫外光を照射し、光配向膜を作製した。
【0073】
c.液晶セルの作製
上記b−1または2で得られた光配向膜基板の周囲に直径8μmのスチレンビーズを含んだエポキシ系接着剤を液晶注入口を残して塗布し、配向面が相対するように、かつ偏光光の方向が直交する無機に重ね合わせて圧着し、接着剤を150℃、90分かけて硬化させた。次いで、液晶注入口よりネマチック液晶(5CB)をアイソトロピック相の状態で真空注入し、充填した後、エポキシ系接着剤で液晶注入口を封止した。
【0074】
[光配向膜の評価方法]
d.液晶配向性評価
上記c.の方法で得られた液晶セルを、偏光方向が直交する2枚の偏光板の間に挟み、電極間5Vの電圧を印加してON/OFFすることで、明暗をスイッチングさせることにより、液晶の配向性を評価した。
【0075】
e.電圧保持率の測定
上記c.の方法で得られた液晶セルに、5Vの直流電圧を64マイクロ秒間印加し、続いて16.6ミリ秒間開放した後の初期印加電圧に対する電圧の保持率を測定した。
【0076】
f.耐久性の測定
この液晶セルを80℃にて1000時間保持した後の配向性を目視評価した。
【0077】
[実施例1]
合成例1で得られたマレイミド誘導体(3)を用いて、上記光配向材料溶液の調整方法に従って光配向材料溶液を調整し、次にb−1.の光配向膜の熱硬化作製方法に従って光配向膜を作製した。得られた光配向膜を用いて液晶セルを作製し、上記評価方法に従って物性評価を行った。この結果、電圧保持率は99%、また液晶配向性、耐久性共に良好であった。
【0078】
[実施例2]
合成例1で得られたマレイミド誘導体(3)を用いて、上記光配向材料溶液の調整方法に従い、光配向材料溶液を調整し、次にb−2.の光配向膜作製方法に従って光配向膜を作製した。次に、基板面の法線と入射方向を含む面が、b−2.の偏光方向と平行で、かつ基板面と入射方向とがなす角が45°となる方向より波長313nm、積算光量10J/cm2の無偏光の平行光を照射した。
得られた光配向膜を用いて液晶セルを作製し、上記評価方法に従い、物性評価を行った。この結果、電圧保持率は99%、また液晶配向性、耐久性ともに良好であった。
また、上記により作製した液晶素子を回転結晶法により測定した結果、プレチルト角は3°であった。
【0079】
[実施例3]
合成例1で得られたマレイミド誘導体(3)を、合成例1で得られたマレイミド誘導体(3)及び合成例4で得られたマレイミド誘導体(6)の重量比1/1の混合物とした他は、実施例1と同様にして評価を行った。この結果、電圧保持列は99%、また液晶配向性、耐久性ともに良好であった。
【0080】
[実施例4]
合成例1で得られたマレイミド誘導体(3)を、合成例2で得られたマレイミド誘導体(4)に代えた他は、実施例1と同様にして評価を行った。この結果、電圧保持率は99%、また液晶配向性、耐久性共に良好であった。
【0081】
[実施例5]
合成例1で得られたマレイミド誘導体(3)を、合成例3で得られたマレイミド誘導体(5)に代えた他は、実施例1と同様にして評価を行った。この結果、電圧保持率は99%、また液晶配向性、耐久性ともに良好であった。
【0082】
[比較例1]
合成例1で得られたマレイミド誘導体(3)を、比較合成例で合成したアクリル酸誘導体(7)、及び開始剤として、これに対して0.1%の2,2’−アゾビスイソブチロニトリルを加えたものに代えた他は、実施例2と同様にして評価を行った。この結果、液晶配向性、耐久性は良好であったが、電圧保持率は89%と低かった。
【0083】
[比較例2]
合成例1で得られたマレイミド誘導体(3)を、合成例4で得られたマレイミド誘導体(6)に代えた他は、実施例1と同様にして評価を行った。
この結果、液晶配向性は認められなかった。
【0084】
【発明の効果】
本発明のマレイミド誘導体を含有する光配向材料を用いることにより、良好な液晶表示素子特性、例えば電圧保持率を有し、かつ良好な配向安定性と光や熱に対する十分な耐久性を有する光配向膜を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal alignment method, and more particularly to a photo-alignment film that can align liquid crystal molecules without being rubbed by irradiating light. The photo-alignment film of the present invention is suitably used as a liquid crystal alignment film for liquid crystal display elements.
[0002]
[Prior art]
In the liquid crystal display device, the state of the molecular arrangement of the liquid crystal is changed by the action of an electric field or the like, and the change in the optical characteristics accompanying this is used for display.
In many cases, the liquid crystal is used in a state of being sandwiched between two substrates. Here, in order to align liquid crystal molecules in a specific direction, an alignment process is performed on the inside of the substrate.
[0003]
Usually, the alignment treatment is performed by a method called rubbing, in which a polymer film such as polyimide is provided on a substrate such as glass and is rubbed with a cloth or the like in one direction. As a result, the liquid crystal molecules in contact with the substrate are arranged so that their long axes (directors) are parallel to the rubbing direction.
For example, in a twisted nematic (TN) cell, two substrates coated with an alignment film are opposed to each other between two orthogonal polarizing plates, and their rubbing directions are orthogonal to each other. Enables display by change.
[0004]
However, although the rubbing method has an advantage that the manufacturing apparatus is simple, since static electricity and dust are generated in the manufacturing process, a cleaning process is required after the alignment process, and in particular, a TFT-type liquid crystal that has been widely used in recent years. In the cell, the TFT element previously provided on the substrate is destroyed by static electricity, which causes a decrease in manufacturing yield.
On the other hand, in the liquid crystal display element, since the inclination of the liquid crystal molecules is directional, there is a problem of viewing angle dependency such that the display color and contrast change depending on the direction in which the display element is viewed.
[0005]
One method for improving this is to divide one pixel and change the pretilt angle (Japanese Patent Laid-Open No. Sho 62-159119) and orientation direction (Japanese Patent Laid-Open No. Sho 63-106624) of the liquid crystal molecules for each region. A changing orientation dividing method has been devised. Such an orientation for each divided region is not suitable for practical use because the process is complicated by the conventional rubbing method.
[0006]
In order to solve such a problem, a liquid crystal alignment control technique that does not perform rubbing has recently attracted attention. As such a rubbing-less alignment technique, an oblique deposition method, an LB (Langmuir-Blodget) film method, a photolithography method, a photo-alignment method, and the like have been studied. In particular, a photo-alignment method for irradiating polarized light onto a coating film provided on a substrate to produce liquid crystal alignment is simple, and no cleaning step is required after the alignment treatment. Since the above-described orientation division can be easily carried out by using it, research has been actively conducted.
As this photo-alignment mechanism, for example, those due to photoisomerization such as azobenzene group, those due to photodimerization reaction such as cinnamoyl group, coumarin group, chalcone group, benzophenone group, those due to photolysis of polyimide resin, etc. have been reported. Yes.
[0007]
These photo-isomerization, photo-dimerization and photo-decomposition reaction photo-alignment materials often use polymer compounds such as polymers so that a uniform film can be obtained when applied to a substrate such as glass. In many cases, structural units exhibiting photo-alignment properties such as azobenzene group and cinnamoyl group are introduced into the side chain or main chain of the polymer compound. In some cases, molecules having photo-alignment properties are used as guest molecules and dispersed in a host compound made of a polymer compound.
[0008]
However, in the case of the photoisomerization type, there is a problem in light stability after the photo-alignment treatment because the reversible isomerization reaction of molecules by irradiation with polarized ultraviolet rays is often used. In the case of the photolytic type, the liquid crystal may be contaminated by decomposition products generated during the photo-alignment process, so that it is necessary to clean the substrate after the process, and the photo-alignment film does not need to be cleaned. Lost. In addition, many photo-alignment materials using a polymer compound have low solubility in a solvent, and there is a problem that the types of solvents that can be used when applied to a substrate are limited.
[0009]
For example, WO9637807 discloses a liquid crystal alignment film using a resin having a structural unit and a reactive functional group that can be photoisomerized and exhibit dichroism. This material is a polymer compound. There are limited types of solvents that can be used for coating on the substrate, and polar solvents having a high boiling point such as N, N-dimethylacetamide and N-methyl-2-pyrrolidone are generally used. In this case, it takes a long time to volatilize the solvent after coating, and productivity is lowered. Furthermore, there is a problem that many of the conventional photo-alignment film materials are insufficient in terms of thermal stability.
[0010]
As an example of a method for solving these problems and ensuring that the liquid crystal alignment ability of the photo-alignment film is stably obtained for a long period of time, a polymerizable monomer to which a structural unit showing orientation is added by irradiation with polarized light is subjected to heat or photopolymerization. In addition, there is a method of photo-alignment by irradiation with polarized light. However, in many cases, it is necessary to add a polymerization initiator in order to thermally or photopolymerize the monomer. Since this polymerization initiator is a low molecular weight compound, the polymerization initiator diffuses into the liquid crystal layer in the cell after a long period of time even after the photo-alignment film is cured. There is a possibility of deteriorating the voltage holding ratio.
[0011]
As an unnecessary photopolymerizable group of the polymerization initiator, there is a maleimide group. A photo-alignment film using a compound having a maleimide group is disclosed in Japanese Patent Application Laid-Open No. 2000-53766 and Japanese Patent No. 29602473. These are high molecular compounds in which photo-alignment groups are added as side chains to polymaleimide, which still has the problem of solubility in solvents as described above, as well as the long-term stability of heat resistance and liquid crystal alignment ability. It may be sufficient.
[0012]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that the solvent solubility is high, the productivity is excellent, the liquid crystal display element characteristics such as a good voltage holding ratio, the good alignment stability and the sufficient durability against light and heat. It is providing the photo-alignment material which has these.
[0013]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a specific maleimide derivative, and have completed the present invention.
That is, the present invention solves the above-described problems,
[0014]
(A) General formula (1)
[Chemical 2]
Figure 0004756296
[0015]
(Wherein R 1 , R 2 And R Three Are each at least one hydrocarbon group selected from the group consisting of a single bond, an alkylene group, a cycloalkylene group, and an arylene group, or a plurality of these hydrocarbon groups are a single bond, an ester bond, an ether bond, an amide It represents an organic group linked by a bonding group selected from the group consisting of a bond and a urethane bond. R Four Represents a trivalent hydrocarbon group. R Five Represents a structural unit exhibiting photo-alignment, and R 6 , R 7 , R 8 And R 9 Each represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom. The maleimide derivative | guide_body represented by this is provided.
[0016]
The present invention also provides (B) a photo-alignment material containing (A) above and a method for producing a photo-alignment film using the photo-alignment material.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a photoalignment material containing a specific bifunctional maleimide derivative containing a structural unit exhibiting photoalignment, and a photoalignment film using the photoalignment material.
[0018]
The maleimide derivative of the present invention is a maleimide derivative having a structural unit that generates a photoreaction such that orientation such as dimerization and isomerization can be obtained by irradiating light. Specifically, the maleimide derivative has the general formula (1),
[0019]
[Chemical 3]
Figure 0004756296
[0020]
(Wherein R 1 , R 2 And R Three Are each at least one hydrocarbon group selected from the group consisting of a single bond, an alkylene group, a cycloalkylene group, and an arylene group, or a plurality of these hydrocarbon groups are a single bond, an ester bond, an ether bond, an amide It represents an organic group linked by a bonding group selected from the group consisting of a bond and a urethane bond. R Four Represents a trivalent hydrocarbon group. R Five Represents a structural unit exhibiting photo-alignment, and R 6 , R 7 , R 8 And R 9 Each represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom. ).
[0021]
In the general formula (1), R 1 , R 2 And R Three Each represents at least one hydrocarbon group selected from the group consisting of a single bond, a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an arylene group. Specific examples of these hydrocarbon groups include methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, Examples thereof include a linear alkylene group such as an undecamethylene group and a dodecamethylene group; a cycloalkylene group such as a cyclopentylene group and a cyclohexylene group; and an arylene group such as a phenylene group.
[0022]
R 1 , R 2 And R Three In each case, a plurality of the hydrocarbon groups listed above may be linked by a linking group selected from the group consisting of a single bond, an ester bond, an ether bond, an amide bond, and a urethane bond. Of these, an ester bond and an ether bond are preferable. Specific examples of such linked organic groups include, for example, a group composed of (poly) ether in which at least two hydrocarbon groups are linked by an ether bond, and at least two hydrocarbon groups. A group composed of (poly) ester bonded with an ester bond, a group composed of (poly) amide with at least two hydrocarbon groups bonded with an amide bond, and at least two hydrocarbon groups with urethane bonds A group composed of (poly) urethane bonded with, and at least two hydrocarbon groups are obtained by esterifying ether-bonded (poly) ether (poly) ol and (poly) carboxylic acid ( Examples include groups composed of poly) carboxylic acid {(poly) ether (poly) ol} esters.
[0023]
R in the general formula (1) Four Represents a trivalent hydrocarbon group. The valence or free valence may be present at any part of the hydrocarbon group, and two of the three 1 , R 2 Via the organic group represented by Three Through an organic group represented by Five The structural unit showing photo-alignment represented by These hydrocarbon groups may be linear or branched. Specifically, for example, a methylidyne group, an ethylidyl group, a propanilidine group, a butanilysine group, a 1-ethanyl-2-ylidene group, a 1,2,3-propanetriyl group, a 1-propanyl-3-ylidene group, 1,2 , 4-butanetriyl group, 1-butanyl-4-ylidene group, 1,2,5-pentanetriyl group, 1,3,5-pentanetriyl group, 1-pentanyl-5-ylidene group, 1,2, 6-hexanetriyl group, 1,3,6-hexanetriyl group, 1-hexanyl-6-ylidene group, 2-propanyl-1-ylidene group, 2-methylene-1,3-propanediyl group, 1- Propanyl-3-ylidene group, 3-butanyl-1-ylidene group, 1,2,3-butanetriyl group, 1-butanyl-2-ylidene group, 2-methyl-1-propanyl-3-ylidene group, 2 Methyl-1,2,3-tri-yl group,
[0024]
Trivalent acyclic groups such as 2-ethyl-1,2,3-propanetriyl group, 2-butanyl-1-ylidene group, 2-butanyl-3-ylidene group, 2-butanyl-4-ylidene group Groups consisting of hydrocarbons; 1,2,3-cyclopentanetriyl group, 1,2,5-cyclopentanetriyl group, 1-cyclopentyl-2-ylidene group, 1-cyclopentyl-3-ylidene group, 1, 2,3-cyclohexanetriyl group, 1,2,4-cyclohexanetriyl group, 1,3,5-cyclohexanetriyl group, 1-cyclohexyl-2-ylidene group, 1-cyclohexyl-3-ylidene group, 1 Cycloaliphatic carbons such as -cyclohexyl-4-ylidene group, cyclohexylmethylidine group, 4-cyclohexyleneethylene group, 1-cyclohexyl-2-ethanyl-1-ylidene A group composed of a trivalent hydrocarbon containing hydrogen; a trivalent containing an aromatic hydrocarbon such as a 1,3,5-benzenetriyl group, a benzidine group, a 2-phenyl-1,2,3-propanetriyl group; And a group consisting of the following hydrocarbons.
[0025]
In the general formula (1), R Five Represents a structural unit (hereinafter abbreviated as a structural unit exhibiting photo-orientation) that undergoes a photoreaction exhibiting orientation, such as a dimerization reaction or an isomerization reaction, upon irradiation with light. The structural unit exhibiting photo-alignment is not particularly limited, but at least one double bond selected from the group consisting of C = C, C = N, N = N, and C = O (provided that an aromatic ring is included). A structural unit having (excluding the double bond to be formed) is particularly preferably used.
[0026]
Examples of the structural unit exhibiting photo-alignment include the following.
For example, structural units having a C═C bond include skeletons such as polyene, stilbene, stilbazole, stilbazolium, cinnamate, hemithioindigo, and chalcone. Examples of the structural unit having a C═N bond include skeletons such as aromatic Schiff bases and aromatic hydrazones. Examples of the structural unit having an N═N bond include azo skeletons such as azobenzene, azonaphthalene, aromatic heterocyclic azo, bisazo, formazan, and those having a basic structure of azoxybenzene. Examples of the structural unit having a C═O bond include skeletons such as benzophenone, coumarin, and anthraquinone.
[0027]
Specifically, the following structures are mentioned, for example. Of course, even if one or more residues such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, and a halogenated alkyl group are bonded to these structures. There is no problem.
[0028]
[Formula 4]
Figure 0004756296
[0029]
Among them, a cinnamate, coumarin, chalcone, or benzophenone skeleton showing photoalignment by photodimerization, or a maleimide derivative having a photoalignment group having an azobenzene or anthraquinone skeleton showing photoalignment by a photoisomerization reaction, Maleimide derivatives having a skeleton of cinnamate, coumarin, chalcone, or benzophenone are particularly preferred because the amount of polarized light irradiation necessary for photo-alignment is small and the obtained photo-alignment film has excellent thermal stability and stability over time. Is most preferred.
[0030]
In the above general formula, R Five Is bonded via a bonding group such as a single bond or an ester bond, an ether bond, an amide bond, or a urethane bond. 1 Is combined with.
[0031]
R 6 , R 7 , R 8 And R 9 Each represents an alkyl group containing 1 to 8 carbon atoms such as a hydrogen atom, a methyl group or an ethyl group, a phenyl group or a halogen atom.
[0032]
In the photo-alignment material of the present invention, the purpose of adjusting the introduction density of structural units exhibiting photo-alignment and improving the alignment state of the liquid crystal, or the structural unit exhibiting photo-alignment represented by the general formula (1) For the purpose of lowering the crystallinity of the maleimide derivative containing and improving the coating property to the substrate and the film forming property, etc., a maleimide compound not containing a structural unit exhibiting photo-alignment property represented by the following general formula (2) was appropriately mixed. A thing may be apply | coated and you may make it copolymerize with the maleimide derivative containing the structural unit which shows the photo-orientation represented by General formula (1). The mixing ratio of the maleimide derivative that does not contain a structural unit exhibiting photo-alignment is preferably in the range of 0 to 80% by weight, particularly preferably in the range of 0 to 50% by weight.
[0033]
[Chemical formula 5]
Figure 0004756296
[0034]
(Wherein R Ten Is at least one hydrocarbon group selected from the group consisting of a linear alkylene group, a branched alkylene chain, a cycloalkylene group, and an aryl group, or a plurality of these hydrocarbon groups are single bonds, ester bonds, ether bonds , An organic group linked by a bonding group selected from the group consisting of an amide bond and a urethane bond. R 11 , R 12 , R 13 And R 14 Each represents a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom. )
[0035]
In the general formula (2), R Ten Each independently represents at least one hydrocarbon group selected from the group consisting of a linear alkylene group, a branched alkylene chain, a cycloalkylene group, and an aryl group.
[0036]
Specific examples of these hydrocarbon groups include methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, Linear alkylene group such as undecamethylene group and dodecamethylene group; 1-methylethylene group, 1-methyl-trimethylene group, 2-methyl-trimethylene group, 1-methyl-tetramethylene group, 2-methyl-tetramethylene group An alkylene group having a branched alkyl group such as a group, 1-methyl-pentamethylene group, 2-methyl-pentamethylene group, 3-methylpentamethylene group, neopentyl group;
[0037]
Cycloalkylene groups such as cyclopentylene group and cyclohexylene group; aryl groups in the main chain or side chain such as benzylene group, 2,2-diphenyl-trimethylene group, 1-phenyl-ethylene group, 1-phenyl-tetraethylene group Cycloalkyl-alkylene groups having a cycloalkyl group in the main chain or side chain such as a cyclohexylmethylene group, a 1-cyclohexyl-ethylene group, and a 1-cyclohexyl-tetraethylene group.
[0038]
R Ten A plurality of the above-mentioned hydrocarbon groups may be linked by a bonding group selected from the group consisting of a single bond, an ester bond, an ether bond, an amide bond, and a urethane bond.
[0039]
Specific examples of such linked groups include, for example, a group composed of (poly) ether in which at least two hydrocarbon groups are linked by an ether bond, and at least one hydrocarbon group. A group composed of (poly) ester linked by an ester bond, at least two hydrocarbon groups, is obtained by esterifying an ether-linked (poly) ether (poly) ol and (poly) carboxylic acid ( Examples include groups composed of poly) carboxylic acid {(poly) ether (poly) ol} esters.
[0040]
R 11 , R 12 , R 13 And R 14 Represents an alkyl group containing 1 to 8 carbon atoms such as a hydrogen atom, a methyl group or an ethyl group, a phenyl group or a halogen atom.
[0041]
The photoalignment material of the present invention contains a maleimide derivative of the general formula (1) having a structural unit exhibiting photoalignment (hereinafter, the structural unit exhibiting photoalignment is abbreviated as a photoalignable group). And Next, an example of a method for producing a photo-alignment film and a liquid crystal display device having the photo-alignment film using the photo-alignment material of the present invention will be described.
[0042]
The photo-alignment material of the present invention is used after being dissolved in an appropriate solvent. At this time, the solvent is not particularly limited, but N-methylpyrrolidone, dimethylformamide, butyl cellosolve, γ-butyrolactone, chlorobenzene, dimethyl sulfoxide, dimethylacetamide, tetrahydrofuran and the like are generally used. Among these, N-methylpyrrolidone, butyl cellosolve, and γ-butyrolactone are particularly preferable because they have good coatability and a uniform film can be obtained.
[0043]
The solution of the photo-alignment material is applied to a substrate such as glass by a method such as spin coating or printing, and after drying, polymerization of maleimide groups and alignment of photo-alignment groups are performed. The polymerization of the maleimide group is carried out by light irradiation or heating. Since the polymerization operation by light may affect the photo-alignable group that has already been aligned, it is preferable to perform the photo-alignment group prior to the alignment, but photo-alignment by reversible photoisomerization such as azobenzene. For the purpose of fixing this state, a maleimide group polymerization operation may be performed after photo-alignment.
[0044]
When the wavelength of light at which the maleimide group is polymerized differs from the wavelength of light at which the alignment of the photoalignable group is generated, the polymerization operation by light has a wavelength as close as possible to the wavelength of the light at which the maleimide group is polymerized. It is preferable to use light. On the other hand, when the wavelength of the light for polymerization of the maleimide group is close to the wavelength of the light for generating the alignment of the photoalignable group, the polymerization of the maleimide group and the photoalignment operation of the photoalignment group can be performed simultaneously by one light irradiation. Is possible. Irradiation light used for photopolymerization of such maleimide groups is not particularly limited, but ultraviolet rays are preferably used. The irradiation method is not particularly limited, and polarized light such as non-polarized light, linearly polarized light, or elliptically polarized light is used.
[0045]
On the other hand, when the maleimide group polymerization operation is performed by heating, the process may be performed either before or after the photoalignable group alignment operation. Further, in order to completely polymerize the maleimide group, the polymerization may be first performed by light irradiation or heating, and then the photo-alignment operation may be performed, followed by light irradiation or heating again.
[0046]
The alignment operation of the photoalignable group is performed by irradiating polarized or non-polarized light. The wavelength of the irradiation light is selected such that the photo-alignment group efficiently photoreacts, and examples thereof include visible light and ultraviolet light, and ultraviolet light is particularly preferable. Although the irradiation method is not particularly limited, for example, when performing light alignment operation by irradiating polarized light, linearly polarized light and elliptically polarized light are often used. At this time, in order to obtain a pretilt of liquid crystal molecules, a method of irradiating polarized light to the substrate from an oblique direction or a method of irradiating non-polarized light from an oblique direction after irradiating polarized light may be used. Moreover, when irradiating only non-polarized light and performing photo-alignment, a method of irradiating the substrate from an oblique direction is preferable.
[0047]
The liquid crystal cell using the photo-alignment material of the present invention has a predetermined size after the direction of polarized light illuminating the alignment film on the two substrates on which the alignment film is formed has a predetermined angle. It is comprised by making it oppose through a spacer. When filling the liquid crystal cell with liquid crystal, it is preferable to fill the liquid crystal cell by heating to a temperature at which the liquid crystal is in an isotropic phase and then filling the liquid crystal cell by a capillary method or a vacuum injection method.
[0048]
Examples of the liquid crystal material include 4-substituted benzoic acid 4′-substituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4′-substituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4′-substituted biphenyl ester, 4- (4- Substituted cyclohexanecarbonyloxy) benzoic acid 4′-substituted phenyl ester, 4- (4-substituted cyclohexyl) benzoic acid 4′-substituted phenyl ester, 4- (4-substituted cyclohexyl) benzoic acid 4′-substituted cyclohexyl ester, 4- Substituted 4′-substituted biphenyl, 4-substituted phenyl-4′-substituted cyclohexane, 4-substituted 4 ″ -substituted terphenyl, 4-substituted biphenyl 4′-substituted cyclohexane, 2- (4-substituted phenyl) -5-substituted A pyrimidine etc. can be mentioned.
[0049]
In this invention, after apply | coating the photo-alignment material containing the maleimide derivative which has a photo-alignment group to a board | substrate, a maleimide group is superposed | polymerized and further a photo-alignment group is orientated to obtain a photo-alignment film. Since the material to be applied is a monomer, the solvent has high solubility and is easy to apply. Moreover, since it has a maleimide group at both ends, it has a crosslinked structure after polymerization, so that a photo-alignment film having high stability against light and heat can be obtained. In addition, since the photo-alignment group is bonded to the main chain having a maleimide group so as to be a side chain, the degree of freedom of the photo-alignment group is high even after polymerization of the maleimide group. An alignment film having high sensitivity and a large pretilt angle can be obtained.
[0050]
In addition, since polymerization by maleimide does not require a polymerization initiator, the polymerization initiator does not elute into the liquid crystal after the production of the liquid crystal cell, and the cause of performance deterioration of the liquid crystal display element such as a decrease in voltage holding ratio is eliminated. be able to.
[0051]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using a synthesis example, an Example, and a comparative example, this invention is not limited to the range of these Examples.
[0052]
[Reference Example 1] Synthesis of maleimidoacetic acid
In a 500 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel, Dean-Stark fractionator and condenser, 140 g of toluene, 5.2 g of p-toluenesulfonic acid monohydrate and 2.8 g of triethylamine Were added in order, 30 g of maleic anhydride was added with stirring, and then dissolved while heating up to 30 ° C. Further, 23 g of glycine was added, and the mixture was reacted at 70 ° C. for 3 hours with stirring. 50 g of toluene and 60 g of triethylamine were added, and the reaction was carried out for 1 hour while removing the water produced by heating and refluxing the solvent. The residue obtained by distilling off the solvent from the reaction mixture was 4 mol / dm. Three Hydrochloric acid was added to adjust the pH to 2, followed by heating and recrystallization to obtain 7.3 g of a pale yellow solid of maleimidoacetic acid.
[0053]
Reference Example 2 Synthesis of 2,2-dimethyl-5-ethyl-5- (bromomethyl) -1,3-dioxane (Compound A)
To a 500 ml four-necked flask equipped with a stirrer, a thermometer and a condenser tube equipped with a calcium chloride drying tube, 67.1 g of trimethylolpropane, 57.3 g of 2,2-dimethoxypropane, 100 g of toluene and p-toluene 2.9 g of sulfonic acid monohydrate was added and stirred at 60 ° C. for 3 hours. After cooling, 2.5 g of potassium carbonate was added and stirred overnight at room temperature. The solid in the flask was removed by filtration, and the solvent was distilled off under reduced pressure to obtain 80.6 g of Intermediate A (liquid).
[0054]
Intermediate A 43.8 g, carbon tetrabromide 116.6 g and N, N-dimethylformamide were added to a 500 ml four-necked flask equipped with a stirrer, thermometer, nitrogen inlet tube and condenser tube equipped with a calcium chloride drying tube. 300 ml was added, and the mixture was sufficiently cooled in an ice-salt bath with stirring under a nitrogen atmosphere, and 91.9 g of triphenylphosphine was added little by little so that the liquid temperature did not exceed 0 ° C. After completion of the addition of triphenylphosphine, the mixture was stirred in an ice salt bath for 30 minutes, and then stirred in an ice bath for 1 hour and at room temperature for 2 hours, and then the solvent was distilled off at 50 ° C. under reduced pressure. The concentrated mixture was extracted three times with 200 g of acetone-hexane mixed solvent (1/3), and the resulting extract was purified by column chromatography using silica gel to obtain 47 g of the desired compound A. (Yield 79%)
[0055]
[Synthesis Example 1]
Compound A (11.9 g), 7-hydroxycoumarin (8.3 g), and N-methylpyrrolidone (40 g) were added to a three-necked flask with a capacity of 100 ml equipped with a stirrer, a thermometer, and a condenser tube equipped with a calcium chloride drying tube and stirred. . When a uniform solution was obtained, 7.1 g of potassium carbonate was added and reacted at 150 ° C. for 2 hours. After cooling, the solvent was distilled off under reduced pressure, and the concentrated mixture was dissolved in 4 liters of ethyl acetate. This solution was washed with 500 g of water three times and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. 13.5 g of the obtained solid was dissolved in 100 g of tetrahydrofuran, 30 g of 6% hydrochloric acid was added, and the mixture was stirred at room temperature for 4 hours. The solvent was distilled off under reduced pressure, and the resulting solid was washed with water, filtered and dried.
[0056]
In a three-necked flask with a capacity of 500 ml equipped with a stirrer, a thermometer, a Dean-Stark fractionator and a condenser, 9.4 g of the solid obtained above, 12.6 g of maleimide acetic acid, p-toluenesulfonic acid monohydrate 0.8 g of a Japanese product, 40 mg of hydroquinone and 200 ml of toluene were sequentially added, and the mixture was heated to 90 ° C. under reduced pressure to react for 15 hours while refluxing the solvent to remove the generated water. After completion of the reaction, the reaction solution was diluted by adding 200 ml of toluene, and washed 4 times with 50 g of water. The toluene solution was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The resulting solid was purified by column chromatography using silica gel to obtain the formula (3)
[0057]
[Chemical 6]
Figure 0004756296
12 g of a bifunctional maleimide derivative represented by the formula:
[0058]
[Synthesis Example 2]
To a 300 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel and condenser, 6.3 g of 2-bromoethanol was added, and 10 g of N-methylpyrrolidone was added with stirring under cooling in an ice bath. . To this, 2 mg of p-toluenesulfonic acid monohydrate was added, and 4.2 g of dihydropyran was added dropwise over about 10 minutes. After stirring for 2 hours under ice-cooling and further stirring for 2 hours at room temperature, 8.5 g of 7-hydroxycoumarin and 6.9 g of potassium carbonate were added and reacted at 120 ° C. for 3 hours. After cooling, the reaction mixture was added to 100 ml of water and extracted twice with 100 ml of toluene. The obtained toluene layer was dried over anhydrous sodium sulfate, and the solvent was distilled off with an evaporator. To the obtained residue, 45 g of methanol, 7 g of water and 0.5 g of concentrated hydrochloric acid were added and stirred overnight at room temperature. After distilling off the solvent, 250 g of toluene was added to form a solution, which was washed twice with 50 g of water.
[0059]
The toluene solution obtained above was put into a 500 ml three-necked flask equipped with a stirrer, a thermometer and a condenser, and 10.5 g of Compound A synthesized in Reference Example 2, 0.9 g of tetrabutylammonium bromide and 40 80 g of a percent aqueous sodium hydroxide solution was added and refluxed for 5 hours with stirring. After cooling, the mixture was transferred to a separatory funnel, the aqueous layer was separated and removed, and washed with 20 g of water three times.
The obtained toluene solution was evaporated under reduced pressure, the residue was dissolved in 100 g of tetrahydrofuran, 30 g of 6% hydrochloric acid was added, and the mixture was stirred at room temperature for 4 hours. The solvent was distilled off under reduced pressure, and the resulting solid was washed with water, filtered and dried.
[0060]
In a 500 ml three-necked flask equipped with a stirrer, thermometer, Dean-Stark fractionator and condenser, 10.8 g of the solid obtained above, 12.6 g of maleimide acetic acid, p-toluenesulfonic acid monohydrate 0.8 g of a Japanese product, 40 mg of hydroquinone and 200 ml of toluene were sequentially added, and the mixture was heated to 90 ° C. under reduced pressure to react for 15 hours while refluxing the solvent to remove the generated water. After completion of the reaction, the reaction solution was diluted with 200 ml of toluene and washed with 50 g of water four times. The toluene solution was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The resulting solid was purified by column chromatography using silica gel to obtain a formula (4),
[0061]
[Chemical 7]
Figure 0004756296
16 g of a bifunctional maleimide derivative represented by the formula:
[0062]
[Synthesis Example 3]
11.9 g of compound A obtained in Reference Example 1, 11.5 g of 4-hydroxychalcone, N-methylpyrrolidone in a three-necked flask with a capacity of 100 ml equipped with a stirrer, a thermometer and a condenser tube equipped with a calcium chloride drying tube 40 g was added and stirred. When a uniform solution was obtained, 7.1 g of potassium carbonate was added and reacted at 150 ° C. for 2 hours. After cooling, the solvent was distilled off under reduced pressure, and the concentrated mixture was dissolved in 4 liters of ethyl acetate. This solution was washed with 500 g of water three times and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure.
15.0 g of the obtained solid was dissolved in 100 g of tetrahydrofuran, 30 g of 6% hydrochloric acid was added, and the mixture was stirred at room temperature for 4 hours. The solvent was distilled off under reduced pressure, and the resulting solid was washed with water, filtered and dried.
[0063]
In a 500 ml three-necked flask equipped with a stirrer, thermometer, Dean-Stark fractionator and condenser, 10.4 g of the solid obtained above, 12.6 g of maleimidoacetic acid, p-toluenesulfonic acid monohydrate 0.8 g, hydroquinone 40 mg, and toluene 200 ml were charged in order, heated to 90 ° C. under reduced pressure, and reacted for 15 hours while removing the water produced by dry distillation of the solvent. After completion of the reaction, the reaction solution was diluted with 200 ml of toluene and washed with 50 g of water four times. The toluene solution was dried over sodium sulfate, and the solvent was distilled off under reduced pressure, and the resulting solid was purified by column chromatography using silica gel to obtain the formula (5)
[0064]
[Chemical 8]
Figure 0004756296
13 g of a bifunctional maleimide derivative represented by the formula:
[0065]
[Synthesis Example 4]
Into a 500 ml three-necked flask equipped with a stirrer, a thermometer, a Dean-Stark fractionator and a condenser tube, 8.8 g of maleimide acetic acid obtained in a of Reference Example 1 and polypropylene glycol having a number average molecular weight of 400 0 g, 0.4 g of p-toluenesulfonic acid monohydrate, 20 mg of hydroquinone and 150 ml of toluene were sequentially added, and heated to 90 ° C. under reduced pressure to react for 15 hours while refluxing the solvent to remove the water produced. It was. After completion of the reaction, the reaction mixture was washed twice with dilute sodium hydroxide solution and then three times with pure water, and toluene was distilled off to obtain the formula (5),
[0066]
[Chemical 9]
Figure 0004756296
7.7 g of a maleimide derivative represented by the formula:
[0067]
[Comparative Synthesis Example 1]
In the synthesis of the maleimide derivative of Synthesis Example 1, using acrylic acid instead of maleimide acetic acid, the formula (7)
[0068]
[Chemical Formula 10]
Figure 0004756296
The bifunctional acrylate represented by this was obtained.
[0069]
Using the maleimide derivative and the photo-alignment material obtained by the above synthesis examples and comparative synthesis examples, a photo-alignment film was produced and evaluated for physical properties. The preparation method of the photo-alignment film and the physical property evaluation method were performed according to the following methods.
[0070]
[Method for producing photo-alignment film]
a. Preparation of photo-alignment film solution
The maleimide derivative obtained in the synthesis example is dissolved in a mixed solvent of N-methylpyrrolidone / butyl cellosolve = 1/1 to obtain a 5% solid content solution, which is filtered through a 0.1 μm filter, and a photo-alignment material solution It was.
[0071]
b-1. Photo-alignment film production (thermosetting method)
A. The photo-alignment material solution obtained by the above method was uniformly applied on a glass substrate with an ITO electrode by a spin coater, and dried and cured at 190 ° C. for 1 hour. Next, from the ultra high pressure mercury lamp on the surface of the obtained coating film, the integrated light quantity is 10 J / cm. 2 Were irradiated with linearly polarized ultraviolet light in the vicinity of 365 nm to prepare a photo-alignment film.
[0072]
b-2. Photo-alignment film production (photo-curing method)
A. The photo-alignment film solution obtained by the above method was applied onto a glass substrate with an ITO electrode by a spin coater, dried at 100 ° C. for 15 minutes, and then applied to the surface of the coating film with an integrated light amount of 10 J / cm 2 Was irradiated with linearly polarized ultraviolet light having a wavelength of about 313 nm to produce a photo-alignment film.
[0073]
c. Production of liquid crystal cell
An epoxy-based adhesive containing styrene beads having a diameter of 8 μm is applied around the photo-alignment film substrate obtained in the above b-1 or 2, leaving the liquid crystal injection port, so that the alignment plane faces and polarized light. The adhesives were superimposed and pressed on an inorganic material having orthogonal directions, and the adhesive was cured at 150 ° C. for 90 minutes. Next, nematic liquid crystal (5CB) was vacuum injected from the liquid crystal injection port in an isotropic phase state, and after filling, the liquid crystal injection port was sealed with an epoxy adhesive.
[0074]
[Evaluation method of photo-alignment film]
d. Liquid crystal alignment evaluation
C. The liquid crystal cell obtained by the above method is sandwiched between two polarizing plates whose polarization directions are orthogonal to each other, and a voltage of 5 V is applied between the electrodes to turn on / off, thereby switching the alignment of the liquid crystal. Evaluated.
[0075]
e. Voltage holding ratio measurement
C. The liquid crystal cell obtained by the above method was applied with a DC voltage of 5 V for 64 microseconds, and subsequently measured for voltage holding ratio with respect to the initial applied voltage after being opened for 16.6 milliseconds.
[0076]
f. Durability measurement
The alignment after the liquid crystal cell was held at 80 ° C. for 1000 hours was visually evaluated.
[0077]
[Example 1]
Using the maleimide derivative (3) obtained in Synthesis Example 1, the photo-alignment material solution was prepared according to the method for preparing the photo-alignment material solution, and then b-1. A photo-alignment film was prepared according to the thermosetting preparation method of the photo-alignment film. A liquid crystal cell was prepared using the obtained photo-alignment film, and physical properties were evaluated according to the above evaluation method. As a result, the voltage holding ratio was 99%, and the liquid crystal orientation and durability were both good.
[0078]
[Example 2]
Using the maleimide derivative (3) obtained in Synthesis Example 1, the photo-alignment material solution was prepared according to the method for preparing the photo-alignment material solution, and then b-2. A photo-alignment film was prepared according to the photo-alignment film preparation method. Next, the surface including the normal of the substrate surface and the incident direction is b-2. The wavelength is 313 nm and the integrated light quantity is 10 J / cm from the direction in which the angle formed by the substrate surface and the incident direction is 45 ° in parallel with the polarization direction. 2 Of non-polarized parallel light.
A liquid crystal cell was prepared using the obtained photo-alignment film, and physical properties were evaluated according to the above evaluation method. As a result, the voltage holding ratio was 99%, and the liquid crystal orientation and durability were good.
Further, the liquid crystal element produced as described above was measured by a rotating crystal method, and as a result, the pretilt angle was 3 °.
[0079]
[Example 3]
The maleimide derivative (3) obtained in Synthesis Example 1 was used as a mixture of the maleimide derivative (3) obtained in Synthesis Example 1 and the maleimide derivative (6) obtained in Synthesis Example 4 at a weight ratio of 1/1. Were evaluated in the same manner as in Example 1. As a result, the voltage holding column was 99%, and the liquid crystal orientation and durability were both good.
[0080]
[Example 4]
Evaluation was performed in the same manner as in Example 1 except that the maleimide derivative (3) obtained in Synthesis Example 1 was replaced with the maleimide derivative (4) obtained in Synthesis Example 2. As a result, the voltage holding ratio was 99%, and the liquid crystal orientation and durability were both good.
[0081]
[Example 5]
Evaluation was performed in the same manner as in Example 1 except that the maleimide derivative (3) obtained in Synthesis Example 1 was replaced with the maleimide derivative (5) obtained in Synthesis Example 3. As a result, the voltage holding ratio was 99%, and the liquid crystal orientation and durability were good.
[0082]
[Comparative Example 1]
The maleimide derivative (3) obtained in Synthesis Example 1 was used as an acrylic acid derivative (7) synthesized in Comparative Synthesis Example and an initiator, and 0.1% of 2,2′-azobisisobutyrate was used as an initiator. Evaluation was performed in the same manner as in Example 2 except that ronitrile was added. As a result, the liquid crystal orientation and durability were good, but the voltage holding ratio was as low as 89%.
[0083]
[Comparative Example 2]
Evaluation was performed in the same manner as in Example 1 except that the maleimide derivative (3) obtained in Synthesis Example 1 was replaced with the maleimide derivative (6) obtained in Synthesis Example 4.
As a result, liquid crystal alignment was not recognized.
[0084]
【The invention's effect】
By using the photo-alignment material containing the maleimide derivative of the present invention, photo-alignment having good liquid crystal display element characteristics, for example, voltage holding ratio, and good alignment stability and sufficient durability against light and heat A membrane can be obtained.

Claims (5)

一般式(1)
Figure 0004756296
(式中、R1、R2及びR3は各々、単結合、アルキレン基、シクロアルキレン基、アリーレン基、少なくとも2つの炭化水素基がエーテル結合で結合された(ポリ)エーテルから構成される基及び少なくとも2つの炭化水素基がエステル結合で結合された(ポリ)エステルから構成される基からなる群より選ばれる少なくとも1つの炭化水素基、を表す。R41,1,1−三置換アルキル基を表す。R5単結合、エステル結合、エーテル結合を介してR 3 と結合する下記で表される
Figure 0004756296
(上式において、カルコン骨格中のベンゼン環の4位又はクマリン骨格の7位でエーテル結合を介してR 3 と結合しているものとする。)光配向性を示す構成単位を表し、R6、R7、R8及びR9は各々、水素原子、1〜8個の炭素原子を含むアルキル基、フェニル基またはハロゲン原子を表す。)で表されるマレイミド誘導体。
General formula (1)
Figure 0004756296
(Wherein R 1 , R 2 and R 3 are each a single bond, an alkylene group, a cycloalkylene group, an arylene group, or a group composed of (poly) ether in which at least two hydrocarbon groups are bonded by an ether bond) And at least one hydrocarbon group selected from the group consisting of (poly) esters in which at least two hydrocarbon groups are linked by an ester bond, wherein R 4 is 1,1,1-trisubstituted. It represents an alkyl group .R 5 is a single bond, an ester bond, represented by the following binding with R 3 via an ether bond
Figure 0004756296
(In the above formula, 4-position or 7-position of the coumarin skeleton via an ether bond assumed to be bound to R 3. Of benzene rings of chalcone skeleton) represents a structural unit of an optical alignment, R 6 , R 7 , R 8 and R 9 each represent a hydrogen atom, an alkyl group containing 1 to 8 carbon atoms, a phenyl group or a halogen atom. A maleimide derivative represented by:
R 11 及びRAnd R 22 が−CHIs -CH 2 −CO−O−CH-CO-O-CH 2 −であり、R-And R 3Three がアルキレン基又は−CHIs an alkylene group or -CH 2 −CH-CH 2 −O−CH-O-CH 2 −であり、R-And R 5Five がエーテル結合を介してRR via an ether bond 3Three と結合する下記で表されるCombined with represented by
Figure 0004756296
Figure 0004756296
(上式において、カルコン骨格中のベンゼン環の4位又はクマリン骨格の7位でエーテル結合を介してR(In the above formula, R is introduced through an ether bond at the 4-position of the benzene ring in the chalcone skeleton or the 7-position of the coumarin skeleton. 3Three と結合しているものとする。)置換基であり、RIt is assumed that it is combined with ) Substituent, R 4Four が1,1,1−三置換プロピル基である請求項1記載のマレイミド誘導体。The maleimide derivative according to claim 1, wherein is a 1,1,1-trisubstituted propyl group.
請求項1又は2に記載のマレイミド誘導体を含有する光配向材料を基板上に塗布し、光照射によりマレイミド基の重合を行い、同時に、光配向性を示す構成単位の光反応を行う光配向膜の製造方法。A photo-alignment film which coats a photo-alignment material containing the maleimide derivative according to claim 1 or 2 on a substrate, polymerizes a maleimide group by light irradiation, and simultaneously performs a photoreaction of a structural unit exhibiting photo-alignment Manufacturing method. 請求項1又は2に記載のマレイミド誘導体を含有する光配向材料を基板上に塗布し、光照射によりマレイミド基の重合を行い、次いで、光配向性を示す構成単位の光反応を行う光配向膜の製造方法。 A photo-alignment film that coats a photo-alignment material containing the maleimide derivative according to claim 1 or 2 on a substrate, polymerizes a maleimide group by light irradiation, and then performs a photoreaction of a structural unit exhibiting photo-alignment Manufacturing method. 請求項1又は2に記載のマレイミド誘導体を含有する光配向材料を基板上に塗布し、加熱によりマレイミド基の重合を行い、次いで、光照射により光配向性を示す構成単位の光反応を行う光配向膜の製造方法。 A photo-alignment material containing the maleimide derivative according to claim 1 or 2 is applied onto a substrate, heated to polymerize a maleimide group, and then subjected to photoreaction of a structural unit exhibiting photo-alignment property by light irradiation. A method for producing an alignment film.
JP2001071974A 2001-03-14 2001-03-14 Maleimide derivative and method for producing photoalignment film using the same Expired - Fee Related JP4756296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071974A JP4756296B2 (en) 2001-03-14 2001-03-14 Maleimide derivative and method for producing photoalignment film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071974A JP4756296B2 (en) 2001-03-14 2001-03-14 Maleimide derivative and method for producing photoalignment film using the same

Publications (2)

Publication Number Publication Date
JP2002265442A JP2002265442A (en) 2002-09-18
JP4756296B2 true JP4756296B2 (en) 2011-08-24

Family

ID=18929620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071974A Expired - Fee Related JP4756296B2 (en) 2001-03-14 2001-03-14 Maleimide derivative and method for producing photoalignment film using the same

Country Status (1)

Country Link
JP (1) JP4756296B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803412B2 (en) * 2001-03-14 2011-10-26 Dic株式会社 Photoalignment material containing maleimide derivative and method for producing photoalignment film
US7432330B2 (en) 2002-12-31 2008-10-07 Nektar Therapeutics Al, Corporation Hydrolytically stable maleimide-terminated polymers
US7432331B2 (en) 2002-12-31 2008-10-07 Nektar Therapeutics Al, Corporation Hydrolytically stable maleimide-terminated polymers
JP6163801B2 (en) * 2013-03-13 2017-07-19 Jnc株式会社 Cured film
US11034669B2 (en) 2018-11-30 2021-06-15 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980057660A (en) * 1996-12-30 1998-09-25 손욱 Optical alignment composition, alignment layer formed using the same and LCD having alignment layer
KR100238161B1 (en) * 1997-03-31 2000-01-15 손욱 Optical alignment polymer, optical alignment layer formed therefrom and liquid crystal display having the optical alignmnet layer
JP3550638B2 (en) * 1997-09-08 2004-08-04 独立行政法人産業技術総合研究所 Novel maleimide-styrene copolymer, method for producing the same, and second-order nonlinear optical material
KR100279043B1 (en) * 1998-07-15 2001-01-15 윤종용 Polymaleimide and Polyimide Photoalignment Material for Liquid Crystal Display
WO2000010974A2 (en) * 1998-08-20 2000-03-02 Dsm N.V. Process for the preparation of a maleimide compound, maleimide compound, radiation-curable compositions comprising said compound and coated products
JP4900632B2 (en) * 2000-08-30 2012-03-21 Dic株式会社 Photo-alignment film material, photo-alignment film and method for producing the same
JP4803412B2 (en) * 2001-03-14 2011-10-26 Dic株式会社 Photoalignment material containing maleimide derivative and method for producing photoalignment film

Also Published As

Publication number Publication date
JP2002265442A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP4803412B2 (en) Photoalignment material containing maleimide derivative and method for producing photoalignment film
JP4900632B2 (en) Photo-alignment film material, photo-alignment film and method for producing the same
US6733958B2 (en) Material for photo-alignment layer, photo-alignment layer and method of manufacturing the same
KR100768289B1 (en) Method of manufacturing photo-alignment layer
KR100819416B1 (en) Azo compound, composition for optical alignment film using same, and method for producing optical alignment film
JP3883848B2 (en) Method for producing photo-alignment film
JP5186734B2 (en) Azo compound, composition for photo-alignment film, photo-alignment film and liquid crystal display element
KR101819528B1 (en) Polymer for use in a liquid-crystal alignment layer
JPH1180081A (en) Liquid crystal (meth)acrylate compound, its composition and optical isomer using the same
JP4006608B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP4957976B2 (en) Composition for vertical alignment layer
TW201231476A (en) Photoactive polymer materials
TWI810273B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and compound
WO2012165550A1 (en) Cinnamic acid derivative, polymer thereof, and liquid crystal alignment layer comprising cured article thereof
KR20070029100A (en) Polymer for liquid crystal aligning and liquid crystal display using the same
JP2003270638A (en) Composition for photo-alignment layer, and method for manufacturing photo-alignment layer using the same
JP4522662B2 (en) Composition for liquid crystal alignment film, liquid crystal alignment film, method for producing liquid crystal alignment film, and maleimide compound
JP7409388B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP4756296B2 (en) Maleimide derivative and method for producing photoalignment film using the same
JP4604438B2 (en) Photo-alignment film material, photo-alignment film and method for producing the same
WO2017065080A1 (en) Photo-alignment film polymer, polymer solution, photo-alignment film, optically anisotropic body and liquid crystal display element
JP2003012762A (en) Polymerizable liquid crystal compound, composition, and optically anisotropic product
JP3972430B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
CN107924092B (en) Composition for producing liquid crystal alignment film, liquid crystal alignment film using same, method for producing same, liquid crystal display element having liquid crystal alignment film, and method for producing same
JP2004035722A (en) Composition for photo-aligned film, and method for producing photo-aligned film

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Ref document number: 4756296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees