JP4900632B2 - Photo-alignment film material, photo-alignment film and method for producing the same - Google Patents

Photo-alignment film material, photo-alignment film and method for producing the same Download PDF

Info

Publication number
JP4900632B2
JP4900632B2 JP2001229471A JP2001229471A JP4900632B2 JP 4900632 B2 JP4900632 B2 JP 4900632B2 JP 2001229471 A JP2001229471 A JP 2001229471A JP 2001229471 A JP2001229471 A JP 2001229471A JP 4900632 B2 JP4900632 B2 JP 4900632B2
Authority
JP
Japan
Prior art keywords
group
photo
alignment
carbon atoms
maleimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001229471A
Other languages
Japanese (ja)
Other versions
JP2002317013A (en
Inventor
昌宣 福田
均 早川
宏和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2001229471A priority Critical patent/JP4900632B2/en
Priority to TW90121017A priority patent/TW553932B/en
Publication of JP2002317013A publication Critical patent/JP2002317013A/en
Application granted granted Critical
Publication of JP4900632B2 publication Critical patent/JP4900632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示素子に用いられる光配向膜に関し、さらに詳しくは、光を照射することにより、ラビングを行うことなく液晶分子を配向させることができる光配向膜の形成材料、該材料からなる光配向膜、その製造方法及び該光配向膜を用いた液晶表示素子に関する。
【0002】
【従来の技術】
液晶表示装置においては、液晶の分子配列の状態を電場等の作用によって変化させて、これに伴う光学的特性の変化を表示に利用している。
多くの場合、液晶は二枚の基板の間隙に挟んだ状態で用いられるが、ここで液晶分子を特定の方向に配列させるために、基板の内側に配向処理が行われる。
【0003】
通常、配向処理は、ガラス等の基板にポリイミド等の高分子の膜を設け、これを一方向に布等で摩擦する、ラビングという方法が用いられる。これにより、基板に接する液晶分子はその長軸(ダイレクタ)がラビングの方向に平行になるように配列する。たとえば、ツイストネマチック(TN)セルでは二枚の直交した偏光板の間に、内側に配向膜が塗布された二枚の基板を対向させ、そのラビング方向が互いに直交するように配置し、光透過率の変化による表示を可能にしている。
【0004】
しかしながら、ラビング法は製造装置が簡単であるという利点を有するものの、製造工程において静電気や埃が発生するため、配向処理後に洗浄工程が必要となるとともに、特に近年多く用いられているTFT方式の液晶セルでは静電気によりあらかじめ基板に設けられたTFT素子が破壊され、これが製造における歩留まりを下げる原因にもなっている。一方、液晶表示素子においては構成されている液晶分子の傾きに方向性があるため、表示素子を見る方向によって表示色やコントラストが変化する等といった視野角依存性が問題となっている。
【0005】
これを改善する方法の一つとしては、一画素を分割して、領域ごとに液晶分子のプレチルト角(特開昭62−159119号公報)や配向方向(特開昭63−106624号公報)を変える配向分割法が考案されている。このような、分割領域ごとの配向は、従来のラビング法ではプロセスが煩雑で実用には適さない。
【0006】
かかる問題を解決するために、近年ラビングを行わない液晶配向制御技術が注目されている。このようなラビングレスの配向技術としては、斜方蒸着法、LB(ラングミュアー−ブロジェット)膜法、フォトリソグラフィ法、光配向法等が検討されてきた。とりわけ、偏光された光を基板上に設けられた塗膜に照射して、液晶配向性を生じさせる光配向法は簡便であり、配向処理後に洗浄工程が不必要であり、さらにフォトマスク等を用いることにより上記の配向分割を容易に行うことができるため、盛んに研究が行われている。この光配向法は、有機分子中の光配向機能を発現させる光配向性基、例えばアゾ基等の光異性化によるもの、シンナモイル基、クマリン基、カルコン基等の光二量化によるもの、ベンゾフェノン基等の光架橋やポリイミド樹脂等の光分解によるもの等が報告されている。
【0007】
これらの光異性化、光二量化や光架橋を利用した光配向膜材料としては、ガラス等の基板に塗布した際に均一な膜が得られるよう高分子材料が用いられることが多く、上記の様な光配向性基がこの高分子材料の側鎖や主鎖に導入される場合が多い。また、光配向性を有する分子をゲスト分子とし、高分子化合物からなるホスト化合物に分散させて用いる場合もある。
【0008】
しかし、光異性化型の場合、偏光紫外線の照射による分子のシス−トランス(cis−trans)異性化を利用しているため、光配向処理後の光安定性に問題がある。また、光分解型の場合、光配向処理を行った際に生じる分解生成物により液晶が汚染されるおそれがあるため、処理後に基板を洗浄する必要があり、光配向膜の洗浄不要といった特長が失われる。また、高分子材料を用いた光配向材料の多くは溶剤に対する溶解性が低く、基板に塗布する際に使用できる溶媒の種類が限られるといった問題がある。
【0009】
例えば、WO9637807号公報(米国特許第6001277号明細書、特開平8−328005号公報)には、光異性化可能であって二色性を示す構造単位及び反応性官能基を有する樹脂を使用した液晶配向膜が開示されているが、この材料は高分子化合物であり、基板に塗布する際に使用できる溶媒の種類が限られ、一般に、N,N−ジメチルアセトアミドやN−メチル−2−ピロリドンのような高沸点の極性溶媒が使用される。この場合、塗布後に溶媒を揮発させるために長時間を要し、生産性を低下させる。さらに、この材料は、樹脂中の反応性官能基の割合が低いので、架橋密度が低く、その結果、この材料から成る配向膜の耐熱性が必ずしも十分ではなかった。
【0010】
これらの問題点を解決し、光配向膜の液晶配向能が長期間安定に得られるようにする方法の例としては、偏光照射によって配向性を示す光配向性基を付加した重合性モノマーを熱もしくは光重合させ、かつ偏光照射によって光配向させる方法がある。しかし多くの場合、モノマーを熱もしくは光重合させるには重合開始剤の添加が必要となる。この重合開始剤は低分子化合物であるため、光配向膜の硬化後であっても、長期間が経過すると、セル内の液晶層に重合開始剤が拡散し、液晶表示素子としての特性、例えば電圧保持率を劣化させるおそれがある。
【0011】
重合開始剤の不要な光重合性基としては、重合性マレイミド基がある。この重合性マレイミド基を有する化合物を用いた光配向膜は特開2000−53766号公報(米国特許第6218501号明細書)や特許2962473号公報(特開平11−2815号公報、米国特許第6048928号明細書)に開示されている。これらの光配向膜はポリマレイミドの主鎖に光配向を発現する官能基を側鎖として付加したものであるが、これらの光配向膜は、耐熱性や液晶配向能の長期安定性については未だ不十分である。
【0012】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、良好な液晶表示素子特性、例えば電圧保持率を有し、かつ良好な配向安定性と光や熱に対する十分な耐久性を有する液晶表示素子用の光配向膜を提供することにある。
【0013】
【課題を解決するための手段】
本発明は上記課題を解決するために、1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体から成ることを特徴とする光配向膜用材料を提供する。
【0014】
また、本発明は上記課題を解決するために、1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体の重合体から成り、前記光配向性基の光二量化により発現した光配向機能と前記重合性マレイミド基の重合により生じた架橋構造とを有することを特徴とする光配向膜を提供する。
【0015】
また、本発明は上記課題を解決するために、1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体を基板上に塗布し、該塗膜に光照射することにより前記構造単位の光二量化反応と前記重合性マレイミド基の光重合反応を生起させて架橋された高分子膜を形成すると共に前記高分子膜に光配向機能を発現させることを特徴とする光配向膜の製造方法を提供する。
【0016】
さらに、本発明は上記課題を解決するために、1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体を基板上に塗布し、該塗膜を加熱することにより前記重合性マレイミド基の熱重合反応を生起させて架橋された高分子膜を形成し、前記高分子膜に光照射することにより前記構造単位の光二量化反応を生起させて前記高分子膜に光配向機能を発現させることを特徴とする光配向膜の製造方法を提供する。
【0017】
さらにまた、本発明は上記課題を解決するために、内側に配向膜を有する二枚の基板間に液晶を挟持した構造を有する液晶表示素子において、前記配向膜が1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体の重合体から成り、前記光配向性基の光二量化により発現した光配向機能と前記重合性マレイミド基の重合により生じた架橋構造とを有する光配向膜であることを特徴とする液晶表示素子を提供する。
【0018】
【発明の実施の形態】
本発明の光配向膜用材料に用いられる1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体において、光二量化反応により光配向機能を発現する光配向性基は、偏光を照射することで二量化の配向性が得られるような光反応を生起させる官能基であるならば特に限定されないが、中でもC=C、C=Oで表わされる少なくとも一つの二重結合(但し、芳香環を形成する二重結合を除く)を有する構造単位が特に好ましく用いられる。
【0019】
これらの光二量化反応によって光配向機能を発現する光配向性基の基本構造としては、以下のものが挙げられる。
C=C結合を有する光二量化反応によって光配向機能を発現する光配向性基としては、例えば、ポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、シンナモイル基、ヘミチオインジゴ基、カルコン基等の構造を有する基が挙げられる。C=O結合を有する光二量化反応によって光配向機能を発現する光配向性基としては、例えば、ベンゾフェノン基、クマリン基等の構造を有する基が挙げられる。
【0020】
具体的には、以下の構造を有する基が挙げられる。勿論、これらの構造にアルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基等の置換基を有していても良い。
【0021】
【化5】

Figure 0004900632
【0022】
具体的には、1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体は、一般式(1)
【化6】
Figure 0004900632
で表わされる化合物が好ましく、これらの中でも、一般式(2)
【化7】
Figure 0004900632
で表わされる化合物が好ましい。
【0023】
一般式(1)及び(2)において、Rは、炭素原子数1〜30の直鎖状又は分岐状アルキレン基、炭素原子数3〜12のシクロアルキレン基、アリールアルキレン基及びシクロアルキルアルキレン基からなる群より選ばれる少なくとも1つの基を表わす。
【0024】
を表わす有機基の具体例としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基の如き直鎖状アルキレン基;1−メチルエチレン基、1−メチル−トリメチレン基、2−メチル−トリメチレン基、1−メチル−テトラメチレン基、2−メチル−テトラメチレン基、1−メチル−ペンタメチレン基、2−メチル−ペンタメチレン基、3−メチルペンタメチレン基、ネオペンチル基の如き分岐アルキル基を有するアルキレン基;
【0025】
シクロペンチレン基、シクロヘキシレン基の如きシクロアルキレン基;ベンジレン基、2,2−ジフェニル−トリメチレン基、1−フェニル−エチレン基、1−フェニル−テトラエチレン基の如き主鎖または側鎖にアリール基を有するアリールアルキレン基;シクロヘキシルメチレン基、1−シクロヘキシル−エチレン基、1−シクロヘキシル−テトラエチレン基の如き主鎖あるいは側鎖にシクロアルキル基を有するシクロアルキル−アルキレン基等が挙げられる。これらの中でも、炭素原子数1〜30のアルキレン基又は炭素原子数3〜12のシクロアルキレン基が好ましい。
【0026】
また、Rは、これら上記に挙げた基の2〜5個が、単結合、エステル結合、エーテル結合またはウレタン結合で連結した基であっても良い。
【0027】
このような連結された基としては、例えば、少なくとも2つのアルキレン基が、エーテル結合で結合された(ポリ)エーテルから構成される基、少なくとも2つのアルキレン基がエステル結合で結合された(ポリ)エステルから構成される基、少なくとも2つのアルキレン基がウレタン結合で結合された(ポリ)ウレタンから構成される基、少なくとも2つのアルキレン基が、エーテル結合で結合された(ポリ)エーテル(ポリ)オールと(ポリ)カルボン酸とをエステル化して得られる(ポリ)カルボン酸{(ポリ)エーテル(ポリ)オール}エステルから構成される基等が挙げられる。
【0028】
上記一般式(1)及び(2)において、Rは上記した光二量化反応によって光配向機能を発現する前記した光配向性基を表わす。
【0029】
上記した光二量化反応によって光配向機能を発現する光配向性基の中でも、ベンゾフェノン構造を有する光配向機能を発現する光配向性基を有するマレイミド誘導体を用いた光配向材料は、光配向機能を発現するに必要な偏光の照射量が少なく、かつ得られた光配向膜の熱安定性、経時安定性が優れているため、特に好ましい。
【0030】
一般式(1)及び(2)で表わされる化合物において、これらRで表わされる光二量化反応によって光配向機能を発現する光配向性基は、Rで表わされる基と、単結合、エステル結合又はウレタン結合を介して結合している。光二量化反応によって光配向機能を発現する光配向性基の結合数は、1分子中に有する重合性マレイミド基の数と同数であるが、本発明で使用するマレイミド誘導体は、複数の重合性マレイミド基を有するため、その数は2から4までの範囲が好ましい。中でも、重合性マレイミド基の重合が容易に進行し、安定なマレイミド重合体を形成すること、光配向機能を発現する光配向性基の光配向を発現するに必要な光エネルギーの量が比較的少ないことから、光二量化反応によって光配向機能を発現する光配向性基の結合数は2個であることが好ましい。
【0031】
上記一般式(1)及び(2)において、R及びRは、各々独立して、水素原子、炭素原子数1〜8のアルキル基、フェニル基またはハロゲン原子を表わす。
【0032】
上記一般式(1)において、nは、2から4までの整数を表わす。中でも、重合性マレイミド基の重合が容易に進行し、安定なマレイミド重合体を形成すること、光配向性基の光配向機能を発現するに必要な光エネルギーの量が比較的少ないことから、nが2である一般式(2)で表わされる化合物が特に好ましい。
【0033】
本発明の光配向材料においては、光二量化反応によって光配向機能を発現する光配向性基の導入密度を調整し、液晶の配向状態を向上させる目的、あるいは溶剤に対する溶解度を改善し、基板に対する塗布性を向上させる目的等で、下記一般式(3)で示されるようなマレイミド化合物を適宜混合しても良い。また、光配向のための照射光に対する良好な感度を得るために、一般式(2)で表わされる光二量化反応によって光配向機能を発現する光配向性基を含むマレイミド誘導体と、一般式(3)
【0034】
【化8】
Figure 0004900632
【0035】
で表わされるような光二量化反応によって光配向機能を発現する光配向性基を含まないマレイミド誘導体とを共重合させても良い。この光二量化反応によって光配向機能を発現する光配向性基を含まないマレイミド誘導体の混合割合は全体に対し0〜80重量%の範囲内であることが好ましく、特に好ましくは0〜50重量%の範囲である。
【0036】
上記一般式(3)において、Rは、▲1▼炭素原子数1〜30の直鎖状アルキレン基、▲2▼炭素原子数1〜30の分岐状アルキレン基、▲3▼炭素原子数3〜12のシクロアルキレン基、▲4▼アリールアルキレン基及び▲5▼シクロアルキルアルキレン基からなる群より選ばれる少なくとも1つの基を表わす。R及びRは、各々独立して、水素原子、炭素原子数1〜8のアルキル基、フェニル基又はハロゲン原子を表わす。
【0037】
一般式(3)におけるRの具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基の如き直鎖状アルキレン基;1−メチルエチレン基、1−メチル−トリメチレン基、2−メチル−トリメチレン基、1−メチル−テトラメチレン基、2−メチル−テトラメチレン基、1−メチル−ペンタメチレン基、2−メチル−ペンタメチレン基、3−メチルペンタメチレン基、ネオペンチル基の如き分岐アルキル基を有するアルキレン基;
【0038】
シクロペンチレン基、シクロヘキシレン基の如きシクロアルキレン基;ベンジレン基、2,2−ジフェニル−トリメチレン基、1−フェニル−エチレン基、1−フェニル−テトラエチレン基の如き主鎖または側鎖にアリール基を有するアリールアルキレン基;シクロヘキシルメチレン基、1−シクロヘキシル−エチレン基、1−シクロヘキシル−テトラエチレン基の如き主鎖あるいは側鎖にシクロアルキル基を有するシクロアルキル−アルキレン基等が挙げられる。
【0039】
また、一般式(3)におけるRは、これら上記に挙げた基の複数個が、単結合、エステル結合、エーテル結合又はウレタン結合で連結された基であっても良い。
【0040】
このような連結された基としては、例えば、少なくとも2つのアルキレン基が、エーテル結合で結合された(ポリ)エーテルから構成される基、少なくとも2つのアルキレン基がエステル結合で結合された(ポリ)エステルから構成される基、少なくとも2つのアルキレン基がウレタン結合で結合された(ポリ)ウレタン結合で結合された(ポリ)ウレタンから構成される基、少なくとも2つのアルキレン基が、エーテル結合で結合された(ポリ)エーテル(ポリ)オールと(ポリ)カルボン酸とをエステル化して得られる(ポリ)カルボン酸{(ポリ)エーテル(ポリ)オール}エステルから構成される基等が挙げられる。
【0041】
次に、本発明の光配向膜用材料を用いて、光配向膜とこれを具備した液晶表示素子を製造する方法の例を述べる。
【0042】
まず、本発明の光配向材料は適切な溶媒に溶解して用いる。この際、溶媒は特に限定されないが、N−メチルピロリドン、ジメチルホルムアミド、ブチルセロソルブ、γ−ブチロラクトン、クロロベンゼン、ジメチルスルホキシド、ジメチルアセトアミド、テトラヒドロフラン等が一般的に用いられる。中でもブチルセロソルブ、γ−ブチロラクトンは塗布性が良好で、均一な膜が得られることから、特に好ましい。これらの溶剤は、塗布性や、塗布後に短時間で溶剤を揮発させることを考慮して、2種類以上を混合して用いることもできる。
【0043】
上記光配向材料の溶液を基板上にスピンコーティング法、印刷法等の方法によって塗布し、乾燥後、重合性マレイミド基の重合および光配向操作を行う。
【0044】
本発明で使用する基板は、光配向膜に通常用いられる基板であって、熱硬化に耐えうる耐熱性を有するものである。そのような基板としては、ガラス基板が挙げられる。
【0045】
光や熱による重合性マレイミド基の重合操作は、光二量化反応によって光配合した構造単位に影響を与える恐れがあるため、配向操作に先立って行うことがより好ましい。
【0046】
重合性マレイミド基の重合は紫外線等の光照射あるいは加熱によって行う。光照射で行う場合は、光配向性基が光配向機能を発現しない波長の光で行うことが好ましい。一方、加熱による重合は、光配向操作の前に行うと、基板に塗布する際に用いた溶媒の乾燥も兼ねることができ、より好ましい。また、重合性マレイミド基を完全に重合させるため、最初に、光照射あるいは加熱で重合を行い、次に光照射により光配向を発現する操作を行った後、更に加熱もしくは重合性マレイミド基の光重合に適した無偏光の光照射を行っても良い。
【0047】
一方、重合性マレイミド基が重合する光の波長と光配向機能を発現させる光の波長とが近い場合には、重合性マレイミド基の重合と光配向機能を発現させる操作を一回の光照射で同時に行うことが可能である。このような重合性マレイミド基の光重合に用いる照射光は特に限定されないが、紫外線が好ましく使用することができる。照射方法についても特に限定されず、無偏光あるいは直線偏光、楕円偏光などの偏光を使用することができる。
【0048】
光二量化反応によって光配向を発現させる操作は偏光を照射することによって行う。偏光の波長は、光配向性基が効率よく二量化する波長が選ばれ、可視光線、紫外線等が挙げられるが、中でも紫外線が好ましい。また、偏光は、直線偏光や楕円偏光が多く用いられる。このとき、液晶分子のプレチルトを得るために、偏光を基板に対して斜め方向から照射する方法や、偏光照射後に斜め方向から無偏光の光を照射する方法を用いても良い。
【0049】
本発明によれば、1分子中に光二量化反応によって光配向機能を発現する光配向性基と、複数の重合性マレイミド基を有する重合性単量体を含有する光配向膜用材料を基板に塗布した後、重合性マレイミド基を重合させ、さらに光配向機能を発現する光配向性基の光二量化反応を生起させることによって光配向膜を得る。本発明で使用するマレイミド化合物は、低分子であるため、溶剤溶解性が高く、塗布が容易であるという特徴を有する。また、本発明によれば、重合性マレイミド基の重合により架橋構造が形成されると共に前記光配向性基の光二量化反応により光配向が実現するため、光や熱に対する安定性が高い光配向膜が得られる。
【0050】
また、マレイミド基による重合は重合開始剤を必要としないため、液晶セル作製後に、液晶中に重合開始剤が溶出することがなく、電圧保持率の低下等、液晶表示素子の性能劣化の原因を取り除くことができる。
【0051】
【実施例】
以下、合成例、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明は、これらの実施例の範囲に限定されるものではない。
【0052】
[合成例1]
ベンゾフェノン構造を有するマレイミド系光配向膜用材料の合成
a.マレイミド酢酸の合成
撹拌機、温度計、滴下ロート、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの4つ口フラスコに、トルエン140g、p−トルエンスルホン酸一水和物5.2g及びトリエチルアミン2.8gを順次仕込み、撹拌しながら無水マレイン酸30gを加えた後、30℃まで昇温させながら溶解させた。さらにグリシン23gを加えた後、撹拌しながら70℃で3時間反応させた。トルエン50g、トリエチルアミン60gを加え、溶媒を加熱還流させて生成する水を除去しながら1時間反応させた。反応混合物から溶媒を留去して得られた残留物に、4モル/dmの塩酸を加えてpH2に調整した後、加熱−再結晶して、マレイミド酢酸の淡黄色固体7.3gを得た。
【0053】
b.4,4’−ビス(2−ヒドロキシエトキシ)ベンゾフェノンの合成
撹拌機、温度計、滴下ロート及び冷却管を備えた容量300ミリリットル4つ口フラスコに、2−ブロモエタノール62.5gを入れ、氷浴による冷却下、撹拌しながらN−メチルピロリドン100gを加えた。これにp−トルエンスルホン酸一水和物10mgを加え、ジヒドロピラン42.1gを約10分かけて滴下した。氷冷下で2時間撹拌し、さらに室温で2時間撹拌した後、4,4’−ジヒドロキシベンゾフェノン42.8gおよび炭酸カリウム69.1gを加え、120℃で3時間反応した。冷却後、400mlの水に反応混合物を加え、400mlのトルエンで2回抽出し、得られたトルエン層を無水硫酸ナトリウムで乾燥し、エバポレータで溶媒を留去した。
得られた残渣にメタノール450g、水70g、濃塩酸1.0gを加え、室温で一晩撹拌し、生成した沈殿を濾過し、メタノールでよく洗浄した後に乾燥させ、4,4’−ビス(2−ヒドロキシエトキシ)ベンゾフェノン52gを得た。
【0054】
c.マレイミド系光配向膜用材料の合成
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、合成例1のaで得たマレイミド酢酸8.8g、合成例1のbで得た4,4’−ビス(2−ヒドロキシエトキシ)ベンゾフェノン6.1g、p−トルエンスルホン酸一水和物0.4g、ヒドロキノン20mg及びトルエン150mlを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応混合物を熱時濾過し、得られた固体をメタノールでよく洗浄し、乾燥させることにより式(4)
【0055】
【化9】
Figure 0004900632
で表わされる2官能マレイミド系光配向膜用材料8.6gを得た。
【0056】
H−NMR(300MHz、(CDSO)
δ=4.37〜4.50(m、12H)、7.03〜7.15(m、8H)、7.65〜7.76(d、4H)
【0057】
[合成例2]
ベンゾフェノン構造を有しないマレイミド誘導体の合成
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、合成例1のaで得たマレイミド酢酸8.8g、数平均分子量400のポリプロピレングリコール5.0g、p−トルエンスルホン酸一水和物0.4g、ヒドロキノン20mg及びトルエン150mlを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応混合物を希水酸化ナトリウム溶液で2回、次いで純水で3回洗浄し、トルエンを留去して式(5)
【0058】
【化10】
Figure 0004900632
で表わされる2官能マレイミド誘導体7.7gを得た。
【0059】
[合成例3]
シンナモイル基を有するマレイミド誘導体の合成
a.4−(2−ヒドロキシエトキシ)シンナミックアシッド−2−ヒドロキシエチルエステルの合成
容量500mlのオートクレーブに水酸化ナトリウム40.0g(1.0モル)のエタノール80ml、水100mlの混合溶液を仕込み、4−ヒドロキシケイ皮酸82.1g(0.5モル)を加えて溶解させた。氷冷しながらオキシラン132.2g(3.0モル)を加えて密閉し、80℃で6時間反応させた。水200mlを加えて希釈し、酢酸エチル100mlで2回抽出した。抽出液をシリカゲルクロマトグラフィーで精製した後、酢酸エチルを減圧下留去、乾固し、ブタノールで再結晶して、4−(2−ヒドロキシエトキシ)シンナミックアシッド−2−ヒドロキシエチルエステル90.8g(72%)を得た。
【0060】
b.シンナモイル基を有するマレイミド誘導体の合成
撹拌機、温度計、ディーンスターク分留器及び冷却管を備えた容量500ミリリットルの3つ口フラスコに、合成例1のaで得たマレイミド酢酸8.8g、合成例3のaで得た4−(2−ヒドロキシエトキシ)シンナミックアシッド−2−ヒドロキシエチルエステル5.1g、p−トルエンスルホン酸一水和物0.4g、ヒドロキノン20mg及びトルエン150mlを順次仕込み、減圧下、90℃に加熱して、溶媒を還流させて生成する水を除去しながら15時間反応させた。反応終了後、反応混合物を熱時濾過し、得られた固体をメタノールでよく洗浄し、乾燥させることにより式(6)
【0061】
【化11】
Figure 0004900632
で表わされる2官能マレイミド誘導体7.8gを得た。
【0062】
1H−NMR(300MHz、(CD3)2SO)
δ=3.75〜4.47(m、12H)、6.84〜7.15(m、8H)、7.63〜8.18(m、6H)
【0063】
[比較合成例1]
ベンゾフェノンを構造を有する2官能アクリレートの合成
合成例1のc.マレイミド誘導体の合成において、マレイミド酢酸の代りにアクリル酸を用いて式(7)
【0064】
【化12】
Figure 0004900632
で表わされる2官能アクリレートを得た。
【0065】
[比較合成例2]
主鎖にポリマレイミドを有し、側鎖にパラフルオロベンゾイルシンナモイル基を有する光配向膜用材料の合成
a.ポリヒドロキシフェニルマレイミドの合成
窒素が充填された3つ口丸底フラスコに、米国ポリサイエンス社(Polyscience co.,U.S.A.)の無水マレイン酸ポリマー5gとアミノフェノール3gをキシレン100mlに入れて常温で30分間攪拌し、さらにイソキノリン2.9gを入れ、徐々に昇温して150℃まで上げた後、反応中に生成した水を続けて除去しながら3時間程度反応を続けた。水が生成しなくなったことを確認して反応を終了し、温度を常温に下げた後、メタノール500mlに注いで生成物を沈殿させ、減圧濾過後100℃で真空乾燥してポリヒドロキシフェニルマレイミドを得た。
【0066】
b.パラフルオロベンゾイルシンナモイルクロライドの合成
パラヒドロキシケイ皮酸16.42g(0.1モル)と水酸化ナトリウム8gを水100mlとジメチルスルホキシド(DMSO)100mlに溶解し、0℃で激しく攪拌しながら、パラフルオロベンゾイルクロライド15.86g(0.1モル)を徐々に滴下した。常温で約2時間反応した後、希塩酸でpH=6〜7に中和した。得られた固体状の中間体を濾過して水で完全に洗滌した。真空下で完全に乾燥させた後、エタノールの中で再結晶させてパラフルオロベンゾイルオキシケイ皮酸を収率90%で得た。これを塩化チオニル1.2当量と塩化メチレン約50mlを添加し、常温で透明な溶液が得られるまで反応させた。反応後、溶媒と塩化チオニルを真空下で除去し、完全に乾燥させてパラフルオロベンゾイルシンナモイルクロライドを得た。
【0067】
c.主鎖にポリマレイミドを有し、側鎖にパラフルオロベンゾイルシンナモイル基を有する光配向膜用材料の合成
比較合成例2のa.で得られたポリヒドロキシフェニルマレイミド1.7gをN−メチルピロリドン(NMP)50mlに溶解した後、トリエチルアミン1.0gを入れて30分間攪拌した。反応温度を5℃に下げて激しく攪拌しながら前記の比較合成例2のb.で得られたパラフルオロベンゾイルシンナモイルクロライド2.13gをゆっくり滴下した。パラフルオロベンゾイルシンナモイルクロライドのすべてを滴下した後、1時間程度続けて攪拌し、反応を終了した。反応液を、水とメタノール各々200mlを混合したビーカーに注いで生成物を沈殿させ、その後続けて過量の水とメタノールで徹底的に洗滌した後、減圧濾過し真空乾燥させて、最終的に主鎖にポリマレイミドを有し、側鎖にパラフルオロベンゾイルシンナモイル基を有する光配向膜用材料を得た。
【0068】
以上の合成例及び比較合成例により得られた光配向膜用材料を用いて、光配向膜を作成し、物性評価を行った。光配向膜の作成方法及び物性評価方法は、下記の方法に従い行った。
【0069】
[光配向膜の作成方法]
a.光配向材料溶液の調製
合成例で得られたマレイミド誘導体を、N−メチルピロリドン/ブチルセロソルブ=1/1の混合溶媒に溶かして、不揮発分濃度5%溶液とし、これを0.1μmのフィルターでろ過し、光配向膜用材料溶液とした。
【0070】
b−1.光配向膜作成(熱硬化方法)
上記a.の方法で得られた光配向膜用材料溶液を、スピンコーターにてITO電極付ガラス基板上に均一に塗布し、190℃、1時間で乾燥及び硬化を行った。次に、得られた塗膜表面に超高圧水銀ランプより、積算光量で30J/cmの365nm付近の直線偏光した紫外光を照射し、光配向膜を作成した。
【0071】
b−2.光配向膜作成(光硬化方法)
上記a.の方法で得られた光配向膜用材料溶液を、スピンコーターにてITO電極付ガラス基板上に均一に塗布し、100℃、15分乾燥したのち、塗膜表面に超高圧水銀ランプより、積算光量で2J/cmの波長313nm付近の紫外光を照射した。次に、得られた塗膜表面に超高圧水銀ランプより、積算光量で30J/cmの365nm付近の直線偏光した紫外光を照射し、光配向膜を作成した。
【0072】
c.液晶セルの作成
上記b−1または2で得られた光配向膜基板の周囲に直径8μmのスチレンビーズを含んだエポキシ系接着剤を液晶注入口を残して塗布し、配向面が相対するように、かつ偏光光の方向が直交する向きに重ねあわせて圧着し、接着剤を150℃、90分かけて硬化させた。
次いで、液晶注入口よりネマチック液晶(5CB)をアイソトロピック相で真空注入し充填した後、エポキシ系接着剤で液晶注入口を封止した。
【0073】
[光配向膜の評価方法]
a.液晶配向性評価
上記c.の方法で得られた液晶セルを、偏光方向が直交する2枚の偏光板の間に挟み、電極間に5Vの電圧を印加してON/OFFし、明暗をスイッチングさせることにより、液晶の配向性を評価した。
【0074】
b.電圧保持率の測定
上記c.の方法で得られた液晶セルに、5Vの直流電圧を64マイクロ秒間印加し、つづいて16.6ミリ秒間開放した後の初期印加電圧に対する電圧の保持率を測定した。
【0075】
c.耐久性の測定
この液晶セルを80℃にて1000時間保持した後の配向性を目視評価した。
【0076】
d.耐熱性の評価
上記b−1又はb−2の方法で得られた光配向膜を、180℃で60分加熱した後、上記c.の方法で液晶セルを作成し、液晶配向性を目視評価した。
【0077】
[実施例1]
合成例1で得られたマレイミド誘導体(4)から、上記光配向膜用材料溶液の調製方法に従い、光配向膜用材料溶液を調製し、次にb−1.の光配向膜の熱硬化作成方法に従い、光配向膜を作成した。得られた光配向膜を用いて液晶セルを作成し、上記評価方法に従い物性評価を行った。
この結果、電圧保持率は99%、また、液晶配向性、耐久性、耐熱性共に良好であった。
【0078】
[実施例2]
合成例1で得られたマレイミド誘導体(4)から、上記光配向膜用材料溶液の調製方法に従い、光配向膜用材料溶液を調製し、次にb−2.の光配向膜の光硬化作成方法に従い、光配向膜を作成した。得られた光配向膜を用いて液晶セルを作成し、上記評価方法に従い物性評価を行った。
この結果、電圧保持率は99%、また、液晶配向性、耐久性、耐熱性共に良好であった。
【0079】
[実施例3]
合成例1で得られたマレイミド誘導体(4)を、合成例1で得られたマレイミド誘導体(4)及び合成例2で得られたマレイミド誘導体(5)の重量比1/1混合物とした他は、実施例1と同様にして、評価を行った。
この結果、電圧保持率は99%と良好で、また、液晶配向性、耐久性、耐熱性共に良好であった。
【0080】
[実施例4]
合成例1で得られたマレイミド誘導体(4)を、合成例3で得られたマレイミド誘導体(6)に代えた他は、実施例1と同様にして、評価を行った。
この結果、電圧保持率は99%と良好で、また、液晶配向性、耐久性、耐熱性共に良好であった。
【0081】
[比較例1]
合成例1で得られたマレイミド誘導体(4)を、比較合成例1で合成したアクリル酸誘導体(7)及びそれに対して2,2‘−アゾビスイソブチロニトリルを0.1%加えたものに代えた他は、実施例1と同様にして、評価を行った。
この結果、液晶配向性、耐久性、耐熱性は良好であったが、電圧保持率は89%と低かった。
【0082】
[比較例2]
合成例1で得られたマレイミド誘導体(4)を、比較合成例2で合成した主鎖にポリマレイミドを有し、側鎖にパラフルオロベンゾイルシンナモイル基を有する光配向膜用材料に代えた他は、実施例1と同様にして、評価を行った。
この結果、電圧保持率は98%と良好で、また液晶配向性も良好であったが、耐久性あるいは耐熱性試験後は、明暗のスイッチングが不明瞭であり、配向性が低下していた。
【0083】
【発明の効果】
本発明のマレイミド誘導体よりなる光配向膜用材料を用いることにより、良好な液晶表示素子特性、例えば電圧保持率を有し、かつ良好な配向安定性と光や熱に対する十分な耐久性を有する光配向膜を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photo-alignment film used in a liquid crystal display device, and more specifically, a photo-alignment film forming material capable of aligning liquid crystal molecules without being rubbed by irradiation with light, and the material. The present invention relates to a photo-alignment film, a manufacturing method thereof, and a liquid crystal display device using the photo-alignment film.
[0002]
[Prior art]
In the liquid crystal display device, the state of the molecular arrangement of the liquid crystal is changed by the action of an electric field or the like, and the change in the optical characteristics accompanying this is used for display.
In many cases, the liquid crystal is used in a state of being sandwiched between two substrates. Here, in order to align liquid crystal molecules in a specific direction, an alignment process is performed on the inside of the substrate.
[0003]
Usually, the alignment treatment is performed by a method called rubbing, in which a polymer film such as polyimide is provided on a substrate such as glass and is rubbed with a cloth or the like in one direction. As a result, the liquid crystal molecules in contact with the substrate are arranged so that their long axes (directors) are parallel to the rubbing direction. For example, in a twisted nematic (TN) cell, two substrates with an alignment film coated inside are placed between two orthogonal polarizing plates so that the rubbing directions are orthogonal to each other. Enables display by change.
[0004]
However, although the rubbing method has an advantage that the manufacturing apparatus is simple, since static electricity and dust are generated in the manufacturing process, a cleaning process is required after the alignment process, and in particular, a TFT-type liquid crystal that has been widely used in recent years. In the cell, the TFT element previously provided on the substrate is destroyed by static electricity, which causes a decrease in manufacturing yield. On the other hand, in the liquid crystal display element, since the inclination of the liquid crystal molecules is directional, there is a problem of viewing angle dependency such that the display color and contrast change depending on the direction in which the display element is viewed.
[0005]
One method for improving this is to divide one pixel and change the pretilt angle (Japanese Patent Laid-Open No. Sho 62-159119) and orientation direction (Japanese Patent Laid-Open No. Sho 63-106624) of the liquid crystal molecules for each region. A changing orientation dividing method has been devised. Such an orientation for each divided region is not suitable for practical use because the process is complicated by the conventional rubbing method.
[0006]
In order to solve such a problem, a liquid crystal alignment control technique that does not perform rubbing has recently attracted attention. As such a rubbing-less alignment technique, an oblique deposition method, an LB (Langmuir-Blodget) film method, a photolithography method, a photo-alignment method, and the like have been studied. In particular, a photo-alignment method for irradiating polarized light onto a coating film provided on a substrate to produce liquid crystal alignment is simple, and no cleaning step is required after the alignment treatment. Since the above-described orientation division can be easily carried out by using it, research has been actively conducted. This photo-alignment method is a photo-alignment group that develops a photo-alignment function in organic molecules, for example, by photoisomerization of an azo group, by photodimerization of a cinnamoyl group, a coumarin group, a chalcone group, a benzophenone group, etc. These have been reported by photo-crosslinking and photodecomposition of polyimide resin.
[0007]
As the photo-alignment film material using photoisomerization, photodimerization or photocrosslinking, a polymer material is often used so that a uniform film can be obtained when applied to a substrate such as glass. In many cases, a photo-alignment group is introduced into the side chain or main chain of the polymer material. In some cases, molecules having photo-alignment properties are used as guest molecules and dispersed in a host compound made of a polymer compound.
[0008]
However, since the photoisomerization type utilizes cis-trans isomerization of molecules by irradiation with polarized ultraviolet rays, there is a problem in light stability after photo-alignment treatment. In the case of the photolytic type, the liquid crystal may be contaminated by decomposition products generated during the photo-alignment process, so that it is necessary to clean the substrate after the process, and the photo-alignment film does not need to be cleaned. Lost. In addition, many photo-alignment materials using polymer materials have a low solubility in a solvent, and there is a problem that the types of solvents that can be used when applied to a substrate are limited.
[0009]
For example, in WO9637807 (US Pat. No. 6001277, JP-A-8-328005), a resin having a structural unit and a reactive functional group that can be photoisomerized and exhibits dichroism is used. Although a liquid crystal alignment film is disclosed, this material is a polymer compound, and the types of solvents that can be used when applied to a substrate are limited. In general, N, N-dimethylacetamide and N-methyl-2-pyrrolidone are used. A high-boiling polar solvent such as In this case, it takes a long time to volatilize the solvent after coating, and productivity is lowered. Furthermore, since this material has a low ratio of reactive functional groups in the resin, the crosslink density is low. As a result, the heat resistance of the alignment film made of this material is not always sufficient.
[0010]
As an example of a method for solving these problems and ensuring that the liquid crystal alignment ability of the photo-alignment film is stably obtained over a long period of time, a polymerizable monomer having a photo-alignment group that exhibits orientation by polarized light irradiation is heated. Alternatively, there are methods of photopolymerization and photo-alignment by irradiation with polarized light. However, in many cases, it is necessary to add a polymerization initiator in order to thermally or photopolymerize the monomer. Since this polymerization initiator is a low molecular weight compound, the polymerization initiator diffuses into the liquid crystal layer in the cell after a long period of time even after the photo-alignment film is cured. There is a possibility of deteriorating the voltage holding ratio.
[0011]
As an unnecessary photopolymerizable group of the polymerization initiator, there is a polymerizable maleimide group. A photo-alignment film using a compound having a polymerizable maleimide group is disclosed in Japanese Patent Application Laid-Open No. 2000-53766 (US Pat. No. 6,218,501) and Japanese Patent No. 2964273 (Japanese Patent Application Laid-Open No. 11-2815, US Pat. No. 6,048,928). In the specification). These photo-alignment films are made by adding a functional group that develops photo-alignment to the main chain of polymaleimide as a side chain. However, these photo-alignment films still have long-term stability in heat resistance and liquid crystal alignment ability. It is insufficient.
[0012]
[Problems to be solved by the invention]
The problem to be solved by the present invention is a photo-alignment film for a liquid crystal display element having good liquid crystal display element characteristics, such as voltage holding ratio, and good alignment stability and sufficient durability against light and heat. Is to provide.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a polymerizable monomer having a photo-alignment group that exhibits a photo-alignment function by at least one photodimerization reaction and at least two polymerizable maleimide groups in one molecule. Provided is a material for a photoalignment film characterized by comprising:
[0014]
In order to solve the above problems, the present invention provides a polymerizable monomer having a photo-alignment group that exhibits a photo-alignment function by at least one photo-dimerization reaction and at least two polymerizable maleimide groups in one molecule. There is provided a photo-alignment film comprising a polymer of a polymer and having a photo-alignment function expressed by photodimerization of the photo-alignment group and a crosslinked structure generated by polymerization of the polymerizable maleimide group.
[0015]
In order to solve the above problems, the present invention provides a polymerizable monomer having a photo-alignment group that exhibits a photo-alignment function by at least one photo-dimerization reaction and at least two polymerizable maleimide groups in one molecule. The polymer is coated on a substrate, and the coating film is irradiated with light to cause a photodimerization reaction of the structural unit and a photopolymerization reaction of the polymerizable maleimide group to form a crosslinked polymer film and Provided is a method for producing a photo-alignment film, wherein a molecular film exhibits a photo-alignment function.
[0016]
Furthermore, in order to solve the above-mentioned problems, the present invention provides a polymerizable monomer having a photo-alignment group that exhibits a photo-alignment function by at least one photo-dimerization reaction and at least two polymerizable maleimide groups in one molecule. A body is coated on a substrate, and the coating film is heated to cause a thermal polymerization reaction of the polymerizable maleimide group to form a crosslinked polymer film, and by irradiating the polymer film with light Provided is a method for producing a photo-alignment film, wherein a photo-dimerization reaction of a structural unit is caused to cause the polymer film to exhibit a photo-alignment function.
[0017]
Furthermore, in order to solve the above problems, the present invention provides a liquid crystal display element having a structure in which liquid crystal is sandwiched between two substrates having an alignment film on the inner side, and the alignment film includes at least one alignment film in one molecule. A photo-alignment function composed of a polymer of a polymerizable monomer having a photo-alignment group exhibiting a photo-alignment function by a photo-dimerization reaction and at least two polymerizable maleimide groups, and expressed by photo-dimerization of the photo-alignment group And a cross-linked structure formed by polymerization of the polymerizable maleimide group.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In a polymerizable monomer having a photo-alignment group that exhibits a photo-alignment function by at least one photo-dimerization reaction and at least two polymerizable maleimide groups in one molecule used in the material for a photo-alignment film of the present invention The photo-alignment group that exhibits the photo-alignment function by the photo-dimerization reaction is not particularly limited as long as it is a functional group that causes a photo-reaction such that the di-orientation orientation can be obtained by irradiating polarized light. A structural unit having at least one double bond represented by C═C and C═O (excluding a double bond forming an aromatic ring) is particularly preferably used.
[0019]
Examples of the basic structure of the photoalignable group that exhibits the photoalignment function by these photodimerization reactions include the following.
Examples of photoalignable groups that exhibit a photoalignment function by a photodimerization reaction having a C═C bond include structures such as a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a cinnamoyl group, a hemithioindigo group, and a chalcone group. Groups. Examples of the photoalignable group that exhibits a photoalignment function by a photodimerization reaction having a C═O bond include groups having a structure such as a benzophenone group and a coumarin group.
[0020]
Specific examples include groups having the following structure. Of course, these structures may have substituents such as alkyl groups, alkoxy groups, aryl groups, allyloxy groups, cyano groups, alkoxycarbonyl groups, hydroxyl groups, sulfonic acid groups, and halogenated alkyl groups.
[0021]
[Chemical formula 5]
Figure 0004900632
[0022]
Specifically, the polymerizable monomer having a photoalignment group that exhibits a photoalignment function by at least one photodimerization reaction and at least two polymerizable maleimide groups in one molecule is represented by the general formula (1).
[Chemical 6]
Figure 0004900632
Of these, preferred are compounds represented by general formula (2)
[Chemical 7]
Figure 0004900632
The compound represented by these is preferable.
[0023]
In the general formulas (1) and (2), R 1 Represents at least one group selected from the group consisting of a linear or branched alkylene group having 1 to 30 carbon atoms, a cycloalkylene group having 3 to 12 carbon atoms, an arylalkylene group and a cycloalkylalkylene group.
[0024]
R 1 Specific examples of the organic group represented by are, for example, methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene. A linear alkylene group such as a dodecamethylene group; 1-methylethylene group, 1-methyl-trimethylene group, 2-methyl-trimethylene group, 1-methyl-tetramethylene group, 2-methyl-tetramethylene group, 1 An alkylene group having a branched alkyl group such as a methyl-pentamethylene group, 2-methyl-pentamethylene group, 3-methylpentamethylene group, neopentyl group;
[0025]
Cycloalkylene groups such as cyclopentylene group and cyclohexylene group; aryl groups in the main chain or side chain such as benzylene group, 2,2-diphenyl-trimethylene group, 1-phenyl-ethylene group, 1-phenyl-tetraethylene group Cycloalkyl-alkylene groups having a cycloalkyl group in the main chain or side chain such as a cyclohexylmethylene group, a 1-cyclohexyl-ethylene group, and a 1-cyclohexyl-tetraethylene group. Among these, an alkylene group having 1 to 30 carbon atoms or a cycloalkylene group having 3 to 12 carbon atoms is preferable.
[0026]
R 1 May be a group in which 2 to 5 groups mentioned above are linked by a single bond, an ester bond, an ether bond or a urethane bond.
[0027]
Examples of such linked groups include a group composed of (poly) ether in which at least two alkylene groups are bonded by an ether bond, and at least two alkylene groups bonded by an ester bond (poly). A group composed of an ester, a group composed of (poly) urethane in which at least two alkylene groups are bonded by a urethane bond, and a (poly) ether (poly) ol in which at least two alkylene groups are bonded by an ether bond And a group composed of (poly) carboxylic acid {(poly) ether (poly) ol} ester obtained by esterification of (poly) carboxylic acid.
[0028]
In the general formulas (1) and (2), R 2 Represents the above-described photo-alignment group that exhibits a photo-alignment function by the above-described photodimerization reaction.
[0029]
Among the photo-alignment groups that exhibit the photo-alignment function by the photodimerization reaction described above, the photo-alignment material using the maleimide derivative that has the photo-alignment group that exhibits the photo-alignment function having the benzophenone structure exhibits the photo-alignment function. This is particularly preferable because the amount of irradiation of polarized light necessary for this is small, and the obtained photo-alignment film has excellent thermal stability and stability over time.
[0030]
In the compounds represented by the general formulas (1) and (2), these R 2 The photo-alignment group that expresses the photo-alignment function by the photodimerization reaction represented by 1 And a group represented by a single bond, an ester bond or a urethane bond. The number of bonds of photo-alignable groups that express the photo-alignment function by the photodimerization reaction is the same as the number of polymerizable maleimide groups in one molecule, but the maleimide derivatives used in the present invention are a plurality of polymerizable maleimides. Since it has groups, the number is preferably in the range of 2 to 4. Among them, the polymerization of the polymerizable maleimide group easily proceeds to form a stable maleimide polymer, and the amount of light energy required to develop the photo-alignment group that exhibits the photo-alignment function is relatively small. Since it is small, it is preferable that the number of bonds of the photoalignable group that exhibits the photoalignment function by the photodimerization reaction is 2.
[0031]
In the general formulas (1) and (2), R 3 And R 4 Each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group or a halogen atom.
[0032]
In the general formula (1), n represents an integer of 2 to 4. Among them, the polymerization of the polymerizable maleimide group easily proceeds to form a stable maleimide polymer, and since the amount of light energy necessary to develop the photo-alignment function of the photo-alignment group is relatively small, n A compound represented by the general formula (2) in which is 2 is particularly preferred.
[0033]
In the photo-alignment material of the present invention, the introduction density of the photo-alignment group that develops the photo-alignment function by the photodimerization reaction is adjusted, the purpose of improving the alignment state of the liquid crystal, or the solubility in the solvent is improved, and the application to the substrate For the purpose of improving the property, a maleimide compound represented by the following general formula (3) may be appropriately mixed. In addition, in order to obtain good sensitivity to irradiation light for photo-alignment, a maleimide derivative containing a photo-alignment group that exhibits a photo-alignment function by a photodimerization reaction represented by the general formula (2), and a general formula (3 )
[0034]
[Chemical 8]
Figure 0004900632
[0035]
A maleimide derivative that does not contain a photoalignable group that exhibits a photoalignment function by a photodimerization reaction represented by The mixing ratio of the maleimide derivative that does not contain a photoalignable group that exhibits a photoalignment function by this photodimerization reaction is preferably in the range of 0 to 80% by weight, particularly preferably 0 to 50% by weight. It is a range.
[0036]
In the general formula (3), R 7 Are: (1) a linear alkylene group having 1 to 30 carbon atoms, (2) a branched alkylene group having 1 to 30 carbon atoms, (3) a cycloalkylene group having 3 to 12 carbon atoms, (4) It represents at least one group selected from the group consisting of an arylalkylene group and (5) a cycloalkylalkylene group. R 5 And R 6 Each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group or a halogen atom.
[0037]
R in the general formula (3) 7 Specific examples of methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group Linear alkylene groups such as: 1-methylethylene group, 1-methyl-trimethylene group, 2-methyl-trimethylene group, 1-methyl-tetramethylene group, 2-methyl-tetramethylene group, 1-methyl-pentamethylene group An alkylene group having a branched alkyl group such as 2-methyl-pentamethylene group, 3-methylpentamethylene group or neopentyl group;
[0038]
Cycloalkylene groups such as cyclopentylene group and cyclohexylene group; aryl groups in the main chain or side chain such as benzylene group, 2,2-diphenyl-trimethylene group, 1-phenyl-ethylene group, 1-phenyl-tetraethylene group Cycloalkyl-alkylene groups having a cycloalkyl group in the main chain or side chain such as a cyclohexylmethylene group, a 1-cyclohexyl-ethylene group, and a 1-cyclohexyl-tetraethylene group.
[0039]
Further, R in the general formula (3) 7 May be a group in which a plurality of these groups mentioned above are linked by a single bond, an ester bond, an ether bond or a urethane bond.
[0040]
Examples of such linked groups include a group composed of (poly) ether in which at least two alkylene groups are bonded by an ether bond, and at least two alkylene groups bonded by an ester bond (poly). A group composed of an ester, a group composed of a (poly) urethane bonded by a (poly) urethane bond in which at least two alkylene groups are bonded by a urethane bond, and at least two alkylene groups bonded by an ether bond Examples include groups composed of (poly) carboxylic acid {(poly) ether (poly) ol} esters obtained by esterifying (poly) ether (poly) ol and (poly) carboxylic acid).
[0041]
Next, an example of a method for producing a photoalignment film and a liquid crystal display device having the photoalignment film using the photoalignment film material of the present invention will be described.
[0042]
First, the photo-alignment material of the present invention is used after being dissolved in a suitable solvent. At this time, the solvent is not particularly limited, but N-methylpyrrolidone, dimethylformamide, butyl cellosolve, γ-butyrolactone, chlorobenzene, dimethyl sulfoxide, dimethylacetamide, tetrahydrofuran and the like are generally used. Of these, butyl cellosolve and γ-butyrolactone are particularly preferable since they have good coatability and a uniform film can be obtained. These solvents can be used in combination of two or more in consideration of coating properties and volatilization of the solvent in a short time after coating.
[0043]
The solution of the photo-alignment material is applied onto the substrate by a method such as spin coating or printing, and after drying, polymerization of the polymerizable maleimide group and photo-alignment operation are performed.
[0044]
The substrate used in the present invention is a substrate usually used for a photo-alignment film, and has heat resistance that can withstand thermosetting. Examples of such a substrate include a glass substrate.
[0045]
Since the polymerization operation of the polymerizable maleimide group by light or heat may affect the structural unit photomixed by the photodimerization reaction, it is more preferably performed prior to the alignment operation.
[0046]
Polymerization of the polymerizable maleimide group is carried out by irradiation with light such as ultraviolet rays or heating. When performing by light irradiation, it is preferable to carry out with the light of the wavelength from which a photo-alignment group does not express a photo-alignment function. On the other hand, when the polymerization by heating is performed before the photo-alignment operation, it can also serve as drying of the solvent used for application to the substrate, and is more preferable. In addition, in order to completely polymerize the polymerizable maleimide group, first, the polymerization is performed by light irradiation or heating, and then the operation of expressing the photo-alignment by light irradiation is performed, and then the light of the polymerizable maleimide group is further heated. Non-polarized light irradiation suitable for polymerization may be performed.
[0047]
On the other hand, when the wavelength of light for polymerizing the polymerizable maleimide group is close to the wavelength of light for developing the photo-alignment function, the polymerization of the polymerizable maleimide group and the operation for expressing the photo-alignment function can be performed with a single light irradiation. It is possible to do it at the same time. Irradiation light used for photopolymerization of such a polymerizable maleimide group is not particularly limited, but ultraviolet rays can be preferably used. The irradiation method is not particularly limited, and polarized light such as non-polarized light, linearly polarized light, and elliptically polarized light can be used.
[0048]
The operation for expressing the photo-alignment by the photodimerization reaction is performed by irradiating polarized light. As the wavelength of the polarized light, a wavelength at which the photo-alignment group efficiently dimerizes is selected, and examples thereof include visible light and ultraviolet light. Among them, ultraviolet light is preferable. As the polarized light, linearly polarized light or elliptically polarized light is often used. At this time, in order to obtain a pretilt of liquid crystal molecules, a method of irradiating polarized light to the substrate from an oblique direction or a method of irradiating non-polarized light from an oblique direction after irradiating polarized light may be used.
[0049]
According to the present invention, a substrate for a photoalignment film material containing a photoalignable group that exhibits a photoalignment function by a photodimerization reaction in one molecule and a polymerizable monomer having a plurality of polymerizable maleimide groups. After coating, a polymerizable maleimide group is polymerized, and a photodimerization reaction of a photoalignable group that expresses a photoalignment function is caused to obtain a photoalignment film. Since the maleimide compound used in the present invention has a low molecular weight, it has the characteristics of high solvent solubility and easy application. Further, according to the present invention, since a crosslinked structure is formed by polymerization of a polymerizable maleimide group and photoalignment is realized by a photodimerization reaction of the photoalignable group, a photoalignment film having high stability to light and heat Is obtained.
[0050]
In addition, since polymerization with a maleimide group does not require a polymerization initiator, the polymerization initiator does not elute into the liquid crystal after the production of the liquid crystal cell, which causes the performance deterioration of the liquid crystal display element such as a decrease in voltage holding ratio. Can be removed.
[0051]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using a synthesis example, an Example, and a comparative example, this invention is not limited to the range of these Examples.
[0052]
[Synthesis Example 1]
Synthesis of maleimide-based photo-alignment films with benzophenone structure
a. Synthesis of maleimidoacetic acid
In a 500 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel, Dean-Stark fractionator and condenser, 140 g of toluene, 5.2 g of p-toluenesulfonic acid monohydrate and 2.8 g of triethylamine Were added in order, 30 g of maleic anhydride was added with stirring, and then dissolved while heating up to 30 ° C. Further, 23 g of glycine was added, and the mixture was reacted at 70 ° C. for 3 hours with stirring. 50 g of toluene and 60 g of triethylamine were added, and the reaction was carried out for 1 hour while removing the water produced by heating and refluxing the solvent. The residue obtained by distilling off the solvent from the reaction mixture was 4 mol / dm. 3 Of hydrochloric acid was added to adjust the pH to 2, followed by heating and recrystallization to obtain 7.3 g of a pale yellow solid of maleimidoacetic acid.
[0053]
b. Synthesis of 4,4'-bis (2-hydroxyethoxy) benzophenone
62.5 g of 2-bromoethanol was put into a 300 ml four-necked flask equipped with a stirrer, a thermometer, a dropping funnel and a condenser, and 100 g of N-methylpyrrolidone was added with stirring under cooling in an ice bath. . To this was added 10 mg of p-toluenesulfonic acid monohydrate, and 42.1 g of dihydropyran was added dropwise over about 10 minutes. After stirring for 2 hours under ice-cooling and further stirring for 2 hours at room temperature, 42.8 g of 4,4′-dihydroxybenzophenone and 69.1 g of potassium carbonate were added and reacted at 120 ° C. for 3 hours. After cooling, the reaction mixture was added to 400 ml of water, extracted twice with 400 ml of toluene, the resulting toluene layer was dried over anhydrous sodium sulfate, and the solvent was distilled off with an evaporator.
To the obtained residue, 450 g of methanol, 70 g of water, and 1.0 g of concentrated hydrochloric acid were added, and the mixture was stirred overnight at room temperature. The resulting precipitate was filtered, washed well with methanol, dried, and then 4,4′-bis (2 -Hydroxyethoxy) benzophenone 52 g was obtained.
[0054]
c. Synthesis of materials for maleimide photo-alignment films
Into a 500 ml three-necked flask equipped with a stirrer, a thermometer, a Dean-Stark fractionator and a condenser tube, 8.8 g of maleimide acetic acid obtained in Synthesis Example 1a and 4 obtained in Synthesis Example 1b. , 4′-bis (2-hydroxyethoxy) benzophenone, 0.4 g of p-toluenesulfonic acid monohydrate, 20 mg of hydroquinone, and 150 ml of toluene were sequentially charged and heated to 90 ° C. under reduced pressure to remove the solvent. The reaction was carried out for 15 hours while removing water produced by refluxing. After completion of the reaction, the reaction mixture was filtered while hot, and the resulting solid was washed thoroughly with methanol and dried to obtain the formula (4).
[0055]
[Chemical 9]
Figure 0004900632
As a result, 8.6 g of a bifunctional maleimide photoalignment film material represented by the formula:
[0056]
1 H-NMR (300 MHz, (CD 3 ) 2 SO)
δ = 4.37 to 4.50 (m, 12H), 7.03 to 7.15 (m, 8H), 7.65 to 7.76 (d, 4H)
[0057]
[Synthesis Example 2]
Synthesis of maleimide derivatives without benzophenone structure
Into a three-necked flask having a capacity of 500 ml equipped with a stirrer, a thermometer, a Dean-Stark fractionator and a condenser tube, 8.8 g of maleimide acetic acid obtained in Synthesis Example 1 a and polypropylene glycol having a number average molecular weight of 400 0 g, 0.4 g of p-toluenesulfonic acid monohydrate, 20 mg of hydroquinone and 150 ml of toluene were successively added and heated to 90 ° C. under reduced pressure to react for 15 hours while refluxing the solvent to remove the water produced. It was. After completion of the reaction, the reaction mixture was washed twice with dilute sodium hydroxide solution and then three times with pure water, and toluene was distilled off to obtain the formula (5)
[0058]
[Chemical Formula 10]
Figure 0004900632
7.7 g of a bifunctional maleimide derivative represented by the formula:
[0059]
[Synthesis Example 3]
Synthesis of maleimide derivatives with cinnamoyl group
a. Synthesis of 4- (2-hydroxyethoxy) cinnamic acid-2-hydroxyethyl ester
A mixed solution of 40.0 g (1.0 mol) of sodium hydroxide in 80 ml of ethanol and 100 ml of water was charged into a 500 ml autoclave, and 82.1 g (0.5 mol) of 4-hydroxycinnamic acid was added and dissolved. . While cooling with ice, 132.2 g (3.0 mol) of oxirane was added and sealed, and reacted at 80 ° C. for 6 hours. The reaction mixture was diluted with 200 ml of water and extracted twice with 100 ml of ethyl acetate. After the extract was purified by silica gel chromatography, ethyl acetate was distilled off under reduced pressure, dried and recrystallized from butanol to give 90.8 g of 4- (2-hydroxyethoxy) cinnamic acid-2-hydroxyethyl ester. (72%) was obtained.
[0060]
b. Synthesis of maleimide derivatives with cinnamoyl group
Into a 500 ml three-necked flask equipped with a stirrer, thermometer, Dean-Stark fractionator and condenser tube, 8.8 g of maleimide acetic acid obtained in Synthesis Example 1a and 4 obtained in Synthesis Example 3a. -(2-Hydroxyethoxy) cinnamic acid-2-hydroxyethyl ester 5.1 g, p-toluenesulfonic acid monohydrate 0.4 g, hydroquinone 20 mg and toluene 150 ml were sequentially added and heated to 90 ° C. under reduced pressure. Then, the reaction was carried out for 15 hours while removing water produced by refluxing the solvent. After completion of the reaction, the reaction mixture was filtered while hot, and the resulting solid was washed thoroughly with methanol and dried to obtain the formula (6).
[0061]
Embedded image
Figure 0004900632
7.8 g of a bifunctional maleimide derivative represented by the formula:
[0062]
1H-NMR (300 MHz, (CD3) 2SO)
δ = 3.75-4.47 (m, 12H), 6.84-7.15 (m, 8H), 7.63-8.18 (m, 6H)
[0063]
[Comparative Synthesis Example 1]
Synthesis of bifunctional acrylate with benzophenone structure
C. Of Synthesis Example 1 In the synthesis of maleimide derivatives, acrylic acid is used in place of maleimide acetic acid to obtain the formula (7)
[0064]
Embedded image
Figure 0004900632
The bifunctional acrylate represented by this was obtained.
[0065]
[Comparative Synthesis Example 2]
Synthesis of photo-alignment film materials with polymaleimide in the main chain and parafluorobenzoylcinnamoyl group in the side chain
a. Synthesis of polyhydroxyphenylmaleimide
In a three-necked round bottom flask filled with nitrogen, 5 g of maleic anhydride polymer from Polyscience Co., USA and 3 g of aminophenol are placed in 100 ml of xylene and stirred at room temperature for 30 minutes. Further, 2.9 g of isoquinoline was added, the temperature was gradually raised to 150 ° C., and the reaction was continued for about 3 hours while continuously removing water generated during the reaction. After confirming that water was no longer formed, the reaction was terminated, and the temperature was lowered to room temperature. Then, the product was precipitated by pouring it into 500 ml of methanol, filtered under reduced pressure and vacuum-dried at 100 ° C. to obtain polyhydroxyphenylmaleimide. Obtained.
[0066]
b. Synthesis of parafluorobenzoylcinnamoyl chloride.
16.42 g (0.1 mol) of parahydroxycinnamic acid and 8 g of sodium hydroxide were dissolved in 100 ml of water and 100 ml of dimethyl sulfoxide (DMSO), and 15.86 g (0 .1 mol) was gradually added dropwise. After reacting at room temperature for about 2 hours, the mixture was neutralized with dilute hydrochloric acid to pH = 6-7. The resulting solid intermediate was filtered and washed thoroughly with water. After complete drying under vacuum, recrystallization in ethanol gave parafluorobenzoyloxycinnamic acid in 90% yield. To this, 1.2 equivalents of thionyl chloride and about 50 ml of methylene chloride were added and reacted at room temperature until a clear solution was obtained. After the reaction, the solvent and thionyl chloride were removed under vacuum and completely dried to obtain parafluorobenzoylcinnamoyl chloride.
[0067]
c. Synthesis of photo-alignment film materials with polymaleimide in the main chain and parafluorobenzoylcinnamoyl group in the side chain
Comparative Synthesis Example 2 a. After dissolving 1.7 g of polyhydroxyphenylmaleimide obtained in 1 in 50 ml of N-methylpyrrolidone (NMP), 1.0 g of triethylamine was added and stirred for 30 minutes. B. Of Comparative Synthesis Example 2 described above with vigorous stirring while lowering the reaction temperature to 5 ° C. 2.13 g of parafluorobenzoylcinnamoyl chloride obtained in 1 above was slowly added dropwise. After all of the parafluorobenzoyl cinnamoyl chloride was added dropwise, the mixture was stirred for about 1 hour to complete the reaction. The reaction solution is poured into a beaker containing 200 ml each of water and methanol to precipitate the product, and then washed thoroughly with an excessive amount of water and methanol, and then filtered under reduced pressure and dried in vacuo. A photoalignment film material having a polymaleimide in the chain and a parafluorobenzoylcinnamoyl group in the side chain was obtained.
[0068]
A photo-alignment film was prepared using the materials for photo-alignment films obtained in the above synthesis examples and comparative synthesis examples, and physical properties were evaluated. The preparation method of the photo-alignment film and the physical property evaluation method were performed according to the following methods.
[0069]
[Method for creating photo-alignment film]
a. Preparation of photo-alignment material solution
The maleimide derivative obtained in the synthesis example is dissolved in a mixed solvent of N-methylpyrrolidone / butyl cellosolve = 1/1 to obtain a non-volatile concentration 5% solution, which is filtered through a 0.1 μm filter, and used for a photo-alignment film A material solution was obtained.
[0070]
b-1. Photo-alignment film creation (thermosetting method)
A. The material solution for photo-alignment film obtained by the above method was uniformly applied on a glass substrate with an ITO electrode by a spin coater, and dried and cured at 190 ° C. for 1 hour. Next, 30 J / cm of accumulated light quantity is obtained from the ultra-high pressure mercury lamp on the surface of the obtained coating film. 2 Was irradiated with linearly polarized ultraviolet light at around 365 nm to prepare a photo-alignment film.
[0071]
b-2. Photo-alignment film creation (photo-curing method)
A. The material solution for photo-alignment film obtained by the above method is uniformly applied on a glass substrate with an ITO electrode by a spin coater, dried at 100 ° C. for 15 minutes, and then integrated on the coating surface from an ultrahigh pressure mercury lamp. 2J / cm in light intensity 2 Were irradiated with ultraviolet light having a wavelength of about 313 nm. Next, 30 J / cm of accumulated light quantity is obtained from the ultra-high pressure mercury lamp on the surface of the obtained coating film. 2 Was irradiated with linearly polarized ultraviolet light at around 365 nm to prepare a photo-alignment film.
[0072]
c. Creation of liquid crystal cell
An epoxy-based adhesive containing styrene beads having a diameter of 8 μm is applied around the photo-alignment film substrate obtained in the above b-1 or 2, leaving the liquid crystal injection port, so that the alignment plane faces and polarized light. The adhesives were stacked and pressed in a direction perpendicular to each other, and the adhesive was cured at 150 ° C. for 90 minutes.
Next, after nematic liquid crystal (5CB) was vacuum injected from the liquid crystal injection port in an isotropic phase and filled, the liquid crystal injection port was sealed with an epoxy adhesive.
[0073]
[Evaluation method of photo-alignment film]
a. Liquid crystal alignment evaluation
C. The liquid crystal cell obtained by the above method is sandwiched between two polarizing plates whose polarization directions are orthogonal to each other, and a voltage of 5 V is applied between the electrodes to turn it on and off, thereby switching the light and darkness. evaluated.
[0074]
b. Voltage holding ratio measurement
C. A voltage of 5 V was applied to the liquid crystal cell obtained by the above method for 64 microseconds, and then the voltage holding ratio with respect to the initial applied voltage after opening for 16.6 milliseconds was measured.
[0075]
c. Durability measurement
The alignment after the liquid crystal cell was held at 80 ° C. for 1000 hours was visually evaluated.
[0076]
d. Evaluation of heat resistance
The photo-alignment film obtained by the method b-1 or b-2 is heated at 180 ° C. for 60 minutes, and then the c. A liquid crystal cell was prepared by the method described above, and the liquid crystal orientation was visually evaluated.
[0077]
[Example 1]
From the maleimide derivative (4) obtained in Synthesis Example 1, a photoalignment film material solution is prepared according to the above-described method for preparing a photoalignment film material solution, and then b-1. A photo-alignment film was prepared according to the method for preparing a photo-alignment film by thermosetting. A liquid crystal cell was prepared using the obtained photo-alignment film, and physical properties were evaluated according to the above evaluation method.
As a result, the voltage holding ratio was 99%, and the liquid crystal orientation, durability, and heat resistance were all good.
[0078]
[Example 2]
From the maleimide derivative (4) obtained in Synthesis Example 1, a photoalignment film material solution is prepared according to the method for preparing a photoalignment film material solution, and then b-2. A photo-alignment film was prepared according to the photo-curing method for photo-alignment film. A liquid crystal cell was prepared using the obtained photo-alignment film, and physical properties were evaluated according to the above evaluation method.
As a result, the voltage holding ratio was 99%, and the liquid crystal orientation, durability, and heat resistance were all good.
[0079]
[Example 3]
The maleimide derivative (4) obtained in Synthesis Example 1 was used as a mixture having a weight ratio of 1/1 to the maleimide derivative (4) obtained in Synthesis Example 1 and the maleimide derivative (5) obtained in Synthesis Example 2. Evaluation was performed in the same manner as in Example 1.
As a result, the voltage holding ratio was as good as 99%, and the liquid crystal orientation, durability, and heat resistance were good.
[0080]
[Example 4]
Evaluation was performed in the same manner as in Example 1, except that the maleimide derivative (4) obtained in Synthesis Example 1 was replaced with the maleimide derivative (6) obtained in Synthesis Example 3.
As a result, the voltage holding ratio was as good as 99%, and the liquid crystal orientation, durability, and heat resistance were good.
[0081]
[Comparative Example 1]
The maleimide derivative (4) obtained in Synthesis Example 1 was added to the acrylic acid derivative (7) synthesized in Comparative Synthesis Example 1 and 0.1% of 2,2′-azobisisobutyronitrile was added thereto. The evaluation was performed in the same manner as in Example 1 except that it was replaced with.
As a result, the liquid crystal orientation, durability and heat resistance were good, but the voltage holding ratio was as low as 89%.
[0082]
[Comparative Example 2]
Other than replacing the maleimide derivative (4) obtained in Synthesis Example 1 with a photoalignment film material having polymaleimide in the main chain synthesized in Comparative Synthesis Example 2 and having a parafluorobenzoylcinnamoyl group in the side chain Were evaluated in the same manner as in Example 1.
As a result, the voltage holding ratio was as good as 98% and the liquid crystal orientation was good, but after the durability or heat resistance test, the switching between light and dark was unclear and the orientation was lowered.
[0083]
【Effect of the invention】
By using the photo-alignment film material comprising the maleimide derivative of the present invention, light having good liquid crystal display element characteristics, for example, voltage holding ratio, good alignment stability and sufficient durability against light and heat. An alignment film can be obtained.

Claims (6)

1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体を含有し、前記マレイミド基を有する重合性単量体が一般式(1)
Figure 0004900632
(式中、R1は、炭素原子数1〜30のアルキレン基又は炭素原子数3〜12のシクロアルキレン基、あるいは、これらの基の2〜5個が単結合、エステル結合、エーテル結合又はウレタン結合で連結された基、を表わす。R2はポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、ヘミチオインジゴ基、ベンゾフェノン基、シンナモイル基、カルコン基及びクマリン基からなる群から選ばれる光配向性基を表わし、R3及びR4は各々独立して、水素原子、炭素原子数1〜8のアルキル基、フェニル基またはハロゲン原子を表わし、nは、2〜4の整数を表わす。)で表わされる化合物である光配向膜用材料。
A polymerizable monomer having a maleimide group containing a polymerizable monomer having a photo-alignable group that exhibits a photo-alignment function by at least one photodimerization reaction and at least two polymerizable maleimide groups in one molecule. The polymer is represented by the general formula (1)
Figure 0004900632
(In the formula, R1 is an alkylene group having 1 to 30 carbon atoms or a cycloalkylene group having 3 to 12 carbon atoms, or 2 to 5 of these groups are single bonds, ester bonds, ether bonds or urethane bonds. R2 represents a photo-alignment group selected from the group consisting of a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a hemithioindigo group, a benzophenone group, a cinnamoyl group, a chalcone group, and a coumarin group, R3 and R4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group or a halogen atom, and n represents an integer of 2 to 4). Membrane material.
1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体の重合体を含有し、前記光配向性基の光二量化により発現した光配向機能と前記重合性マレイミド基の重合により生じた架橋構造とを有し、前記マレイミド基を有する重合性単量体が一般式(1)
Figure 0004900632
(式中、R1は、炭素原子数1〜30のアルキレン基又は炭素原子数3〜12のシクロアルキレン基、あるいは、これらの基の2〜5個が単結合、エステル結合、エーテル結合又はウレタン結合で連結された基を表わす。R2はポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、ヘミチオインジゴ基、ベンゾフェノン基、シンナモイル基、カルコン基及びクマリン基からなる群から選ばれる光配向性基を表わし、R3及びR4は各々独立して、水素原子、炭素原子数1〜8のアルキル基、フェニル基またはハロゲン原子を表わす。)で表わされる化合物である光配向膜。
A polymer of a polymerizable monomer having a photoalignment group that exhibits a photoalignment function by at least one photodimerization reaction and at least two polymerizable maleimide groups in one molecule, and the photoalignment group Having a photo-alignment function expressed by photodimerization and a cross-linked structure generated by polymerization of the polymerizable maleimide group, the polymerizable monomer having the maleimide group is represented by the general formula (1)
Figure 0004900632
(In the formula, R1 is an alkylene group having 1 to 30 carbon atoms or a cycloalkylene group having 3 to 12 carbon atoms, or 2 to 5 of these groups are single bonds, ester bonds, ether bonds or urethane bonds. R2 represents a photo-alignment group selected from the group consisting of a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a hemithioindigo group, a benzophenone group, a cinnamoyl group, a chalcone group, and a coumarin group; And R4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group or a halogen atom.)
1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体を基板上に塗布し、該塗膜に光照射することにより前記構造単位の光二量化反応と前記重合性マレイミド基の光重合反応を生起させて架橋された高分子膜を形成すると共に前記高分子膜に光配向機能を発現させることを特徴とし、前記マレイミド化合物が一般式(1)
Figure 0004900632
(式中、R1は、炭素原子数1〜30のアルキレン基又は炭素原子数3〜12のシクロアルキレン基、あるいは、これらの基の2〜5個が単結合、エステル結合、エーテル結合又はウレタン結合で連結された基を表わす。R2はポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、ヘミチオインジゴ基、ベンゾフェノン基、シンナモイル基、カルコン基及びクマリン基からなる群から選ばれる光配向性基を表わし、R3及びR4は各々独立して、水素原子、炭素原子数1〜8のアルキル基、フェニル基またはハロゲン原子を表わす。)で表わされる化合物である光配向膜の製造方法。
A polymerizable monomer having a photo-alignment group that exhibits a photo-alignment function by at least one photodimerization reaction in one molecule and at least two polymerizable maleimide groups is coated on the substrate, and light is applied to the coating film. Irradiation causes a photodimerization reaction of the structural unit and a photopolymerization reaction of the polymerizable maleimide group to form a crosslinked polymer film, and the polymer film exhibits a photo-alignment function. The maleimide compound has the general formula (1)
Figure 0004900632
(In the formula, R1 is an alkylene group having 1 to 30 carbon atoms or a cycloalkylene group having 3 to 12 carbon atoms, or 2 to 5 of these groups are single bonds, ester bonds, ether bonds or urethane bonds. R2 represents a photo-alignment group selected from the group consisting of a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a hemithioindigo group, a benzophenone group, a cinnamoyl group, a chalcone group, and a coumarin group; And R4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group or a halogen atom.)
1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体を基板上に塗布し、該塗膜を加熱することにより前記重合性マレイミド基の熱重合反応を生起させて架橋された高分子膜を形成し、前記高分子膜に光照射することにより前記構造単位の光二量化反応を生起させて前記高分子膜に光配向機能を発現させることを特徴とし、前記マレイミド化合物が一般式(1)
Figure 0004900632
(式中、R1は、炭素原子数1〜30のアルキレン基又は炭素原子数3〜12のシクロアルキレン基、あるいは、これらの基の2〜5個が単結合、エステル結合、エーテル結合又はウレタン結合で連結された基を表わす。R2はポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、ヘミチオインジゴ基、ベンゾフェノン基、シンナモイル基、カルコン基及びクマリン基からなる群から選ばれる光配向性基を表わし、R3及びR4は各々独立して、水素原子、炭素原子数1〜8のアルキル基、フェニル基またはハロゲン原子を表わす。)で表わされる化合物である光配向膜の製造方法。
A polymerizable monomer having a photo-alignable group that exhibits a photo-alignment function by at least one photodimerization reaction in one molecule and at least two polymerizable maleimide groups is applied onto the substrate, and the coating film is heated. To form a crosslinked polymer film by causing a thermal polymerization reaction of the polymerizable maleimide group, and irradiating the polymer film with light to cause a photodimerization reaction of the structural unit. The film has a photo-alignment function, and the maleimide compound has the general formula (1)
Figure 0004900632
(In the formula, R1 is an alkylene group having 1 to 30 carbon atoms or a cycloalkylene group having 3 to 12 carbon atoms, or 2 to 5 of these groups are single bonds, ester bonds, ether bonds or urethane bonds. R2 represents a photo-alignment group selected from the group consisting of a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a hemithioindigo group, a benzophenone group, a cinnamoyl group, a chalcone group, and a coumarin group; And R4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group or a halogen atom.)
内側に配向膜を有する二枚の基板間に液晶を挟持した構造を有する液晶表示素子において、前記配向膜が1分子中に少なくとも1個の光二量化反応により光配向機能を発現する光配向性基と少なくとも2個の重合性マレイミド基を有する重合性単量体の重合体を含有し、前記光配向性基の光二量化により発現した光配向機能と前記重合性マレイミド基の重合により生じた架橋構造とを有する光配向膜であることを特徴とし、前記マレイミド化合物が一般式(1)
Figure 0004900632
(式中、R1は、炭素原子数1〜30のアルキレン基又は炭素原子数3〜12のシクロアルキレン基、あるいは、これらの基の2〜5個が単結合、エステル結合、エーテル結合又はウレタン結合で連結された基を表わす。R2はポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、ヘミチオインジゴ基、ベンゾフェノン基、シンナモイル基、カルコン基及びクマリン基からなる群から選ばれる光配向性基を表わし、R3及びR4は各々独立して、水素原子、炭素原子数1〜8のアルキル基、フェニル基またはハロゲン原子を表わす。)で表わされる化合物である液晶表示素子。
In a liquid crystal display element having a structure in which liquid crystal is sandwiched between two substrates having an alignment film on the inner side, the alignment film exhibits a photo-alignment function by at least one photodimerization reaction in one molecule. And a polymer of a polymerizable monomer having at least two polymerizable maleimide groups, a photo-alignment function expressed by photodimerization of the photo-alignable group and a crosslinked structure generated by polymerization of the polymerizable maleimide group And the maleimide compound is represented by the general formula (1).
Figure 0004900632
(In the formula, R1 is an alkylene group having 1 to 30 carbon atoms or a cycloalkylene group having 3 to 12 carbon atoms, or 2 to 5 of these groups are single bonds, ester bonds, ether bonds or urethane bonds. R2 represents a photo-alignment group selected from the group consisting of a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a hemithioindigo group, a benzophenone group, a cinnamoyl group, a chalcone group, and a coumarin group; And R4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group or a halogen atom.)
一般式(1)General formula (1)
Figure 0004900632
Figure 0004900632
(式中、R1は、炭素原子数1〜30のアルキレン基又は炭素原子数3〜12のシクロアルキレン基、あるいは、これらの基の2〜5個が単結合、エステル結合、エーテル結合又はウレタン結合で連結された基、を表わす。R2はポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、ヘミチオインジゴ基、ベンゾフェノン基、シンナモイル基、カルコン基及びクマリン基からなる群から選ばれる光配向性基を表わし、R3及びR4は各々独立して、水素原子、炭素原子数1〜8のアルキル基、フェニル基またはハロゲン原子を表わし、nは、2〜4の整数を表わす。)で表わされるマレイミド化合物。(In the formula, R1 is an alkylene group having 1 to 30 carbon atoms or a cycloalkylene group having 3 to 12 carbon atoms, or 2 to 5 of these groups are single bonds, ester bonds, ether bonds or urethane bonds. R2 represents a photo-alignment group selected from the group consisting of a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a hemithioindigo group, a benzophenone group, a cinnamoyl group, a chalcone group, and a coumarin group, R3 and R4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group or a halogen atom, and n represents an integer of 2 to 4).
JP2001229471A 2000-08-30 2001-07-30 Photo-alignment film material, photo-alignment film and method for producing the same Expired - Fee Related JP4900632B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001229471A JP4900632B2 (en) 2000-08-30 2001-07-30 Photo-alignment film material, photo-alignment film and method for producing the same
TW90121017A TW553932B (en) 2000-08-30 2001-08-27 Material for light-oriented film, light-oriented film and process for producing the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2000-260764 2000-08-30
JP2000260764 2000-08-30
JP2000260764 2000-08-30
JP2001040025 2001-02-16
JP2001040025 2001-02-16
JP2001-40025 2001-02-16
JP2001229471A JP4900632B2 (en) 2000-08-30 2001-07-30 Photo-alignment film material, photo-alignment film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002317013A JP2002317013A (en) 2002-10-31
JP4900632B2 true JP4900632B2 (en) 2012-03-21

Family

ID=27344467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229471A Expired - Fee Related JP4900632B2 (en) 2000-08-30 2001-07-30 Photo-alignment film material, photo-alignment film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4900632B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803412B2 (en) * 2001-03-14 2011-10-26 Dic株式会社 Photoalignment material containing maleimide derivative and method for producing photoalignment film
JP4756296B2 (en) * 2001-03-14 2011-08-24 Dic株式会社 Maleimide derivative and method for producing photoalignment film using the same
JP2005148443A (en) * 2003-11-17 2005-06-09 Toppan Printing Co Ltd Substrate having projection for controlling liquid crystal alignment, and liquid crystal display device using the same
TWI413809B (en) 2004-12-27 2013-11-01 Dainippon Ink & Chemicals Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element, and method of producing optical film
JP4839194B2 (en) * 2005-12-26 2011-12-21 株式会社 日立ディスプレイズ Liquid crystal display device and manufacturing method thereof
JP4884027B2 (en) * 2006-02-27 2012-02-22 株式会社 日立ディスプレイズ Manufacturing method of liquid crystal display device
TWI466852B (en) * 2008-03-18 2015-01-01 Chi Mei Corp Liquid crystal aligning agent and method for producing liquid crystal alignment film
JP5525213B2 (en) 2009-08-28 2014-06-18 富士フイルム株式会社 Polarizing film, laminate, and liquid crystal display device
JP5657243B2 (en) 2009-09-14 2015-01-21 ユー・ディー・シー アイルランド リミテッド Color filter and light emitting display element
JP5566160B2 (en) 2010-03-31 2014-08-06 富士フイルム株式会社 Liquid crystal compound, liquid crystal composition, light absorption anisotropic film, and liquid crystal display device
JP5300776B2 (en) 2010-03-31 2013-09-25 富士フイルム株式会社 Polarizing film, display device, and manufacturing method thereof
JP5442518B2 (en) 2010-03-31 2014-03-12 富士フイルム株式会社 Light-absorbing anisotropic film, polarizing film, method for producing the same, and display device using the same
KR101906842B1 (en) * 2011-08-22 2018-12-06 엘지디스플레이 주식회사 Method of forming an alignment layer
KR101974067B1 (en) * 2012-05-08 2019-04-30 엘지디스플레이 주식회사 Liquid crystal display panel and Method of fabricating the same
KR101987187B1 (en) * 2012-11-29 2019-06-10 엘지디스플레이 주식회사 Liquid Crystal Display Device Including Light Orientation Film And Method Of Fabricating The Same
JP6163801B2 (en) * 2013-03-13 2017-07-19 Jnc株式会社 Cured film
WO2018070507A1 (en) * 2016-10-14 2018-04-19 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
WO2020008961A1 (en) 2018-07-02 2020-01-09 富士フイルム株式会社 Decorative film, decoration method, decorative molded body production method, and decorative molded film
EP3923263A4 (en) 2019-02-08 2022-11-09 Toyobo Co., Ltd. Foldable display and portable terminal device
EP3932665B1 (en) 2019-02-27 2024-04-17 FUJIFILM Corporation Layered body
US20220187503A1 (en) 2019-03-28 2022-06-16 Toyobo Co., Ltd. Anti-reflection circular polariser and image display device using same
WO2020241278A1 (en) 2019-05-28 2020-12-03 東洋紡株式会社 Multilayer film and use of same
US11926720B2 (en) 2019-05-28 2024-03-12 Toyobo Co., Ltd. Polyester film and application therefor
EP3978554A4 (en) 2019-05-28 2023-06-21 Toyobo Co., Ltd. Polyester film, laminated film, and use thereof
US20220236467A1 (en) 2019-05-30 2022-07-28 Toyobo Co., Ltd. Polarization plate for folding display
CN113874767A (en) 2019-05-30 2021-12-31 东洋纺株式会社 Folding display
WO2020262474A1 (en) 2019-06-27 2020-12-30 富士フイルム株式会社 Decorative film for molding, molded article, and display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296112A3 (en) * 1987-06-18 1989-09-06 Ciba-Geigy Ag Storage-stable curable compositions
JPH05186535A (en) * 1991-06-18 1993-07-27 Toray Ind Inc Optical platy material
JP2001122981A (en) * 1999-10-25 2001-05-08 Nec Corp Organic thin membrane, its production and photocuring composition
JP4803412B2 (en) * 2001-03-14 2011-10-26 Dic株式会社 Photoalignment material containing maleimide derivative and method for producing photoalignment film

Also Published As

Publication number Publication date
JP2002317013A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP4900632B2 (en) Photo-alignment film material, photo-alignment film and method for producing the same
KR100803615B1 (en) Material for photo-alignment layer, photo-alignment layer and method of manufacturing the same
JP4803412B2 (en) Photoalignment material containing maleimide derivative and method for producing photoalignment film
JP5186734B2 (en) Azo compound, composition for photo-alignment film, photo-alignment film and liquid crystal display element
TWI513714B (en) Polymer for liquid crystal vertical alignment layer, liquid crystal vertical alignment layer and liquid crystal display element
KR20150067217A (en) Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
TWI810273B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and compound
JP4957976B2 (en) Composition for vertical alignment layer
KR100711901B1 (en) Polymer for liquid crystal aligning and liquid crystal display using the same
JP4664986B2 (en) Photoreactive compound, liquid crystal alignment film using the same, method for producing the same, and liquid crystal display device provided with the alignment film
JP7409388B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP6744717B2 (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching type liquid crystal display device
TWI707024B (en) Polymer composition and liquid crystal alignment film for lateral electric field driven liquid crystal display element
JP2012523486A (en) Maleimide-N-vinyllactam side group polymer for LCD alignment film
JP2003270638A (en) Composition for photo-alignment layer, and method for manufacturing photo-alignment layer using the same
JP4756296B2 (en) Maleimide derivative and method for producing photoalignment film using the same
RU2507216C2 (en) Photoreactive polyamide polymer and method for production thereof
JP4604438B2 (en) Photo-alignment film material, photo-alignment film and method for producing the same
TW202018068A (en) Liquid crystal aligning agent, method for manufacturing same, liquid crystal aligning film, and liquid crystal element
TW553932B (en) Material for light-oriented film, light-oriented film and process for producing the same
KR20130123308A (en) Photoalignment polymer, optical film comprising the polymer and method for fabricating the optical film
KR20040047268A (en) Triazine ring with one more photoactive groups based poly(amide-ester) copolymers composition for photoinduced liquid crystal alignment, the film for photoinduced liquid crystal thereby, preparation method thereof and the liguid crystal cell comprising the film

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4900632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees