JP4775713B2 - Coated fine metal powder and magnetic beads - Google Patents

Coated fine metal powder and magnetic beads Download PDF

Info

Publication number
JP4775713B2
JP4775713B2 JP2006262410A JP2006262410A JP4775713B2 JP 4775713 B2 JP4775713 B2 JP 4775713B2 JP 2006262410 A JP2006262410 A JP 2006262410A JP 2006262410 A JP2006262410 A JP 2006262410A JP 4775713 B2 JP4775713 B2 JP 4775713B2
Authority
JP
Japan
Prior art keywords
metal
fine particles
particles
oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006262410A
Other languages
Japanese (ja)
Other versions
JP2008081779A (en
Inventor
久人 所
重男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006262410A priority Critical patent/JP4775713B2/en
Publication of JP2008081779A publication Critical patent/JP2008081779A/en
Application granted granted Critical
Publication of JP4775713B2 publication Critical patent/JP4775713B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、磁気テープ若しくは磁気記録ディスク等の磁気記録媒体、電波吸収体、インダクタ若しくはプリント基板等の電子デバイス(ヨーク等の軟磁性体)、光触媒、核酸抽出用磁気ビーズ若しくは医療用マイクロスフィア等に用いる被覆金属微粒子の粉末に関する。   The present invention relates to a magnetic recording medium such as a magnetic tape or a magnetic recording disk, a radio wave absorber, an electronic device such as an inductor or a printed circuit board (soft magnetic material such as a yoke), a photocatalyst, a magnetic bead for nucleic acid extraction, a medical microsphere, etc. The present invention relates to powder of coated metal fine particles used in the above.

電子機器の高性能化及び小型軽量化に伴い、電子デバイスの高性能化及び小型軽量化とともに、電子デバイスを構成する材料の高性能化及びナノサイズ化も要求されている。例えば磁気テープに塗布する磁性粒子は、磁気記録密度の向上を目的として、ナノサイズ化と磁化の向上が同時に要求されている。   As electronic devices become more sophisticated and smaller and lighter, there is a demand for higher performance and smaller size and weight of electronic devices, as well as higher performance and nano-size of materials constituting electronic devices. For example, magnetic particles applied to magnetic tape are required to be nanosized and magnetized at the same time for the purpose of improving magnetic recording density.

ナノ磁性粒子は主に共沈法や水熱合成法等の液相合成法により製造されている。液相合成法で得られるナノ磁性粒子はフェライトやマグネタイト等の酸化物粒子である。最近では有機金属化合物の熱分解を利用した方法も採用されており、例えばFe(CO)からFeのナノ磁性粒子が製造されている。 Nanomagnetic particles are mainly produced by a liquid phase synthesis method such as a coprecipitation method or a hydrothermal synthesis method. Nanomagnetic particles obtained by the liquid phase synthesis method are oxide particles such as ferrite and magnetite. Recently, a method using thermal decomposition of an organometallic compound has also been adopted. For example, Fe nanoparticle of Fe is produced from Fe (CO) 6 .

金属の磁性粒子はフェライト等の酸化物粒子に比べて磁化が大きいため、工業的利用への期待が大きい。例えば、金属Feの飽和磁化は218Am/kgと酸化鉄に比べて非常に大きいので、磁界応答性に優れ、信号強度が大きくとれるという利点がある。しかし金属Fe等の金属微粒子は容易に酸化し、例えば100μm以下、特に1μm以下の微粒子状にすると、比表面積の増大により大気中で激しく燃えるので、乾燥状態で取り扱うのが難しい。そのため、フェライトやマグネタイト等の酸化物粒子が広く利用されてきた。 Since metal magnetic particles have larger magnetization than oxide particles such as ferrite, they are highly expected for industrial use. For example, the saturation magnetization of metallic Fe is 218 Am 2 / kg, which is very large compared to iron oxide, and therefore has the advantage of excellent magnetic field response and high signal intensity. However, metal fine particles such as metal Fe readily oxidize. For example, if they are made into fine particles of 100 μm or less, particularly 1 μm or less, they burn intensely in the atmosphere due to an increase in specific surface area, and are difficult to handle in a dry state. Therefore, oxide particles such as ferrite and magnetite have been widely used.

乾燥した金属微粒子を取り扱う場合、金属微粒子を直接大気(酸素)に触れさせないように粒子表面に被覆を付与することが不可欠である。しかし、特許文献1のように自身の金属酸化物で表面を被覆する方法は、少なからず金属を酸化劣化させる。   When handling dried metal fine particles, it is essential to provide a coating on the particle surface so that the metal fine particles are not directly exposed to the atmosphere (oxygen). However, the method of covering the surface with its own metal oxide as in Patent Document 1 oxidizes and degrades the metal.

特許文献2は、カーボンブラック、天然黒鉛等の炭素質物質粒子と、金属単体の粒子若しくは金属化合物粒子(金属化合物は、金属酸化物、金属炭化物又は金属塩から選ばれる。)とを混合して、不活性ガス雰囲気中で1600〜2800℃に熱処理し、45℃/分以下の冷却速度で冷却することにより、グラファイト被覆金属微粒子を製造する方法を提案している。しかし、この方法では、1600〜2800℃と極めて高い温度で金属含有物質粒子を熱処理するので、金属微粒子の焼結が懸念される。その上、金属微粒子にグラファイトを被覆する方法は生産効率が低いという問題もある。   In Patent Document 2, carbonaceous material particles such as carbon black and natural graphite are mixed with particles of a single metal or metal compound particles (the metal compound is selected from a metal oxide, a metal carbide, or a metal salt). A method for producing graphite-coated metal fine particles by heat treatment at 1600 to 2800 ° C. in an inert gas atmosphere and cooling at a cooling rate of 45 ° C./min or less is proposed. However, in this method, since the metal-containing material particles are heat-treated at an extremely high temperature of 1600 to 2800 ° C., there is a concern about sintering of the metal fine particles. In addition, the method of coating the fine metal particles with graphite has a problem that the production efficiency is low.

特開2000−30920号公報(図2、第10頁左欄)JP 2000-30920 A (FIG. 2, page 10, left column) 特開平9−143502号公報(図6、第3頁)JP 9-143502 A (FIG. 6, page 3)

その上、グラファイトはグラフェンシートが積層した構造を有するため、球状の金属微粒子を被覆した場合、必ず格子欠陥が導入される。これらの欠陥が存在する被覆では、磁気ビーズ等、高耐食性が要求される用途では不満足である。そのため、高耐食性の金属微粒子が望まれている。   In addition, since graphite has a structure in which graphene sheets are laminated, lattice defects are always introduced when spherical metal fine particles are coated. Coatings with these defects are unsatisfactory for applications that require high corrosion resistance, such as magnetic beads. Therefore, highly corrosion-resistant metal fine particles are desired.

従って、本発明の目的は、耐食性に優れた被覆金属微粒子の粉末およびそれを用いた磁気ビーズを提供することである。   Accordingly, an object of the present invention is to provide a powder of coated metal fine particles having excellent corrosion resistance and a magnetic bead using the powder.

本発明の被覆金属微粒子の粉末は、TiO を主体とするTi酸化物中に金属粒子を内包した被覆金属微粒子の粉末であって、前記金属はその酸化物の標準生成自由エネルギーがΔGM−O>ΔGTiO2の関係を満たす金属であり、前記金属粒子の粒径に対する個数分布が複数のピークを有することを特徴とする。前記被覆金属微粒子の粉末は、前記Ti酸化物中に複数の金属粒子を内包した被覆金属微粒子を有することが望ましい。Ti酸化物中に複数の金属粒子を内包した被覆金属微粒子の他に、Ti酸化物中に1つの金属粒子を内包した被覆金属微粒子を有してもよい。 The powder of the coated metal fine particles of the present invention is a powder of coated metal fine particles in which metal particles are encapsulated in a Ti oxide mainly composed of TiO 2 , and the metal has a standard free energy of formation of its oxide ΔG M− It is a metal satisfying the relationship of O 2 > ΔG TiO 2 , and the number distribution with respect to the particle diameter of the metal particles has a plurality of peaks. The powder of coated, fine metal particles, it is desirable to have a coated metal fine particles containing a plurality of metal particles in the Ti oxide. In addition to the coated metal fine particles in which a plurality of metal particles are encapsulated in Ti oxide, the coated metal fine particles in which one metal particle is encapsulated in Ti oxide may be included.

本発明の磁気ビーズは、TiO を主体とするTi酸化物中に金属粒子を内包した被覆金属微粒子の粉末(前記金属粒子はFe、Co、Niから選ばれる少なくとも1つの元素を主成分としており、前記金属粒子の粒径に対する個数分布が複数のピークを有する。)と、前記被覆金属微粒子を分散する媒体とを有する。媒体は被覆金属微粒子を分散できる液体であることが望ましい。なお、媒体と接触させる前に、前記Ti酸化物からなる被覆の表面に更にSi酸化物(シリカ)の被覆を形成しておくことがより好ましい。 The magnetic bead of the present invention is a powder of coated metal fine particles in which metal particles are encapsulated in Ti oxide mainly composed of TiO 2 (the metal particles are mainly composed of at least one element selected from Fe, Co, and Ni). The number distribution of the metal particles with respect to the particle diameter has a plurality of peaks), and a medium in which the coated metal fine particles are dispersed. The medium is desirably a liquid capable of dispersing the coated metal fine particles. It is more preferable to further form a Si oxide (silica) coating on the surface of the Ti oxide coating before contacting with the medium.

本発明に係る被覆金属微粒子の製造方法は、Tiを含む粉末(ただしTi酸化物粉末を除く)と、酸化物の標準生成自由エネルギーがΔGM−O>ΔGTiO2の関係を満たす金属Mの酸化物粉末とを混合し、得られた混合粉末を非酸化性雰囲気中で650〜900℃の温度で熱処理することにより、前記金属Mの酸化物をTiにより還元するとともに、得られた金属Mの微粒子の表面をTiO2を主体とするTi酸化物で被覆することを特徴とする。 The method for producing coated metal fine particles according to the present invention includes a powder containing Ti (excluding a Ti oxide powder) and an oxidation of metal M satisfying the relationship of ΔG M−O > ΔG TiO 2 where the standard free energy of formation of the oxide The resulting mixed powder is heat-treated at a temperature of 650 to 900 ° C. in a non-oxidizing atmosphere, whereby the oxide of the metal M is reduced with Ti and the obtained metal M is mixed. The surface of the fine particles is covered with a Ti oxide mainly composed of TiO 2 .

より詳細には、本発明の被覆金属微粒子の製造方法は、Tiを含む粉末(TiCを主成分とし、前記TiCの一部をTiNで置換する)と、酸化物の標準生成自由エネルギーがΔGM−O>ΔGTiO2の関係を満たす金属Mの酸化物粉末とを混合し、得られた混合粉末を非酸化性雰囲気中で650〜900℃の温度で熱処理することにより、前記金属Mの酸化物をTiにより還元するとともに、得られた金属Mの微粒子の表面をTiOを主体とするTi酸化物で被覆することを特徴とする。 More specifically, the method of producing coated, fine metal particles of the present invention, (the main component TiC, a part of the TiC is replaced by TiN) powder containing Ti and the standard free energy of oxide formation is .DELTA.G M The metal M oxide powder is mixed with a metal M oxide powder satisfying the relationship -O > ΔG TiO2 , and the obtained mixed powder is heat-treated at a temperature of 650 to 900 ° C in a non-oxidizing atmosphere. Is reduced by Ti, and the surface of the obtained metal M fine particles is covered with a Ti oxide mainly composed of TiO 2 .

前記熱処理において、酸化物の標準生成自由エネルギーΔGM−OがTiO2の標準生成自由エネルギーΔGTiO2より大きい金属Mの酸化物粉末を用いることにより、金属Mの酸化物粉末がTiにより還元されると同時に、TiO2を主体とするTi酸化物の被覆が形成される。TiO2を主体とするTi酸化物被覆層は高結晶性であり、コアとなる金属微粒子(金属のコア粒子)を十分に保護することができる。ここで「TiO2を主体とする」とは、X線回折測定で検出されるTiO2以外のTi酸化物(例えば不定比組成のTi2n−1)も含むTi酸化物に相当する回折ピークの中で、TiOに相当するピークの強度が最大であることを意味する。均一性の観点から、実質的にTiO2からなるのが好ましい。ここで「実質的にTiO2からなる」とは、X線回折パターンでTiO2以外のTi酸化物のピークが明確に確認できない程度にTiO2の割合が多いことを言う。従って、X線回折パターンでノイズ程度にTiO2以外のTi酸化物のピークがあっても、「実質的にTiO2からなる」の条件は満たす。 In the heat treatment, standard free energy .DELTA.G M-O oxides by using an oxide powder of standard free energy .DELTA.G TiO2 greater metal M TiO 2, oxide powder is reduced by Ti metal M At the same time, a Ti oxide coating mainly composed of TiO 2 is formed. The Ti oxide coating layer mainly composed of TiO 2 has high crystallinity and can sufficiently protect the metal fine particles (metal core particles) serving as the core. Here, “mainly composed of TiO 2 ” means diffraction corresponding to Ti oxide including Ti oxide other than TiO 2 detected by X-ray diffraction measurement (eg, Ti n O 2n-1 having non-stoichiometric composition). It means that the intensity of the peak corresponding to TiO 2 is the maximum among the peaks. From the viewpoint of uniformity, it is preferable that it is substantially made of TiO 2 . Here, “substantially composed of TiO 2 ” means that the proportion of TiO 2 is so large that a peak of Ti oxides other than TiO 2 cannot be clearly confirmed in the X-ray diffraction pattern. Therefore, even if there is a peak of Ti oxide other than TiO 2 in the X-ray diffraction pattern to the extent of noise, the condition of “substantially consisting of TiO 2 ” is satisfied.

前記金属(以下金属M)はFe、Co、Niから選ばれる少なくとも1つの元素を主成分とする磁性金属であるのが好ましく、特にFeであるのがより好ましい。TiはFeより酸化物の標準生成エネルギーが小さいため、Feの酸化物を効率良く確実に還元することができる。従って、飽和磁化が高く耐食性に優れた磁性金属微粒子が得られる。   The metal (hereinafter referred to as metal M) is preferably a magnetic metal containing at least one element selected from Fe, Co, and Ni as a main component, and more preferably Fe. Since Ti has a lower standard generation energy of oxide than Fe, it is possible to efficiently and reliably reduce the oxide of Fe. Therefore, magnetic metal fine particles having high saturation magnetization and excellent corrosion resistance can be obtained.

金属Mの酸化物はFeであるのが好ましく、Tiを含む粉末はTiCであるのが好ましい。保磁力が低下し、分散性が向上した被覆金属微粒子を得るために、金属Mの酸化物粉末とTiを含む粉末の合計に対するTiを含む粉末の比率は30〜50mass%とするのが好ましい。mass%は質量百分率である。さらに前記金属Mの酸化物がFeであり、前記Tiを含む粉末が少なくともTiCであり、FeとTiCの合計に対するTiCの比率が30〜50mass%であるのがより好ましい。 The metal M oxide is preferably Fe 2 O 3 , and the Ti-containing powder is preferably TiC. In order to obtain coated metal fine particles with reduced coercive force and improved dispersibility, the ratio of the powder containing Ti to the total of the metal M oxide powder and the powder containing Ti is preferably 30 to 50 mass%. mass% is a mass percentage. More preferably, the metal M oxide is Fe 2 O 3 , the Ti-containing powder is at least TiC, and the ratio of TiC to the total of Fe 2 O 3 and TiC is 30 to 50 mass%.

さらに不純物元素である炭素(C)と窒素(N)を低減して高い飽和磁化を得るためにはTiCの一部をTiNで置換することが好ましい。このとき、TiNの置換率が0.1〜0.5であることが好ましい。TiNの置換率は以下の[数1]の式により定義される。   Further, in order to reduce the impurity elements carbon (C) and nitrogen (N) and obtain high saturation magnetization, it is preferable to substitute a part of TiC with TiN. At this time, the substitution rate of TiN is preferably 0.1 to 0.5. The substitution rate of TiN is defined by the following equation [Equation 1].

耐食性に優れた磁性被覆金属微粒子を得るために、金属Mは磁性金属である必要があり、特に高飽和磁化のFeが好ましい。磁性金属を核とすることにより、磁気分離工程に用いるのが容易となり、被覆金属微粒子自体の精製、及び磁気ビーズ用途への使用が可能となる。   In order to obtain magnetic coated metal fine particles having excellent corrosion resistance, the metal M needs to be a magnetic metal, and particularly high saturation magnetization Fe is preferable. By using a magnetic metal as a nucleus, it can be easily used in a magnetic separation process, and the coated metal fine particles themselves can be purified and used for magnetic beads.

前記被覆金属微粒子は50〜180Am/kgの飽和磁化を有するのが好ましい。これにより、被覆層と磁性層の量のバランスがとれた耐食性、磁気特性ともに優れた被覆金属微粒子とすることができる。前記被覆金属微粒子の飽和磁化はより好ましくは95〜180Am/kgである。95〜180Am/kgの範囲は、マグネタイト等の酸化物磁性体では得ることのできない範囲であり、優れた磁気分離性能を発揮する。 The coated metal fine particles preferably have a saturation magnetization of 50 to 180 Am 2 / kg. Thereby, it is possible to obtain coated metal fine particles excellent in both corrosion resistance and magnetic properties in which the amounts of the coating layer and the magnetic layer are balanced. The saturation magnetization of the coated metal fine particles is more preferably 95 to 180 Am 2 / kg. The range of 95 to 180 Am 2 / kg is a range that cannot be obtained with an oxide magnetic material such as magnetite, and exhibits excellent magnetic separation performance.

前記被覆金属微粒子は8kA/m以下の保磁力を有するのが好ましい。これにより、残留磁化が極めて小さくなり、磁気凝集が極めて少ない分散性に優れた被覆金属微粒子とすることができる。より好ましい保磁力は4kA/m以下である。   The coated metal fine particles preferably have a coercive force of 8 kA / m or less. Thereby, the remanent magnetization becomes extremely small, and the coated metal fine particles having excellent dispersibility with very little magnetic aggregation can be obtained. A more preferable coercive force is 4 kA / m or less.

本発明の被覆金属微粒子は、TiOを主体とするTi酸化物で被覆された金属微粒子であって、前記金属はFe、Co、Niから選ばれる少なくとも1つの元素を主成分としている。前記被覆金属微粒子は不純物元素であるCとNの含有量が少ないことが好ましく、より好ましくはC含有量が0.2〜1.4mass%、N含有量が0.04〜0.2mass%である。さらにより好ましくは、C含有量が0.3〜1.1mass%、N含有量が0.04〜0.12mass%である。これにより磁性成分の含有率が向上し、高い飽和磁化が得られる。さらに前記被覆金属微粒子は、C含有量0.2〜1.1mass%およびN含有量0.02〜0.17mass%とするのが良く、C含有量0.3〜1.1mass%および窒素含有量0.04〜0.12mass%とするのが特に高い磁気特性を得る上でより好ましい。ここで、0.02mass%は200ppmに相当する。 The coated metal fine particles of the present invention are metal fine particles coated with a Ti oxide mainly composed of TiO 2 , and the metal contains at least one element selected from Fe, Co, and Ni as a main component. The coated metal fine particles preferably have a low content of impurity elements C and N, more preferably a C content of 0.2 to 1.4 mass% and an N content of 0.04 to 0.2 mass%. is there. Even more preferably, the C content is 0.3 to 1.1 mass%, and the N content is 0.04 to 0.12 mass%. Thereby, the content rate of a magnetic component improves and high saturation magnetization is obtained. Further, the coated metal fine particles may have a C content of 0.2 to 1.1 mass% and an N content of 0.02 to 0.17 mass%, a C content of 0.3 to 1.1 mass% and a nitrogen content. An amount of 0.04 to 0.12 mass% is more preferable for obtaining particularly high magnetic properties. Here, 0.02 mass% corresponds to 200 ppm.

金属MがFeの場合、前記被覆金属微粒子の表面部をX線光電子分光(XPS)分析によってO、Fe、Tiの3元素について定量分析すると、Fe含有量が14〜20at%であり、全Feに対する金属Fe成分の比率が7〜11%であることが好ましい。Feの含有率が14at%以上で、尚且つ金属Fe成分の比率が7%以上であることにより、金属Fe成分の含有量が高く、高い飽和磁化が得られる。Fe含有量の上限は20at%であり、金属Fe成分の比率がFe全体の11%を上限とすることが望ましい。ここでat%は原子百分率であり、定量分析で検出したO、Fe及びTiの総和を100at%とする。   When the metal M is Fe, the surface portion of the coated fine metal particles is quantitatively analyzed for three elements of O, Fe, and Ti by X-ray photoelectron spectroscopy (XPS) analysis, and the Fe content is 14 to 20 at%. It is preferable that the ratio of the metal Fe component to 7 to 11%. When the Fe content is 14 at% or more and the ratio of the metal Fe component is 7% or more, the content of the metal Fe component is high and high saturation magnetization is obtained. The upper limit of the Fe content is 20 at%, and the ratio of the metal Fe component is desirably 11% of the total Fe. Here, at% is an atomic percentage, and the total of O, Fe, and Ti detected by quantitative analysis is 100 at%.

金属MがFeの場合、濃度6Mのグアニジン塩酸塩水溶液中に前記被覆金属微粒子を25℃で24時間浸漬(前記水溶液1mLあたり前記被覆金属微粒子25mgの割合)した後のFeイオン溶出量が50mg/L以下であるのが好ましい。高カオトロピック塩濃度でも高い耐食性を示す被覆金属微粒子は、DNA抽出等の用途に好適である。   When the metal M is Fe, the elution amount of Fe ions after immersing the coated metal fine particles in an aqueous guanidine hydrochloride solution having a concentration of 6M at 25 ° C. for 24 hours (a ratio of 25 mg of the coated metal fine particles per 1 mL of the aqueous solution) is 50 mg / L or less is preferable. The coated metal fine particles exhibiting high corrosion resistance even at a high chaotropic salt concentration are suitable for uses such as DNA extraction.

本発明により、耐食性に優れた被覆金属微粒子の粉末が得られる。本発明の被覆金属微粒子は、金属MがFe、Coなどの場合は磁性粒子として機能し、高磁化を発現する。また磁性金属粒子は高耐食性のTi酸化物層に被覆されているので、腐食性の溶液中で使用するために高い耐食性が要求される磁気ビーズ等に好適である。   According to the present invention, a powder of coated metal fine particles having excellent corrosion resistance can be obtained. The coated metal fine particles of the present invention function as magnetic particles when the metal M is Fe, Co or the like, and exhibit high magnetization. In addition, since the magnetic metal particles are coated with a highly corrosion-resistant Ti oxide layer, they are suitable for magnetic beads and the like that require high corrosion resistance for use in corrosive solutions.

[1]被覆金属微粒子の製造方法
酸化物の標準生成自由エネルギーがΔGM−O>ΔGTiO2の関係を満たす金属Mの酸化物粉末と、Tiを含む粉末(ただしTi酸化物粉末を除く)とを混合し、得られた混合粉末を非酸化性雰囲気中で熱処理することにより、金属Mの酸化物をTiにより還元するとともに、得られた金属Mの微粒子の表面をTiOを主体とするTi酸化物で被覆する。
[1] Method for Producing Coated Metal Fine Particles An oxide powder of metal M that satisfies the relationship of ΔG M−O > ΔG TiO 2 with a standard free energy of formation of oxide, and a powder containing Ti (excluding Ti oxide powder) Then, the obtained mixed powder is heat-treated in a non-oxidizing atmosphere to reduce the metal M oxide with Ti, and the surface of the obtained metal M fine particles is made of Ti 2 mainly composed of TiO 2. Cover with oxide.

(1)金属Mの酸化物粉末
金属Mの酸化物粉末の粒径は、被覆金属微粒子の目標粒径に合わせて選択し得るが、0.001〜5μmの範囲内であるのが好ましい。粒径が0.001μm未満では、金属酸化物粉末の「かさ」が大きくなるだけでなく2次凝集が激しいため、以下の製造工程での取り扱いが困難である。また5μm超だと、金属酸化物粉末の比表面積が小さすぎ、還元反応が進行しにくい。金属酸化物粉末の実用的な粒径は0.005〜1μmである。金属Mは遷移金属、貴金属及び希土類金属から選ばれるが、磁性材用であればFe、Co、Ni又はこれら合金が好ましく、その酸化物としてはFe、Fe、CoO、Co、NiO等が挙げられる。特にFeは飽和磁化が高いため好ましく、酸化物としてはFeが安価である点で好ましい。TiはFeより酸化物の標準生成エネルギーが小さいため、Fe酸化物を効率良くかつ確実に還元することができる。
(1) Metal M Oxide Powder The particle size of the metal M oxide powder can be selected according to the target particle size of the coated metal fine particles, but is preferably in the range of 0.001 to 5 μm. When the particle size is less than 0.001 μm, not only the “bulk” of the metal oxide powder becomes large but also the secondary aggregation is severe, and therefore it is difficult to handle in the following production process. If it exceeds 5 μm, the specific surface area of the metal oxide powder is too small and the reduction reaction does not proceed easily. The practical particle size of the metal oxide powder is 0.005 to 1 μm. The metal M is selected from transition metals, noble metals and rare earth metals, but for magnetic materials, Fe, Co, Ni or alloys thereof are preferred, and the oxides thereof are Fe 2 O 3 , Fe 3 O 4 , CoO, Co 3 O 4 , NiO and the like can be mentioned. In particular, Fe is preferable because of its high saturation magnetization, and Fe 2 O 3 is preferable as an oxide because it is inexpensive. Since Ti has a lower standard generation energy of oxide than Fe, Fe oxide can be reduced efficiently and reliably.

酸化物の標準生成自由エネルギーがΔGM−O>ΔGTiO2の関係を満たす金属Mの酸化物であれば、Tiを含む非酸化物粉末により還元することができる。ΔGM−Oは金属Mの酸化物の標準生成エネルギーであり、ΔGTiO2(−889kJ/mol)はTiの酸化物の標準生成エネルギーである。例えばFe(ΔGFe2O3=−740kJ/mol)はΔGFe2O3>ΔGTiO2を満たすので、Tiを含む非酸化物粉末により還元される。TiOの被覆が形成されるため被覆金属微粒子の比重が低下する。さらに、TiOは親水性であるので、TiO被覆金属微粒子は、例えば磁気ビーズ用のように溶液中(例えば、水中)に分散させる場合に好適である。 If the standard free energy of formation of the oxide is an oxide of metal M satisfying the relationship of ΔG M−O > ΔG TiO 2, it can be reduced with a non-oxide powder containing Ti. ΔG M-O is the standard generation energy of the metal M oxide, and ΔG TiO2 (−889 kJ / mol) is the standard generation energy of the Ti oxide. For example, since Fe 2 O 3 (ΔG Fe2O3 = -740kJ / mol) satisfies ΔG Fe2O3> ΔG TiO2, is reduced by the non-oxide powder containing Ti. Since the coating of TiO 2 is formed, the specific gravity of the coated metal fine particles is lowered. Furthermore, since TiO 2 is hydrophilic, the TiO 2 -coated metal fine particles are suitable when dispersed in a solution (for example, in water), for example, for magnetic beads.

(2)Tiを含む粉末
Tiを含む粉末は、Ti単体粉末の他、Ti−X(ただしXは、標準酸化物生成自由エネルギーΔGX−OがTiOの生成標準自由エネルギーΔGTiO2より大きい元素である。)により表されるTi化合物又はそれらの混合物の粉末である。具体的には、XはAg、Au、B、Bi、C、Cu、Cs、Cd、Ge、Ga、Hg、K、N、Na、Pd、Pt、Rb、Rh、S、Sn、Tl、Te及びZnからなる群から選ばれた少なくとも1種である。Ti酸化物は還元剤として機能しないので、Tiを含む粉末から除く。ΔGX−O<ΔGTiO2を満たす元素Xの場合、元素Xが還元剤として作用するので、Ti酸化物が生成しなくなる。M酸化物を還元するに足るTiが含まれていれば、Xの含有量は特に限定されない。Ti−Xとしては、反応後にTiO以外の相が形成されにくいので、TiCが好ましい。更に熱処理後にXの残留を抑制し、MとTiO以外の不純物相を低減するためにはTiCを主成分とし、前記TiCの一部をTiNで置換することが好ましい。TiNの置換によってC含有量が低減すると共に、TiN中のNは熱処理過程で気化してしまうため、実質的にTiだけを試料中に残すことができる。
(2) Powder containing Ti The powder containing Ti is Ti-X (where X is an element whose standard oxide free energy ΔG X-O is larger than the standard free energy ΔG TiO2 of TiO 2 in addition to Ti simple powder) A powder of a Ti compound represented by the above or a mixture thereof. Specifically, X is Ag, Au, B, Bi, C, Cu, Cs, Cd, Ge, Ga, Hg, K, N, Na, Pd, Pt, Rb, Rh, S, Sn, Tl, Te. And at least one selected from the group consisting of Zn. Since Ti oxide does not function as a reducing agent, it is removed from the powder containing Ti. In the case of the element X satisfying ΔG X−O <ΔG TiO 2 , the element X acts as a reducing agent, so that no Ti oxide is generated. The content of X is not particularly limited as long as Ti is sufficient to reduce the M oxide. As Ti—X, TiC is preferable because a phase other than TiO 2 is hardly formed after the reaction. Further, in order to suppress residual X after the heat treatment and reduce impurity phases other than M and TiO 2 , it is preferable that TiC is a main component and a part of the TiC is replaced with TiN. Substitution of TiN reduces the C content and vaporizes N in TiN during the heat treatment process, so that substantially only Ti can be left in the sample.

還元反応を効率的に行うためには、Tiを含む非酸化物粉末の粒径は0.01〜20μmであるのが好ましい。0.01μm未満の粒径であると、大気中でTiを含む非酸化物粉末が酸化し易いので、ハンドリングが難しい。また20μm超であると比表面積が小さく、還元反応が進行しにくい。特に0.1μm〜5μmの粒径であれば、大気中での酸化を抑制しつつ、還元反応の十分な進行を図ることができる。   In order to perform the reduction reaction efficiently, the particle size of the non-oxide powder containing Ti is preferably 0.01 to 20 μm. When the particle diameter is less than 0.01 μm, the non-oxide powder containing Ti is easily oxidized in the atmosphere, so that handling is difficult. If it exceeds 20 μm, the specific surface area is small and the reduction reaction does not proceed easily. In particular, when the particle diameter is 0.1 μm to 5 μm, the reduction reaction can proceed sufficiently while suppressing oxidation in the air.

(3)還元反応
M酸化物の粉末に対するTi含有粉末の比率は、少なくとも還元反応の化学量論比であることが好ましい。Tiが不足すると、熱処理中にM酸化物粉末が焼結し、バルク化してしまう。例えばFeとTiCとの組合せの場合、Fe+TiCに対してTiCは25mass%以上であることが好ましい。TiCが25mass%未満であると、TiCによるFeの還元が不十分である。一方、TiCの比率が高くなりすぎると、Feの比率が低下し、得られるTiO被覆Fe微粒子の飽和磁化が低下し、保磁力が増大する。従って、TiCの上限は50mass%が好ましい。Fe+TiCに対するTiCの比率はより好ましくは30〜50mass%であり、最も好ましくは30〜40mass%であり、特に好ましくは30〜35mass%である。保磁力は、TiCが35mass%になると8kA/mに達し、40mass%になると10kA/mに達し、50mass%になると15kA/mに達する。
(3) Reduction reaction The ratio of the Ti-containing powder to the M oxide powder is preferably at least the stoichiometric ratio of the reduction reaction. When Ti is insufficient, the M oxide powder is sintered and bulked during the heat treatment. For example, in the case of a combination of Fe 2 O 3 and TiC, it is preferred for Fe 2 O 3 + TiC TiC is at least 25 mass%. When TiC is less than 25 mass%, the reduction of Fe 2 O 3 by TiC is insufficient. On the other hand, if the TiC ratio becomes too high, the Fe ratio decreases, the saturation magnetization of the resulting TiO 2 -coated Fe fine particles decreases, and the coercive force increases. Therefore, the upper limit of TiC is preferably 50 mass%. The ratio of TiC to Fe 2 O 3 + TiC is more preferably 30 to 50 mass%, most preferably 30 to 40 mass%, and particularly preferably 30 to 35 mass%. The coercive force reaches 8 kA / m when TiC reaches 35 mass%, reaches 10 kA / m when 40 mass%, and reaches 15 kA / m when 50 mass%.

また、TiCの一部をTiNで置換する場合、その置換率は0.1〜0.5が好ましい。ここでTiNの置換率は[数1]の式により定義される。TiNの置換率が0.1未満の場合は不純物元素(C、N)の低減が不十分であり、TiNを添加した効果が得られない。またTiN置換率が0.5を越えるとCが不足することにより、酸化物から金属Mへの還元が不十分となり、完全な被覆金属微粒子が得られない。M酸化物粉末とTi含有非酸化物粉末との混合には、乳鉢、スターラ、V字型ミキサ、ボールミル、振動ミル等の攪拌機を用いる。   Moreover, when substituting a part of TiC with TiN, the substitution rate is preferably 0.1 to 0.5. Here, the substitution rate of TiN is defined by the equation [Equation 1]. When the substitution rate of TiN is less than 0.1, the reduction of impurity elements (C, N) is insufficient, and the effect of adding TiN cannot be obtained. On the other hand, if the TiN substitution rate exceeds 0.5, C is insufficient, so that the reduction from the oxide to the metal M becomes insufficient, and complete coated metal fine particles cannot be obtained. For mixing the M oxide powder and the Ti-containing non-oxide powder, a stirrer such as a mortar, stirrer, V-shaped mixer, ball mill, vibration mill or the like is used.

M酸化物粉末とTi含有粉末(Ti酸化物粉末を除く)の混合粉末を非酸化性雰囲気中で熱処理すると、M酸化物粉末とTi含有粉末との還元反応が起こり、TiOを主体とするTi酸化物で被覆された金属Mの粒子が生成する。熱処理雰囲気は非酸化性であるのが好ましい。非酸化性雰囲気としては、例えばAr,He等の不活性ガスや、N、CO、NH等が挙げられるが、これらに限定されない。熱処理温度は650〜900℃が好ましい。650℃未満であると還元反応が十分に進行せず、また900℃超であると不定比組成のTi2n−1が主として生成することがある。Ti2n−1は、900℃超で金属MがTiOから酸素を取り込むか、TiOが非酸化性雰囲気中に酸素を放出することにより生成する。その結果、金属Mの還元が不十分であるか、被覆層が不完全となる。熱処理温度が650〜900℃の場合に、欠陥が少なく、均一性の高いほぼTiOからなる被覆(被覆層)が形成される。TiOからなる被覆は、光触媒用の被覆金属微粒子を作製するのに好適である。 When a mixed powder of M oxide powder and Ti-containing powder (excluding Ti oxide powder) is heat-treated in a non-oxidizing atmosphere, a reduction reaction occurs between the M oxide powder and the Ti-containing powder, and TiO 2 is the main component. Metal M particles coated with Ti oxide are produced. The heat treatment atmosphere is preferably non-oxidizing. Examples of the non-oxidizing atmosphere include, but are not limited to, inert gases such as Ar and He, N 2 , CO 2 , and NH 3 . The heat treatment temperature is preferably 650 to 900 ° C. If it is lower than 650 ° C., the reduction reaction does not proceed sufficiently, and if it exceeds 900 ° C., Ti n O 2n-1 having a non - stoichiometric composition may be mainly produced. Ti n O 2n-1 is generated when the metal M takes in oxygen from TiO 2 at over 900 ° C. or TiO 2 releases oxygen into the non-oxidizing atmosphere. As a result, the reduction of the metal M is insufficient or the coating layer is incomplete. When the heat treatment temperature is 650 to 900 ° C., a coating (coating layer) made of almost TiO 2 with few defects and high uniformity is formed. A coating made of TiO 2 is suitable for producing coated metal fine particles for a photocatalyst.

(4)磁気分離
得られる磁性被覆金属微粒子は非磁性成分(TiOを主体とするTi酸化物)を過剰に含んでいる場合があるため、必要に応じて永久磁石を用いて磁気分離操作を複数回行い、磁性粒子だけを回収するのが好ましい。
(4) Magnetic separation Since the obtained magnetic coated metal fine particles may contain an excessive amount of nonmagnetic components (Ti oxide mainly composed of TiO 2 ), the magnetic separation operation may be performed using a permanent magnet as necessary. It is preferable to perform multiple times to recover only the magnetic particles.

[2]被覆金属微粒子の構造及び特性
(1)被覆金属微粒子の粒径
上記方法により得られる被覆金属微粒子の粒径は、M酸化物粉末の粒径に依存する。高い耐食性及び分散性を得るためには、被覆金属微粒子の平均粒径d50(メジアン径)は0.1〜10μmが好ましく、0.1〜6μmがより好ましい。平均粒径が0.1μm未満であると、被覆金属微粒子は十分な厚さの被覆を確保できずに耐食性が低くなるだけでなく、1粒子当たりの磁化が極めて小さくなり磁気応答性が低くなってしまう。また平均粒径が10μmを超えると、液体中での被覆金属微粒子の分散性が低下する。平均粒径d50はレーザー回折による湿式粒径測定器で測定した。
[2] Structure and properties of coated metal fine particles (1) Particle size of coated metal fine particles The particle size of the coated metal fine particles obtained by the above method depends on the particle size of the M oxide powder. In order to obtain high corrosion resistance and dispersibility, the average particle diameter d50 (median diameter) of the coated metal fine particles is preferably 0.1 to 10 μm, and more preferably 0.1 to 6 μm. If the average particle size is less than 0.1 μm, the coated metal fine particles cannot ensure a sufficient thickness of coating and have low corrosion resistance, and also the magnetization per particle is extremely small and magnetic response is low. End up. On the other hand, when the average particle diameter exceeds 10 μm, the dispersibility of the coated metal fine particles in the liquid is lowered. The average particle size d50 was measured with a wet particle size measuring device by laser diffraction.

なお、粒径に対する個数分布については、被覆金属微粒子をSEM(走査型電子顕微鏡)で撮影した写真から粒径と個数を測定した。SEM写真では、金属粒子がTi酸化物のみの部分よりも強く白色を呈するので、内包される金属粒子(例えばFe粒子)の外形を確認できる。SEM写真上で被覆金属微粒子の外形を観察し、その長手方向の長さ寸法を被覆金属微粒子の粒径とする。同様に金属粒子の外形を観察し、その長手方向の長さ寸法を金属粒子の粒径とする。好ましくは20個以上の金属粒子を測定する。金属粒子は上述の還元反応によって生成されるが、生成過程において近接する金属粒子同士が結合し、より粒径の大きい1つの金属粒子を成すことがある。単一状態で成長した金属粒子の群のピークと、生成途中で結合して粒径がひとまわり大きくなった金属粒子の群のピークとが重畳すると、少なくとも2つのピークを有する個数分布になると考えられる。具体的にはピークの数が2となる。原料粉末の粒径が不揃いでd50が3μm超のとき、ピーク数が3になることもある。   In addition, about the number distribution with respect to a particle size, the particle size and the number were measured from the photograph which image | photographed the coated metal fine particle with SEM (scanning electron microscope). In the SEM photograph, since the metal particles are whiter than the portion of only Ti oxide, the outer shape of the encapsulated metal particles (for example, Fe particles) can be confirmed. The outer shape of the coated metal fine particles is observed on the SEM photograph, and the length dimension in the longitudinal direction is defined as the particle size of the coated metal fine particles. Similarly, the outer shape of the metal particles is observed, and the length in the longitudinal direction is defined as the particle size of the metal particles. Preferably, 20 or more metal particles are measured. Although metal particles are produced by the above-described reduction reaction, adjacent metal particles may be combined in the production process to form one metal particle having a larger particle size. When the peak of a group of metal particles grown in a single state overlaps with the peak of a group of metal particles that have been combined and formed a particle size that has become larger in size, the number distribution having at least two peaks is considered. It is done. Specifically, the number of peaks is 2. When the particle sizes of the raw material powders are not uniform and d50 is more than 3 μm, the number of peaks may be 3.

(2)被覆構造
M金属粒子とTi酸化物被覆層とは1対1のコア−シェル構造になっている必要はなく、TiOを主体とするTi酸化物層中に2個以上のM金属粒子が分散した構造であっても良い。Ti酸化物の中に2個以上のM金属粒子が含まれていると、金属Mは高含有率で、かつ確実に被覆されるので好ましい。本発明では、M酸化物の還元によるM金属微粒子の形成と、Ti酸化物被覆の形成とが同時に行われるので、M金属微粒子とTi酸化物被覆との間にM金属酸化物層が認められない。また650℃以上の熱処理により得られるTi酸化物被覆の結晶性は高く、ゾル−ゲル法等により得られる非晶質又は低結晶性のTi酸化物被覆より高い耐食性を示す。またTiOを主体とした被覆を有する本発明の被覆金属微粒子は、被覆に欠陥が少ないので、不定比組成のTi2n−1の被覆を有するものより高い耐食性を示す。
(2) Coating structure The M metal particles and the Ti oxide coating layer do not have to have a one-to-one core-shell structure, and two or more M metals are contained in the Ti oxide layer mainly composed of TiO 2. A structure in which particles are dispersed may be used. It is preferable that two or more M metal particles are contained in the Ti oxide because the metal M has a high content and is reliably coated. In the present invention, formation of M metal fine particles by reduction of M oxide and formation of Ti oxide coating are performed at the same time, so that an M metal oxide layer is observed between the M metal fine particles and the Ti oxide coating. Absent. The Ti oxide coating obtained by heat treatment at 650 ° C. or higher has high crystallinity and higher corrosion resistance than the amorphous or low crystalline Ti oxide coating obtained by a sol-gel method or the like. Further, the coated metal fine particles of the present invention having a coating mainly composed of TiO 2 have a higher corrosion resistance than those having a coating of Ti n O 2n-1 having a non - stoichiometric composition because the coating has few defects.

(3)被覆厚さ
TiOを主体とするTi酸化物被覆の厚さは1〜10000nmが好ましい。厚さが1nm未満であると、被覆金属微粒子は十分な耐食性を有さない。また厚さが10000nm超であると、被覆金属微粒子が大きくすぎ、液中での分散性が低いだけでなく、磁性金属微粒子の場合は飽和磁化が低い。より好ましいTi酸化物被覆の厚さは5〜5000nmである。被覆の厚さは被覆金属微粒子の透過電子顕微鏡(TEM)写真により求める。Ti酸化物被覆の厚さが不均一な場合、最大厚さと最小厚さの平均をTi酸化物被覆の厚さとする。なお、金属微粒子は、TiOを主体とするTi酸化物で完全に被覆されている必要はなく、部分的に金属粒子が表面に露出しても構わないが、完全に被覆されているのが好ましい。
(3) Coating thickness The thickness of the Ti oxide coating mainly composed of TiO 2 is preferably 1 to 10,000 nm. When the thickness is less than 1 nm, the coated metal fine particles do not have sufficient corrosion resistance. If the thickness exceeds 10,000 nm, the coated metal fine particles are too large and the dispersibility in the liquid is low, and in the case of magnetic metal fine particles, the saturation magnetization is low. A more preferred thickness of the Ti oxide coating is 5 to 5000 nm. The thickness of the coating is determined from a transmission electron microscope (TEM) photograph of the coated metal fine particles. If the thickness of the Ti oxide coating is not uniform, the average of the maximum thickness and the minimum thickness is taken as the thickness of the Ti oxide coating. The metal fine particles need not be completely covered with a Ti oxide mainly composed of TiO 2 , and the metal particles may be partially exposed on the surface, but are completely covered. preferable.

(4)Ti酸化物の結晶性
被覆金属微粒子のX線回折パターンにおけるTiOの最大ピークの半値幅が0.3°以下で、金属Mの最大ピークに対するTiOの最大ピークの強度比が0.03以上である場合に、Ti酸化物の結晶性が良い(従って、被覆金属微粒子の耐食性も良い)と判断した。非晶質又は低結晶性の場合、ピークは観察されないかブロードであるため、最大ピーク強度比は小さく、半値幅は広い。最大ピーク強度比はより好ましくは0.05以上である。最大ピーク強度比が高くなると被覆の割合が多くなり、飽和磁化が低下する。そのため、最大ピーク強度比は3以下が好ましい。
(4) Crystallinity of Ti oxide The half-width of the maximum peak of TiO 2 in the X-ray diffraction pattern of the coated metal fine particles is 0.3 ° or less, and the intensity ratio of the maximum peak of TiO 2 to the maximum peak of metal M is 0. When it was 0.03 or more, it was judged that the crystallinity of the Ti oxide was good (therefore, the corrosion resistance of the coated metal fine particles was also good). In the case of amorphous or low crystallinity, since the peak is not observed or is broad, the maximum peak intensity ratio is small and the half width is wide. The maximum peak intensity ratio is more preferably 0.05 or more. As the maximum peak intensity ratio increases, the coating ratio increases and the saturation magnetization decreases. Therefore, the maximum peak intensity ratio is preferably 3 or less.

(5)磁性粒子としての機能
金属Mが磁性金属Feの場合、前記製法により得られた被覆金属微粒子は50〜180Am/kgの範囲の飽和磁化を有し、磁性粒子として機能する。これは、被覆金属微粒子が磁性金属FeとTiOから形成されている場合、Fe+Tiに対するTiの比率が11〜67mass%であることに相当する。Tiの比率は、X線回折パターンから被覆金属微粒子がFeとTiOからなることを確認した後で、被覆金属微粒子の飽和磁化の測定値から算出できる。磁性粒子の飽和磁化が50Am/kg未満と小さいと、磁界に対する応答が鈍い。また180Am/kg超であるとTiOを主体とするTi酸化物の含有率が小さく(Fe+Tiに対するTiの質量比率が11%未満)、金属Fe粒子を十分にTi酸化物で被覆できないために耐食性が低く、磁気特性が劣化しやすい。従って、高い飽和磁化及び十分な耐食性を同時に得るために、被覆金属微粒子の飽和磁化は180Am/kg以下とするのが好ましい。磁気ビーズ等に用いる場合の回収効率や磁気分離性能に優れるためには、被覆金属微粒子の飽和磁化は95〜180Am/kgであるのがより好ましい。この範囲の飽和磁化は、92Am/kg程度の飽和磁化しか有さないマグネタイト(Fe)では得られない。分散性の観点から、被覆金属微粒子の保磁力は15kA/m以下が好ましく、8kA/m(100Oe)以下がより好ましく、4kA/m以下が最も好ましい。保磁力が大きい場合でもTiO被覆を厚くすれば高分散性が得られるが、そうすると被覆金属微粒子の飽和磁化が低下してしまう。保磁力が8kA/mを超えると、磁性粒子は無磁界でも磁気的に凝集するので、液中での分散性が低下する。
(5) Function as magnetic particles When the metal M is magnetic metal Fe, the coated metal fine particles obtained by the above production method have a saturation magnetization in the range of 50 to 180 Am 2 / kg and function as magnetic particles. This corresponds to the ratio of Ti to Fe + Ti being 11 to 67 mass% when the coated metal fine particles are formed of magnetic metal Fe and TiO 2 . The ratio of Ti can be calculated from the measured value of saturation magnetization of the coated metal fine particles after confirming that the coated metal fine particles are composed of Fe and TiO 2 from the X-ray diffraction pattern. When the saturation magnetization of the magnetic particles is as small as less than 50 Am 2 / kg, the response to the magnetic field is dull. Further, if it exceeds 180 Am 2 / kg, the content of Ti oxide mainly composed of TiO 2 is small (the mass ratio of Ti to Fe + Ti is less than 11%), and metal Fe particles cannot be sufficiently covered with Ti oxide. Corrosion resistance is low and magnetic properties are likely to deteriorate. Therefore, in order to obtain high saturation magnetization and sufficient corrosion resistance at the same time, the saturation magnetization of the coated metal fine particles is preferably 180 Am 2 / kg or less. In order to be excellent in recovery efficiency and magnetic separation performance when used for magnetic beads or the like, the saturation magnetization of the coated metal fine particles is more preferably 95 to 180 Am 2 / kg. Saturation magnetization in this range cannot be obtained with magnetite (Fe 3 O 4 ) having only saturation magnetization of about 92 Am 2 / kg. From the viewpoint of dispersibility, the coercive force of the coated metal fine particles is preferably 15 kA / m or less, more preferably 8 kA / m (100 Oe) or less, and most preferably 4 kA / m or less. Even if the coercive force is large, if the TiO 2 coating is thickened, high dispersibility can be obtained. However, if this is done, the saturation magnetization of the coated metal fine particles is lowered. When the coercive force exceeds 8 kA / m, the magnetic particles aggregate magnetically even in the absence of a magnetic field, so that the dispersibility in the liquid is lowered.

(6)不純物の濃度
被覆金属微粒子に含有されるC量は0.2〜1.4mass%以下が好ましい。含有されているCは主に原料として用いたTiC粉の余剰分の残留が原因である。すなわち本発明の製法において、金属Mの酸化物を主としてTiが還元剤となって金属Mへと還元するのであるが、TiC中のCも還元剤の役割を果たし、金属Mの酸化物を補助的に還元している。C量が0.2mass%未満であることは、M酸化物の還元が不十分であることを意味しており好ましくない。C量が1.4mass%超であると金属成分の含有率が低下し、その金属がFe,Co,Niから選ばれる少なくとも一つの元素を主成分としている場合は、飽和磁化の低下を招く。またCの残留によって被覆金属微粒子が疎水性となり、水溶液中での分散性が低下するので磁気ビーズ等の用途に用いる場合には特に好ましくない。また被覆金属微粒子に含まれるN量は0.04〜0.2mass%が好ましい。含有されているNは主に熱処理中にTiが窒化したことによる。N量が0.04mass%未満であるとTi不足による金属微粒子の被覆が不十分となり好ましくない。N量が0.2mass%超であると非磁性成分の窒化チタンの含有率が増え、飽和磁化が低下するので好ましくない。上記C量、N量の好適範囲は金属MとTiO以外の相の含有率が極めて少ないことを表す。ここで上記被覆金属微粒子中のC含有量は高周波加熱赤外吸収法によって測定され、N含有量は不活性ガス中加熱熱伝導法によって測定される。
(6) Impurity concentration The amount of C contained in the coated metal fine particles is preferably 0.2 to 1.4 mass% or less. The contained C is mainly due to the remaining residual TiC powder used as a raw material. That is, in the production method of the present invention, the metal M oxide is mainly reduced by the Ti as a reducing agent to the metal M, but C in TiC also serves as a reducing agent, assisting the metal M oxide. Has been reduced. If the amount of C is less than 0.2 mass%, it means that the reduction of the M oxide is insufficient, which is not preferable. When the amount of C exceeds 1.4 mass%, the content of the metal component decreases, and when the metal contains at least one element selected from Fe, Co, and Ni as a main component, the saturation magnetization decreases. Moreover, since the coated metal fine particles become hydrophobic due to residual C and dispersibility in an aqueous solution is lowered, it is not particularly preferable when used for applications such as magnetic beads. The amount of N contained in the coated metal fine particles is preferably 0.04 to 0.2 mass%. The contained N is mainly due to the fact that Ti was nitrided during the heat treatment. If the amount of N is less than 0.04 mass%, the coating of metal fine particles due to insufficient Ti becomes insufficient, which is not preferable. If the amount of N is more than 0.2 mass%, the content of the nonmagnetic component titanium nitride increases and the saturation magnetization decreases, which is not preferable. The preferable ranges of the C content and the N content indicate that the content of phases other than the metal M and TiO 2 is extremely small. Here, the C content in the coated metal fine particles is measured by a high-frequency heating infrared absorption method, and the N content is measured by a heating heat conduction method in an inert gas.

(7)耐食性
モル濃度が6Mのグアニジン塩酸塩水溶液1mL当たり被覆金属微粒子(金属MがFeである)25mgの割合として25℃で24時間浸漬したときのFeイオン溶出量は50mg/L以下であるのが好ましい。この被覆金属微粒子は高カオトロピック塩濃度においても高い耐食性を示すため、カオトロピック塩水溶液中での処理を必要とするDNA抽出等の用途に好適である。Feイオン溶出量が50mg/L以下の耐食性レベルは、アルカリ処理を施さない場合でも発現することがあるが、確実に上記耐食性レベルを得るためにはアルカリ処理を行うのが好ましい。なお、本願明細書の耐食性やX線回折に係る記述から判るとおり、本発明の被覆金属粒子は被覆金属粒子の粉末に相当する用語として用いている。
(7) Corrosion resistance As a ratio of 25 mg of coated metal fine particles (metal M is Fe) per 1 mL of guanidine hydrochloride aqueous solution having a molar concentration of 6 M, Fe ion elution amount when immersed at 25 ° C. for 24 hours is 50 mg / L or less Is preferred. Since the coated metal fine particles exhibit high corrosion resistance even at high chaotropic salt concentrations, they are suitable for uses such as DNA extraction that require treatment in an aqueous chaotropic salt solution. Although the corrosion resistance level with an Fe ion elution amount of 50 mg / L or less may appear even when the alkali treatment is not performed, it is preferable to perform the alkali treatment in order to reliably obtain the above corrosion resistance level. As can be seen from the description relating to corrosion resistance and X-ray diffraction in the present specification, the coated metal particles of the present invention are used as terms corresponding to the powder of the coated metal particles.

以下、本発明についてさらに具体的な実施例を用いて説明する。ただし、これら実施例により本発明が必ずしも限定されるものではない。   Hereinafter, the present invention will be described using more specific examples. However, the present invention is not necessarily limited by these examples.

(実施例1)
平均粒径0.03μmのα−Fe粉末と、平均粒径1μmのTiC粉末とを、7:3の質量比(TiC:30mass%)でボールミルにより10時間混合し、得られた混合粉末をアルミナボート内で、窒素ガス中で700℃で2時間熱処理し、室温まで冷却した。得られた試料粉末のX線回折パターンを図1に示す。図1の横軸は回折の2θ(°)を示し、縦軸は回折強度(相対値)を示す。MDI社製解析ソフト「Jade,Ver.5」による解析の結果、回折ピークはα−Fe及びTiO(ルチル構造)と同定された。
Example 1
Α-Fe 2 O 3 powder with an average particle size of 0.03 μm and TiC powder with an average particle size of 1 μm were mixed at a mass ratio of 7: 3 (TiC: 30 mass%) for 10 hours by a ball mill, and the resulting mixture was obtained The powder was heat-treated in nitrogen gas at 700 ° C. for 2 hours in an alumina boat and cooled to room temperature. The X-ray diffraction pattern of the obtained sample powder is shown in FIG. The horizontal axis in FIG. 1 indicates 2θ (°) of diffraction, and the vertical axis indicates diffraction intensity (relative value). As a result of analysis using analysis software “Jade, Ver. 5” manufactured by MDI, diffraction peaks were identified as α-Fe and TiO 2 (rutile structure).

α−Feの(200)ピークの半値幅からシェラーの式を用いて算出されたFeの平均結晶子サイズは90nmであった。2θ=27.5°のとき得られたTiOの最大回折ピークの半値幅は0.14であり、TiOの最大回折ピーク強度のα−Feの最大回折ピーク[(110)ピーク]強度に対する比は0.18であった。これから、TiOが高い結晶性を有することが分かる。レーザー回折粒度分布測定機(HORIBA製:LA−920)で測定したこの試料粉末の平均粒径d50は3.1μmであった。 The average crystallite size of Fe calculated by using the Scherrer equation from the half-value width of the (200) peak of α-Fe was 90 nm. The half-width of the maximum diffraction peak of TiO 2 obtained when 2θ = 27.5 ° is 0.14, and the maximum diffraction peak intensity of TiO 2 is relative to the maximum diffraction peak [(110) peak] intensity of α-Fe. The ratio was 0.18. From this, it can be seen that TiO 2 has high crystallinity. The average particle diameter d50 of this sample powder measured by a laser diffraction particle size distribution analyzer (manufactured by HORIBA: LA-920) was 3.1 μm.

試料粉末のSEM写真(図2)では、粒径数μmの被覆金属微粒子が観察される。ほとんどの被覆金属微粒子には、TiO層1に被覆された複数のFe粒子2(白色微粒子)が認められた。例えば、矢印で示したTiO層に包含されているFe粒子2の粒径は約0.5μmであった。酸化物の標準生成エネルギーは、ΔGFe2O3=−740kJ/molに対して、ΔGTiO2=−889kJ/molであるため、TiOの標準生成エネルギーの方が小さい。従って、α−FeがTiにより還元され、TiOが生成したと言える。図3は。図2の写真に符号等を記入した概略図である。両端が矢印の線はFe粒子2の長手方向寸法を表し、両端が三角形状の矢印の線は被覆金属微粒子1の長手方向寸法を表す。不定形で長手方向を判別し難い場合には、長いと思われる複数の方向に矢印を引き、それらの内で最も長径となるものを長手方向寸法とした。 In the SEM photograph of the sample powder (FIG. 2), coated metal fine particles having a particle size of several μm are observed. In most coated metal fine particles, a plurality of Fe particles 2 (white fine particles) coated with the TiO 2 layer 1 were observed. For example, the particle size of the Fe particles 2 included in the TiO 2 layer indicated by the arrow was about 0.5 μm. The standard generation energy of oxide is ΔG TiO2 = −889 kJ / mol with respect to ΔG Fe2O3 = −740 kJ / mol, so the standard generation energy of TiO 2 is smaller. Therefore, it can be said that α-Fe 2 O 3 was reduced by Ti to produce TiO 2 . FIG. It is the schematic which entered the code | symbol etc. in the photograph of FIG. Both ends of the arrow line represent the longitudinal dimension of the Fe particle 2, and both ends of the triangular arrow line represent the longitudinal dimension of the coated metal fine particle 1. When it was difficult to distinguish the longitudinal direction due to the irregular shape, arrows were drawn in a plurality of directions considered to be long, and the dimension having the longest diameter among them was taken as the longitudinal dimension.

試料粉末について、図2の写真から粒径に対する個数分布(図4)を測定したところ、Fe粒子の粒径の個数分布(●印)は2つのピークを有し、被覆微粒子の粒径の個数分布(◇印)は3つのピークを有することがわかった。印をつなぐカーブは個数分布の傾向をわかりやすくする為に補助的に記載した。なお、粒径を測定する際には、0.05μm未満の端数は四捨五入し、0.1μmピッチで個数を振り分けた。   For the sample powder, the number distribution with respect to the particle diameter (FIG. 4) was measured from the photograph in FIG. 2, and the number distribution of the particle diameter of Fe particles (marked with ●) has two peaks. The distribution (marked with ◇) was found to have three peaks. The curves connecting the marks are supplementary to make the number distribution trend easier to understand. When measuring the particle size, fractions less than 0.05 μm were rounded off and the numbers were distributed at a pitch of 0.1 μm.

(実施例2)
実施例1で得た試料粉末5gとイソプロピルアルコール(IPA)50mLとを100mLのビーカに投入し、10分間超音波を照射した。次いで永久磁石をビーカの外面に1分間接触させ、磁性粒子だけをビーカ内壁に吸着させ、黒灰色の上澄み液を除去した。この磁気分離操作を50回繰り返し、得られた精製磁性粒子を室温で乾燥させた。この磁性粒子の磁気特性を、最大印加磁界を1.6MA/mとしてVSM(振動型磁力計)により測定した。また、磁性粒子におけるTiの比率は、X線回折パターンから被覆金属微粒子がFeとTiOからなることを確認した後で、被覆金属微粒子の飽和磁化の測定値から算出した。結果を表1に示す。
(Example 2)
5 g of the sample powder obtained in Example 1 and 50 mL of isopropyl alcohol (IPA) were put into a 100 mL beaker and irradiated with ultrasonic waves for 10 minutes. Next, the permanent magnet was brought into contact with the outer surface of the beaker for 1 minute, and only the magnetic particles were adsorbed on the inner wall of the beaker, and the black gray supernatant was removed. This magnetic separation operation was repeated 50 times, and the resulting purified magnetic particles were dried at room temperature. The magnetic properties of the magnetic particles were measured with a VSM (vibrating magnetometer) with a maximum applied magnetic field of 1.6 MA / m. The ratio of Ti in the magnetic particles was calculated from the measured value of saturation magnetization of the coated metal fine particles after confirming that the coated metal fine particles consisted of Fe and TiO 2 from the X-ray diffraction pattern. The results are shown in Table 1.

(実施例3〜6)
α−Fe粉末とTiC粉末の質量比を6.5:3.5とした以外実施例1と同様にして試料粉末を作製した。この試料粉末を実施例2と同様に精製することにより得た磁性粒子の組成及び磁気特性を実施例2と同様に測定した。結果を表1に示す。さらに、前記質量比を6:4、5:5、4:6と変えて同様に試料粉末を作製した。
(Examples 3 to 6)
A sample powder was prepared in the same manner as in Example 1 except that the mass ratio of the α-Fe 2 O 3 powder and the TiC powder was 6.5: 3.5. The composition and magnetic properties of the magnetic particles obtained by purifying the sample powder in the same manner as in Example 2 were measured in the same manner as in Example 2. The results are shown in Table 1. Furthermore, sample powders were similarly produced by changing the mass ratio to 6: 4, 5: 5, and 4: 6.

この磁性粒子は高い耐食性を有するが、飽和磁化Msは48Am/kgとなり50Am/kgより低く、保磁力iHcは18kA/mとなり15kA/m超であった。以上より、金属Fe粒子の特性を生かして高い飽和磁化の値を維持するためにはTiC配合比は30〜50mass%であることが好ましいことが分かる。 Although the magnetic particles had high corrosion resistance, the saturation magnetization Ms was 48 Am 2 / kg, which was lower than 50 Am 2 / kg, and the coercive force iHc was 18 kA / m, which was more than 15 kA / m. From the above, it can be seen that the TiC compounding ratio is preferably 30 to 50 mass% in order to maintain the high saturation magnetization value by utilizing the characteristics of the metal Fe particles.

(実施例7)
熱処理温度を800℃とした以外は実施例1と同様に試料粉末を作製した。さらに実施例2と同様にして精製することにより磁性被覆金属微粒子を得た。この試料粉末について磁気特性を実施例1と同様にして測定した。試料粉末中のC量は高周波加熱赤外吸収法(HORIBA製:EMIA−520)によって測定し、N量は不活性ガス中加熱熱伝導法(HORIBA製:EMGA−1300)によって測定した。結果を表2に示す。
(Example 7)
A sample powder was prepared in the same manner as in Example 1 except that the heat treatment temperature was 800 ° C. Further, magnetic coated metal fine particles were obtained by purification in the same manner as in Example 2. The magnetic properties of this sample powder were measured in the same manner as in Example 1. The amount of C in the sample powder was measured by a high-frequency heating infrared absorption method (manufactured by HORIBA: EMIA-520), and the amount of N was measured by a heating heat conduction method in an inert gas (manufactured by HORIBA: EMGA-1300). The results are shown in Table 2.

(実施例8〜12)
原料配合において表3に示す配合比で平均粒径2.8μmのTiN粉末を添加した以外は実施例7と同様にして磁性被覆金属微粒子を得た。この試料粉末の磁気特性、及びC、Nの含有量を実施例7と同様にして評価した。結果を表3に示す。
(Examples 8 to 12)
Magnetic coated metal fine particles were obtained in the same manner as in Example 7 except that TiN powder having an average particle diameter of 2.8 μm was added at the mixing ratio shown in Table 3 in the raw material mixing. The magnetic properties of this sample powder and the contents of C and N were evaluated in the same manner as in Example 7. The results are shown in Table 3.

TiNの添加量が増加するに従い、C及びNの含有量が低下し、飽和磁化Msは向上している。特にTiN置換率が0.2〜0.4(実施例9〜11)の場合はC量が1.3mass%以下、N量が0.2mass%以下であり、不純物元素の含有量は極めて少ない。なおかつMsは158Am/kgまで向上している。しかしTiN置換率が0.5となると(実施例12)、C、N量は少ないもののMsは実施例7よりも低下している。これはC不足により還元反応の進行が不十分であることが原因である。 As the amount of TiN added increases, the content of C and N decreases and the saturation magnetization Ms improves. In particular, when the TiN substitution rate is 0.2 to 0.4 (Examples 9 to 11), the C content is 1.3 mass% or less, the N content is 0.2 mass% or less, and the content of impurity elements is extremely small. . Furthermore, Ms is improved to 158 Am 2 / kg. However, when the TiN substitution rate becomes 0.5 (Example 12), although the amount of C and N is small, Ms is lower than that of Example 7. This is because the progress of the reduction reaction is insufficient due to the lack of C.

また実施例7、実施例9〜11の試料粉末についてアルバック・ファイ製:PHI−Quantera SXMにてX線光電子分光(XPS)分析を実施した。Oの1s、Feの2p3、Tiの2p軌道電子についてそれぞれナロースペクトルを測定し、定量分析を行った。結果を表3に示す。   Further, X-ray photoelectron spectroscopy (XPS) analysis was carried out on the sample powders of Example 7 and Examples 9 to 11 by ULVAC-PHI: PHI-Quantera SXM. Narrow spectra were measured for 1s of O, 2p3 of Fe, and 2p orbital electrons of Ti, respectively, and quantitative analysis was performed. The results are shown in Table 3.

TiN置換率が増加すると共にFe含有量が増加し、Ti含有量が減少する傾向が見られる。これはTiNの添加によってFe含有率が増加することに対応している。また検出したFeには金属Feと酸化Fe成分が含まれており、TiN置換率の増加に伴い金属Fe成分が増加している。特にTiN置換率が0.2〜0.4の場合の金属Fe成分の比率(金属Fe/全Fe)はいずれも6%以上である。これはTiN添加によってTiOの被覆がより完全となり、表面付近でも金属Feが酸化されずに維持されているためである。 As the TiN substitution rate increases, the Fe content increases and the Ti content tends to decrease. This corresponds to an increase in the Fe content due to the addition of TiN. Further, the detected Fe contains metallic Fe and oxidized Fe components, and the metallic Fe components increase with an increase in the TiN substitution rate. In particular, when the TiN substitution rate is 0.2 to 0.4, the ratio of the metal Fe component (metal Fe / total Fe) is 6% or more. This is because the addition of TiN makes the coating of TiO 2 more complete, and the metal Fe is maintained without being oxidized even near the surface.

(実施例13)
実施例7の試料粉末1gを濃度1MのNaOH水溶液50mL中に投入し、60℃で24時間浸漬処理を行った(アルカリ処理)。このアルカリ処理後、水洗して試料粉末を乾燥させた。得られた試料粉末25mgを濃度6Mのグアニジン塩酸塩水溶液1mL中に25℃で24時間浸漬させた(浸漬試験)後のFeイオン溶出量をICP分析装置(エスアイアイナノテクノロジー社製:SPS3100H)により測定した。結果を表4に示す。
(Example 13)
1 g of the sample powder of Example 7 was put into 50 mL of a 1 M NaOH aqueous solution and subjected to immersion treatment at 60 ° C. for 24 hours (alkali treatment). After the alkali treatment, the sample powder was dried by washing with water. The amount of Fe ion elution after 25 mg of the obtained sample powder was immersed in 1 mL of 6 M guanidine hydrochloride aqueous solution at 25 ° C. for 24 hours (immersion test) was measured using an ICP analyzer (manufactured by SII Nano Technology, Inc .: SPS3100H). It was measured. The results are shown in Table 4.

(実施例14〜16)
実施例9、10、11の試料粉末について実施例13と同様のアルカリ処理を施し、Feイオン溶出量を評価した。結果を表4に示す。
(Examples 14 to 16)
The sample powders of Examples 9, 10, and 11 were subjected to the same alkali treatment as in Example 13, and the Fe ion elution amount was evaluated. The results are shown in Table 4.

アルカリ処理によってFeイオン溶出量が50mg/L以下に低下していることが分かる。またTiN置換率が増えるほどFeイオン溶出量は小さくなる。特にTiN置換率0.4ではアルカリ処理を施す前でもFeイオン溶出量が10mg/L未満と極めて小さく、耐食性に優れることが分かる。   It can be seen that the Fe ion elution amount is reduced to 50 mg / L or less by the alkali treatment. Moreover, the Fe ion elution amount decreases as the TiN substitution rate increases. In particular, when the TiN substitution rate is 0.4, the Fe ion elution amount is as small as less than 10 mg / L even before the alkali treatment, and it is found that the corrosion resistance is excellent.

実施例8〜16と同条件で作製した被覆金属微粒子の試料粉末について、実施例1と同様にしてX線回折を行ったところ、いずれの試料粉末もX線回折パターンにおいてTiO2の最大ピークの半値幅が0.3°以下であり、かつ金属Mの最大ピークに対するTiO2の最大ピークの強度比が0.03以上となった。 When X-ray diffraction was performed in the same manner as in Example 1 for the coated metal fine particle sample powders produced under the same conditions as in Examples 8 to 16, all of the sample powders had the maximum peak of TiO 2 in the X-ray diffraction pattern. The full width at half maximum was 0.3 ° or less, and the intensity ratio of the maximum peak of TiO 2 to the maximum peak of metal M was 0.03 or more.

実施例2〜16の被覆金属微粒子について、実施例1と同様にして粒径に対する個数分布を測定したところ、いずれも金属粒子のピークが2つとなる分布を得た。   For the coated metal fine particles of Examples 2 to 16, the number distribution with respect to the particle diameter was measured in the same manner as in Example 1. As a result, a distribution with two metal particle peaks was obtained.

(実施例17)
実施例11の被覆金属微粒子について、以下に説明する手法でシリカ被覆処理を施し、磁性シリカ粒子を作製した。第1に、上述の被覆金属微粒子の試料粉末5gをエタノール溶媒100mL中に分散し、これにテトラエトキシシランを1mL添加した。次にこの溶媒を攪拌しながら純水22gとアンモニア水4gの混合溶液を添加し、上記混合溶液を1時間攪拌した。攪拌後、磁性粒子を磁石でビーカ内壁に捕捉しながら上澄み液を除去した。第2に、上記磁性粒子に対して上述のシリカ被覆処理を同様に2回繰り返し、最後にイソプロピルアルコールで溶媒置換を行った後、磁性粒子をドラフト内で乾燥させて磁性シリカ粒子を得た。
(Example 17)
The coated metal fine particles of Example 11 were subjected to silica coating treatment by the method described below to produce magnetic silica particles. First, 5 g of the above sample powder of coated metal fine particles was dispersed in 100 mL of ethanol solvent, and 1 mL of tetraethoxysilane was added thereto. Next, a mixed solution of 22 g of pure water and 4 g of aqueous ammonia was added while stirring the solvent, and the mixed solution was stirred for 1 hour. After stirring, the supernatant was removed while trapping the magnetic particles on the inner wall of the beaker with a magnet. Secondly, the above silica coating treatment was repeated twice with respect to the magnetic particles. Finally, the solvent was replaced with isopropyl alcohol, and the magnetic particles were dried in a fume hood to obtain magnetic silica particles.

本発明の磁性シリカ粒子の磁気ビーズ性能を評価するため、Roch社製DNA抽出キット「MagNA Pure LC DNA Isolation Kit I」を用いて馬血100μLからDNAを精製した。磁性シリカ粒子12mgをイソプロピルアルコール(IPA)150μL中に分散させた溶液を各々磁気ビーズ液として用いた以外は上記Kitのプロトコルに準拠してDNAを抽出し、DNA抽出液を得た。DNA抽出液中のDNA量はUVスペクトル測定機(日立ハイテクノロジーズ社製ダイオードアレー型バイオ光度計U−0080D)を用いて測定した。その結果、馬血100μLから2.7μgのDNAを抽出した。   In order to evaluate the magnetic bead performance of the magnetic silica particles of the present invention, DNA was purified from 100 μL of horse blood using a DNA extraction kit “MagNA Pure LC DNA Isolation Kit I” manufactured by Roch. DNA was extracted according to the above Kit protocol except that a solution in which 12 mg of magnetic silica particles were dispersed in 150 μL of isopropyl alcohol (IPA) was used as a magnetic bead solution to obtain a DNA extract. The amount of DNA in the DNA extract was measured using a UV spectrum measuring device (diode array type biophotometer U-0080D manufactured by Hitachi High-Technologies Corporation). As a result, 2.7 μg of DNA was extracted from 100 μL of horse blood.

(参考例)
市販の磁気ビーズ(Roche製、MagNAPure LC DNA Isolation Kit Iに付属)を用いて実施例10と同様にDNAを抽出した結果、DNA抽出量は2.7μgであった。
以上より、本発明の被覆金属微粒子は磁気ビーズとして適用できることがわかった。
(Reference example)
As a result of extracting DNA using commercially available magnetic beads (Roche, attached to MagNAPure LC DNA Isolation Kit I), the amount of extracted DNA was 2.7 μg.
From the above, it was found that the coated metal fine particles of the present invention can be applied as magnetic beads.

実施例1の試料粉末のX線回折パターンである。2 is an X-ray diffraction pattern of the sample powder of Example 1. FIG. 図1に係る試料粉末を走査型電子顕微鏡で撮影した写真である。It is the photograph which image | photographed the sample powder concerning FIG. 1 with the scanning electron microscope. 図2の写真に符号等を記入した概略図である。It is the schematic which entered the code | symbol etc. in the photograph of FIG. 粒径に対する個数分布を示すグラフである。It is a graph which shows the number distribution with respect to a particle size.

符号の説明Explanation of symbols

1 TiO層、 2 Fe粒子 1 TiO 2 layer, 2 Fe particles

Claims (4)

TiO を主体とするTi酸化物中に金属粒子を内包した被覆金属微粒子の粉末であって、前記金属はその酸化物の標準生成自由エネルギーがΔGM−O>ΔGTiO2の関係を満たす金属であり、前記金属粒子の粒径に対する個数分布が複数のピークを有することを特徴とする被覆金属微粒子の粉末。 A powder of coated metal fine particles in which metal particles are encapsulated in a Ti oxide mainly composed of TiO 2 , wherein the metal is a metal whose standard free energy of formation of the oxide satisfies the relationship of ΔG M−O > ΔG TiO 2. A powder of coated metal fine particles, wherein the number distribution with respect to the particle size of the metal particles has a plurality of peaks. 請求項1に記載の被覆金属微粒子の粉末であって、前記Ti酸化物中に複数の金属粒子を内包した被覆金属微粒子を有することを特徴とする被覆金属微粒子の粉末。 The powder of coated metal fine particles according to claim 1, comprising coated metal fine particles in which a plurality of metal particles are included in the Ti oxide. 請求項1又は2に記載の被覆金属微粒子の粉末であって、前記金属がFe、Co、Niから選ばれる少なくとも1つの元素を主成分としていることを特徴とする被覆金属微粒子の粉末。 3. The powder of coated metal fine particles according to claim 1, wherein the metal contains at least one element selected from Fe, Co, and Ni as a main component. 4. TiO を主体とするTi酸化物中に金属粒子を内包した被覆金属微粒子の粉末(前記金属粒子はFe、Co、Niから選ばれる少なくとも1つの元素を主成分としており、前記金属粒子の粒径に対する個数分布が複数のピークを有する。)と、前記被覆金属微粒子を分散する媒体とを有する磁気ビーズ。 Powder of coated metal fine particles in which metal particles are encapsulated in Ti oxide mainly composed of TiO 2 (the metal particles are mainly composed of at least one element selected from Fe, Co and Ni, and the particle diameter of the metal particles And a medium in which the coated fine metal particles are dispersed.
JP2006262410A 2006-09-27 2006-09-27 Coated fine metal powder and magnetic beads Expired - Fee Related JP4775713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262410A JP4775713B2 (en) 2006-09-27 2006-09-27 Coated fine metal powder and magnetic beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262410A JP4775713B2 (en) 2006-09-27 2006-09-27 Coated fine metal powder and magnetic beads

Publications (2)

Publication Number Publication Date
JP2008081779A JP2008081779A (en) 2008-04-10
JP4775713B2 true JP4775713B2 (en) 2011-09-21

Family

ID=39352936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262410A Expired - Fee Related JP4775713B2 (en) 2006-09-27 2006-09-27 Coated fine metal powder and magnetic beads

Country Status (1)

Country Link
JP (1) JP4775713B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059594B2 (en) * 2017-01-12 2022-04-26 Tdk株式会社 Soft magnetic materials, cores and inductors
US11015084B2 (en) 2017-09-20 2021-05-25 Ppg Industries Ohio, Inc. Coating compositions and elastic barrier coatings formed therefrom
US11059993B2 (en) 2018-09-07 2021-07-13 Ppg Industries Ohio, Inc. Coating composition exhibiting specific gloss properties for extreme washable coatings
CN109786100A (en) * 2019-03-29 2019-05-21 中国科学院宁波材料技术与工程研究所 A kind of preparation method of soft magnetic-powder core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288674B2 (en) * 2003-09-25 2009-07-01 日立金属株式会社 Method for producing magnetic metal fine particles and magnetic metal fine particles

Also Published As

Publication number Publication date
JP2008081779A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
EP1568427B1 (en) Production method of fine composite metal particles
JP5105503B2 (en) ε Iron oxide production method
JP4766276B2 (en) Coated fine metal particles and method for producing the same
JP4853769B2 (en) Magnetic silica particles and method for producing the same
JP2005273011A (en) Iron based nanosize particle and production method therefor
JP5124826B2 (en) Ε iron oxide powder with good dispersibility
JP5359905B2 (en) Fine metal particles, method for producing the same, and magnetic beads
JP2006097123A (en) Metallic microparticle, manufacturing method therefor, and magnetic bead
JP4758858B2 (en) Metallic magnetic powder for magnetic recording medium and method for producing the same
JP6851315B2 (en) Metal oxide particles and their production method
JP4288674B2 (en) Method for producing magnetic metal fine particles and magnetic metal fine particles
JP4775713B2 (en) Coated fine metal powder and magnetic beads
JP6480715B2 (en) Precursor of iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder using the same
JP6461828B2 (en) Method for producing magnetic particles
JP2007046074A (en) Fine metal particle and manufacturing method therefor
WO2008035681A1 (en) Coated metal fine particles and process for production thereof
JP2007046074A5 (en)
JP2008081818A (en) Method for producing precursor powder of nickel-ferroalloy nanoparticle, precursor powder of nickel-ferroalloy nanoparticle, method for producing nickel-ferroalloy nanoparticle, and nickel-ferroalloy nanoparticle
JP4811658B2 (en) Coated metal fine particles and production method thereof,
JP2008069431A (en) Method for producing magnetic particle, and magnetic particle
Ennas et al. Mechanochemical route for the synthesis of cobalt ferrite–silica and iron–cobalt alloy–silica nanocomposites
JP2005281786A (en) Magnetic metal particle and production method therefor
JP4304668B2 (en) Metal fine particles and method for producing metal fine particles
JP2006179567A (en) Iron nitride magnetic powder displaying excellent storing stability
JP5024683B2 (en) Magnetic beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees