JP5124826B2 - Ε iron oxide powder with good dispersibility - Google Patents

Ε iron oxide powder with good dispersibility Download PDF

Info

Publication number
JP5124826B2
JP5124826B2 JP2006244879A JP2006244879A JP5124826B2 JP 5124826 B2 JP5124826 B2 JP 5124826B2 JP 2006244879 A JP2006244879 A JP 2006244879A JP 2006244879 A JP2006244879 A JP 2006244879A JP 5124826 B2 JP5124826 B2 JP 5124826B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
crystal
particles
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006244879A
Other languages
Japanese (ja)
Other versions
JP2008063200A (en
Inventor
慎一 大越
俊介 桜井
王高 佐藤
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
University of Tokyo NUC
Original Assignee
Dowa Electronics Materials Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, University of Tokyo NUC filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2006244879A priority Critical patent/JP5124826B2/en
Publication of JP2008063200A publication Critical patent/JP2008063200A/en
Application granted granted Critical
Publication of JP5124826B2 publication Critical patent/JP5124826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はε−Fe23系の磁性粉末に関する。 The present invention relates to an ε-Fe 2 O 3 based magnetic powder.

磁気記録の分野では低ノイズ化を図りながら記録密度を高めることが要求されている。そのために、磁気記録媒体の側では、媒体の保磁力Hcをできるだけ大きくすること、そして媒体を構成する磁性粒子の微細化を図りながら磁気的分離化を促進することが肝要となる。さらには、磁性粒子が微細化しても記録状態が安定に保持されることも重要視される。   In the field of magnetic recording, it is required to increase recording density while reducing noise. Therefore, on the magnetic recording medium side, it is important to increase the coercive force Hc of the medium as much as possible and promote magnetic separation while miniaturizing the magnetic particles constituting the medium. Furthermore, it is important to keep the recording state stable even when the magnetic particles are miniaturized.

例えば、記録ビットを構成する磁気的に結合した磁気集合体の最小単位の磁気的エネルギー(KU×V)が、記録を乱そうとする熱エネルギー(kB×T)を大きく上回ることが挙げられる。ここで、KUは磁気異方性エネルギー定数、Vは磁気クラスター体積、kBはボルツマン定数、Tは絶対温度である。記録状態が安定に保持される指標として(KU×V)/(kB×T)を用い、この比がほぼ60以上(〜10年耐用)になることが一般的な目標とされている。このことは、一層の高記録密度化を図るためには、磁気クラスター体積Vを下げ、磁気異方性定数KUを上げざるを得ない状況にあると言える。KUについては、KU∝Hc(Hcは保磁力)の関係にあるため、言い換えると、高記録密度の磁気記録媒体を目指すほど、高いHcを有する磁性材料が必要になる。 For example, the magnetic energy (K U × V) of the minimum unit of the magnetically coupled magnetic aggregate constituting the recording bit greatly exceeds the thermal energy (k B × T) that tries to disturb the recording. It is done. Here, K U is the magnetic anisotropy energy constant, V is the magnetic cluster volume, k B is the Boltzmann constant, and T is the absolute temperature. Using (K U × V) / (k B × T) as an index for stably maintaining the recording state, it is a general goal that this ratio is approximately 60 or more (10-year service life). . This is in order to further increase the recording density lowers the magnetic cluster volume V, it can be said that the situation inevitably raise the magnetic anisotropy constant K U. Since K U has a relationship of K U ∝Hc (Hc is a coercive force), in other words, a magnetic material having a higher Hc is required as a magnetic recording medium with a higher recording density is aimed.

また、(KU×V)/(kB×T)の値が100以下の場合でも記録磁化が時間の経過につれて減少する事例も報告されており、このことは、低ノイズ化のためには磁気クラスター体積Vを下げる要求が強くなるほど、高い磁気異方性定数KUを持たねばならないことを意味する。したがって、低ノイズ化の観点からも、高記録密度の磁気記録媒体を目指すほど、高いHcを有する磁性材料が必要になる。 In addition, even when the value of (K U × V) / (k B × T) is 100 or less, there has been reported an example in which the recording magnetization decreases with the passage of time. as the request to reduce the magnetic cluster volume V becomes stronger, which means that must have a high magnetic anisotropy constant K U. Therefore, from the viewpoint of reducing noise, a magnetic material having a high Hc is required as a magnetic recording medium having a higher recording density is aimed.

非特許文献1〜3に示されるように、最近、ナノオーダーの粒子サイズで室温において20kOeという巨大なHcを示すε−Fe23の存在が確認されている。Fe23の組成を有しながら結晶構造が異なる多形には最も普遍的なものとしてα−Fe23およびγ−Fe23があるが、ε−Fe23もその一つである。しかし、ε−Fe23の結晶構造と磁気的性質が明らかにされたのは、非特許文献1〜3に見られるように、ε−Fe23結晶をほぼ単相の状態で合成できるようになったごく最近のことである。このε−Fe23は巨大なHcを示すことから、前記のような高記録密度の磁気記録媒体への適用が期待される。 As shown in Non-Patent Documents 1 to 3, recently, existence of ε-Fe 2 O 3 exhibiting a huge Hc of 20 kOe at room temperature with a nano-order particle size has been confirmed. Α-Fe 2 O 3 and γ-Fe 2 O 3 are the most universal polymorphs having a composition of Fe 2 O 3 but different crystal structures, and ε-Fe 2 O 3 is one of them. One. However, the crystal structure and magnetic properties of ε-Fe 2 O 3 were clarified because, as seen in Non-Patent Documents 1 to 3, ε-Fe 2 O 3 crystals were synthesized in a substantially single-phase state. This is only recently. Since this ε-Fe 2 O 3 shows huge Hc, it is expected to be applied to a magnetic recording medium having a high recording density as described above.

Jian Jin,Shinichi Ohkoshi and Kazuhito Hashimoto,ADVANCED MATERIALS 2004,16,No.1,January 5,p.48-51Jian Jin, Shinichi Ohkoshi and Kazuhito Hashimoto, ADVANCED MATERIALS 2004, 16, No. 1, January 5, p.48-51 Jian Jin,Kazuhito Hashimoto and Shinichi Ohkoshi,JOURNAL OF MATERIALS CHIMISTRY 2005,15,p.1067-1071Jian Jin, Kazuhito Hashimoto and Shinichi Ohkoshi, JOURNAL OF MATERIALS CHIMISTRY 2005, 15, p.1067-1071 Shunsuke Sakurai,Jian Jin,Kazuhito Hashimoto and Shinichi Ohkoshi,JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN,Vol.74,No.7,July,2005,p.1946-1949Shunsuke Sakurai, Jian Jin, Kazuhito Hashimoto and Shinichi Ohkoshi, JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, Vol.74, No.7, July, 2005, p.1946-1949

非常に高いHcをもった磁性材料を記録媒体として実用化するためには、その記録媒体に実際に情報を書き込める記録磁場を発生する磁気ヘッドが必要である。磁気ヘッドの発生磁場は、一般的には、そこに使用される軟磁性膜の飽和磁束密度に比例するともいわれる。現在、1.5〜4.5kOe(1.19×105〜3.58×105A/m)程度のHcをもつハードディスクが報告されているが、このようなハードディスクに情報を記録するための磁気ヘッドには、2.4Tといった高い飽和磁束密度をもつ材料が使用されている。 In order to put a magnetic material having a very high Hc into practical use as a recording medium, a magnetic head that generates a recording magnetic field capable of actually writing information on the recording medium is required. The magnetic field generated by the magnetic head is generally said to be proportional to the saturation magnetic flux density of the soft magnetic film used there. Currently, hard disks having Hc of about 1.5 to 4.5 kOe (1.19 × 10 5 to 3.58 × 10 5 A / m) have been reported. In order to record information on such hard disks. In the magnetic head, a material having a high saturation magnetic flux density of 2.4 T is used.

非特許文献1〜3に見られるように、20kOe(1.59×106A/m)レベルの巨大なHcを持つε−Fe23の場合は、これを磁気記録媒体の磁気記録材料に用いても、現状よりもさらに高い飽和磁束密度をもつ材料が存在しないと、情報を記録することができない。すなわち、現状レベルの磁気ヘッド材料では磁気記録ができない。 As seen in Non-Patent Documents 1 to 3 , in the case of ε-Fe 2 O 3 having a huge Hc of 20 kOe (1.59 × 10 6 A / m) level, this is used as a magnetic recording material of a magnetic recording medium. However, information cannot be recorded unless there is a material having a higher saturation magnetic flux density than the current state. That is, magnetic recording cannot be performed with the current level of magnetic head material.

発明者らは詳細な検討の結果、ε−Fe23結晶のFeサイトの一部を、3価の金属元素Mで置換したとき、その置換量に応じて保磁力Hcを低下させることができる場合があることを見出した。金属元素Mは例えばAl、Ga、Inなどである。このような置換手法を用いて保磁力Hcをコントロールすることにより、磁気ヘッド等で磁気記録が可能な範囲内で非常に高いHcを呈する磁性粉末が構築でき、種々の用途で実用化が期待される。 As a result of detailed studies, the inventors have found that when a part of the Fe site of the ε-Fe 2 O 3 crystal is substituted with the trivalent metal element M, the coercive force Hc can be reduced according to the amount of substitution. I found out that I could do it. The metal element M is, for example, Al, Ga, In or the like. By controlling the coercive force Hc using such a replacement method, a magnetic powder exhibiting extremely high Hc can be constructed within a range where magnetic recording can be performed with a magnetic head or the like, and it is expected to be put to practical use in various applications. The

しかしながら、磁性粉末を実際に磁気記録媒体や電波吸収体などの磁性材料として利用するためには、[1]単に保磁力Hcが高いだけでなく、飽和磁化σsが高く、角形比SQが大きいといった、総合的に優れた磁気特性を有することが要求され、また[2]液中や高分子基材中への粉末粒子の分散性が良好であることが要求される。   However, in order to actually use the magnetic powder as a magnetic material such as a magnetic recording medium or a radio wave absorber, [1] not only has a high coercive force Hc but also a high saturation magnetization σs and a large squareness ratio SQ. Therefore, it is required to have a comprehensively excellent magnetic property, and [2] it is required that the dispersibility of the powder particles in the liquid or the polymer base material is good.

特に、ε−Fe23結晶が本来有する高保磁力特性を十分に引き出すことや、高分子基材中への粉末粒子の充填率を高めることのためには、粉末の粒度分布を調整することが極めて有利であるが、液中への粒子の分散性が良好でないと、合成されたε−Fe23結晶の粉末に対して分級による粒度分布調整を行うことが極めて困難となる。また、磁場配向等の操作によって磁気記録媒体や電波吸収体の性能向上を図る際には、粉末粒子の高分子基材に対する分散性が良好であることが必須要件となる。 In particular, the particle size distribution of the powder should be adjusted in order to sufficiently bring out the high coercivity characteristic inherent to the ε-Fe 2 O 3 crystal and to increase the filling rate of the powder particles into the polymer substrate. However, if the dispersibility of the particles in the liquid is not good, it is very difficult to adjust the particle size distribution by classification of the synthesized ε-Fe 2 O 3 crystal powder. In addition, when the performance of the magnetic recording medium or the radio wave absorber is improved by operations such as magnetic field orientation, it is an essential requirement that the dispersibility of the powder particles with respect to the polymer substrate is good.

非特許文献1〜3に示されるように、ε−Fe23結晶は、逆ミセル法とゾル−ゲル法を組み合わせたプロセスにより合成することができる。しかし、そのようにして合成されたε−Fe23結晶の粉末は、必ずしも安定して総合的に優れた磁気特性を有するとは限らず、また、液中あるいは高分子基材中への分散性についても更なる改善が望まれる。
そこで本発明は、上記の合成プロセスを利用して製造できる粉末であって、総合的な磁気特性、および液中や高分子基材中への分散性が改善されたε−Fe23結晶の粉末を提供することを目的とする。
As shown in Non-Patent Documents 1 to 3, the ε-Fe 2 O 3 crystal can be synthesized by a process combining a reverse micelle method and a sol-gel method. However, the powder of ε-Fe 2 O 3 crystal synthesized in such a manner does not always have stable and excellent magnetic properties, and it can be used in a liquid or a polymer substrate. Further improvement in dispersibility is also desired.
Therefore, the present invention is a powder that can be produced using the above-described synthesis process, and has an overall magnetic property, and an ε-Fe 2 O 3 crystal with improved dispersibility in a liquid or a polymer substrate. It aims to provide a powder.

上記目的を達成するために、本発明ではε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の表面にSi酸化物を有する、鉄酸化物とSi酸化物の複合粒子からなり、Si/(Fe+M)×100で表されるSi含有量が0.1〜30モル%に調整されている磁性粉末が提供される。前記のMは、例えばAl、Ga、Inの1種以上からなる。
ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。
In order to achieve the above object, in the present invention, an Si oxide is formed on the surface of an iron oxide whose main phase is an ε-Fe 2 O 3 crystal (including one in which a part of Fe site is substituted with a metal element M). There is provided a magnetic powder comprising a composite particle of iron oxide and Si oxide and having a Si content represented by Si / (Fe + M) × 100 adjusted to 0.1 to 30 mol%. Said M consists of 1 or more types, for example, Al, Ga, and In.
However, when the molar ratio of M to Fe in the iron oxide is expressed as M: Fe = x: (2-x), 0 ≦ x <1.

上記の「鉄酸化物」は、この磁性粉末の粒子において、(i)α−Fe23と空間群が同じである結晶、(ii)γ−Fe23と空間群が同じである結晶、(iii)ε−Fe23と空間群が同じである結晶、(iv)Fe34と空間群が同じである結晶、および(v)FeOと空間群が同じである結晶のうち、1種以上で構成される部分である。「主相」とは、上記(i)〜(v)の各結晶のうち、鉄酸化物全体に占めるモル比が50モル%以上である結晶を意味する。これら各結晶のモル比は、X線回折に基づくリードベルト法による解析で見積もることができる。 In the above-mentioned “iron oxide”, in this magnetic powder particle, (i) a crystal having the same space group as α-Fe 2 O 3 and (ii) a space group being the same as γ-Fe 2 O 3 (Iii) a crystal having the same space group as ε-Fe 2 O 3 , (iv) a crystal having the same space group as Fe 3 O 4 , and (v) a crystal having the same space group as FeO. Among these, it is a part comprised by 1 or more types. The “main phase” means a crystal having a molar ratio of 50 mol% or more to the whole iron oxide among the crystals of the above (i) to (v). The molar ratio of each of these crystals can be estimated by analysis by a lead belt method based on X-ray diffraction.

本発明の磁性粉末では、この主相はε−Fe23結晶である。ただし、本明細書でいう「ε−Fe23結晶」には、特に断らない限り、Feサイトが他の元素で置換されていない純粋なε−Fe23結晶の他、Feサイトの一部が3価の金属元素Mで置換されており、前記純粋なε−Fe23結晶と空間群が同じである(すなわち空間群がPna21である)結晶が含まれる。 In the magnetic powder of the present invention, this main phase is ε-Fe 2 O 3 crystal. However, “ε-Fe 2 O 3 crystal” as used in this specification includes, unless otherwise specified, a pure ε-Fe 2 O 3 crystal in which the Fe site is not substituted with other elements, A crystal partially including a trivalent metal element M and having the same space group as the pure ε-Fe 2 O 3 crystal (that is, the space group is Pna2 1 ) is included.

鉄酸化物の表面に存在するSi酸化物は、SiO2を主体とするシリカ成分であると考えられるが、その形態は必ずしも結晶質とは限らず、ブロードなX線回折ピークを呈するアモルファス状のものであって構わない。存在量が少ないときはブロードなX線回折ピークも検出されない場合もある。 The Si oxide present on the surface of the iron oxide is considered to be a silica component mainly composed of SiO 2 , but the form is not necessarily crystalline, and an amorphous state exhibiting a broad X-ray diffraction peak. It doesn't matter. When the abundance is small, a broad X-ray diffraction peak may not be detected.

本発明の磁性粉末の粒子径は、TEM写真により測定される平均粒子径が5〜200nmにある。粉末の磁気特性として、1000〜15000 Oe(7.96×104〜1.19×106A/m)の保磁力を有するものが好適な対象となる。 As for the particle diameter of the magnetic powder of the present invention, the average particle diameter measured by a TEM photograph is 5 to 200 nm. What has a coercive force of 1000-15000 Oe (7.96 * 10 < 4 > -1.19 * 10 < 6 > A / m) becomes a suitable object as a magnetic characteristic of powder.

TEM(透過型電子顕微鏡)写真からの平均粒子径の計測は、60万倍に拡大したTEM写真画像から各粒子の最も大きな径(ロッド状のものでは長軸径)を測定することにより求めることができる。独立した粒子300個について求めた粒子径の平均値を、その粉末の平均粒子径とする。以下、これを「TEM平均粒子径」ということがある。   Measurement of the average particle diameter from a TEM (transmission electron microscope) photograph is obtained by measuring the largest diameter of each particle (major axis diameter in the case of a rod-shaped one) from a TEM photograph image magnified 600,000 times. Can do. Let the average value of the particle diameter calculated | required about 300 independent particle | grains be the average particle diameter of the powder. Hereinafter, this may be referred to as “TEM average particle diameter”.

(1)この磁性粉末は常温付近で非常に高い保磁力Hcが得られるので、磁気記録媒体の信頼性向上に寄与できる。また、その保磁力は添加元素Mの含有量によってコントロールできるので、保磁力が高すぎるためにε−Fe23が使えなかった磁性用途においても、使用可能な範囲において、できるだけ高い保磁力を有する磁性材料の提供が可能となる。
(2)この磁性粉末は、鉄が3価まで酸化された鉄酸化物の粒子からなるので、従来のメタル系磁性粉末と比べ、大気環境での耐食性が極めて良好である。
(3)この磁性粉末は、粒子表面に適量のSi酸化物を有しているので、液中や高分子基材中における粉末粒子の分散性が良好である。このため、合成された粉末粒子を分級して粒度調整することが可能であり、磁気特性の向上や、磁気記録媒体や電波吸収体中における粉末粒子の充填性の改善などによる、磁気特性あるいは電波吸収特性の向上が期待される。
(4)この磁性粉末は、非特許文献1〜3に開示の逆ミセル法とSiを用いたゾル−ゲル法を組み合わせたプロセスを利用して合成可能であるが、粒子表面に存在するSi酸化物等の非磁性化合物が適度に除去されているため、そのような非磁性化合物に起因した磁気特性への悪影響が大幅に抑制される。
(1) Since this magnetic powder has a very high coercive force Hc near room temperature, it can contribute to the improvement of the reliability of the magnetic recording medium. In addition, since the coercive force can be controlled by the content of the additive element M, even in magnetic applications where ε-Fe 2 O 3 cannot be used because the coercive force is too high, the coercive force is as high as possible within the usable range. It is possible to provide a magnetic material having the same.
(2) Since this magnetic powder consists of iron oxide particles in which iron is oxidized to trivalent, the corrosion resistance in the air environment is extremely good as compared with the conventional metal-based magnetic powder.
(3) Since this magnetic powder has an appropriate amount of Si oxide on the particle surface, the dispersibility of the powder particles in the liquid or in the polymer substrate is good. For this reason, it is possible to classify the synthesized powder particles to adjust the particle size, and to improve the magnetic properties and the magnetic properties or the radio waves by improving the filling properties of the powder particles in the magnetic recording medium or the radio wave absorber. Improvement of absorption characteristics is expected.
(4) This magnetic powder can be synthesized using a process combining the reverse micelle method disclosed in Non-Patent Documents 1 to 3 and a sol-gel method using Si, but Si oxidation present on the particle surface. Since nonmagnetic compounds such as substances are appropriately removed, adverse effects on magnetic properties caused by such nonmagnetic compounds are greatly suppressed.

非特許文献1〜3に記載されるように、逆ミセル法とゾル−ゲル法を組み合わせた工程と、熱処理(焼成)工程により、ε−Fe23ナノ微粒子を合成することができ、本発明でもこの合成プロセスを利用することができる。逆ミセル法は、界面活性剤を含んだ2種類のミセル溶液、すなわちミセル溶液I(原料ミセル)とミセル溶液II(中和剤ミセル)を混合することによって、ミセル内で水酸化鉄の沈殿反応を進行させることを要旨とする。ゾル−ゲル法は、ミセル内で生成した水酸化鉄微粒子の表面にシリカコーティングを施すことを要旨とする。表面がシリカで覆われた水酸化鉄微粒子は、液から分離されたあと、所定の温度(700〜1300℃の範囲内)で大気雰囲気下での熱処理に供される。この熱処理によりε−Fe23結晶が合成される。この結晶を主相とする鉄酸化物の表面には多量のシリカコートが存在する。本発明の磁性粉末は、この粒子表面のシリカコートの大部分を、アルカリ性の水溶液を用いて溶解除去する手法によって得ることができる。 As described in Non-Patent Documents 1 to 3, ε-Fe 2 O 3 nanoparticles can be synthesized by a process combining a reverse micelle method and a sol-gel method and a heat treatment (firing) step. This synthesis process can also be used in the invention. In the reverse micelle method, two types of micelle solution containing a surfactant, ie, micelle solution I (raw material micelle) and micelle solution II (neutralizer micelle) are mixed to precipitate iron hydroxide in the micelle. The gist of this is to proceed. The gist of the sol-gel method is to apply a silica coating to the surface of the iron hydroxide fine particles generated in the micelle. The iron hydroxide fine particles whose surface is covered with silica are separated from the liquid and then subjected to a heat treatment in an air atmosphere at a predetermined temperature (in the range of 700 to 1300 ° C.). By this heat treatment, ε-Fe 2 O 3 crystals are synthesized. A large amount of silica coat exists on the surface of the iron oxide having the crystal as a main phase. The magnetic powder of the present invention can be obtained by a method in which most of the silica coat on the particle surface is dissolved and removed using an alkaline aqueous solution.

より具体的には、例えば以下のようにする。
n−オクタンを油相とするミセル溶液Iの水相には、鉄源としての硝酸鉄(III)、鉄の一部を金属元素Mで置換させる場合はM源としてのM硝酸塩(例えばAlの場合、硝酸アルミニウム(III)9水和物、Gaの場合、硝酸ガリウム(III)n水和物、Inの場合、硝酸インジウム(III)3水和物)、および界面活性剤(例えば臭化セチルトリメチルアンモニウム)を溶かし、同じくn−オクタンを油相とするミセル溶液IIの水相にはアンモニア水溶液を用いる。その際、ミセル溶液Iの水相に適量のアルカリ土類金属(Ba、Sr、Caなど)の硝酸塩を溶解させておくことができる。これらアルカリ土類金属の硝酸塩は形状制御剤として機能する。すなわち、アルカリ土類金属が液中に存在すると最終的にロッド形状のε−Fe23結晶を得ることができる。形状制御剤がない場合は、粒状のε−Fe23結晶を得ることができる。
More specifically, for example, the following is performed.
In the aqueous phase of the micelle solution I having n-octane as the oil phase, iron nitrate (III) as an iron source is used. When a part of iron is replaced with the metal element M, M nitrate (for example, Al Aluminum nitrate (III) 9 hydrate, Ga, gallium nitrate (III) n hydrate, In, indium nitrate (III) trihydrate), and surfactants (eg cetyl bromide) An aqueous ammonia solution is used for the aqueous phase of micelle solution II in which trimethylammonium) is dissolved and n-octane is used as the oil phase. At that time, an appropriate amount of alkaline earth metal (Ba, Sr, Ca, etc.) nitrate can be dissolved in the aqueous phase of the micelle solution I. These alkaline earth metal nitrates function as shape control agents. That is, when alkaline earth metal is present in the liquid, a rod-shaped ε-Fe 2 O 3 crystal can be finally obtained. When there is no shape control agent, granular ε-Fe 2 O 3 crystals can be obtained.

両ミセル溶液IとIIを合体させたあと、ゾル−ゲル法を併用する。すなわち、シラン(例えばテトラエトキシシラン、テトラメトキシシラン)を合体液に滴下しながら攪拌を続け、ミセル内で水酸化鉄の生成反応を進行させる。これにより、ミセル内で生成する微細な水酸化鉄沈殿の粒子表面にはシランの加水分解によって生成したシリカがコーティングされる。次いで、シリカコーティングされた水酸化鉄粒子を液から分離・洗浄・乾燥して得た粒子粉体を炉内に装入し、空気中で700〜1300℃、好ましくは900〜1200℃、さらに好ましくは950〜1150℃の温度範囲で熱処理(焼成)する。この熱処理によりシリカコート内で酸化反応が進行して、微細な水酸化鉄粒子は微細なε−Fe23粒子に変化する。この酸化反応の際に、シリカコートの存在がα−Fe23やγ−Fe23の結晶ではなく、ε−Fe23結晶の生成に寄与すると共に、粒子同士の焼結を防止する作用を果たす。 After combining both micelle solutions I and II, the sol-gel method is used in combination. That is, stirring is continued while dripping silane (for example, tetraethoxysilane, tetramethoxysilane) into the combined liquid, and the reaction of producing iron hydroxide proceeds in the micelle. As a result, the surface of fine particles of iron hydroxide produced in the micelle is coated with silica produced by hydrolysis of silane. Next, the particle powder obtained by separating, washing, and drying the silica-coated iron hydroxide particles from the liquid is charged into a furnace, and 700 to 1300 ° C, preferably 900 to 1200 ° C, more preferably in air. Is heat-treated (fired) in a temperature range of 950 to 1150 ° C. By this heat treatment, an oxidation reaction proceeds in the silica coat, and the fine iron hydroxide particles are changed to fine ε-Fe 2 O 3 particles. During this oxidation reaction, the presence of the silica coat contributes to the formation of ε-Fe 2 O 3 crystals, not α-Fe 2 O 3 or γ-Fe 2 O 3 crystals, and the particles are sintered together. Acts to prevent.

熱処理(焼成)前の段階で、シリカコートの量は、原料中に含まれるSi含有量がSi/(Fe+M)×100で表されるモル比で50〜1000モル%の範囲とすることができる。平均粒子径を小さくする場合ほどシリカコートの量を多くすることが望ましい。シリカコートの量が上記のモル比で50モル%未満の量だと、粒子の焼結による粗大化が顕著になり、またα−Fe23結晶が生成しやすくなるので好ましくない。例えば、磁気記録に適した粒子径が100nm以下の焼結の少ない磁性粉末を得るためには上記Si含有量が100モル%以上のシリカコートを施すことが好ましい。一方、1000モル%を超えて過剰にシリカコートを施しても、粒子径は顕著には変化しないため、経済的に好ましくない。 In the stage before the heat treatment (firing), the amount of the silica coat can be in the range of 50 to 1000 mol% in terms of the molar ratio expressed by Si / (Fe + M) × 100 in the Si content contained in the raw material. . It is desirable to increase the amount of silica coat as the average particle size is reduced. When the amount of the silica coat is less than 50 mol% in the above molar ratio, coarsening due to sintering of the particles becomes remarkable and α-Fe 2 O 3 crystals are easily formed, which is not preferable. For example, in order to obtain a magnetic powder having a particle size of 100 nm or less suitable for magnetic recording and having little sintering, it is preferable to apply a silica coat having a Si content of 100 mol% or more. On the other hand, an excessive silica coating exceeding 1000 mol% is not economically preferable because the particle diameter does not change significantly.

以上のプロセスを利用して本発明の磁性粉末を得るためには、熱処理(焼成)によりε−Fe23が合成された後に、シリカコートを除去することが重要となる。シリカコートの除去は、NaOHやKOHなどの強アルカリを溶解させた水溶液中に、熱処理後の磁性粉末を入れて、撹拌することにより実施できる。溶解速度を上げる場合は、アルカリ溶液を加温するとよい。代表的には、NaOHなどのアルカリをシリカ分に対して、3モル倍以上添加し、水溶液温度が60〜70℃の状態で、磁性粉末を入れ撹拌すると、シリカを良好に溶解することができる。アルカリとしては、NaOHに限らず、NH3や、場合によってはN(CH34OHのような有機アルカリの水溶液を用いても構わない。ただし、粒子表面に存在するSi酸化物の量をSi/(Fe+M)×100で表されるSi含有量が0.1〜30モル%になるように調整するためには、後述実施例に示す〔手順6−2〕のようにして、再溶解処理を実施することが極めて有効である。 In order to obtain the magnetic powder of the present invention using the above process, it is important to remove the silica coat after ε-Fe 2 O 3 is synthesized by heat treatment (firing). The removal of the silica coat can be carried out by putting the magnetic powder after the heat treatment in an aqueous solution in which a strong alkali such as NaOH or KOH is dissolved and stirring. In order to increase the dissolution rate, the alkaline solution may be heated. Typically, when alkali such as NaOH is added 3 mol times or more with respect to the silica content, and the magnetic powder is added and stirred while the aqueous solution temperature is 60 to 70 ° C., the silica can be dissolved well. . The alkali is not limited to NaOH, and an aqueous solution of organic alkali such as NH 3 or, in some cases, N (CH 3 ) 4 OH may be used. However, in order to adjust the amount of Si oxide present on the particle surface so that the Si content represented by Si / (Fe + M) × 100 is 0.1 to 30 mol%, it will be described in the examples below. It is extremely effective to perform the re-dissolution treatment as in [Procedure 6-2].

このようなシリカコートの除去手法を用いて、Si/(Fe+M)×100で表されるSi含有量が0.1〜30モル%になるように磁性粒子表面のSi酸化物の量をコントロールする。それにより本発明の磁性粉末が得られる。磁性粒子表面のSi酸化物はSiO2として存在していると考えられるが、前述のようにX線回折ピークがブロードなアモルファス状の状態として存在していて構わない。SiO2は、水中では等電点がpH2前後にあり、そのため、pH3以上の広いpH範囲において水中での高い分散性を示す。シリカコートの除去試験を進めるうちに、Si/(Fe+M)×100によるSi含有量が0.1モル%を下回ると、液中での分散性の低下が観測された。この場合、Si酸化物は鉄酸化物粒子の表面に島状に存在しているものと考えられる。このため、シリカコートを完全に除去してしまうのではなく、上式によるSi含有量が0.1モル%以上になるようにSi酸化物を残す。 Using such a silica coat removal method, the amount of Si oxide on the surface of the magnetic particles is controlled so that the Si content represented by Si / (Fe + M) × 100 is 0.1 to 30 mol%. . Thereby, the magnetic powder of the present invention is obtained. Although it is considered that the Si oxide on the surface of the magnetic particles exists as SiO 2, as described above, the X-ray diffraction peak may exist in a broad amorphous state. SiO 2 has an isoelectric point around pH 2 in water, and therefore exhibits high dispersibility in water in a wide pH range of pH 3 or higher. As the silica coating removal test proceeded, when the Si content by Si / (Fe + M) × 100 was less than 0.1 mol%, a decrease in dispersibility in the liquid was observed. In this case, it is considered that the Si oxide exists in an island shape on the surface of the iron oxide particles. For this reason, the silica coat is not completely removed, but the Si oxide is left so that the Si content according to the above formula becomes 0.1 mol% or more.

Si/(Fe+M)×100によるSi含有量が0.1モル%未満の場合、Si酸化物は鉄酸化物粒子の表面に島状に存在しているものと考えられる。ところが、0.1モル%以上の範囲では、鉄酸化物の粒子表面がほぼ完全にSi酸化物で覆われた状態になると推測され、液中あるいは高分子基材中での分散性が顕著に改善される。また、このような状態になると、単に粉末粒子の分散性が改善されるだけでなく、鉄酸化物中のFeと、樹脂や分散剤等の成分との反応に対する大きな抵抗力が生じ、耐久性、耐候性、信頼性に一層優れた磁性材料になり得る。Si/(Fe+M)×100によるSi含有量が0.5モル%以上となるようにSi酸化物を存在させることがより好ましく、1モル%以上とすることが一層好ましい。   When the Si content by Si / (Fe + M) × 100 is less than 0.1 mol%, the Si oxide is considered to be present in the form of islands on the surface of the iron oxide particles. However, in the range of 0.1 mol% or more, it is presumed that the surface of the iron oxide particles is almost completely covered with Si oxide, and the dispersibility in the liquid or in the polymer substrate is remarkable. Improved. Further, in this state, not only the dispersibility of the powder particles is simply improved, but also a large resistance to the reaction between Fe in the iron oxide and components such as a resin and a dispersant occurs, resulting in durability. Therefore, it can be a magnetic material with further excellent weather resistance and reliability. The Si oxide is more preferably present such that the Si content by Si / (Fe + M) × 100 is 0.5 mol% or more, and more preferably 1 mol% or more.

一方、鉄酸化物粒子の表面に存在するSi酸化物の量が過剰に多いと、Si酸化物同士が、磁性粒子同士を架橋するようになり、激しい場合は、Si酸化物中に磁性粒子が、分散しているような構造体となる。こうなると、磁気記録媒体や電波吸収体において、磁性相の充填率を高めることや、磁化の配向を制御することが極めて困難になり、ε−Fe23結晶が本来有する特性を十分引き出すことができない。種々検討の結果、Si/(Fe+M)×100によるSi含有量が30モル%以下の範囲になるようにSi酸化物の付着量をコントロールする必要がある。Si酸化物は非磁性成分であることから、その存在は磁気特性にとってマイナス要因となる。このため、分散性や耐久性、耐候性、信頼性が許す限り少ない方が望ましい。20モル%以下の範囲とすることがより好ましく、10モル%以下が一層好ましく、5モル%以下がさらに一層好ましい。 On the other hand, if the amount of Si oxide present on the surface of the iron oxide particles is excessively large, the Si oxides cross-link the magnetic particles, and if severe, the magnetic particles are contained in the Si oxide. It becomes a structure that is dispersed. In this case, it becomes extremely difficult to increase the filling rate of the magnetic phase and control the orientation of magnetization in the magnetic recording medium and the radio wave absorber, and sufficiently extract the characteristics inherent to the ε-Fe 2 O 3 crystal. I can't. As a result of various studies, it is necessary to control the amount of Si oxide deposited so that the Si content by Si / (Fe + M) × 100 is within a range of 30 mol% or less. Since Si oxide is a nonmagnetic component, its presence becomes a negative factor for magnetic properties. For this reason, it is desirable that the dispersibility, durability, weather resistance, and reliability are as low as possible. More preferably, it is within the range of 20 mol% or less, more preferably 10 mol% or less, and even more preferably 5 mol% or less.

磁性粒子の表面コーティング物質は、シリカに限らず、化学的に安定で、融点の高い物質であり、かつ磁性粒子を溶解させずに除去可能な物質であれば、ゾル−ゲル工程を利用して種々のものが使用できると考えられる。例えば、低温で合成されるアルミナは、シリカと同様にアルカリにより容易に除去できるため、好ましい。また、カルシアやマグネシアも、弱酸で容易に溶解できるため、磁性粒子の溶解を最小限にとどめ溶解させることが可能であり、使用できると考えられる。   The surface coating material for magnetic particles is not limited to silica, but is a chemically stable, high melting point material that can be removed without dissolving the magnetic particles. It is thought that various things can be used. For example, alumina synthesized at a low temperature is preferable because it can be easily removed by alkali like silica. In addition, calcia and magnesia can be easily dissolved with a weak acid, so that the dissolution of magnetic particles can be minimized and used.

ところで、上記のようなε−Fe23結晶の合成においては、ε−Fe23結晶と空間群を異にする鉄酸化物結晶(不純物結晶)が混在する場合がある。そのような不純物結晶として、α−Fe23、γ−Fe23、FeO、Fe34が挙げられる。金属元素Mが添加されている場合は、これらの不純物結晶のFeの一部もMで置換されている可能性がある。不純物結晶の混在は、ε−Fe23結晶の特性をできるだけ多く引き出す上で好ましいとは言えないが、本発明の効果を阻害しない範囲で許容される。 By the way, in the synthesis of the ε-Fe 2 O 3 crystal as described above, an ε-Fe 2 O 3 crystal may be mixed with an iron oxide crystal (impurity crystal) having a different space group. Examples of such impurity crystals include α-Fe 2 O 3 , γ-Fe 2 O 3 , FeO, and Fe 3 O 4 . When the metal element M is added, part of Fe in these impurity crystals may be substituted with M. Mixing of impurity crystals is not preferable for extracting as much of the characteristics of the ε-Fe 2 O 3 crystal as possible, but is allowed as long as the effects of the present invention are not impaired.

例えば、鉄酸化物中に占めるε−Fe23結晶の割合が75モル%以上である場合は、従来の磁性材料では実現が難しかった優れた磁気特性を呈し、種々の磁性用途で有用である。鉄酸化物中に占めるε−Fe23結晶の割合が50〜75モル%未満であっても、飽和磁化σsが2emu/g(2A・m2/kg)以上を満たすような磁性材料であれば、高感度の読み取り磁気ヘッドであるGMR(巨大磁気抵抗効果)ヘッドやさらに高感度であるトンネル効果を利用したTMRヘッドを利用すると、書き込んだ信号を高い強度で読み取ることが可能であり、用途をなす。 For example, when the ratio of ε-Fe 2 O 3 crystal in iron oxide is 75 mol% or more, it exhibits excellent magnetic properties that are difficult to realize with conventional magnetic materials, and is useful in various magnetic applications. is there. Even if the ratio of the ε-Fe 2 O 3 crystal in the iron oxide is less than 50 to 75 mol%, the magnetic material satisfies the saturation magnetization σs of 2 emu / g (2 A · m 2 / kg) or more. If there is a GMR (giant magnetoresistive effect) head that is a high-sensitivity read magnetic head or a TMR head that uses the tunnel effect that is more sensitive, it is possible to read the written signal with high intensity, Make use.

置換元素Mについては、発明者らの詳細な検討によれば、置換量に応じて、ε−Fe23結晶の保磁力Hcをコントロールしやすい元素Mとして、AlおよびGaを挙げることができる。実例を挙げると、置換後の結晶をε−MxFe2-x3と表記するとき、MがAlの場合、x=0(Al無添加の粒状粒子粉体)のときHc=17.6kOe(1.40×106A/m)、x=0.4のときHc=11.8kOe(0.94×106A/m)、x=0.5のときHc=11.1kOe(0.88×106A/m)、x=0.6のときHc=9.7kOe(0.77×106A/m)、x=0.7のときHc=7.6kOe(0.61×106A/m)といった保磁力Hcの変化挙動が見られた。またMがGaの場合、x=0(Ga無添加、形状制御剤Ba添加有りのロッド状粒子粉体)のときHc=19.0kOe(1.512×106A/m)、x=0.22のときHc=15.3kOe(1.22×106A/m)、x=0.43のときHc=10.7kOe(0.851×106A/m)、x=0.62のときHc=6.5kOe(0.52×106A/m)、x=0.80のときHc=1.3kOe(0.10×106A/m)といった挙動が見られた。 Regarding the substitution element M, according to detailed examinations by the inventors, Al and Ga can be mentioned as the element M that can easily control the coercive force Hc of the ε-Fe 2 O 3 crystal according to the substitution amount. . For example, when the crystal after substitution is expressed as ε-M x Fe 2−x O 3 , when M is Al, when x = 0 (aluminum-free granular particle powder), Hc = 17. 6 kOe (1.40 × 10 6 A / m), when x = 0.4, Hc = 11.8 kOe (0.94 × 10 6 A / m), when x = 0.5, Hc = 11.1 kOe ( 0.88 × 10 6 A / m), when x = 0.6, Hc = 9.7 kOe (0.77 × 10 6 A / m), and when x = 0.7, Hc = 7.6 kOe (0.6). A change behavior of the coercive force Hc such as 61 × 10 6 A / m) was observed. When M is Ga, Hc = 19.0 kOe (1.512 × 10 6 A / m) and x = 0 when x = 0 (rod-shaped particle powder with no addition of Ga and shape control agent Ba) Hc = 15.3 kOe (1.22 × 10 6 A / m) when .22, Hc = 10.7 kOe (0.851 × 10 6 A / m) when x = 0.43, x = 0.62 Hc = 6.5 kOe (0.52 × 10 6 A / m), and when x = 0.80, Hc = 1.3 kOe (0.10 × 10 6 A / m).

また、ロッド形状のε−Fe23結晶を得る場合に添加されるアルカリ土類金属(Ba、Sr、Caなど)は、通常、生成する結晶の表層部などに存在する。これらのアルカリ土類金属元素をAと表示するとき、その存在量(含有量)は、多くてもA/(Fe+M)×100で表される配合比が20質量%以下の範囲であり、20質量%を超えるアルカリ土類金属の含有は、形状制御剤としての機能を果たす上では一般に不必要である。10質量%以下であることがより好ましい。 In addition, alkaline earth metals (Ba, Sr, Ca, etc.) that are added to obtain rod-shaped ε-Fe 2 O 3 crystals are usually present in the surface layer of the crystals to be produced. When these alkaline earth metal elements are denoted as A, the abundance (content) is at most a blending ratio represented by A / (Fe + M) × 100 within a range of 20% by mass or less, 20 The inclusion of alkaline earth metal in excess of mass% is generally unnecessary in order to function as a shape control agent. More preferably, it is 10 mass% or less.

本発明の磁性粉体を構成する粒子の粒子径は、例えば上記工程において熱処理(焼成)前の段階におけるシリカコートの量、焼成温度、焼成時間を調整することによりコントロール可能である。磁性粉体のTEM平均粒子径は5〜200nmの範囲であることが望ましく、5〜100nmの範囲であることがより好ましく、10〜100nmの範囲が一層好ましい。現在市販されているデータバックアップ用磁気記録テープにおいては、その磁性粒子の平均粒子径が200nm以下のものが殆どであり、これより微細な磁性粒子のものが求められている。本発明の磁性粉体はこの要求を満たすことができる。本発明の磁性粉体を用いて磁気記録用の磁性層を構成する場合、各粒子が単磁区構造となり得るほど微細であるので、高磁気記録密度の磁性層を構成できる。   The particle diameter of the particles constituting the magnetic powder of the present invention can be controlled, for example, by adjusting the amount of silica coat, the firing temperature, and the firing time in the stage before the heat treatment (firing) in the above process. The TEM average particle size of the magnetic powder is preferably in the range of 5 to 200 nm, more preferably in the range of 5 to 100 nm, and still more preferably in the range of 10 to 100 nm. Most of magnetic recording tapes for data backup currently on the market have an average particle diameter of 200 nm or less, and finer magnetic particles are required. The magnetic powder of the present invention can satisfy this requirement. When a magnetic layer for magnetic recording is formed using the magnetic powder of the present invention, a magnetic layer having a high magnetic recording density can be formed because each particle is fine enough to have a single domain structure.

ただし、粒子径が5nmより小さい粒子は、超常磁性であり、硬磁性体的振る舞いは示さず、軟磁性体的に振る舞うため、5nmより小さい粒子が多く含まれると、その超常磁性の影響により粉体の磁気特性が著しく低下する。また、5〜10nmの範囲の粒径も、すでに単磁区構造をとる臨界半径より小さいことが予想され、磁気特性の低下が観察される。したがって、粒子径5nm未満の粒子、好ましくは10nm未満の粒子はできるだけ除去されていることが好ましい。   However, particles having a particle diameter of less than 5 nm are superparamagnetic and do not exhibit a hard magnetic behavior, and behave like a soft magnetic material. Therefore, if many particles smaller than 5 nm are contained, the particles are affected by the superparamagnetism. The body's magnetic properties are significantly reduced. In addition, the particle diameter in the range of 5 to 10 nm is also expected to be smaller than the critical radius already having a single domain structure, and a decrease in magnetic properties is observed. Therefore, it is preferable that particles having a particle diameter of less than 5 nm, preferably particles of less than 10 nm, are removed as much as possible.

なお、前述のとおり本発明のε−Fe23結晶の合成については、その前駆体となる水酸化鉄と水酸化アルミニウムの超微粒子を逆ミセル法で作製する例を挙げたが、数百nm以下の同様の前駆体が作製できれば、その前駆体作製は特に逆ミセル法に限られるものではない。 As described above, for the synthesis of the ε-Fe 2 O 3 crystal of the present invention, an example in which ultrafine particles of iron hydroxide and aluminum hydroxide as precursors thereof are produced by the reverse micelle method has been given. If a similar precursor of nm or less can be produced, the production of the precursor is not particularly limited to the reverse micelle method.

《実施例1》
本例は、ε−Ga0.38Fe1.623を合成した例である。以下の手順に従った。
Example 1
In this example, ε-Ga 0.38 Fe 1.62 O 3 was synthesized. The following procedure was followed.

〔手順1〕
ミセル溶液Iとミセル溶液IIの2種類のミセル溶液を調整する。
・ミセル溶液Iの作製
テフロン(登録商標)製のフラスコに、純水6mL、n−オクタン18.3mLおよび1−ブタノール3.7mLを入れる。そこに、硝酸鉄(III)9水和物を0.00240モル、硝酸ガリウム(III)n水和物(和光純薬工業株式会社製の純度99.9%でn=7〜9のものを使用し、使用に当たっては事前に定量分析を行ってnを特定してから仕込み量を計算した)を0.00060モル添加し、室温で良く撹拌しながら溶解させる。さらに、界面活性剤としての臭化セチルトリメチルアンモニウムを、純水/界面活性剤のモル比が30となるような量で添加し、撹拌により溶解させ、ミセル溶液Iを得る。
このときの仕込み組成は、GaとFeのモル比をGa:Fe=x:(2−x)と表すときx=0.40である。
[Procedure 1]
Two kinds of micelle solutions, micelle solution I and micelle solution II, are prepared.
-Preparation of micelle solution I In a Teflon (registered trademark) flask, 6 mL of pure water, 18.3 mL of n-octane and 3.7 mL of 1-butanol are added. There, 0.0000 mol of iron (III) nitrate nonahydrate, gallium nitrate (III) n hydrate (99.9% purity by Wako Pure Chemical Industries, n = 7-9) Use and quantitatively analyze in advance and specify n, and then charge amount is calculated)) is added at 0.00060 mol and dissolved at room temperature with good stirring. Further, cetyltrimethylammonium bromide as a surfactant is added in such an amount that the molar ratio of pure water / surfactant becomes 30, and dissolved by stirring to obtain a micelle solution I.
The charged composition at this time is x = 0.40 when the molar ratio of Ga to Fe is expressed as Ga: Fe = x: (2-x).

・ミセル溶液IIの作製
25%アンモニア水2mLを純水4mLに混ぜて撹拌し、その液に、さらにn―オクタン18.3mLと1−ブタノール3.7mLを加えてよく撹拌する。その溶液に、界面活性剤として臭化セチルトリメチルアンモニウムを、(純水+アンモニア中の水分)/界面活性剤のモル比が30となるような量で添加し、溶解させ、ミセル溶液IIを得る。
-Preparation of micelle solution II 2 mL of 25% aqueous ammonia is mixed with 4 mL of pure water and stirred, and further 18.3 mL of n-octane and 3.7 mL of 1-butanol are added to the solution and stirred well. Cetyltrimethylammonium bromide as a surfactant is added to the solution in such an amount that the molar ratio of (pure water + water in ammonia) / surfactant is 30 and dissolved to obtain a micelle solution II. .

〔手順2〕
ミセル溶液Iをよく撹拌しながら、ミセルI溶液に対してミセル溶液IIを滴下する。滴下終了後、混合液を30分間撹拌し続ける。
[Procedure 2]
While stirring the micelle solution I, the micelle solution II is added dropwise to the micelle I solution. After completion of the dropping, the mixture is continuously stirred for 30 minutes.

〔手順3〕
手順2で得られた混合液を撹拌しながら、当該混合液にテトラエトキシシラン6.1mLを加える。約1日そのまま、撹拌し続ける。
[Procedure 3]
While stirring the mixed solution obtained in procedure 2, 6.1 mL of tetraethoxysilane is added to the mixed solution. Continue stirring for about 1 day.

〔手順4〕
手順3で得られた溶液を遠心分離機にセットして遠心分離処理する。この処理で得られた沈殿物を回収する。回収された沈殿物をクロロホルムとメタノールの混合溶液を用いて複数回洗浄する。
[Procedure 4]
The solution obtained in step 3 is set in a centrifuge and centrifuged. The precipitate obtained by this treatment is recovered. The collected precipitate is washed several times with a mixed solution of chloroform and methanol.

〔手順5〕
手順4で得られた沈殿物を乾燥した後、大気雰囲気の炉内で1100℃で4時間の熱処理を施す。
[Procedure 5]
After drying the precipitate obtained in procedure 4, heat treatment is performed at 1100 ° C. for 4 hours in an air atmosphere furnace.

〔手順6−1〕
手順5で得られた熱処理粉を、メノウ製乳鉢により丁寧に解粒を実施したのち、10モル/LのNaOH水溶液1L(リットル)中に入れ、液温70℃で24時間撹拌し、粒子表面に存在するであろうシリカの除去処理を行う。次いで、ろ過し、十分に水洗する。
[Procedure 6-1]
The heat-treated powder obtained in step 5 was carefully pulverized with an agate mortar, then placed in 1 L (liter) of 10 mol / L NaOH aqueous solution, stirred at a liquid temperature of 70 ° C. for 24 hours, and the particle surface The silica which will exist in this is removed. It is then filtered and washed thoroughly with water.

〔手順6−2〕
水洗された粉末を純水1L中に入れて分散させ、室温で撹拌しながらpHをモニターして希硝酸を少量ずつ添加していき、pH2.5〜3.0に調整する。撹拌を続けているとpHは変動するので、常にpH2.5〜3.0に調整する。pH調整しながら、撹拌を1時間実施する。アルカリで熱処理粉を処理するとシリカ分は溶解するが、同時にFeもわずかながら溶解し、アルカリ溶液中で溶解し難い無定形なFeケイ酸塩が液中で合成することが確認されている。このFeケイ酸塩は、酸に対する溶解度が高いため、上記操作により除去を行う(再溶解処理)。
[Procedure 6-2]
The water-washed powder is dispersed in 1 L of pure water, pH is monitored while stirring at room temperature, and dilute nitric acid is added little by little to adjust to pH 2.5 to 3.0. Since the pH fluctuates when stirring is continued, the pH is always adjusted to 2.5 to 3.0. Stirring is carried out for 1 hour while adjusting the pH. When the heat-treated powder is treated with an alkali, the silica component is dissolved, but at the same time Fe is also slightly dissolved, and it has been confirmed that an amorphous Fe silicate which is difficult to dissolve in an alkaline solution is synthesized in the solution. Since this Fe silicate has high solubility in acid, it is removed by the above operation (re-dissolution treatment).

また、金属元素Mについても手順6−1で溶解が生じ、シリカ分と反応してM元素のケイ酸塩を合成する場合があることが確認されている。また、手順3や手順4のときにSiと金属元素Mが化合物を形成する場合があることも確認されている。特に、MがAlの場合、Siと化合物を形成しやすい傾向にある。このようにシリカがM元素とのケイ酸塩を形成するときは、手順6−1のアルカリ処理だけでは、目的とするSi含有量までSiを除去できないことが起こりうる。このような場合にも、手順6−2は有効である。すなわち、本発明の「酸化鉄とSi酸化物の複合粒子」からなる粉体得るためには、目的とするSi含有量になるまで、手順6−1と手順6−2を繰り返すことが、極めて効果的である。   Further, it has been confirmed that the metal element M is dissolved in the procedure 6-1 and may react with the silica component to synthesize the M element silicate. Further, it has been confirmed that Si and the metal element M may form a compound during the procedure 3 and the procedure 4. In particular, when M is Al, it tends to form a compound with Si. Thus, when silica forms a silicate with M element, it may happen that Si cannot be removed to the target Si content only by the alkali treatment in Procedure 6-1. Even in such a case, the procedure 6-2 is effective. That is, in order to obtain the powder composed of “composite particles of iron oxide and Si oxide” of the present invention, it is extremely possible to repeat Step 6-1 and Step 6-2 until the target Si content is reached. It is effective.

図1に、上記手順により得られた試料粉末のTEM写真を示す。TEM平均粒子径は17.4nm、粒子径の標準偏差は9.1nm、[粒子径の標準偏差]/[平均粒子径]×100で表される変動係数は52.3%であった。   FIG. 1 shows a TEM photograph of the sample powder obtained by the above procedure. The TEM average particle diameter was 17.4 nm, the standard deviation of the particle diameter was 9.1 nm, and the coefficient of variation represented by [Standard deviation of particle diameter] / [Average particle diameter] × 100 was 52.3%.

上記手順により得られた試料粉末を粉末X線回折(XRD:リガク製RINT2000、線源CoKα線、電圧40kV、電流30mA)に供したところ、図2に示した回折パターンが得られた。この回折パターンは、ε−Fe23の結晶構造(斜方晶、空間群Pna21)に対応する回折ピークを有している。したがって、その結晶が主相であることが明らかである。また、2θが30°より低角側には、アモルファス状のSiO2に起因するブロードなピークが、わずかながら観察された。そのピーク高さは、2θが32〜33°の位置にあるε−Fe23結晶の回折ピーク(022)面の高さと比べ、明らかに低い。 When the sample powder obtained by the above procedure was subjected to powder X-ray diffraction (XRD: RINT2000 manufactured by Rigaku, radiation source CoKα ray, voltage 40 kV, current 30 mA), the diffraction pattern shown in FIG. 2 was obtained. This diffraction pattern has a diffraction peak corresponding to the crystal structure of ε-Fe 2 O 3 (orthorhombic crystal, space group Pna2 1 ). Therefore, it is clear that the crystal is the main phase. Moreover, a broad peak due to amorphous SiO 2 was slightly observed on the lower angle side of 2θ than 30 °. The peak height is clearly lower than the height of the diffraction peak (022) plane of the ε-Fe 2 O 3 crystal where 2θ is at a position of 32 to 33 °.

得られた試料を蛍光X線分析(日本電子製JSX―3220)に供したところ、GaとFeのモル比をGa:Fe=x:(2−x)と表すとき、仕込み組成はx=0.40であったのに対し、分析組成はx=0.38であり、ε−Ga0.38Fe1.623の組成のGa含有ε−Fe23結晶が合成されたことが確認された。また、この粉末のSi含有量は、Si/(Fe+Ga)×100によるモル比で3.5モル%であった。 When the obtained sample was subjected to fluorescent X-ray analysis (JSX-3220 manufactured by JEOL Ltd.), when the molar ratio of Ga and Fe was expressed as Ga: Fe = x: (2-x), the charged composition was x = 0. Whereas it was .40, the analytical composition was x = 0.38, and it was confirmed that a Ga-containing ε-Fe 2 O 3 crystal having a composition of ε-Ga 0.38 Fe 1.62 O 3 was synthesized. Moreover, Si content of this powder was 3.5 mol% in the molar ratio by Si / (Fe + Ga) × 100.

また、得られた試料粉末について、常温(300K)における磁気ヒステリシスループを測定した。その結果を図3に示す。磁気ヒステリシスループの測定は、Digtal Measurement Systems社の振動試料型磁力計(VSM)MODEL880を用いて、印加磁場13kOe(1.035×106A/m)の条件で行ったものである。
保磁力Hcは6774Oe(5.39×105A/m)、飽和磁化σsは15.7emu/g(A・m2/kg)、残留磁化σrは9.5emu/g(A・m2/kg)、角形比SQ(=σr/σs)は0.60であった。
Moreover, about the obtained sample powder, the magnetic hysteresis loop in normal temperature (300K) was measured. The result is shown in FIG. The measurement of the magnetic hysteresis loop was performed under the condition of an applied magnetic field of 13 kOe (1.035 × 10 6 A / m) using a vibration measurement type magnetometer (VSM) MODEL880 manufactured by Digital Measurement Systems.
Coercive force Hc 6774Oe (5.39 × 10 5 A / m), saturation magnetization σs is 15.7emu / g (A · m 2 / kg), residual magnetization σr is 9.5emu / g (A · m 2 / kg), the squareness ratio SQ (= σr / σs) was 0.60.

《対照例》
本例は、ε−Ga0.46Fe1.543を合成し、粒子表面のSi酸化物の量を本発明規定のようにコントロールしなかった例である。
<Control example>
In this example, ε-Ga 0.46 Fe 1.54 O 3 was synthesized, and the amount of Si oxide on the particle surface was not controlled as defined in the present invention.

具体的には、実施例1の粉末の製造プロセスを以下のように変更した。
[1]〔手順1〕において、ミセル溶液Iの調整に用いた硝酸鉄(III)9水和物の添加量を0.0024モルから0.002295モルに変更し、また硝酸ガリウム(III)n水和物の添加量を0.00060モルから0.0007050モルに変更した。このときの仕込み組成は、GaとFeのモル比をGa:Fe=x:(2−x)と表すときx=0.47である。
[2]〔手順6−1〕熱処理後の粉体をメノウ乳鉢解粒を実施せずに、液中へ投入した。また、使用したNaOH水溶液の濃度を2モル/L、液量を200mLとし、溶液温度を室温に変更した。
[3]〔手順6−2〕を実施せず、〔手順6−1〕を終えたものを試料粉末とした。
上記以外は、実施例1と同じ手順を繰り返した。
Specifically, the manufacturing process of the powder of Example 1 was changed as follows.
[1] In [Procedure 1], the addition amount of iron (III) nitrate nonahydrate used for the preparation of micelle solution I was changed from 0.0028 mol to 0.0000225 mol, and gallium (III) n The amount of hydrate added was changed from 0.0660 mol to 0.0707050 mol. The charge composition at this time is x = 0.47 when the molar ratio of Ga and Fe is expressed as Ga: Fe = x: (2-x).
[2] [Procedure 6-1] The powder after the heat treatment was put into the liquid without performing agate mortar pulverization. The concentration of the NaOH aqueous solution used was 2 mol / L, the liquid volume was 200 mL, and the solution temperature was changed to room temperature.
[3] A sample powder obtained by finishing [Procedure 6-1] without carrying out [Procedure 6-2] was used.
Except for the above, the same procedure as in Example 1 was repeated.

得られた試料粉末のTEM写真を図4に示す。TEM平均粒子径は16.4nm、粒子径の標準偏差は8.9nm、変動係数は54.3%であった。また、TEM写真から、大部分の鉄酸化物粒子はシリカの中に取り込まれるようにして存在している様子が観察された。このような状態の粉末は、前記実施例1のものに比べ、液中や高分子基材中での分散性に劣ることが明らかである。   A TEM photograph of the obtained sample powder is shown in FIG. The TEM average particle size was 16.4 nm, the standard deviation of the particle size was 8.9 nm, and the coefficient of variation was 54.3%. In addition, from the TEM photograph, it was observed that most of the iron oxide particles existed in the silica. It is clear that the powder in such a state is inferior in dispersibility in the liquid or in the polymer substrate as compared with the powder in Example 1.

得られた試料粉末について、実施例1と同様の条件で粉末X線回折に供した。その結果を図5に示す。この粉末もε−Fe23の結晶構造(斜方晶、空間群Pna21)に対応するピークを有していることが確認できた。ただし、2θが30°より低角側に観察される、アモルファス状のSiO2に起因するブロードなピークの高さは、2θが32〜33°の位置にあるε−Fe23結晶の回折ピーク(022)面の高さと同程度に高くなっている。実施例1の場合と比べ、Si酸化物の存在量が多いことが、X線回折の結果からもわかる。 The obtained sample powder was subjected to powder X-ray diffraction under the same conditions as in Example 1. The result is shown in FIG. It was confirmed that this powder also had a peak corresponding to the crystal structure of ε-Fe 2 O 3 (orthorhombic crystal, space group Pna2 1 ). However, the height of a broad peak due to amorphous SiO 2 observed at a lower angle side than 30 ° of 2θ is the diffraction of ε-Fe 2 O 3 crystal at 2θ of 32 to 33 °. It is as high as the height of the peak (022) plane. It can be seen from the results of X-ray diffraction that the abundance of Si oxide is larger than in the case of Example 1.

得られた試料を上記と同様の蛍光X線分析に供したところ、GaとFeのモル比をGa:Fe=x:(2−x)と表すとき、仕込み組成はx=0.47であったのに対し、得られた粉末の分析組成はx=0.46であり、ε−Ga0.46Fe1.1.543の組成のGa含有ε−Fe23結晶が合成されたことが確認された。また、この粉末のSi含有量は、Si/(Fe+Ga)×100によるモル比で184.9モル%であった。Si酸化物の存在量が実施例1のものより大幅に多いことがわかる。 The obtained sample was subjected to the same fluorescent X-ray analysis as described above. When the molar ratio of Ga to Fe was expressed as Ga: Fe = x: (2-x), the charged composition was x = 0.47. On the other hand, the analytical composition of the obtained powder was x = 0.46, and it was confirmed that Ga-containing ε-Fe 2 O 3 crystals having the composition of ε-Ga 0.46 Fe 1.1.54 O 3 were synthesized. It was done. Moreover, Si content of this powder was 184.9 mol% in molar ratio by Si / (Fe + Ga) * 100. It can be seen that the amount of Si oxide is significantly greater than that of Example 1.

また、得られた試料粉末の磁気ヒステリシスループを図6に示す。測定条件は実施例1と同様である。保磁力Hcは4.2kOe(3.35×105A/m)、飽和磁化σsは6.9emu/g(A・m2/kg)、残留磁化σrは3.5emu/g(A・m2/kg)、角形比SQ(=σr/σs)は0.50であった。この対照例の試料は実施例1の試料よりGaによる置換量が多いので、本来的に保磁力Hcが低下する傾向を示すが、飽和磁化σsや角形比SQも大きく低下している。このような磁気特性の低下は、磁性粒子の表面に存在する非磁性化合物(Si酸化物)の量が多いことに起因すると考えられる。 Moreover, the magnetic hysteresis loop of the obtained sample powder is shown in FIG. The measurement conditions are the same as in Example 1. The coercive force Hc is 4.2 kOe (3.35 × 10 5 A / m), the saturation magnetization σs is 6.9 emu / g (A · m 2 / kg), and the residual magnetization σr is 3.5 emu / g (A · m 2 / kg) and the squareness ratio SQ (= σr / σs) was 0.50. Since the sample of this control example has a larger amount of Ga substitution than the sample of Example 1, the coercive force Hc tends to decrease inherently, but the saturation magnetization σs and the squareness ratio SQ also greatly decrease. Such a decrease in magnetic properties is thought to be due to the large amount of nonmagnetic compound (Si oxide) present on the surface of the magnetic particles.

図4よりも低倍率で広範囲のTEM観察を行ったところ、粒子が比較的分散している箇所を見つけることができた。参考のため、その部分のTEM写真を図7に示す。しかし、この粉末の多くの粒子はシリカに取り囲まれるようにして存在していることから、この粉末は磁場配向に適さず、磁気記録媒体用の磁性材料としては実用化が困難であると考えられる。   When TEM observation was performed over a wide range at a magnification lower than that in FIG. 4, a portion where the particles were relatively dispersed could be found. For reference, a TEM photograph of that portion is shown in FIG. However, since many particles of this powder exist so as to be surrounded by silica, this powder is not suitable for magnetic field orientation and is considered difficult to put into practical use as a magnetic material for magnetic recording media. .

実施例1で得られた試料粉末のTEM写真。4 is a TEM photograph of the sample powder obtained in Example 1. 実施例1で得られた試料粉末のX線回折パターン。The X-ray diffraction pattern of the sample powder obtained in Example 1. 実施例1で得られた試料粉末の磁気ヒステリシスループ。The magnetic hysteresis loop of the sample powder obtained in Example 1. 対照例で得られた試料粉末のTEM写真。The TEM photograph of the sample powder obtained by the control example. 対照例で得られた試料粉末のX線回折パターン。The X-ray-diffraction pattern of the sample powder obtained by the control example. 対照例で得られた試料粉末の磁気ヒステリシスループ。Magnetic hysteresis loop of the sample powder obtained in the control example. 対照例で得られた試料粉末の比較的粒子が分散している箇所のTEM写真。The TEM photograph of the location where the particle | grains of the sample powder obtained by the comparative example are disperse | distributing comparatively.

Claims (4)

ε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の表面にSi酸化物を有する複合粒子からなり、Si/(Fe+M)×100で表されるSi含有量が0.1〜30モル%である磁性粉末。
ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。
It is composed of composite particles having Si oxide on the surface of iron oxide whose main phase is ε-Fe 2 O 3 crystal (including those in which part of Fe site is replaced by metal element M), and Si / (Fe + M ) Magnetic powder having a Si content represented by x100 of 0.1 to 30 mol%.
However, when the molar ratio of M to Fe in the iron oxide is expressed as M: Fe = x: (2-x), 0 ≦ x <1.
TEM写真により測定される平均粒子径が5〜200nmである請求項1に記載の磁性粉末。   The magnetic powder according to claim 1, wherein the average particle size measured by a TEM photograph is 5 to 200 nm. 前記のMは、Al、Ga、Inの1種以上からなる請求項1に記載の磁性粉末。   The magnetic powder according to claim 1, wherein M is one or more of Al, Ga, and In. 1000〜15000 Oe(7.96×104〜1.19×106A/m)の保磁力を有する請求項1に記載の磁性粉末。 The magnetic powder according to claim 1, which has a coercive force of 1000 to 15000 Oe (7.96 × 10 4 to 1.19 × 10 6 A / m).
JP2006244879A 2006-09-08 2006-09-08 Ε iron oxide powder with good dispersibility Active JP5124826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244879A JP5124826B2 (en) 2006-09-08 2006-09-08 Ε iron oxide powder with good dispersibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244879A JP5124826B2 (en) 2006-09-08 2006-09-08 Ε iron oxide powder with good dispersibility

Publications (2)

Publication Number Publication Date
JP2008063200A JP2008063200A (en) 2008-03-21
JP5124826B2 true JP5124826B2 (en) 2013-01-23

Family

ID=39286218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244879A Active JP5124826B2 (en) 2006-09-08 2006-09-08 Ε iron oxide powder with good dispersibility

Country Status (1)

Country Link
JP (1) JP5124826B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944747B (en) * 2014-03-31 2018-12-21 安瀚视特控股株式会社 The manufacturing method of glass substrate and the manufacturing device of glass substrate
US10273179B2 (en) 2009-02-23 2019-04-30 Corning Incorporated Glass manufacturing system and method for forming a high quality thin glass sheet
TWI725259B (en) 2016-12-15 2021-04-21 日商日本電氣硝子股份有限公司 Manufacturing method of glass articles
JP7325511B2 (en) 2018-08-10 2023-08-14 コーニング インコーポレイテッド Apparatus and method for fabricating glass ribbon

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444872B2 (en) * 2007-05-31 2013-05-21 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
DE102010003647A1 (en) * 2010-04-06 2011-10-06 Evonik Degussa Gmbh Janus-like iron-silicon oxide particles
JP6133749B2 (en) * 2013-04-26 2017-05-24 国立大学法人 東京大学 Iron oxide nanomagnetic particle powder and method for producing the same, iron oxide nanomagnetic particle thin film containing the iron oxide nanomagnetic particle powder and method for producing the same
JPWO2016121860A1 (en) * 2015-01-29 2017-11-24 慎一 大越 Iron oxide-based ferromagnetic film and method for producing iron oxide-based ferromagnetic film
WO2016148092A1 (en) * 2015-03-13 2016-09-22 Dowaエレクトロニクス株式会社 Surface-modified magnetic powder particles of iron-based oxide, and production process therefor
CN108025914B (en) 2015-10-05 2021-11-16 M技术株式会社 Metal oxide particles and method for producing same
WO2017134910A1 (en) 2016-02-02 2017-08-10 エム・テクニック株式会社 Zinc oxide particles with controlled color properties, method for producing same, and coating composition that includes said zinc oxide particles
JP6776185B2 (en) 2017-06-09 2020-10-28 富士フイルム株式会社 Magnetic powder, method for producing magnetic powder, and magnetic recording medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139509A (en) * 1984-07-31 1986-02-25 Japan Synthetic Rubber Co Ltd Material containing ultrafine grain ferrous oxide and manufacture thereof
JPH09328316A (en) * 1996-06-06 1997-12-22 Tokuyama Corp Compound oxide particle having magnetism and its production
JP2000290018A (en) * 1999-04-02 2000-10-17 Toyota Central Res & Dev Lab Inc Iron oxide based powder and its production
JP2003252618A (en) * 2002-03-01 2003-09-10 Kanagawa High-Technology Foundation Magnetic nanoparticulate, its production method and magnetic nanoparticulate thin film
JP4171522B2 (en) * 2002-09-12 2008-10-22 日立マクセル株式会社 Magnetic carrier for binding nucleic acid and method for producing the same
JP2006089308A (en) * 2004-09-21 2006-04-06 Toyota Central Res & Dev Lab Inc Composite iron oxide particle and its production method
JP5034264B2 (en) * 2005-03-30 2012-09-26 株式会社豊田中央研究所 Oxide composite and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273179B2 (en) 2009-02-23 2019-04-30 Corning Incorporated Glass manufacturing system and method for forming a high quality thin glass sheet
CN104944747B (en) * 2014-03-31 2018-12-21 安瀚视特控股株式会社 The manufacturing method of glass substrate and the manufacturing device of glass substrate
TWI725259B (en) 2016-12-15 2021-04-21 日商日本電氣硝子股份有限公司 Manufacturing method of glass articles
JP7325511B2 (en) 2018-08-10 2023-08-14 コーニング インコーポレイテッド Apparatus and method for fabricating glass ribbon

Also Published As

Publication number Publication date
JP2008063200A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5124826B2 (en) Ε iron oxide powder with good dispersibility
JP5130534B2 (en) Ε iron oxide powder with improved magnetic properties
JP4728916B2 (en) Magnetic material
JP5445843B2 (en) Magnetic iron oxide particles, magnetic material, and electromagnetic wave absorber
JP5124825B2 (en) ε Iron oxide based magnetic material
EP2003094B1 (en) Magnetic material
JP4730905B2 (en) Magnetic material and memory and sensor using the same
JP5416188B2 (en) Magnetic recording medium
JP5105503B2 (en) ε Iron oxide production method
JP2004319923A (en) Iron nitride-based magnetic powder
JP5712594B2 (en) Hexagonal ferrite particles for magnetic recording media
JP5403242B2 (en) Hexagonal ferrite particles for magnetic recording media
JP6103172B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5316522B2 (en) Magnetic particle powder
JP5418773B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5403241B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP2003100507A (en) Magnetic powder
JPH09171913A (en) Metal magnetic powder, manufacture thereof and coating film for magnetic recording medium
JP2008084420A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5124826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250