JP4749373B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4749373B2
JP4749373B2 JP2007102933A JP2007102933A JP4749373B2 JP 4749373 B2 JP4749373 B2 JP 4749373B2 JP 2007102933 A JP2007102933 A JP 2007102933A JP 2007102933 A JP2007102933 A JP 2007102933A JP 4749373 B2 JP4749373 B2 JP 4749373B2
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
heat transfer
refrigerant
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007102933A
Other languages
Japanese (ja)
Other versions
JP2008261517A (en
Inventor
晃 石橋
相武 李
拓也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007102933A priority Critical patent/JP4749373B2/en
Publication of JP2008261517A publication Critical patent/JP2008261517A/en
Application granted granted Critical
Publication of JP4749373B2 publication Critical patent/JP4749373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、冷媒と気体等の流体間での熱交換を行うためのフィンチューブ型熱交換器を用いた空気調和機に関するものである。 The present invention relates to an air conditioner using a finned tube heat exchanger for performing heat exchange between a refrigerant and a fluid such as a gas.

従来のフィンチューブ型熱交換器として、主熱交換器と補助熱交換器とを備え、全体を凝縮器として用いる場合に、主熱交換器の伝熱管の全てを扁平状の伝熱管を用いて構成し、補助熱交換器の過冷却部を全て円形状の伝熱管を用いて構成したものがある(例えば、特許文献1参照)。   As a conventional fin tube type heat exchanger, a main heat exchanger and an auxiliary heat exchanger are provided, and when using the whole as a condenser, all of the heat transfer tubes of the main heat exchanger are made of flat heat transfer tubes. There is a configuration in which the subcooling part of the auxiliary heat exchanger is configured by using a circular heat transfer tube (see, for example, Patent Document 1).

主熱交換器の伝熱管に偏平管を用いることにより、円管に比べて通風抵抗を大幅に小さくできるという利点がある。また、補助熱交換器の過冷却部に円形状の伝熱管を用いることで管内の断面積が上がり補助熱交換器内で過冷却液を保持でき、熱交換能力を確保することができる。   By using a flat tube as the heat transfer tube of the main heat exchanger, there is an advantage that the ventilation resistance can be significantly reduced as compared with the circular tube. Further, by using a circular heat transfer tube in the subcooling portion of the auxiliary heat exchanger, the cross-sectional area in the tube is increased, and the supercooling liquid can be held in the auxiliary heat exchanger, thereby ensuring the heat exchange capability.

また、その他のフィンチューブ型熱交換器として、伝熱管の全てを円管で構成したものがある(例えば、特許文献2参照)。この技術では、凝縮器として用いられる場合、伝熱管径を入り口から次第に小さくしていくことで、冷媒クオリティ(全流量に占める蒸発した蒸気の流量割合)が小さい箇所の冷媒流速を上げ、管内熱伝達率を向上させている。
特開2005−265263号公報(図17) 特開2004−19999号公報(図1)
Moreover, as another fin tube type heat exchanger, there is one in which all of the heat transfer tubes are constituted by circular tubes (for example, see Patent Document 2). In this technology, when used as a condenser, the heat transfer tube diameter is gradually reduced from the inlet, thereby increasing the refrigerant flow velocity at a place where the refrigerant quality (flow rate of evaporated vapor occupying the total flow rate) is small. The heat transfer rate is improved.
Japanese Patent Laying-Open No. 2005-265263 (FIG. 17) Japanese Patent Laying-Open No. 2004-19999 (FIG. 1)

上記特許文献1では、主熱交換器の伝熱管を全て扁平管としているため、冷媒クオリティが大きい部分での管内圧損が大きくなることから、パス数(冷媒の通過径路数)を増やして管内圧損の増加を防止する必要があった。しかしながら、パス数が多くなると、各パス同士の冷媒クオリティのアンバランスが生じ、熱交換効率が低下するという問題があった。   In Patent Document 1, since all the heat transfer tubes of the main heat exchanger are flat tubes, the pressure loss in the pipe at the portion where the refrigerant quality is large becomes large. It was necessary to prevent the increase of However, when the number of passes increases, there is a problem in that the refrigerant quality unbalances between the passes and the heat exchange efficiency decreases.

また、特許文献2の技術のように、伝熱管を全て円管とした場合、扁平管と比べて通風抵抗が増大し、熱交換能力が小さくなるという問題があった。   Further, as in the technique of Patent Document 2, when all the heat transfer tubes are circular tubes, there is a problem that the ventilation resistance is increased and the heat exchange capacity is reduced as compared with the flat tubes.

この発明は、上で述べたような問題点を解決するためになされたものであり、冷媒クオリティのアンバランスを防止して熱交換効率の低下防止を図るとともに、冷媒クオリティが大きい部分での管内圧損の低下を図ることが可能なフィンチューブ型熱交換器を備えた空気調和機を提供することを目的としている。 The present invention has been made to solve the above-described problems, and prevents imbalance in the refrigerant quality to prevent the heat exchange efficiency from being lowered. It aims at providing the air conditioner provided with the fin tube type heat exchanger which can aim at the fall of pressure loss.

この発明に係る空気調和機は、多数平行に配置され、その間を気体が流動する板状フィンと、この各板状フィンへ直角に挿入され、内部を作動冷媒が通過し、気体通過方向に対して直角方向の段方向へ複数段設けられるとともに気体通過方向である列方向に1又は複数列設けられた複数の伝熱管とから構成される熱交換器を少なくとも2つ備えたフィンチューブ型熱交換器が、吸込口と吹出口とが設けられた筐体内に配置され、2つの熱交換器のうち、作動冷媒の冷媒クオリティの小さい側の熱交換器の伝熱管を扁平管とし、作動冷媒の冷媒クオリティの大きい側の熱交換器の伝熱管を扁平管よりも管内圧損が低い円管とし、2つの熱交換器のうち、伝熱管に扁平管を用いた熱交換器を、筐体内において風量が多い筐体内の前面側に配置すると共に、伝熱管に円管を用いた熱交換器を筐体内の前面側よりも風量が少ない筐体内の背面側に配置したものである。 The air conditioner according to the present invention is arranged in parallel with a large number of plate-like fins through which gas flows, and is inserted into each plate-like fin at a right angle, through which the working refrigerant passes, and in the direction of gas passage Fin tube type heat exchange provided with at least two heat exchangers that are provided in a plurality of stages in the direction perpendicular to each other and composed of a plurality of heat transfer tubes provided in one or more rows in the row direction that is the gas passage direction. The heat exchanger tube is disposed in a housing provided with a suction port and a blower outlet, and of the two heat exchangers, the heat transfer tube of the heat exchanger on the side having a lower refrigerant quality of the working refrigerant is a flat tube, The heat transfer tube of the heat exchanger with the higher refrigerant quality is a circular tube with lower pressure loss in the tube than the flat tube , and of the two heat exchangers, the heat exchanger using the flat tube for the heat transfer tube Placed on the front side of the chassis Together, in which a heat exchanger using a circular pipe is arranged on the rear side of the small housing air volume than the front side of the housing to the heat transfer tube.

この発明によれば、2つの熱交換器のうち、作動冷媒の冷媒クオリティの小さい側の熱交換器の伝熱管を扁平管とし、冷媒クオリティの大きい側の熱交換器の伝熱管を扁平管よりも管内圧損が低い円管としので、圧力損失を小さくすることができる。また、伝熱管を円管とした熱交換器は、扁平管を用いた熱交換器に比べて冷媒パス数を少なくできるため、円管主熱交換器での冷媒クオリティのアンバランスが生じにくく、熱交換効率の向上を図ることができる。また、伝熱管を円管とした熱交換器側を、風量分布の低い筐体内の背面側に設けたので、配置位置の特徴を活かして全体として熱交換効率の向上に効果的な配置とすることができる。 According to the present invention, of the two heat exchangers, the heat transfer tube of the heat exchanger having the smaller refrigerant quality of the working refrigerant is a flat tube, and the heat transfer tube of the heat exchanger having the higher refrigerant quality is a flat tube. since also the pressure in the pipe loss was lower circular tube, it is possible to reduce the pressure loss. In addition, heat exchangers with heat transfer tubes as circular tubes can reduce the number of refrigerant paths compared to heat exchangers using flat tubes, so refrigerant quality imbalance in the circular tube main heat exchanger is less likely to occur. The heat exchange efficiency can be improved. In addition, since the heat exchanger side with a heat transfer tube as a circular tube is provided on the back side in the housing with a low air volume distribution, it is effective to improve the heat exchange efficiency as a whole by making use of the characteristics of the arrangement position. be able to.

実施の形態1.
図1は、この発明の実施の形態1によるフィンチューブ型熱交換器を用いた空気調和機の室内機を示す横断面図である。
この実施の形態の空気調和機の室内機は、筐体10内に、送風機6と、送風機6を囲むように配置したフィンチューブ型熱交換器1とを備えている。筐体10の上部側には吸込口(図示せず)が設けられており、吸込口から吸い込まれた空気は、フィンチューブ型熱交換器1及び送風機6を通過し、筐体10の下部側に設けた吹出口10aから、下部前方に吹き出されるようになっている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing an indoor unit of an air conditioner using a finned tube heat exchanger according to Embodiment 1 of the present invention.
The indoor unit of the air conditioner of this embodiment includes a blower 6 and a finned tube heat exchanger 1 disposed so as to surround the blower 6 in a housing 10. A suction port (not shown) is provided on the upper side of the housing 10, and air sucked from the suction port passes through the finned tube heat exchanger 1 and the blower 6, and the lower side of the housing 10. The air is blown out forward from the lower part through the air outlet 10a.

フィンチューブ型熱交換器1は、積層した板状フィンと、板状フィンに対して垂直に挿入され、内部に作動冷媒(以下、冷媒という)が通過し、気体通過方向に対して直角方向である段方向へ複数段設けられるとともに気体通過方向である列方向に1又は複数列設けられた伝熱管とを備えた構成を有するもので、伝熱管15に扁平管を用いた主熱交換器(以下、扁平管主熱交換器という場合がある)11と、伝熱管23に円管を用いた主熱交換器(以下、円管主熱交換器という場合がある)21と、伝熱管32に円管を用いた補助熱交換器31(31a、31b)とを備えている。   The finned tube heat exchanger 1 is inserted perpendicular to the laminated plate-like fins and the plate-like fins, and a working refrigerant (hereinafter referred to as refrigerant) passes through the fin-tube heat exchanger 1 in a direction perpendicular to the gas passage direction. A main heat exchanger using a flat tube as the heat transfer tube 15 (including a heat transfer tube provided in a row direction and having one or more rows in the row direction which is a gas passage direction). Hereinafter, the main heat exchanger (which may be referred to as a flat tube main heat exchanger) 11, the main heat exchanger 21 using a circular tube as the heat transfer tube 23 (hereinafter, also referred to as a circular tube main heat exchanger) 21, and the heat transfer tube 32 And an auxiliary heat exchanger 31 (31a, 31b) using a circular pipe.

扁平管主熱交換器11は、筐体10内の前面上部に、上部を後方に下部を前方にやや傾斜して配置された扁平管主熱交換器11aと、前面下部に、略垂直に配置された扁平管主熱交換器11bとから構成されている。また、円管主熱交換器21は、筐体10内の背面側に、上部を前方に下部を後方にやや傾斜して配置され、補助熱交換器31(31a,31b)は扁平管主熱交換器11及び円管主熱交換器21のそれぞれにおいて気体通過方向の上流側に配置されている。   The flat tube main heat exchanger 11 is disposed substantially vertically on the front upper portion in the housing 10 and on the lower portion of the front surface with the flat tube main heat exchanger 11a disposed with the upper part at the rear and the lower part at a slight inclination forward. And a flat tube main heat exchanger 11b. The circular pipe main heat exchanger 21 is arranged on the back side in the housing 10 with the upper part being forward and the lower part being slightly inclined rearward. The auxiliary heat exchangers 31 (31a, 31b) are flat pipe main heats. In each of the exchanger 11 and the circular pipe main heat exchanger 21, it is arrange | positioned in the upstream of the gas passage direction.

以下、扁平管主熱交換器11の構成について図2〜図4を参照して説明する。
図2は、扁平管主熱交換器11の板状フィン12を示す図であって、(a)は平面図、(b)は側面図である。図3は、板状フィン12の伝熱管挿入孔部分の拡大図で、(a)は平面図、(b)は(a)のA−A断面図である。図4は、扁平管を示す部分外観図である。
板状フィン12は、図2に示すように、略矩形状の伝熱管挿入孔13が段方向(図1の上下方向に相当)に複数形成され、伝熱管挿入孔13間の領域に列方向(扁平管長軸方向)に複数のスリット(図では4つ)14が穿設されている。そして、上記構成が列方向に2列形成されている。なお、板状フィン12はアルミニウム合金製板材にて形成されている。
Hereinafter, the configuration of the flat tube main heat exchanger 11 will be described with reference to FIGS.
2A and 2B are views showing the plate-like fins 12 of the flat tube main heat exchanger 11, wherein FIG. 2A is a plan view and FIG. 2B is a side view. FIG. 3 is an enlarged view of the heat transfer tube insertion hole portion of the plate-like fin 12, (a) is a plan view, and (b) is an AA cross-sectional view of (a). FIG. 4 is a partial external view showing a flat tube.
As shown in FIG. 2, the plate-like fins 12 have a plurality of substantially rectangular heat transfer tube insertion holes 13 formed in the step direction (corresponding to the vertical direction in FIG. 1), and in the column direction in the region between the heat transfer tube insertion holes 13. A plurality of slits (four in the figure) 14 are drilled in the flat tube long axis direction. And the said structure is formed in 2 rows in the row direction. The plate-like fins 12 are made of an aluminum alloy plate material.

板状フィン12の積層方向のピッチFpはFp=0.0012mであり、フィン厚みFt=0.0001m、また扁平管長軸方向のフィン幅はL=0.0254m、扁平管主熱交換器11の前面風速UfはUf=1.0m/s、扁平管主熱交換器11の段方向に隣接する伝熱管15の中心の距離DpはDp=0.0133mである。   The pitch Fp in the stacking direction of the plate-like fins 12 is Fp = 0.0012 m, the fin thickness Ft = 0.0001 m, the fin width in the flat tube major axis direction is L = 0.0254 m, and the flat tube main heat exchanger 11 The front wind speed Uf is Uf = 1.0 m / s, and the distance Dp between the centers of the heat transfer tubes 15 adjacent in the step direction of the flat tube main heat exchanger 11 is Dp = 0.133 m.

また、伝熱管15の断面は、図1に示すように長軸径と短軸径の扁平形状に形成されており、扁平断面の長軸径が熱交換流体である空気の流れ方向に平行となるように配置されている。伝熱管15の列数は、空気の流れ方向に2列となっている。また、伝熱管15の長軸径をここではdb=0.022m、短軸径をdb=0.002mとしている。   Further, the cross section of the heat transfer tube 15 is formed in a flat shape having a long axis diameter and a short axis diameter as shown in FIG. 1, and the long axis diameter of the flat cross section is parallel to the flow direction of air as a heat exchange fluid. It is arranged to be. The number of rows of the heat transfer tubes 15 is two in the air flow direction. Further, the major axis diameter of the heat transfer tube 15 is here db = 0.022 m, and the minor axis diameter is db = 0.002 m.

また、伝熱管15は図3に示すように、内部に耐圧を保持するための隔壁15aが設けられている。そして、この隔壁15aによって管内は多数の室に分割されている。この室が、作動流体流路(マイクロチャンネル)15bとなり、ここでは8個設けられている。伝熱管15は、アルミニウム合金製であって、押し出し成形によって成形されている。   Further, as shown in FIG. 3, the heat transfer tube 15 is provided with a partition wall 15a for maintaining a pressure resistance. And the inside of a pipe | tube is divided | segmented into many chambers by this partition 15a. This chamber serves as a working fluid channel (microchannel) 15b, and eight chambers are provided here. The heat transfer tube 15 is made of an aluminum alloy and is formed by extrusion.

そして、板状フィン12は、図4に示すように伝熱管挿入孔13の周囲にフィンカラー13aが設けられており、扁平管主熱交換器11を製造する際には、図5に示すようにこの板状フィン12を多数重ねて治具(図示せず)で固定し、外周にロウ材を塗布した扁平状の伝熱管15を、フィンカラー13aの突出方向に伝熱管挿入孔13に挿入して板状フィン12と接合するようにしている。   The plate-like fins 12 are provided with fin collars 13a around the heat transfer tube insertion holes 13 as shown in FIG. 4, and when the flat tube main heat exchanger 11 is manufactured, as shown in FIG. A large number of the plate-like fins 12 are stacked and fixed with a jig (not shown), and a flat heat transfer tube 15 coated with a brazing material is inserted into the heat transfer tube insertion hole 13 in the protruding direction of the fin collar 13a. Then, the plate-like fins 12 are joined.

また、円管主熱交換器21において、板状フィン22の積層方向のピッチFpはFp=0.0012mであり、フィン厚みFt=0.0001m、また空気の流れ方向のフィン幅はL=0.0254m、円管主熱交換器21の前面風速UfはUf=1.0m/s、円管主熱交換器21の段方向に隣接する伝熱管23の中心の距離DpはDp=0.0204である。伝熱管23は円形状である。伝熱管23の列数は空気の流れ方向に2列である。また、スリット24を1列につき2つ備えている。この伝熱管23は、銅の引き抜き成形により形成されている。   In the circular pipe main heat exchanger 21, the pitch Fp in the stacking direction of the plate-like fins 22 is Fp = 0.0012m, the fin thickness Ft = 0.0001m, and the fin width in the air flow direction is L = 0. 0.0254 m, the front wind speed Uf of the circular pipe main heat exchanger 21 is Uf = 1.0 m / s, and the distance Dp between the centers of the heat transfer tubes 23 adjacent in the step direction of the circular pipe main heat exchanger 21 is Dp = 0.0204. It is. The heat transfer tube 23 has a circular shape. The number of rows of the heat transfer tubes 23 is two in the air flow direction. In addition, two slits 24 are provided per row. The heat transfer tube 23 is formed by drawing copper.

図6は、フィンチューブ型熱交換器1を蒸発器として用いた場合の冷媒流路を示す構成図で、特に冷房時の冷媒流路を示している。図7(a)は、冷房時の冷媒流路を示す簡易説明図、図7(b)は、暖房時の冷媒流路を示す簡易説明図である。
冷房時、フィンチューブ型熱交換器1を蒸発器として用いる場合、冷媒はまず、1パス部の補助熱交換器31を通り、その後、分配器41にて6パスに分配された後、扁平管主熱交換器11を通過する。そして、分配器42で合流する。そして、絞り弁43を通過した後、簡易分配器44で2パスに分配され、円管主熱交換器21を通過し、そして、簡易分配器45で合流した後、冷媒出口から室内機を出ていく。
FIG. 6 is a configuration diagram showing a refrigerant flow path when the finned tube heat exchanger 1 is used as an evaporator, and particularly shows the refrigerant flow path during cooling. FIG. 7A is a simplified explanatory view showing the refrigerant flow path during cooling, and FIG. 7B is a simplified explanatory view showing the refrigerant flow path during heating.
When the finned tube heat exchanger 1 is used as an evaporator during cooling, the refrigerant first passes through the auxiliary heat exchanger 31 in one pass portion, and then is divided into six passes by the distributor 41, and then the flat tube It passes through the main heat exchanger 11. Then, the distributor 42 joins. Then, after passing through the throttle valve 43, it is divided into two passes by the simple distributor 44, passes through the circular pipe main heat exchanger 21, and merges in the simple distributor 45, and then exits the indoor unit from the refrigerant outlet. To go.

絞り弁43は、除湿時(室内を加熱しながらの除湿)に、扁平管主熱交換器11を凝縮器、円管主熱交換器21を蒸発器として用いるために設けられている。   The throttle valve 43 is provided to use the flat tube main heat exchanger 11 as a condenser and the circular tube main heat exchanger 21 as an evaporator during dehumidification (dehumidification while heating the room).

暖房時、フィンチューブ型熱交換器1を凝縮器として用いる場合、上記冷房時と逆の流れとなり、冷媒は簡易分配器45を通って2パスに分配された後、2パス部の円管主熱交換器21を通り、その後、簡易分配器44にて合流する。そして、絞り弁43を通った後、分配器42で6パスに分配され、その後、扁平管主熱交換器11を通過する。そして、分配器41にて合流し、1パスの補助円管熱交換器31を通過し、冷媒出口から室内機を出て行く。   When the finned tube heat exchanger 1 is used as a condenser during heating, the flow is the reverse of that during cooling, and the refrigerant is distributed in two passes through the simple distributor 45 and then the main pipe of the two-pass portion. It passes through the heat exchanger 21 and then merges at the simple distributor 44. Then, after passing through the throttle valve 43, it is distributed into 6 passes by the distributor 42, and then passes through the flat tube main heat exchanger 11. Then, they merge at the distributor 41, pass through the one-pass auxiliary pipe heat exchanger 31, and exit the indoor unit from the refrigerant outlet.

冷房時及び暖房時のどちらにおいても、図7の左側から右側に向かうに従い、冷媒クオリティが高くなる。ここで、この発明は、冷媒クオリティの小さい部分、すなわちフィンチューブ型熱交換器1を蒸発器として用いる場合の例で説明すると冷媒入口側に配置される主熱交換器11の伝熱管を扁平管とし、冷媒クオリティの高い部分(冷媒出口側)に配置される主熱交換器21の伝熱管を円管を用いて構成したことに特徴の一つを有するもので、この構成により、冷媒クオリティのアンバランスを防止して熱交換効率の低下防止を図るとともに、冷媒クオリティが大きい部分での管内圧損の低下を可能としている。以下、この点について説明する。なお、本例の空気調和機の室内機は、上述したように絞り弁43を備えており、絞り弁43を境として上流側(蒸発器として用いる場合の上流側)に扁平管主熱交換器11、下流側に円管主熱交換器21を配置している。   In both cooling and heating, the refrigerant quality increases from the left side to the right side in FIG. Here, the present invention will be described with an example in which the refrigerant quality is low, that is, the case where the finned tube heat exchanger 1 is used as an evaporator, and the heat transfer tube of the main heat exchanger 11 arranged on the refrigerant inlet side is a flat tube. And the heat transfer pipe of the main heat exchanger 21 arranged in the high refrigerant quality part (refrigerant outlet side) is configured by using a circular pipe. The imbalance is prevented to prevent the heat exchange efficiency from being lowered, and the pressure loss in the pipe is reduced at the portion where the refrigerant quality is high. Hereinafter, this point will be described. In addition, the indoor unit of the air conditioner of this example is provided with the throttle valve 43 as described above, and a flat tube main heat exchanger on the upstream side (upstream side when used as an evaporator) with the throttle valve 43 as a boundary. 11. A circular pipe main heat exchanger 21 is arranged on the downstream side.

図8は、図7(a)冷媒流路において、フィンチューブ型熱交換器1を蒸発器として用いる場合の冷媒入口からの距離と冷媒圧力との関係を示した図で、実線(a)は、主熱交換器11,21の伝熱管の両方を、仮に全て扁平管とした場合(また、パス数は6)の冷媒圧力の変化を示しており、点線(b)は、絞り弁43から蒸発器出口までに配置される主熱交換器21の伝熱管を円管とした場合(また、パス数は2)の冷媒圧力の変化を示している。
図6から明らかなように、主熱交換器11,21の伝熱管の両方に全て扁平管を用いた場合には、冷媒クオリティの小さい、蒸発器入り口から絞り弁43まででは圧力が維持されるが、絞り弁43部分で圧力が低下する。そして、絞り弁43から蒸発器出口の間にも同様に伝熱管を扁平管とした熱交換器(6パス)を用いた場合、更に圧力が低下し圧力損失が大きくなる。これに対し、冷媒クオリティの大きい絞り弁43から蒸発器出口までの部分において、伝熱管に円管を用いた場合には、扁平管を用いた場合に比べて圧力低下を少なく(圧力損失を小さく)することができる。
FIG. 8 is a diagram showing the relationship between the distance from the refrigerant inlet and the refrigerant pressure when the finned tube heat exchanger 1 is used as an evaporator in the refrigerant flow path of FIG. The change in the refrigerant pressure when both the heat transfer tubes of the main heat exchangers 11 and 21 are all flat tubes (and the number of passes is 6) is shown. The dotted line (b) A change in the refrigerant pressure when the heat transfer pipe of the main heat exchanger 21 arranged up to the evaporator outlet is a circular pipe (and the number of passes is 2) is shown.
As apparent from FIG. 6, when flat tubes are used for both of the heat transfer tubes of the main heat exchangers 11 and 21, the refrigerant quality is low, and the pressure is maintained from the evaporator inlet to the throttle valve 43. However, the pressure is reduced at the throttle valve 43 portion. Further, when a heat exchanger (six-pass) having a flat heat transfer tube is used between the throttle valve 43 and the evaporator outlet, the pressure further decreases and the pressure loss increases. On the other hand, when a circular pipe is used for the heat transfer tube in the portion from the throttle valve 43 having a high refrigerant quality to the outlet of the evaporator, the pressure drop is smaller (the pressure loss is smaller than when a flat tube is used). )can do.

このように、この実施の形態1では、冷媒クオリティの大きい絞り弁43から蒸発器出口の間には、伝熱管23を扁平管ではなく円管とした円管主熱交換器21(2パス)を用いるようにしたため、圧力損失を小さくすることができる。また、冷媒クオリティの小さい蒸発器入り口から絞り弁43までの間では、円管に比べて熱交換効率の高い扁平管を用いた扁平管主熱交換器11(6パス)を用いているため、全体として熱交換効率を向上しつつ圧力損失を小さくすることが可能となる。   Thus, in this Embodiment 1, between the throttle valve 43 with large refrigerant quality and the evaporator outlet, the circular pipe main heat exchanger 21 (two passes) in which the heat transfer tube 23 is not a flat tube but a circular tube. Therefore, pressure loss can be reduced. In addition, since the flat tube main heat exchanger 11 (6 paths) using a flat tube having a higher heat exchange efficiency than the circular tube is used between the entrance of the evaporator having a low refrigerant quality and the throttle valve 43, As a whole, it is possible to reduce the pressure loss while improving the heat exchange efficiency.

ところで、絞り弁43から蒸発器出口の間に仮にパス数を増やした扁平管主熱交換器(8パス)を用いた場合、円管主熱交換器(2パス)と同等な圧力損失とすることが可能である。しかしながら、パス数を増やすことで分配器の大型化、コスト増加を招くことから、好ましくない。一方、伝熱管に円管を用いた熱交換器は、一般的に扁平管を用いた熱交換器に比べてパス数を少なくできるため、冷媒を分配する際に安価な簡易分配器を用いれば済み、低コストである。   By the way, when a flat tube main heat exchanger (8 passes) having a larger number of passes between the throttle valve 43 and the evaporator outlet is used, the pressure loss is equivalent to that of the circular tube main heat exchanger (2 passes). It is possible. However, increasing the number of paths is not preferable because it increases the size and cost of the distributor. On the other hand, a heat exchanger using a circular tube as a heat transfer tube can generally reduce the number of paths compared to a heat exchanger using a flat tube. And low cost.

また、この実施の形態のフィンチューブ型熱交換器1は、冷房時、扁平管主熱交換器11において6パスに分配された後に合流する。このため、扁平管主熱交換器11においてパス間で冷媒クオリティのアンバランスが生じても、合流することにより一旦そのアンバランスが解消される。このため、この下流側の円管主熱交換器21での冷媒クオリティのアンバランスが生じにくく、熱交換効率の向上を図ることができる。なお、上記では冷房時、蒸発器として用いられる場合を例に説明したが、暖房時、凝縮器として用いられる場合もこの実施の形態1の構成を採用することで同様の効果を奏することは言うまでもない。   In addition, the finned tube heat exchanger 1 of this embodiment joins after being distributed into 6 paths in the flat tube main heat exchanger 11 during cooling. For this reason, even if refrigerant quality imbalance occurs between the paths in the flat tube main heat exchanger 11, the imbalance is once resolved by joining. For this reason, refrigerant quality imbalance in the circular pipe main heat exchanger 21 on the downstream side hardly occurs, and heat exchange efficiency can be improved. In addition, although the case where it used as an evaporator at the time of air_conditioning | cooling was demonstrated as an example above, when using as a condenser at the time of heating, it cannot be overemphasized that there exists the same effect by employ | adopting the structure of this Embodiment 1. Yes.

なお、実施の形態1では、扁平管主熱交換器11と円管主熱交換器21との間の冷媒パス数を一旦1つに絞るようにしているが、図9に示すように2以上としてもよい。この場合、それぞれに絞り弁43を設ける。このようにすることで、管内の流速が半分となり、圧力損失を低減できる。また、除湿時に絞り量を各々の絞り弁43で調節することにより除湿量の制御を容易にできる。   In the first embodiment, the number of refrigerant paths between the flat tube main heat exchanger 11 and the circular tube main heat exchanger 21 is once reduced to one, but two or more as shown in FIG. It is good. In this case, a throttle valve 43 is provided for each. By doing in this way, the flow velocity in a pipe | tube can be halved and pressure loss can be reduced. Further, the amount of dehumidification can be easily controlled by adjusting the amount of throttling with the respective throttle valves 43 during dehumidification.

また、伝熱管に扁平管を用いた場合と円管を用いた場合とでは、扁平管を用いた場合の方が熱交換効率が高いが、熱交換効率が低い円管主熱交換器21側を、風量分布の低い筐体10内の背面側に設けたので、配置位置の特徴を活かして全体として熱交換効率の向上に効果的な配置とすることができる。   In addition, in the case where a flat tube is used as the heat transfer tube and the case where a circular tube is used, the heat exchange efficiency is higher when the flat tube is used, but the side of the circular pipe main heat exchanger 21 where the heat exchange efficiency is low. Is provided on the back side in the housing 10 having a low air volume distribution, and the arrangement can be effectively arranged as a whole to improve the heat exchange efficiency by utilizing the feature of the arrangement position.

また、実施の形態1では、主熱交換器11,21の気体通過方向の上流側に、凝縮器として用いられる場合に内部作動冷媒が過冷却となる円管補助熱交換器31を設けているが、図10に示すように、円管補助熱交換器31を省略した構成としてもよい。この場合、冷房時には、冷媒入り口から分配器41にて6パスに分配された後、扁平管主熱交換器11を通過し、分配器42で合流する。そして、絞り弁43を通過した後、簡易分配器44で2パスに分配され、円管主熱交換器21を通過し、そして、簡易分配器45で合流した後、冷媒出口から室内機を出ていく流路となる。このように円管補助熱交換器31を省略した構成とすることも可能であるが、円管補助熱交換器31を設けた構成とした場合には、フィンチューブ型熱交換器1の能力を更に高めることができる。   Further, in the first embodiment, the circular tube auxiliary heat exchanger 31 in which the internal working refrigerant is supercooled when used as a condenser is provided on the upstream side in the gas passage direction of the main heat exchangers 11 and 21. However, as shown in FIG. 10, the circular tube auxiliary heat exchanger 31 may be omitted. In this case, at the time of cooling, the refrigerant 41 is distributed into six passes by the distributor 41, passes through the flat tube main heat exchanger 11, and is merged by the distributor 42. Then, after passing through the throttle valve 43, it is divided into two passes by the simple distributor 44, passes through the circular pipe main heat exchanger 21, and merges in the simple distributor 45, and then exits the indoor unit from the refrigerant outlet. It becomes a flow path to go. In this way, the circular tube auxiliary heat exchanger 31 can be omitted. However, when the circular tube auxiliary heat exchanger 31 is provided, the fin tube type heat exchanger 1 has the same ability. It can be further increased.

図11は、図1の扁平管主熱交換器11bと円管主熱交換器21の配置位置を交換し、扁平管主熱交換器11bを筐体10内の背面に、円管主熱交換器21を前面下部に配置したものである。この場合、図1のフィンチューブ型熱交換器1と略同様の効果を奏する。   11 exchanges the arrangement positions of the flat tube main heat exchanger 11b and the circular tube main heat exchanger 21 of FIG. 1, and the flat tube main heat exchanger 11b is placed on the back surface inside the housing 10 so that the circular tube main heat exchange is performed. The container 21 is arranged in the lower part of the front surface. In this case, there are substantially the same effects as the finned tube heat exchanger 1 of FIG.

また、扁平管主熱交換器11を、ここでは分配器41,42で冷媒を分配する構成を示したが、図12に示すように、冷媒をヘッダ62で分配するタイプの構成としても良い。この場合のパス数は扁平管本数と同一となる。この構成とすれば、伝熱管15を多パス化しても、ヘッダ62で分配を行うため分配器が不要となり、製造も容易となる。なお、図12において61は冷媒の出入り口である。   Moreover, although the structure which distribute | circulates a refrigerant | coolant is shown here with the flat pipe main heat exchanger 11 with the distributors 41 and 42, as shown in FIG. The number of passes in this case is the same as the number of flat tubes. With this configuration, even if the number of heat transfer tubes 15 is increased, distribution is performed by the header 62, so that a distributor is not necessary and manufacturing is facilitated. In FIG. 12, reference numeral 61 denotes a refrigerant entrance / exit.

実施の形態2.
図13は、実施の形態2の空気調和機の室内機を示す横断面図である。実施の形態2は、図1に示した実施の形態1において、背面側に配置された円管主熱交換器21の上端部を延出して、筐体10の前面側に配置した扁平管主熱交換器11aの上端部に接触するように構成したものである。その他の構成は図1と同様である。
ところで、図1のフィンチューブ型熱交換器1では、図14に示すように前面上部側の扁平管主熱交換器11aと背面上部側の主熱交換器21は線接触しており、空気の流れがこの接合部付近に集中し熱交換器を通らなくなるのを防止するように、接合部に空気を通過させないようにするシール材51が用いられている。この場合、上部から流れてくる空気の流れがシール部を完全に迂回し、前面側に迂回した空気の流れは、扁平状の伝熱管15によって遮られてしまい、伝熱面積が低下し、圧力損失が増大し、送風機入力が増大する可能性があった。
Embodiment 2. FIG.
FIG. 13 is a cross-sectional view illustrating the indoor unit of the air conditioner according to the second embodiment. The second embodiment is the same as that of the first embodiment shown in FIG. 1 except that the upper end of the circular pipe main heat exchanger 21 arranged on the back side is extended and the flat pipe main arranged on the front side of the housing 10 is arranged. The heat exchanger 11a is configured to come into contact with the upper end portion. Other configurations are the same as those in FIG.
By the way, in the finned tube heat exchanger 1 of FIG. 1, as shown in FIG. 14, the flat top main heat exchanger 11a on the front upper side and the main heat exchanger 21 on the back upper side are in line contact, and the air In order to prevent the flow from concentrating in the vicinity of the joint and not passing through the heat exchanger, a sealing material 51 that prevents air from passing through the joint is used. In this case, the flow of air flowing from the top completely bypasses the seal portion, and the flow of air bypassed to the front side is blocked by the flat heat transfer tube 15, reducing the heat transfer area, Loss could increase and fan input could increase.

これに対し、この実施の形態2によれば、フィンチューブ型熱交換器1の上部から流れてくる空気流れ(図13中の矢印で示している)を扁平管15により塞ぐことなく、滑らかに流すことができ、送風機入力を低減することができる。   On the other hand, according to the second embodiment, the air flow (indicated by the arrow in FIG. 13) flowing from the top of the finned tube heat exchanger 1 is smoothly blocked without being blocked by the flat tube 15. It is possible to flow, and the fan input can be reduced.

実施の形態3.
実施の形態3は、扁平状の伝熱管の断面形状を楔型とし、組立性を向上することによって熱交換効率向上を図るようにしたものである。
図15(a)は、伝熱管15bの板状フィン12への挿入前を示し、図15(b)は伝熱管15の挿入後を示している。
先の図5に示した組立方法では、伝熱管15を板状フィン12の伝熱管挿入孔13内に挿入する際、摩擦によって板状フィン12が屈曲する虞れがあり、その結果、板状フィン12の間隔が不均一となり、熱交換器の外観の体裁を悪くするばかりでなく、通風抵抗の増大を招く可能性がある。したがって、板状フィン12の伝熱管挿入孔13内に扁平状の伝熱管15を挿入するには、高い精度と熟練を要し、組み立て製造に手数と時間を要するとともに、製造コストが嵩む可能性があった。
Embodiment 3 FIG.
In the third embodiment, the cross-sectional shape of the flat heat transfer tube is a wedge shape, and the heat exchange efficiency is improved by improving the assemblability.
FIG. 15A shows the heat transfer tube 15b before insertion into the plate-like fin 12, and FIG. 15B shows the heat transfer tube 15 after insertion.
In the assembly method shown in FIG. 5, when the heat transfer tubes 15 are inserted into the heat transfer tube insertion holes 13 of the plate fins 12, the plate fins 12 may be bent due to friction. As a result, the plate shapes The spacing between the fins 12 is not uniform, which not only deteriorates the appearance of the heat exchanger but also may increase the ventilation resistance. Therefore, in order to insert the flat heat transfer tube 15 into the heat transfer tube insertion hole 13 of the plate-like fin 12, high accuracy and skill are required, and it takes time and labor to assemble and manufacture, and the manufacturing cost may increase. was there.

これに対し、図15(a)、図15(b)に示すように、板状フィン12の端面に楔形の溝穴13bを形成し、この溝穴13bに対して板状フィン12の端面側から伝熱管15bを挿入するようにすることで、組立性を向上させることができる。また、図5の方法を用いる場合に比べて伝熱管15bと伝熱管挿入孔としての溝穴13bのクリアランスを小さくでき、ロウ付けした際に板状フィン12と伝熱管15bの密着が良くなる。その結果、熱交換効率の良いフィンチューブ型熱交換器1とすることができる。   On the other hand, as shown in FIGS. 15A and 15B, a wedge-shaped slot 13b is formed on the end face of the plate-like fin 12, and the end face side of the plate-like fin 12 is formed with respect to the slot 13b. Assembling property can be improved by inserting the heat transfer tube 15b. Further, the clearance between the heat transfer tube 15b and the slot 13b as the heat transfer tube insertion hole can be reduced as compared with the case of using the method of FIG. 5, and the close contact between the plate fin 12 and the heat transfer tube 15b is improved when brazed. As a result, the finned tube heat exchanger 1 with good heat exchange efficiency can be obtained.

実施の形態4.
図16は、実施の形態4の空気調和機の冷媒回路図である。図6に示す冷媒回路は、圧縮機71、凝縮熱交換器72、絞り装置73、蒸発熱交換器74、送風機75及び送風機モーター76により構成されている。上述の各実施の形態によるフィンチューブ型熱交換器1を凝縮熱交換器72または蒸発熱交換器74、もしくは両方に用いる。実施の形態1によるフィンチューブ型熱交換器1を用いることにより、伝熱管に扁平管を用いた主熱交換器の伝熱性能の向上と円管を用いた主熱交換器における管内の圧力損失の低減により、圧縮機71に掛かる負荷を低減でき、エネルギー効率の高い空気調和機を実現することができる。
ここで、エネルギ効率は、次式で構成されるものである。
暖房エネルギ効率=室内熱交換器(凝縮器)能力/全入力
冷房エネルギ効率=室内熱交換器(蒸発器)能力/全入力
Embodiment 4 FIG.
FIG. 16 is a refrigerant circuit diagram of the air conditioner of the fourth embodiment. The refrigerant circuit shown in FIG. 6 includes a compressor 71, a condensation heat exchanger 72, an expansion device 73, an evaporating heat exchanger 74, a blower 75, and a blower motor 76. The finned tube heat exchanger 1 according to each of the above-described embodiments is used for the condensation heat exchanger 72 or the evaporation heat exchanger 74, or both. By using the finned tube heat exchanger 1 according to Embodiment 1, the heat transfer performance of the main heat exchanger using a flat tube as the heat transfer tube is improved and the pressure loss in the tube in the main heat exchanger using a circular tube This can reduce the load on the compressor 71 and realize an air conditioner with high energy efficiency.
Here, energy efficiency is constituted by the following equation.
Heating energy efficiency = indoor heat exchanger (condenser) capacity / all input cooling energy efficiency = indoor heat exchanger (evaporator) capacity / all input

なお、上述の各実施の形態1〜5で述べたフィンチューブ型熱交換器1およびそれを用いた空気調和機については、HCFC(R22)やHFC(R116、R125、R134a、R14、R143a、R152a、R227ea、R23、R236ea、R236fa、R245ca、R245fa、R32、R41,RC318などや、これら冷媒の数種の混合冷媒R407A、R407B、R407C、R407D、R407E、R410A、R410B、R404A、R507A、R508A、R508Bなど)、HC(ブタン、イソブタン、エタン、プロパン、プロピレンなどや、これら冷媒の数種混合冷媒)、自然冷媒(空気、炭酸ガス、アンモニアなどや、これら冷媒の数種の混合冷媒)、またこれら冷媒の数種の混合冷媒など、どんな種類の冷媒を用いても、その効果を達成することができる。   In addition, about the finned tube heat exchanger 1 described in each of the first to fifth embodiments and the air conditioner using the same, HCFC (R22) and HFC (R116, R125, R134a, R14, R143a, R152a , R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, etc., and several mixed refrigerants R407A, R407B, R407C, R407D, R407E, R410A, R410A, R404A, R507A, R507A Etc.), HC (butane, isobutane, ethane, propane, propylene, etc., and some mixed refrigerants of these refrigerants), natural refrigerant (air, carbon dioxide, ammonia, etc., and some mixed refrigerants of these refrigerants), and these Several mixed refrigerants Etc., it is used any type of refrigerant, can achieve its effect.

また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を用いても、同様の効果を奏する。   Moreover, although the example of air and a refrigerant | coolant was shown as a working fluid, even if it uses other gas, liquid, and gas-liquid mixed fluid, there exists the same effect.

また、伝熱管と板状フィンは異なった材料を用いていることが多いが、伝熱管と板状フィンに銅、伝熱管と板状フィンにアルミなど、同じ材料を用いることで、板状フィンと伝熱管のロウ付けが可能となり、板状フィンと伝熱管の接触熱伝達率が飛躍的に向上し、熱交換能力が大幅に向上する。また、リサイクル性も向上させることができる。   In addition, heat transfer tubes and plate fins often use different materials. However, by using the same material such as copper for heat transfer tubes and plate fins and aluminum for heat transfer tubes and plate fins, plate fins are used. The heat transfer tube can be brazed, the contact heat transfer coefficient between the plate fin and the heat transfer tube is dramatically improved, and the heat exchange capacity is greatly improved. Moreover, recyclability can also be improved.

また、伝熱管と板状フィンを密着させる方法として、炉中ロウ付けを行う場合、板状フィン水材を塗布するのに後処理で行うことで、前処理の場合のロウ付け中の親水材の焼け落ちを防ぐことができる。   In addition, as a method of closely attaching the heat transfer tube and the plate fin, when performing brazing in the furnace, by performing post-processing to apply the plate fin water material, the hydrophilic material during brazing in the case of pre-treatment Can prevent burnout.

なお、耐圧強度を挙げようとする場合、肉厚を大きくしたり、伝熱管内部の隔壁を増やす等の対策を講じればよいが、管内流路断面積を同一としたまま、肉厚を大きくすると、楕円伝熱管の外径寸法も増加し、伝熱管のコストも上昇するが、段ピッチ、列ピッチ、偏平率、スリットの数や形状などの調整により、通風抵抗と伝熱促進のバランスを加味して、これらの値を適切に設定してやれば実施の形態の効果を十分に発揮することができる。   In order to increase the pressure strength, measures such as increasing the wall thickness or increasing the partition wall inside the heat transfer tube may be taken, but if the wall thickness is increased while the tube cross-sectional area is kept the same. However, the outer diameter of the elliptical heat transfer tube increases and the cost of the heat transfer tube also increases, but the balance of ventilation resistance and heat transfer promotion is taken into account by adjusting the step pitch, row pitch, flatness, number and shape of slits, etc. If these values are set appropriately, the effects of the embodiment can be fully exerted.

なお、上述の実施の形態1〜実施の形態4で述べたフィンチューブ型熱交換器1およびそれを用いた空気調和機については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶ける溶けないにかかわらず、どんな冷凍機油についても、その効果を達成することができる。   In addition, about the fin tube type heat exchanger 1 described in the above-mentioned Embodiment 1 to Embodiment 4 and the air conditioner using the same, a mineral oil system, an alkylbenzene oil system, an ester oil system, an ether oil system, fluorine The effect can be achieved for any refrigerating machine oil, regardless of whether the refrigerant and oil melt or not.

実施の形態1によるフィンチューブ型熱交換器を用いた空気調和機の室内機を示す横断面図である。It is a cross-sectional view which shows the indoor unit of the air conditioner using the fin tube type heat exchanger by Embodiment 1. FIG. 扁平管主熱交換器の板状フィンを示す図である。It is a figure which shows the plate-shaped fin of a flat tube main heat exchanger. 板状フィンの伝熱管挿入孔部分の拡大図である。It is an enlarged view of the heat exchanger tube insertion hole part of a plate-shaped fin. 扁平管を示す部分外観図である。It is a partial external view showing a flat tube. フィンチューブ型熱交換器の組立方法を示す図である。It is a figure which shows the assembly method of a fin tube type heat exchanger. フィンチューブ型熱交換器1を蒸発器として用いた場合の冷媒流路を示す構成図である。It is a block diagram which shows the refrigerant | coolant flow path at the time of using the fin tube type heat exchanger 1 as an evaporator. 冷房時及び暖房時の冷媒流路構成を示す簡易説明図である。It is simple explanatory drawing which shows the refrigerant | coolant flow path structure at the time of air_conditioning | cooling and heating. 図7(a)の冷媒流路において、フィンチューブ型熱交換器を蒸発器として用いる場合の冷媒入口からの距離と冷媒圧力との関係を示した図である。FIG. 8 is a diagram showing a relationship between a distance from a refrigerant inlet and a refrigerant pressure when a fin tube type heat exchanger is used as an evaporator in the refrigerant flow path of FIG. 冷房時及び暖房時の他の冷媒流路構成を示す簡易説明図である。It is simple explanatory drawing which shows the other refrigerant | coolant flow path structure at the time of air_conditioning | cooling and heating. 実施の形態1の他の構成例1を示す図である。FIG. 10 is a diagram illustrating another configuration example 1 of the first embodiment. 実施の形態1の他の構成例2を示す図である。6 is a diagram showing another configuration example 2 of the first embodiment. FIG. 図1の扁平管主熱交換器11の他の構成例を示す図である。It is a figure which shows the other structural example of the flat tube main heat exchanger 11 of FIG. 実施の形態2の空気調和機の室内機を示す横断面図である。It is a cross-sectional view which shows the indoor unit of the air conditioner of Embodiment 2. 実施の形態2の空気調和機のフィンチューブ型熱交換器の空気の流れを説明するための比較図である。FIG. 6 is a comparative diagram for explaining the air flow of the finned tube heat exchanger of the air conditioner according to the second embodiment. 実施の形態3のフィンチューブ型熱交換器の組立方法を示す図である。It is a figure which shows the assembly method of the fin tube type heat exchanger of Embodiment 3. FIG. 実施の形態4の空気調和機の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of an air conditioner according to a fourth embodiment.

符号の説明Explanation of symbols

1 フィンチューブ型熱交換器、10 筐体、10a 吹出口、11 扁平管主熱交換器、11a 扁平管主熱交換器、11b 扁平管主熱交換器、12 板状フィン、13b 溝穴、15 伝熱管(扁平管)、15b 伝熱管、21 円管主熱交換器、22 板状フィン、23 伝熱管(円管)、31 円管補助熱交換器、32 伝熱管、43 絞り弁。   DESCRIPTION OF SYMBOLS 1 Fin tube type heat exchanger, 10 housing | casing, 10a blower outlet, 11 flat tube main heat exchanger, 11a flat tube main heat exchanger, 11b flat tube main heat exchanger, 12 plate fin, 13b slot, 15 Heat transfer tube (flat tube), 15b heat transfer tube, 21 circular tube main heat exchanger, 22 plate fin, 23 heat transfer tube (circular tube), 31 circular tube auxiliary heat exchanger, 32 heat transfer tube, 43 throttle valve.

Claims (6)

多数平行に配置され、その間を気体が流動する板状フィンと、この各板状フィンへ直角に挿入され、内部を作動冷媒が通過し、気体通過方向に対して直角方向の段方向へ複数段設けられるとともに気体通過方向である列方向に1又は複数列設けられた複数の伝熱管とから構成される熱交換器を少なくとも2つ備えたフィンチューブ型熱交換器が、吸込口と吹出口とが設けられた筐体内に配置され、
前記2つの熱交換器のうち、前記作動冷媒の冷媒クオリティの小さい側の熱交換器の伝熱管を扁平管とし、前記作動冷媒の冷媒クオリティの大きい側の熱交換器の伝熱管を前記扁平管よりも管内圧損が低い円管とし、
前記2つの熱交換器のうち、伝熱管に扁平管を用いた熱交換器を前記筐体内において風量が多い前記筐体内の前面側に配置すると共に、伝熱管に円管を用いた熱交換器を前記筐体内の前面側よりも風量が少ない前記筐体内の背面側に配置した
ことを特徴とする空気調和機。
A plurality of plate fins arranged in parallel and between which gas flows, and inserted into the plate fins at right angles to each other, the working refrigerant passes through the inside and a plurality of steps in a step direction perpendicular to the gas passage direction. A finned tube heat exchanger comprising at least two heat exchangers that are provided and a plurality of heat transfer tubes provided in one or a plurality of rows in a row direction that is a gas passage direction includes a suction port and a blowout port. Is placed in a housing provided with
Of the two heat exchangers, the heat transfer tube of the heat exchanger with the smaller refrigerant quality of the working refrigerant is a flat tube, and the heat transfer tube of the heat exchanger with the larger refrigerant quality of the working refrigerant is the flat tube A circular pipe with a lower pressure loss than the pipe ,
Of the two heat exchangers, a heat exchanger using a flat tube as a heat transfer tube is arranged on the front side in the case with a large air volume in the case, and a heat exchanger using a circular tube as the heat transfer tube The air conditioner is characterized in that is disposed on the rear side in the casing with less air volume than the front side in the casing .
前記2つの熱交換器の気体通過方向の上流側に、伝熱管を円管とした円管補助熱交換器を設けたことを特徴とする請求項1記載の空気調和機The air conditioner according to claim 1, wherein a circular tube auxiliary heat exchanger having a heat transfer tube as a circular tube is provided upstream of the two heat exchangers in the gas passage direction. 前記2つの熱交換器間の冷媒パス数を2以上とし、そのそれぞれに絞り弁を設けたことを特徴とする請求項1又は請求項2記載の空気調和機The air conditioner according to claim 1 or 2, wherein the number of refrigerant paths between the two heat exchangers is two or more, and a throttle valve is provided for each of them. 前記2つの熱交換器のうち、伝熱管に扁平管を用いた熱交換器において、冷媒パス数と、扁平管本数とを同一とすることを特徴とする請求項1乃至請求項3の何れかに記載の空気調和機4. The heat exchanger using a flat tube as the heat transfer tube of the two heat exchangers, wherein the number of refrigerant paths and the number of flat tubes are the same. 5. Air conditioner as described in. 前記伝熱管として扁平管を用いた熱交換器において、該伝熱管の断面形状を楔型とし、前記板状フィンの端面に形成した楔型の溝穴に、前記端面側から前記伝熱管を挿入して前記板状フィンにロウ付けすることにより前記伝熱管と前記板状フィンとが接合されていることを特徴とする請求項1乃至請求項4の何れかに記載の空気調和機In a heat exchanger using a flat tube as the heat transfer tube, the heat transfer tube has a wedge-shaped cross section, and the heat transfer tube is inserted from the end surface side into a wedge-shaped slot formed in the end surface of the plate fin. The air conditioner according to any one of claims 1 to 4, wherein the heat transfer tube and the plate fin are joined by brazing the plate fin. 前記2つの熱交換器のうち、前記筐体内の背面側に配置した前記熱交換器の上端部を延出して、前記筐体の前面側に配置した前記熱交換器の上端部に接触するように構成したことを特徴とする請求項1乃至請求項5の何れか1項に記載の空気調和機。 Of said two heat exchangers, before extending the upper end of the heat exchanger disposed on the rear side of the Kikatami body, contacts the upper end of the heat exchanger arranged on the front side of the housing The air conditioner according to any one of claims 1 to 5, wherein the air conditioner is configured as described above .
JP2007102933A 2007-04-10 2007-04-10 Air conditioner Active JP4749373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102933A JP4749373B2 (en) 2007-04-10 2007-04-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102933A JP4749373B2 (en) 2007-04-10 2007-04-10 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008261517A JP2008261517A (en) 2008-10-30
JP4749373B2 true JP4749373B2 (en) 2011-08-17

Family

ID=39984124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102933A Active JP4749373B2 (en) 2007-04-10 2007-04-10 Air conditioner

Country Status (1)

Country Link
JP (1) JP4749373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246377A (en) * 2012-03-26 2014-12-24 大金工业株式会社 Heat exchanger for air-conditioning device and air-conditioning device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112580A (en) * 2008-11-04 2010-05-20 Daikin Ind Ltd Heat exchanger
JP2010249343A (en) * 2009-04-13 2010-11-04 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
JP5455817B2 (en) * 2010-06-29 2014-03-26 三菱電機株式会社 Air conditioner indoor unit and air conditioner equipped with the indoor unit
JP2012026615A (en) * 2010-07-21 2012-02-09 Mitsubishi Electric Corp Outdoor unit, and refrigeration cycle apparatus with the same
JP5608478B2 (en) * 2010-08-31 2014-10-15 日立アプライアンス株式会社 Heat exchanger and air conditioner using the same
JP5079857B2 (en) * 2010-09-16 2012-11-21 シャープ株式会社 Air conditioner indoor unit
JP5430527B2 (en) * 2010-09-27 2014-03-05 三菱電機株式会社 Air conditioner indoor unit and air conditioner equipped with the indoor unit
JP5295207B2 (en) * 2010-11-19 2013-09-18 三菱電機株式会社 Finned tube heat exchanger and air conditioner using the same
EP2468945B1 (en) * 2010-12-27 2019-04-17 Electrolux Home Products Corporation N.V. Home laundry dryer with heat pump assembly
JP5171983B2 (en) * 2011-04-15 2013-03-27 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JP5749210B2 (en) * 2012-04-16 2015-07-15 ダイキン工業株式会社 Air conditioner
JP2012184920A (en) * 2012-06-29 2012-09-27 Mitsubishi Electric Corp Air conditioner
JP6108332B2 (en) * 2012-07-20 2017-04-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
CN102927720A (en) * 2012-10-24 2013-02-13 广东美的电器股份有限公司 Heat exchanger and air conditioner
US9791189B2 (en) 2013-05-08 2017-10-17 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2015059832A1 (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger
JP6415721B2 (en) * 2015-07-07 2018-10-31 三菱電機株式会社 Heat exchanger, refrigeration cycle apparatus and heat exchanger manufacturing method
WO2017077648A1 (en) * 2015-11-06 2017-05-11 三菱電機株式会社 Outdoor unit
JP6961016B2 (en) * 2018-01-18 2021-11-05 三菱電機株式会社 Heat exchanger, outdoor unit and refrigeration cycle equipment
JP7394722B2 (en) * 2020-07-28 2023-12-08 三菱電機株式会社 dehumidifier

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677887B2 (en) * 1996-09-11 2005-08-03 株式会社日立製作所 Air conditioner
JP2001174047A (en) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Indoor unit of air conditioner
JP2002139282A (en) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
JP4055449B2 (en) * 2002-03-27 2008-03-05 三菱電機株式会社 Heat exchanger and air conditioner using the same
JP4081688B2 (en) * 2004-03-12 2008-04-30 三菱電機株式会社 Air conditioner indoor unit
JP4178472B2 (en) * 2004-03-18 2008-11-12 三菱電機株式会社 Heat exchanger and air conditioner
JP2005273923A (en) * 2004-03-23 2005-10-06 Hitachi Home & Life Solutions Inc Air conditioner
JP2006125652A (en) * 2004-10-26 2006-05-18 Mitsubishi Electric Corp Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246377A (en) * 2012-03-26 2014-12-24 大金工业株式会社 Heat exchanger for air-conditioning device and air-conditioning device
CN104246377B (en) * 2012-03-26 2017-08-08 大金工业株式会社 The heat exchanger and air-conditioning device of air-conditioning device

Also Published As

Publication number Publication date
JP2008261517A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP4749373B2 (en) Air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
JP4055449B2 (en) Heat exchanger and air conditioner using the same
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP4506609B2 (en) Air conditioner and method of manufacturing air conditioner
JP4827882B2 (en) Heat exchanger module, heat exchanger, indoor unit and air-conditioning refrigeration apparatus
JP2010249343A (en) Fin tube type heat exchanger and air conditioner using the same
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
US10041710B2 (en) Heat exchanger and air conditioner
JP2008528938A (en) Parallel flow heat exchanger incorporating a porous insert
JP4081688B2 (en) Air conditioner indoor unit
JP6890509B2 (en) Air conditioner
WO2018062519A1 (en) Heat exchanger and air conditioner
JP5014372B2 (en) Finned tube heat exchanger and air-conditioning refrigeration system
JP5171983B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5962033B2 (en) Heat exchanger and air conditioner equipped with the same
JP5030932B2 (en) Heat exchanger and air-conditioning refrigeration system
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
CN112567192A (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP5591285B2 (en) Heat exchanger and air conditioner
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP6316458B2 (en) Air conditioner
JP5312512B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4749373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250