JP2006125652A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2006125652A
JP2006125652A JP2004310422A JP2004310422A JP2006125652A JP 2006125652 A JP2006125652 A JP 2006125652A JP 2004310422 A JP2004310422 A JP 2004310422A JP 2004310422 A JP2004310422 A JP 2004310422A JP 2006125652 A JP2006125652 A JP 2006125652A
Authority
JP
Japan
Prior art keywords
refrigerant
plate
heat exchanger
flow path
distribution member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004310422A
Other languages
Japanese (ja)
Other versions
JP2006125652A5 (en
Inventor
Taijo Murakami
泰城 村上
Shinichi Wakamoto
慎一 若本
Masahiro Nakayama
雅弘 中山
Akira Ishibashi
晃 石橋
Shinji Nakadeguchi
真治 中出口
Hajime Yoshiyasu
一 吉安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004310422A priority Critical patent/JP2006125652A/en
Publication of JP2006125652A publication Critical patent/JP2006125652A/en
Publication of JP2006125652A5 publication Critical patent/JP2006125652A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger comprising a refrigerant distributor capable of properly executing its refrigerant distributing function with a simple constitution and realizing cost reduction and space saving. <P>SOLUTION: This heat exchanger comprising the refrigerant distributor 4 for distributing and supplying a refrigerant to a plurality of prescribed flow channel portions in a heat exchanger main body having a refrigerant flow channel, is provided with a plate-shaped distributing member composed of center plates 7A, 7B having refrigerant dividing portions 9 for dividing the refrigerant from a refrigerant inflow port, and refrigerant branching flow channel portions 10a, 10b having refrigerant throttling function for supplying the refrigerant divided by the refrigerant dividing portions 9 to the plurality of prescribed flow channel portions in the heat exchanger main body by a predetermined flow rate; and the refrigerant distributor 4 is constituted of the platy members including the platy distributing members and overlapped with each other. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、熱交換器、特に、冷媒分配器を具備し空気調和機や冷凍機に使用される熱交換器に関するものである。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger that includes a refrigerant distributor and is used in an air conditioner or a refrigerator.

熱交換器の伝熱性能を向上する手段として、伝熱管の細管化や、複数のマイクロチャネルを具備した扁平管が適用されている。しかしながら、伝熱管の細管化や、扁平管を適用する場合、伝熱管の断面積が小さくなり、伝熱管内を流れる冷媒の圧力損失が増大するため、冷媒が流れる流路の数を増やす必要がある。また、冷媒流路を増やす場合、冷媒は、冷媒ガスと冷媒液が混在した状態(気液二相状態)で流れるため、冷媒を均一に分配するための冷媒分配器が必要となる。さらに、冷媒分配器を用いる場合、コストアップや設置スペースの増加を伴うため、冷媒分配器の低コスト化、省スペース化が必要となる。   As means for improving the heat transfer performance of the heat exchanger, a thin heat transfer tube or a flat tube having a plurality of microchannels is applied. However, when a heat transfer tube is thinned or a flat tube is applied, the cross-sectional area of the heat transfer tube is reduced, and the pressure loss of the refrigerant flowing in the heat transfer tube increases, so it is necessary to increase the number of flow paths through which the refrigerant flows. is there. Further, when the refrigerant flow path is increased, the refrigerant flows in a state where the refrigerant gas and the refrigerant liquid are mixed (gas-liquid two-phase state), so that a refrigerant distributor for uniformly distributing the refrigerant is required. Furthermore, when a refrigerant distributor is used, the cost increases and the installation space increases, so it is necessary to reduce the cost and save the space of the refrigerant distributor.

従来の冷媒分配器では、細管を接続する部材に対して、その軸芯と平行な複数の細管接続穴を加工し、また、流通管を接続する部材に対して、流通管接続穴と円形凹部を加工し、これらを延性の良い銅製の外套部材を用いて包囲することで形成している(例えば、特許文献1参照)。
これにより、各分岐流路に流れる冷媒流量を調整するための細管の数が多い場合でも、簡単に、かつ、低コストに製造できるようにしている。
In a conventional refrigerant distributor, a plurality of narrow tube connection holes parallel to the axis of the member connecting the thin tubes are processed, and the flow tube connection hole and the circular recess are formed on the member connecting the flow tube. Are formed by surrounding them with a copper mantle member having good ductility (see, for example, Patent Document 1).
Thereby, even when the number of thin tubes for adjusting the flow rate of the refrigerant flowing through each branch flow path is large, it can be manufactured easily and at low cost.

また、別の従来の冷媒分配器では、冷媒が流入する冷媒入口部、冷媒入口部と熱交換器の複数の入口部をつなぐ分岐流路、さらに、熱交換器の複数の出口部を連結する冷媒集合溝を具備したアンダープレートと、前記冷媒入口部に連通し、その中心から放射状に延びる複数の分岐流路を設けた冷媒分流部、前記冷媒集合溝に対応する冷媒集合溝を具備したオーバープレートと、前記オーバープレートの冷媒分流部を覆う蓋とを設け、前記アンダープレートとオーバープレートの間およびオーバープレートと蓋との間をろう付け接合している(例えば、特許文献2参照)。
これにより、冷媒分配数の変更を容易にし、かつ、ろう付けの信頼性を向上させている。
In another conventional refrigerant distributor, a refrigerant inlet part into which refrigerant flows, a branch flow path connecting the refrigerant inlet part and a plurality of inlet parts of the heat exchanger, and a plurality of outlet parts of the heat exchanger are connected. An under plate having a refrigerant collecting groove, a refrigerant branching portion provided with a plurality of branch passages communicating with the refrigerant inlet portion and extending radially from the center thereof, and an over having a refrigerant collecting groove corresponding to the refrigerant collecting groove A plate and a lid that covers the refrigerant distribution portion of the overplate are provided, and the underplate and the overplate and the overplate and the lid are brazed and joined (for example, see Patent Document 2).
Thereby, the change of the refrigerant distribution number is facilitated, and the brazing reliability is improved.

特許第2750272号公報Japanese Patent No. 2750272 特開2000−220914号公報JP 2000-220914 A

特許文献1に示される従来の冷媒分配器は、分配器と熱交換器を接続し、各分岐流路を流れる冷媒量を調整するための細管(以下、キャピラリチューブと呼ぶ)を用いる必要があった。また、冷媒分配器の容積が大きいため、設置スペースが大きくなるという問題があった。
また、特許文献2に示される別の従来の冷媒分配器は、複数の分岐流路を有しているが、各分岐流路の幅は広く、冷媒分流部から伝熱管までを接続する役割のみであるため、冷媒流量を調整するためのキャピラリチューブの機能を有していなかった。
The conventional refrigerant distributor disclosed in Patent Document 1 needs to use a thin tube (hereinafter referred to as a capillary tube) for connecting the distributor and the heat exchanger and adjusting the amount of refrigerant flowing through each branch flow path. It was. Moreover, since the volume of the refrigerant distributor is large, there is a problem that the installation space becomes large.
Further, another conventional refrigerant distributor shown in Patent Document 2 has a plurality of branch flow paths, but each branch flow path has a wide width, and only serves to connect the refrigerant distribution section to the heat transfer tube. Therefore, the capillary tube function for adjusting the refrigerant flow rate was not provided.

この発明は、上記のような問題点を解決するためになされたものであり、簡潔な構成により冷媒の分配機能を的確に遂行でき、低コスト化と省スペース化を実現できる冷媒分配器を具備した熱交換器を得ようとするものである。   The present invention has been made to solve the above-described problems, and includes a refrigerant distributor that can accurately perform a refrigerant distribution function with a simple configuration, and that can realize cost reduction and space saving. It is intended to obtain a heat exchanger.

この発明に係る熱交換器では、熱交換器本体における複数個所の所定流路部分へ冷媒を分配して供給する冷媒分配器を備えた熱交換器において、冷媒流入口からの冷媒を分流する冷媒分流部および前記冷媒分流部により分流された冷媒を前記熱交換器本体における複数個所の所定流路部分へ所定流量で供給するための冷媒分岐流路部を有するプレート状分配部材を設け、前記プレート状分配部材を含む互いに重合される複数のプレート状部材で前記冷媒分配器を構成したものである。   In the heat exchanger according to the present invention, in the heat exchanger including a refrigerant distributor that distributes and supplies the refrigerant to a plurality of predetermined flow path portions in the heat exchanger body, the refrigerant that divides the refrigerant from the refrigerant inlet A plate-like distribution member having a branching flow path portion for supplying the flow-divided portion and the refrigerant branched by the refrigerant flow-dividing portion at a predetermined flow rate to a plurality of predetermined flow path portions in the heat exchanger main body; The refrigerant distributor is constituted by a plurality of plate-like members that are superposed on each other including the shape-like distribution member.

この発明によれば、簡潔な構成により冷媒の分配機能を的確に遂行でき、低コスト化と省スペース化を実現できる冷媒分配器を具備した熱交換器を得ることができる。   According to the present invention, it is possible to obtain a heat exchanger equipped with a refrigerant distributor that can accurately perform a refrigerant distribution function with a simple configuration, and that can realize cost reduction and space saving.

実施の形態1.
この発明による実施の形態1を図1から図7までについて説明する。図1は実施の形態1における冷媒分配器を具備した熱交換器を空調用室内機に設置したときの様子を説明するための斜視図である。図2は実施の形態1における冷媒分配器の構成を示す分解斜視図である。図3は実施の形態1における冷媒分配器を流れる冷媒の動作を説明するための側面図である。図4は図3のIV−IV線に沿った拡大断面図である。図5は実施の形態1における変形例を説明するための冷媒分配器の構成を示す分解斜視図である。図6は実施の形態1における他の変形例を説明するための冷媒分配器の構成を示す分解斜視図である。図7は実施の形態1における更に他の変形例を説明するための冷媒分配器の構成を示す分解斜視図である。
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view for explaining a state when a heat exchanger provided with a refrigerant distributor in Embodiment 1 is installed in an indoor unit for air conditioning. FIG. 2 is an exploded perspective view showing the configuration of the refrigerant distributor in the first embodiment. FIG. 3 is a side view for explaining the operation of the refrigerant flowing through the refrigerant distributor in the first embodiment. FIG. 4 is an enlarged cross-sectional view taken along line IV-IV in FIG. FIG. 5 is an exploded perspective view showing the configuration of the refrigerant distributor for explaining a modification of the first embodiment. FIG. 6 is an exploded perspective view showing the configuration of the refrigerant distributor for explaining another modification of the first embodiment. FIG. 7 is an exploded perspective view showing a configuration of a refrigerant distributor for explaining still another modified example of the first embodiment.

図1に示すように、冷媒分配器4は、空調用室内機1の内部で熱交換器本体2の側面2aに沿って設置される。熱交換対象としての空気23は、熱交換器本体2の前面から流入し、熱交換器本体2内部で熱交換した後、クロスフローファン3により下方向へ吹き出す。また、ここでは、熱交換器本体2に流入する熱交換対象空気23の速度が、どの位置でも等しいとする。   As shown in FIG. 1, the refrigerant distributor 4 is installed along the side surface 2 a of the heat exchanger body 2 inside the air conditioning indoor unit 1. The air 23 as the heat exchange target flows in from the front surface of the heat exchanger body 2, exchanges heat inside the heat exchanger body 2, and then blows downward by the cross flow fan 3. Here, it is assumed that the speed of the heat exchange target air 23 flowing into the heat exchanger body 2 is equal at any position.

図2に示すように、冷媒分配器4は、たとえば、アンダープレート6A,6Bと、センタープレート7A,7Bと、オーバープレート8A,8Bの3層からなるプレート層で構成される。ここでは、冷媒分配器4が2つの冷媒分配器ユニット4A,4Bからなる構成を示す。
アンダープレート6Aと、センタープレート7Aと、オーバープレート8Aとは、互いに重合されて冷媒分配器ユニット4Aを構成し、アンダープレート6Bと、センタープレート7Bと、オーバープレート8Bとは、互いに重合されて冷媒分配器ユニット4Bを構成する。
As shown in FIG. 2, the refrigerant distributor 4 includes, for example, a plate layer composed of three layers of under plates 6A and 6B, center plates 7A and 7B, and over plates 8A and 8B. Here, a configuration in which the refrigerant distributor 4 includes two refrigerant distributor units 4A and 4B is shown.
The under plate 6A, the center plate 7A, and the over plate 8A are superposed on each other to form a refrigerant distributor unit 4A, and the under plate 6B, the center plate 7B, and the over plate 8B are superposed on each other to form a refrigerant. A distributor unit 4B is configured.

冷媒分配器ユニット4A,4Bを構成するアンダープレート6A,6Bと、センタープレート7A,7Bと、オーバープレート8A,8Bとは、それぞれ熱交換器本体2の端面2aに沿って延在するとともに、それぞれ端縁部分FGをクロスフローファンまたはクロスフローファンを回転させるモータ3の周面3aに対向する。
これらアンダープレート6A,6Bと、センタープレート7A,7Bと、オーバープレート8A,8Bのクロスフローファンまたはクロスフローファンを回転させるモータ3の周面3aに対向する端縁部分FGには、クロスフローファンまたはクロスフローファンを回転させるモータ3と干渉しないための切り欠き14が設けられている。
The under plates 6A and 6B, the center plates 7A and 7B, and the over plates 8A and 8B constituting the refrigerant distributor units 4A and 4B respectively extend along the end surface 2a of the heat exchanger body 2, and The edge portion FG faces the circumferential surface 3a of the motor 3 that rotates the cross flow fan or the cross flow fan.
A cross flow fan is provided on an edge portion FG of the under plate 6A, 6B, the center plate 7A, 7B, and the cross flow fan of the over plates 8A, 8B or the peripheral portion 3a of the motor 3 that rotates the cross flow fan. Or the notch 14 for not interfering with the motor 3 which rotates a cross flow fan is provided.

アンダープレート6Aと6B、センタープレート7Aと7B、オーバープレート8Aと8Bは、それぞれクロスフローファン3の軸線に直交する平面で延在して配設され、アンダープレート6A,センタープレート7A,オーバープレート8Aにより構成される冷媒分配器ユニット4Aと、アンダープレート6B,センタープレート7B,オーバープレート8Bにより構成される冷媒分配器ユニット4Bとは、同一平面において互いに屈曲したリンク状に結合されて、冷媒分配器4を構成する。この冷媒分配器4は、熱交換器本体2の端面に沿いクロスフローファンまたはクロスフローファンを回転させるモータ3の周面3aに対向して熱交換器本体2の端面とクロスフローファンまたはクロスフローファンを回転させるモータ3の周面3aとで区画され空調用室内機1の内部に形成される空間を有効に利用した状態で配設される。   The under plates 6A and 6B, the center plates 7A and 7B, and the over plates 8A and 8B are arranged so as to extend on a plane orthogonal to the axis of the cross flow fan 3, respectively. The under plate 6A, the center plate 7A, and the over plate 8A The refrigerant distributor unit 4A configured by the above and the refrigerant distributor unit 4B configured by the under plate 6B, the center plate 7B, and the over plate 8B are coupled to each other in a link shape bent in the same plane. 4 is configured. The refrigerant distributor 4 faces the peripheral surface 3a of the motor 3 that rotates the cross flow fan or the cross flow fan along the end surface of the heat exchanger main body 2 and the cross flow fan or the cross flow. It is arranged in a state where the space formed by the peripheral surface 3a of the motor 3 for rotating the fan and formed inside the indoor unit 1 for air conditioning is effectively used.

アンダープレート6A,6Bには、冷媒の流入穴16と、流出穴22が設けられている。流入穴16の貫通穴の直径は3mm以下であり、たとえばバーリング加工により形成される。また、流出穴22の直径は任意であり、同様にバーリング加工により形成される。ここで、バーリング加工とは、平板に下穴をあけた上でその周辺にストレッチ効果を与え円筒状に伸展させてフランジ部分を形成する加工をいうものである。   The under plates 6A and 6B are provided with a refrigerant inflow hole 16 and an outflow hole 22. The diameter of the through hole of the inflow hole 16 is 3 mm or less, and is formed by, for example, burring. Moreover, the diameter of the outflow hole 22 is arbitrary, and is similarly formed by burring. Here, the burring process is a process in which a pilot hole is formed in a flat plate, a stretch effect is applied to the periphery of the flat plate, and the flange portion is formed by extending in a cylindrical shape.

センタープレート7A,7Bには、冷媒分流部9と、冷媒分岐流路部10a,10bと、熱交換器流入部11と、Uベンド部12と、冷媒ガス合流部21が設けられる。このとき、冷媒分流部9と冷媒分岐流路部10は、クロスフローファン3の軸と平行な方向から見て、熱交換器2とクロスフローファンまたはクロスフローファンを回転させるモータ3に挟まれた領域に配置される。センタープレート7A,7Bは、たとえば、プレス加工を用いて形成することができる。
ここで、冷媒分岐流路部10a,10bの各流路の長さ、および各流路の流路幅、および各流路の曲げ角度の総和は等しい。たとえば、この実施の形態1では、冷媒分岐流路部10aの曲げ角度は、45度曲げが1つと、90度曲げが3つで曲げ角度の総和が315度であり、一方、冷媒分岐流路部10bの曲げ角度は、45度曲げが1つと、180度曲げが1つと、90度曲げが1つで曲げ角度の総和が315度である。
The center plates 7A and 7B are provided with a refrigerant branching portion 9, refrigerant branching channel portions 10a and 10b, a heat exchanger inflow portion 11, a U bend portion 12, and a refrigerant gas junction portion 21. At this time, the refrigerant branching section 9 and the refrigerant branch flow path section 10 are sandwiched between the heat exchanger 2 and the crossflow fan or the motor 3 that rotates the crossflow fan when viewed from the direction parallel to the axis of the crossflow fan 3. Placed in the area. The center plates 7A and 7B can be formed using, for example, press working.
Here, the total length of the flow paths of the refrigerant branch flow path portions 10a and 10b, the flow path width of each flow path, and the bending angle of each flow path are equal. For example, in the first embodiment, the bending angle of the refrigerant branching channel portion 10a is one 45 degree bending, three 90 degree bendings, and the total bending angle is 315 degrees, The bending angle of the part 10b is one 45 degree bending, one 180 degree bending, one 90 degree bending, and the total bending angle is 315 degrees.

オーバープレート8A,8Bには、複数列の伝熱管接続部13a,13b,13c,13dが形成されている。伝熱管接続部13a,13b,13c,13dは、たとえば、前述したバーリング加工により形成される。
この伝熱管接続部13aは、センタープレート7A,7Bに設けられた熱交換器流入部11に対応して、これと連通し、熱交換器流入部11からの冷媒を伝熱管18aへ流通させるものである。
また、伝熱管接続部13dは、センタープレート7A,7Bに設けられた伝熱管出口17に対応して、これと連通し、伝熱管出口17からの冷媒を合流部21へ流通させるものである。伝熱管接続部13b,13cはセンタープレート7A,7Bに設けられたUベント部12に対応して、これと連通し、伝熱管13bからの冷媒を伝熱管13cへ連通させるものである。
A plurality of rows of heat transfer tube connecting portions 13a, 13b, 13c, and 13d are formed on the over plates 8A and 8B. The heat transfer tube connecting portions 13a, 13b, 13c, and 13d are formed by, for example, the burring process described above.
The heat transfer tube connecting portion 13a corresponds to the heat exchanger inflow portion 11 provided in the center plates 7A and 7B, communicates therewith, and distributes the refrigerant from the heat exchanger inflow portion 11 to the heat transfer tube 18a. It is.
Further, the heat transfer tube connecting portion 13d corresponds to the heat transfer tube outlet 17 provided in the center plates 7A and 7B, communicates therewith, and distributes the refrigerant from the heat transfer tube outlet 17 to the junction portion 21. The heat transfer tube connecting portions 13b and 13c correspond to the U vent portion 12 provided on the center plates 7A and 7B and communicate with the U vent portion 12 so that the refrigerant from the heat transfer tube 13b communicates with the heat transfer tube 13c.

アンダープレート6A,6Bと、センタープレート7A,7Bと、オーバープレート8A,8Bは、たとえば、両面にろう材が塗布されたブレージングシートによりセンタープレートを作成し、連続熱処理炉を用いてろう付けすることで接合することができる。このようにして、アンダープレート6A,6Bと、センタープレート7A,7Bと、オーバープレート8A,8Bを接合すると、図3と図4に示すような、冷媒の流路を形成することができる。   For the under plates 6A and 6B, the center plates 7A and 7B, and the over plates 8A and 8B, for example, a center plate is made of a brazing sheet coated with a brazing material on both sides and brazed using a continuous heat treatment furnace. Can be joined. In this manner, when the under plates 6A and 6B, the center plates 7A and 7B, and the over plates 8A and 8B are joined, a refrigerant flow path as shown in FIGS. 3 and 4 can be formed.

センタープレート7A,7Bに設けられる冷媒分岐流路部10a,10bは、その流路がセンタープレート7A,7Bのアンダープレート6A,6Bと重合する側の表面に穿設されている。
センタープレート7A,7Bに設けられる冷媒分岐流路部10a,10bの流路における深さ方向の寸法は、センタープレート7A,7Bに重合し当接するアンダープレート6A,6Bの表面により規制され、幅方向寸法の設定と相俟って冷媒分岐流路部10a,10bにおける流路の断面形状が決定される。
The refrigerant branch flow path portions 10a and 10b provided in the center plates 7A and 7B are formed on the surface of the center plates 7A and 7B on the side where they overlap with the under plates 6A and 6B.
The dimension in the depth direction in the flow path of the refrigerant branch flow path portions 10a and 10b provided in the center plates 7A and 7B is regulated by the surface of the under plates 6A and 6B that overlap and contact the center plates 7A and 7B. Combined with the setting of the dimensions, the cross-sectional shape of the flow path in the refrigerant branch flow path portions 10a and 10b is determined.

センタープレート7A,7Bに設けられる冷媒分岐流路部10a,10bの流路を、センタープレート7A,7Bのオーバープレート8A,8Bと重合する側の表面に穿設することもできる。
この場合には、センタープレート7A,7Bに設けられる冷媒分岐流路部10a,10bの流路における深さ方向の寸法は、センタープレート7A,7Bに重合し当接するオーバープレート8A,8Bの表面により規制され、幅方向寸法の設定と相俟って冷媒分岐流路部10a,10bにおける流路の断面形状が決定される。
The flow paths of the refrigerant branch flow path portions 10a and 10b provided in the center plates 7A and 7B can be formed on the surface of the center plates 7A and 7B on the side where they overlap with the over plates 8A and 8B.
In this case, the dimension in the depth direction in the flow path of the refrigerant branch flow path portions 10a and 10b provided in the center plates 7A and 7B is determined by the surface of the overplates 8A and 8B that are superposed and contact with the center plates 7A and 7B. It is regulated and the cross-sectional shape of the flow path in the refrigerant branch flow path portions 10a and 10b is determined in combination with the setting of the width direction dimension.

次に、図3および図4を用いて、冷媒の動作を説明する。熱交換器本体2がたとえば蒸発器として動作するとき、冷媒19は、冷媒分配器4に流入する前に2分岐されて、気液二相状態で冷媒分配器ユニット4A,4Bに設けられた2箇所の流入穴16に流れ込む。たとえば、流入穴16に流入する前の2分岐は、配管を突き合わせたような簡単な構造であるが、ここでは、2つの冷媒分配器ユニット4A,4Bに設けられた冷媒分岐流路部10a,10bの数を等しくしているため、各冷媒分配器ユニット4A,4Bの流動抵抗が等しくなり、冷媒19を2分岐する際の流量バラツキは小さくなる。   Next, operation | movement of a refrigerant | coolant is demonstrated using FIG. 3 and FIG. When the heat exchanger body 2 operates as an evaporator, for example, the refrigerant 19 is branched into two before flowing into the refrigerant distributor 4 and is provided in the refrigerant distributor units 4A and 4B in a gas-liquid two-phase state. It flows into the inflow hole 16 at the location. For example, the two branches before flowing into the inflow hole 16 have a simple structure in which the pipes are abutted, but here, the refrigerant branch flow path portions 10a provided in the two refrigerant distributor units 4A and 4B, Since the numbers 10b are equal, the flow resistances of the refrigerant distributor units 4A and 4B are equal, and the flow rate variation when the refrigerant 19 is bifurcated is reduced.

冷媒分配器ユニット4A,4Bを構成するアンダープレート6A,6Bにそれぞれ設けられた流入穴16に流入した冷媒は、流入穴16の貫通穴の直径が3mm以下と小さいため、流入穴16を通過する際に流速が大きくなり、冷媒ガスと冷媒液が均一に混合された状態で、アンダープレート6A,6Bと重合し冷媒分配器ユニット4A,4Bを構成するセンタープレート7A,7Bにそれぞれ設けられた冷媒分流部9で冷媒分岐流路部10a,10bに分流される。この冷媒分岐流路部10a,10bは、従来技術におけるキャピラリチューブと同等の冷媒絞り機能を有し、従来技術におけるキャピラリチューブに代わり冷媒分配機能を的確に遂行するものである。
ここで、冷媒分岐流路部10a,10bについて、各流路の長さ、および各流路の幅、および各流路の曲げ角度の総和が等しいため、各流路の流動抵抗が等しくなり、各冷媒分岐流路部10a,10bを流れる冷媒の流量バラツキは小さくなる。
The refrigerant that has flowed into the inflow holes 16 provided in the under plates 6A and 6B constituting the refrigerant distributor units 4A and 4B passes through the inflow holes 16 because the diameter of the through holes of the inflow holes 16 is as small as 3 mm or less. In this state, the flow velocity is increased, and the refrigerant gas and the refrigerant liquid are uniformly mixed, and the refrigerants are respectively provided on the center plates 7A and 7B which are superposed on the under plates 6A and 6B and constitute the refrigerant distributor units 4A and 4B. The flow is diverted to the refrigerant branch flow path portions 10a and 10b by the diversion portion 9. The refrigerant branch flow passages 10a and 10b have a refrigerant throttling function equivalent to that of the capillary tube in the prior art, and accurately perform the refrigerant distribution function in place of the capillary tube in the prior art.
Here, with respect to the refrigerant branch flow path portions 10a and 10b, the length of each flow path, the width of each flow path, and the sum of the bending angles of each flow path are equal, so the flow resistance of each flow path becomes equal, The variation in the flow rate of the refrigerant flowing through the refrigerant branch flow path portions 10a and 10b is reduced.

冷媒分岐流路部10a,10bの各流路を通過した冷媒は、熱交換器流入部11に流れ込む。
図4に示すように、冷媒19は、センタープレート7A,7Bにそれぞれ設けられた熱交換器流入部11から、伝熱管接続部13aを通って伝熱管18aへと流れ、熱交換器本体2の内部でフィンを介して空気23と熱交換し、次第に蒸発する。伝熱管18aと伝熱管18bは冷媒分配器ユニット4A,4Bと反対側の熱交換器端部でつながっており、冷媒19は伝熱管18bを通って、再び伝熱管接続部13bから冷媒分配器ユニット4A,4Bへ流入する。再び冷媒分配器ユニット4A,4Bに流入した冷媒19は、センタープレート7A,7Bにそれぞれ設けられたUベンド部12を通過し、伝熱管接続部13cから伝熱管18cへと流入し、伝熱管18cを通過しながら熱交換器本体2の内部で熱交換される。
ここでは、Uベンド部12によって熱交換器本体2の内部流路を構成する伝熱管18b,18cの所定個所が互いに連通するように冷媒通路が形成され、伝熱管18b,18cにおける熱交換作用を行う冷媒について適切な流通経路を設定して、熱交換器本体2での熱交換効率を高く確保する適正な状態を実現するものである。
そして、冷媒19は、伝熱管18dから伝熱管接続部13dを通って冷媒ガスの単相状態で伝熱管出口17から流出し、センタープレート7A,7Bにそれぞれ設けられた冷媒ガス合流部21で、別の冷媒流路を通過した冷媒19と合流する。その後、冷媒19は、アンダープレート6A,6Bにそれぞれ設けられ冷媒ガス合流部21と連通する流出穴22から熱交換器本体2に接続された配管に流出する。
また、熱交換器本体2が凝縮器として動作するとき、熱交換器本体2が蒸発器として動作するときとは逆向きに冷媒は流れる。
The refrigerant that has passed through the flow paths of the refrigerant branch flow path portions 10 a and 10 b flows into the heat exchanger inflow portion 11.
As shown in FIG. 4, the refrigerant 19 flows from the heat exchanger inflow portion 11 provided in each of the center plates 7A and 7B to the heat transfer tube 18a through the heat transfer tube connection portion 13a. Heat is exchanged with the air 23 through fins inside, and it gradually evaporates. The heat transfer tube 18a and the heat transfer tube 18b are connected at the end of the heat exchanger opposite to the refrigerant distributor units 4A and 4B, and the refrigerant 19 passes through the heat transfer tube 18b and again from the heat transfer tube connection portion 13b to the refrigerant distributor unit. It flows into 4A and 4B. The refrigerant 19 that has flowed into the refrigerant distributor units 4A and 4B again passes through the U-bend portions 12 provided in the center plates 7A and 7B, flows into the heat transfer tubes 18c from the heat transfer tube connection portions 13c, and then flows into the heat transfer tubes 18c. The heat is exchanged inside the heat exchanger body 2 while passing through.
Here, a refrigerant passage is formed by the U bend portion 12 so that predetermined portions of the heat transfer tubes 18b and 18c constituting the internal flow path of the heat exchanger body 2 communicate with each other, and the heat exchange action in the heat transfer tubes 18b and 18c is performed. An appropriate flow path is set for the refrigerant to be performed, and an appropriate state for ensuring high heat exchange efficiency in the heat exchanger body 2 is realized.
And the refrigerant | coolant 19 flows out from the heat exchanger tube exit 17 in the single phase state of refrigerant gas through the heat exchanger tube connection part 13d from the heat exchanger tube 18d, and is the refrigerant gas junction part 21 provided in center plate 7A, 7B, respectively. It merges with the refrigerant 19 that has passed through another refrigerant flow path. Thereafter, the refrigerant 19 flows out into the pipe connected to the heat exchanger body 2 from an outflow hole 22 provided in each of the under plates 6A and 6B and communicating with the refrigerant gas junction 21.
Further, when the heat exchanger body 2 operates as a condenser, the refrigerant flows in a direction opposite to that when the heat exchanger body 2 operates as an evaporator.

このように、実施の形態1に示す冷媒分配器4では、冷媒が流入する流入穴16、冷媒を分流する冷媒分流部9と、冷媒分流部9と熱交換器本体2への入口としての熱交換器流入部11とをつなぎ冷媒流量を制御するためのキャピラリチューブの代わりとなる冷媒分岐流路部10a,10bと、熱交換器本体2に冷媒を流すためのUベンド部12と、冷媒ガス合流部21を具備し、かつ、2層以上のプレートの接合によるプレート構造により一体形成により構成されているため、従来の熱交換器で必要であったキャピラリチューブやUベンド部等の部品点数を削減し、冷媒分配器を低コスト化できる。また、プレート状の積層構造としたため、省スペース化を実現できる。とくに図1に示すTの寸法を小さくすることが可能となる。
また、クロスフローファン3の軸と平行な方向から見て、熱交換器2とクロスフローファンまたはクロスフローファンを回転させるモータ3に挟まれた領域に、流入穴16,冷媒分流部9,複数の冷媒分岐流路部10a,10bを配置したため、省スペース化が可能となる。
また、アンダープレート6A,6Bおよびセンタープレート7A,7Bならびにオーバープレート8A,8B等のプレートの少なくともいずれかにブレージングシートを用いることにより、冷媒分配器4をプレート構造により一体形成により構成するためのろう付け加工が容易となる。
また、冷媒分配器ユニット4A,4Bを2つ以上具備し、各冷媒分配器ユニット4A,4Bで、冷媒分岐流路部10a,10bの数を等しくしたため、冷媒分配器4に流入する前の冷媒分岐による流量バラツキを低減できる。
また、冷媒分岐流路部10a,10bの各流路について、各流路の長さ、および各流路の断面形状、および各流路の曲げ角度の総和を等しくし、各流路の流動抵抗が等しくなるようにしたため、各冷媒分岐流路部10a,10bを流れる冷媒の流量バラツキが小さくなり、熱交換性能が向上する。
また、流入穴16の貫通穴の直径を3mm以下としたことにより、気液二相状態で流れ込む冷媒を均一に混合でき、各冷媒分岐流路部10a,10bへ流れる冷媒の流量バラツキを小さくできる。
また、クロスフローファン3と干渉しないように切り欠き14を設けることで、より高密度な室内機の実装が可能となるため、冷媒分配器4の省スペース化を実現できる。
また、冷媒分岐流路部10a,10bを、流路の深さ方向について、複数のプレートを重ねた構造により構成したことにより、冷媒分配器4の構成を簡潔化でき、冷媒分配器4の低コスト化と省スペース化を実現できる。
As described above, in the refrigerant distributor 4 shown in the first embodiment, the inflow hole 16 into which the refrigerant flows, the refrigerant distribution unit 9 that divides the refrigerant, and the heat as the inlet to the refrigerant distribution unit 9 and the heat exchanger main body 2. Refrigerant branch flow path portions 10a and 10b, which serve as substitutes for capillary tubes for connecting the exchanger inflow portion 11 and controlling the refrigerant flow rate, a U bend portion 12 for flowing the refrigerant through the heat exchanger body 2, and a refrigerant gas Since it has a confluence 21 and is integrally formed by a plate structure formed by joining two or more layers, the number of parts such as a capillary tube and a U-bend required for a conventional heat exchanger can be reduced. This can reduce the cost of the refrigerant distributor. Further, since the plate-like laminated structure is adopted, space saving can be realized. In particular, the dimension of T shown in FIG. 1 can be reduced.
In addition, when viewed from a direction parallel to the axis of the cross flow fan 3, an inflow hole 16, a refrigerant branching portion 9, and a plurality of regions are sandwiched between the heat exchanger 2 and the cross flow fan or the motor 3 that rotates the cross flow fan. Since the refrigerant branch flow path portions 10a and 10b are arranged, space saving is possible.
In addition, the brazing sheet is used for at least one of the plates such as the under plates 6A and 6B, the center plates 7A and 7B, and the over plates 8A and 8B, so that the refrigerant distributor 4 is integrally formed by a plate structure. The attaching process becomes easy.
Further, since two or more refrigerant distributor units 4A and 4B are provided and the number of refrigerant branch flow path portions 10a and 10b is equalized in each refrigerant distributor unit 4A and 4B, the refrigerant before flowing into the refrigerant distributor 4 Flow variation due to branching can be reduced.
Further, for each flow path of the refrigerant branch flow path portions 10a and 10b, the length of each flow path, the cross-sectional shape of each flow path, and the sum of the bending angles of each flow path are made equal, and the flow resistance of each flow path Therefore, the variation in the flow rate of the refrigerant flowing through the refrigerant branch flow passage portions 10a and 10b is reduced, and the heat exchange performance is improved.
In addition, by setting the diameter of the through hole of the inflow hole 16 to 3 mm or less, the refrigerant flowing in the gas-liquid two-phase state can be mixed uniformly, and the flow rate variation of the refrigerant flowing into the refrigerant branch flow path portions 10a and 10b can be reduced. .
Further, by providing the cutouts 14 so as not to interfere with the cross flow fan 3, it is possible to mount a higher-density indoor unit, so that space saving of the refrigerant distributor 4 can be realized.
In addition, since the refrigerant branch flow path portions 10a and 10b are configured by a structure in which a plurality of plates are stacked in the depth direction of the flow path, the configuration of the refrigerant distributor 4 can be simplified, and the low temperature of the refrigerant distributor 4 can be reduced. Cost and space saving can be realized.

なお、実施の形態1では、冷媒分配器ユニット4A,4Bの数が2つ、冷媒分岐流路10a,10bの数が4つとなる場合を説明したが、冷媒分配器ユニット4A,4Bの数、冷媒分岐流路10a,10bの数は任意である。また、冷媒分岐流路10a,10bの曲げ角度の総和が315度となる場合を説明したが、冷媒分岐流路10a,10bの曲げ角度の総和についても任意である。   In the first embodiment, the case where the number of the refrigerant distributor units 4A and 4B is two and the number of the refrigerant branch channels 10a and 10b is four has been described. However, the number of the refrigerant distributor units 4A and 4B, The number of the refrigerant branch channels 10a and 10b is arbitrary. Moreover, although the case where the sum total of the bending angles of the refrigerant branch flow paths 10a and 10b is 315 degrees has been described, the sum of the bending angles of the refrigerant branch flow paths 10a and 10b is also arbitrary.

さらに、実施の形態1では、3層のプレート構造で構成する例を示したが、たとえば、図5に示すようにオーバープレート8A,8Bと、アンダープレート6A,6Bの2層で構成してもよい。
図5に示す構成では、オーバープレート8A,8Bに、伝熱管接続部13a,13b,13c,13dが設けられるとともに、冷媒分流部9と、冷媒分岐流路部10a,10bと、熱交換器流入部11と、Uベンド部12と、冷媒ガス合流部21を設けられており、例えば、プレス加工によりオーバープレート8A,8Bを形成することができる。
また、冷媒分流部9と、冷媒分岐流路部10a,10bと、熱交換器流入部11と、Uベンド部12と、冷媒ガス合流部21をアンダープレート6に設けて2層構造としてもかまわない。
さらに、オーバープレート8とアンダープレート6の両方に設けることにより2層構造としてもかまわない。
Furthermore, in the first embodiment, an example in which a three-layer plate structure is used has been shown. However, for example, as shown in FIG. 5, two plate layers of an over plate 8A, 8B and an under plate 6A, 6B may be used. Good.
In the configuration shown in FIG. 5, the heat transfer tube connecting portions 13a, 13b, 13c, and 13d are provided on the over plates 8A and 8B, the refrigerant branching portion 9, the refrigerant branch flow passage portions 10a and 10b, and the heat exchanger inflow The part 11, the U bend part 12, and the refrigerant gas joining part 21 are provided. For example, the overplates 8 </ b> A and 8 </ b> B can be formed by pressing.
Further, the refrigerant branching section 9, the refrigerant branch flow path sections 10a and 10b, the heat exchanger inflow section 11, the U bend section 12, and the refrigerant gas junction section 21 may be provided on the under plate 6 to form a two-layer structure. Absent.
Furthermore, a two-layer structure may be provided by providing both the over plate 8 and the under plate 6.

また、図6に示すように、3層以上のプレート構造で構成してもよく、この場合、冷媒分岐流路部10a,10bなどの流路幅の狭い部分のプレス加工が容易となる。この構成は、先に図2について説明したものと同様である。   Moreover, as shown in FIG. 6, you may comprise by the plate structure of three or more layers, and it becomes easy to press a part with narrow flow path widths, such as refrigerant | coolant branch flow path parts 10a and 10b in this case. This configuration is similar to that previously described for FIG.

また、図7に示すように、冷媒分配器4を5層構造として、冷媒ガス合流部21を冷媒分流部9や冷媒分岐流路部10a,10bと異なる層に設けても良い。
図7では、実施の形態1における図2に示すセンタープレート7A,7Bに代えて、第1センタープレート71A,71Bならびに第2センタープレート72A,72Bおよび第3センタープレート73A,73Bが設けられている。
第1センタープレート71A,71Bには、冷媒分流部9と、冷媒分岐流路部10a,10bと、熱交換器流入部11と、Uベンド部12が設けられる。第2センタープレート72A,72Bには、連通口92および連通口212が設けられる。第3センタープレート73A,73Bには、冷媒ガス合流部21および連通口93が設けられる。
アンダープレート6Aと、センタープレート71A,72A,73Aと、オーバープレート8Aとは、互いに重合されて冷媒分配器ユニット4Aを構成し、アンダープレート6Bと、センタープレート71B,72B,73Bと、オーバープレート8Bとは、互いに重合されて冷媒分配器ユニット4Bを構成する。
なお、冷媒分流部9、冷媒分岐流路部10a,10b、Uベンド部12、冷媒ガス合流部21をどの層に設けるかは任意である。
Further, as shown in FIG. 7, the refrigerant distributor 4 may have a five-layer structure, and the refrigerant gas merging portion 21 may be provided in a different layer from the refrigerant branching portion 9 and the refrigerant branch flow passage portions 10a and 10b.
7, instead of the center plates 7A and 7B shown in FIG. 2 in the first embodiment, first center plates 71A and 71B, second center plates 72A and 72B, and third center plates 73A and 73B are provided. .
The first center plates 71A and 71B are provided with a refrigerant distribution section 9, refrigerant branch flow path sections 10a and 10b, a heat exchanger inflow section 11, and a U-bend section 12. The second center plates 72A and 72B are provided with a communication port 92 and a communication port 212. The third center plates 73A and 73B are provided with the refrigerant gas junction 21 and the communication port 93.
The under plate 6A, the center plates 71A, 72A, 73A, and the over plate 8A are superposed on each other to form the refrigerant distributor unit 4A. The under plate 6B, the center plates 71B, 72B, 73B, and the over plate 8B Are superposed on each other to form the refrigerant distributor unit 4B.
In addition, it is arbitrary in which layer the refrigerant | coolant branching part 9, the refrigerant | coolant branch flow path parts 10a and 10b, the U bend part 12, and the refrigerant gas confluence | merging part 21 are provided.

図7において、アンダープレート6A,6Bに設けられた流入穴16に流入した冷媒は、第3センタープレート73A,73Bおよび第2センタープレート72A,72Bに設けられた連通口93,92を介して第1センタープレート71A,71Bに設けられた冷媒分流部9に導入され、この冷媒分流部9で冷媒分岐流路部10a,10bに分配される。   In FIG. 7, the refrigerant that has flowed into the inflow holes 16 provided in the under plates 6A and 6B passes through the communication ports 93 and 92 provided in the third center plates 73A and 73B and the second center plates 72A and 72B. 1 The refrigerant is introduced into the refrigerant distribution section 9 provided in the center plates 71A and 71B, and is distributed to the refrigerant branch flow path sections 10a and 10b by the refrigerant distribution section 9.

冷媒分岐流路部10a,10bの各流路を通過した冷媒は、熱交換器流入部11に流れ込む。
図4に示すように、冷媒19は、第1センタープレート71A,71Bにそれぞれ設けられた熱交換器流入部11から、伝熱管接続部13aを通って伝熱管18aへと流れ、熱交換器本体2の内部でフィンを介して空気23と熱交換し、次第に蒸発する。伝熱管18aと伝熱管18bは冷媒分配器ユニット4A,4Bと反対側の熱交換器端部でつながっており、冷媒19は伝熱管18bを通って、再び伝熱管接続部13bから冷媒分配器ユニット4A,4Bへ流入する。再び冷媒分配器ユニット4A,4Bに流入した冷媒19は、第1センタープレート71A,71Bにそれぞれ設けられたUベンド部12を通過し、伝熱管接続部13cから伝熱管18cへと流入し、伝熱管18cを通過しながら熱交換器本体2の内部で熱交換される。
そして、冷媒19は、伝熱管18dから伝熱管接続部13dを通って冷媒ガスの単相状態で伝熱管出口17から流出し、第2センタープレート72A,72Bにそれぞれ設けられた連通口212を介して第3センタープレート73A,73Bに設けられた冷媒ガス合流部21に導かれ、この冷媒ガス合流部21で、別の冷媒流路を通過した冷媒19と合流する。その後、冷媒19は、アンダープレート6A,6Bにそれぞれ設けられた、流出穴22から熱交換器本体2に接続された配管に流出する。
The refrigerant that has passed through the flow paths of the refrigerant branch flow path portions 10 a and 10 b flows into the heat exchanger inflow portion 11.
As shown in FIG. 4, the refrigerant 19 flows from the heat exchanger inflow portion 11 provided in each of the first center plates 71A and 71B to the heat transfer tube 18a through the heat transfer tube connection portion 13a, and the heat exchanger body. Heat exchange is performed with air 23 through fins in 2 and gradually evaporates. The heat transfer tube 18a and the heat transfer tube 18b are connected at the end of the heat exchanger opposite to the refrigerant distributor units 4A and 4B, and the refrigerant 19 passes through the heat transfer tube 18b and again from the heat transfer tube connection portion 13b to the refrigerant distributor unit. It flows into 4A and 4B. The refrigerant 19 that has flowed into the refrigerant distributor units 4A and 4B again passes through the U-bend portion 12 provided in each of the first center plates 71A and 71B, flows into the heat transfer tube 18c from the heat transfer tube connection portion 13c, and is transmitted. Heat is exchanged inside the heat exchanger body 2 while passing through the heat pipe 18c.
The refrigerant 19 flows out of the heat transfer tube outlet 17 from the heat transfer tube 18d through the heat transfer tube connecting portion 13d in a single-phase state of the refrigerant gas, and passes through the communication ports 212 provided in the second center plates 72A and 72B, respectively. Then, the refrigerant gas is joined to the refrigerant gas merging portion 21 provided in the third center plates 73A and 73B. The refrigerant gas merging portion 21 merges with the refrigerant 19 that has passed through another refrigerant flow path. Thereafter, the refrigerant 19 flows out from the outflow holes 22 provided in the under plates 6 </ b> A and 6 </ b> B to piping connected to the heat exchanger body 2.

このように、実施の形態1に示す冷媒分配器4の変形例では、冷媒ガス合流部21を、冷媒分岐流路部10a,10bが設けられたプレート層とは別のプレート層に設けたことにより、冷媒分配器4の厚みは増加するが、分配器の幅Wを小さくできる。   Thus, in the modified example of the refrigerant distributor 4 shown in the first embodiment, the refrigerant gas merging portion 21 is provided in a plate layer different from the plate layer in which the refrigerant branch flow passage portions 10a and 10b are provided. Thus, the thickness of the refrigerant distributor 4 increases, but the width W of the distributor can be reduced.

この発明による実施の形態1によれば、冷媒流路を有する熱交換器本体2と、前記熱交換器本体2の所定流路部分へ冷媒を分配して供給する冷媒分配器4とを備えた熱交換器において、冷媒流入口16からの冷媒を分流する冷媒分流部9および前記冷媒分流部9により分流された冷媒を前記熱交換器本体2における複数個所の所定流路部分へ所定流量で分配して供給するための従来技術におけるキャピラリチューブの代わりとなる冷媒絞り機能を持つ冷媒分岐流路部10a,10bを有するセンタープレート7A,7B,71A,71B(図2,図6,図7)またはオーバープレート8A,8B(図5)からなるプレート状分配部材を前記冷媒分配器4の構成要素として設け、前記プレート状分配部材を含む互いに重合するセンタープレート7A,7B,71A,71B(図2,図6,図7)またはオーバープレート8A,8B(図5)とアンダープレート6A,6Bおよびセンタープレート72A,72B(図7)ならびにオーバープレート8A,8B(図2,図6,図7)等の複数のプレート状部材で前記冷媒分配器4を構成するとともに、前記熱交換器本体2における流路部分の所定個所を互いに連通するためのUベント部12からなる連通流路を前記プレート状分配部材に設けたので、簡潔な構成により冷媒の熱交換器本体における所定流路部分への分配機能および熱交換器本体における流路部分の所定個所間の冷媒流通機能を的確に遂行でき、低コスト化と省スペース化を実現できる冷媒分配器を具備した熱交換器を得ることができる。   According to Embodiment 1 of the present invention, the heat exchanger main body 2 having a refrigerant flow path and the refrigerant distributor 4 for distributing and supplying the refrigerant to the predetermined flow path portion of the heat exchanger main body 2 are provided. In the heat exchanger, the refrigerant distribution part 9 for dividing the refrigerant from the refrigerant inlet 16 and the refrigerant divided by the refrigerant distribution part 9 are distributed at a predetermined flow rate to a plurality of predetermined flow path portions in the heat exchanger body 2. Center plates 7A, 7B, 71A, 71B (FIGS. 2, 6 and 7) having refrigerant branch flow path portions 10a, 10b having refrigerant throttling functions instead of capillary tubes in the prior art A plate-like distribution member comprising overplates 8A and 8B (FIG. 5) is provided as a component of the refrigerant distributor 4, and a center plate that overlaps each other and includes the plate-like distribution member A, 7B, 71A, 71B (FIGS. 2, 6 and 7) or overplates 8A, 8B (FIG. 5) and underplates 6A, 6B and center plates 72A, 72B (FIG. 7) and overplates 8A, 8B ( The refrigerant distributor 4 is constituted by a plurality of plate-like members such as FIG. 2, FIG. 6, FIG. 7) and the like, and a U vent portion 12 for communicating a predetermined portion of the flow path portion in the heat exchanger body 2 with each other. Since the communication channel comprising the plate-like distribution member is provided in the plate-like distribution member, the function of distributing the refrigerant to the predetermined flow path portion in the heat exchanger main body and the refrigerant between the predetermined portions of the flow path portion in the heat exchanger main body with a simple configuration It is possible to obtain a heat exchanger equipped with a refrigerant distributor that can accurately perform the distribution function and can realize cost reduction and space saving.

また、この発明による実施の形態1によれば、前項の構成において、前記センタープレート7からなるプレート状分配部材と重合して配設され前記センタープレート7A,7B71A,71B(図2,図6,図7)からなるプレート状分配部材における所定流路部分を前記熱交換器本体2の所定流路部分に連通する複数の伝熱管接続部13a,13b,13c,13dからなる開口接続部を有するオーバープレート8A,8Bからなるプレート状連接部材とを設けたので、プレート状分配部材と重合し開口接続部を有するプレート状連接部材を設けることによって、簡潔な構成により冷媒の分配機能および熱交換器本体における所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to the first embodiment of the present invention, the center plate 7A, 7B71A, 71B (FIG. 2, FIG. FIG. 7) is a plate-like distribution member having an opening connection portion composed of a plurality of heat transfer tube connection portions 13a, 13b, 13c, 13d that communicates a predetermined flow passage portion with a predetermined flow passage portion of the heat exchanger body 2. Since the plate-like connecting member composed of the plates 8A and 8B is provided, the refrigerant distribution function and the heat exchanger main body can be achieved with a simple structure by providing the plate-like connecting member that overlaps with the plate-like distributing member and has an opening connecting portion. Equipped with a refrigerant distributor that can accurately perform the distribution function of the refrigerant to the predetermined flow path portion, and can realize cost reduction and space saving. It is possible to obtain a heat exchanger.

また、この発明による実施の形態1によれば、前項の構成において、一面を前記熱交換器本体2側に配設される前記センタープレート7A,7B,71A,71B(図2,図6,図7)またはオーバープレート8A,8B(図5)からなるプレート状分配部材の他面に被着して重合されるアンダープレート6A,6Bからなるプレート状被着部材を備え、前記プレート状被着部材に前記プレート状分配部材の冷媒分流部9からなる冷媒流入口に対応する流入穴16からなる冷媒導入口を設けたので、プレート状分配部材に重合し冷媒導入口を有するプレート状被着部材を備えることによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、冷媒分配器への冷媒の導入を適切に行える冷媒分配器を具備した熱交換器を得ることができる。   Further, according to the first embodiment of the present invention, in the configuration of the preceding paragraph, the center plates 7A, 7B, 71A, 71B (one surface of which is disposed on the heat exchanger main body 2 side) (FIGS. 2, 6, and 6) 7) or a plate-like adherent member comprising underplates 6A and 6B which are deposited on the other surface of the plate-like distribution member comprising overplates 8A and 8B (FIG. 5) and polymerized, and the plate-like adherent member Provided with a refrigerant inlet comprising an inflow hole 16 corresponding to a refrigerant inlet comprising the refrigerant distribution portion 9 of the plate-like distribution member. By providing it, the distribution function of the refrigerant and the distribution function of the refrigerant to the predetermined flow path portion of the heat exchanger main body can be accurately performed with a simple configuration, and cost reduction and space saving can be realized. Both can be obtained a heat exchanger provided with the refrigerant distributor to properly perform the introduction of the refrigerant to the refrigerant distributor.

また、この発明による実施の形態1によれば、前3項のいずれかの構成において、前記冷媒分配器を前記センタープレート7A,7B,71A,71B(図2,図6,図7)またはオーバープレート8A,8B(図5)からなるプレート状分配部材を含む互いに重合される複数のプレート状部材で構成するとともに、前記複数のプレート状部材の少なくともいずれかに、ろう材を表面に被着したブレージングプレートからなるシート部材を使用し、前記冷媒分配器を構成するプレート状分配部材を含む互いに重合される複数のプレート状部材について、それら部材間をブレージングプレートによるろう材結着により接合するようにしたので、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、容易に製作できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to Embodiment 1 of the present invention, in any one of the configurations of the preceding three items, the refrigerant distributor may be the center plate 7A, 7B, 71A, 71B (FIGS. 2, 6, 6) or over. A plurality of plate-like members that are superposed on each other including a plate-like distribution member composed of plates 8A and 8B (FIG. 5), and a brazing material is applied to the surface of at least one of the plurality of plate-like members. A plurality of plate-like members that are superposed on each other, including a plate-like distribution member that constitutes the refrigerant distributor, using a sheet member made of a brazing plate, are joined together by brazing of the brazing plate. Therefore, the refrigerant distribution function and the refrigerant distribution function to the predetermined flow path of the heat exchanger body can be accurately achieved with a simple configuration. Can, together with low cost can be realized and space saving, it is possible to obtain a heat exchanger provided with the refrigerant distributor can be easily manufactured.

また、この発明による実施の形態1によれば、前4項のいずれかの構成において、冷媒流入口16からの冷媒を分流する冷媒分流部9および前記冷媒分流部9により分流された冷媒を前記熱交換器本体2における複数個所の所定流路部分へ所定流量で供給するための冷媒分岐流路部10a,10bを有する第1のセンタープレート7A,71A(図2,図6,図7)または第1のオーバープレート8A(図5)からなる第1のプレート状分配部材と、冷媒流入口16からの冷媒を分流する冷媒分流部9および前記冷媒分流部9により分流された冷媒を前記熱交換器本体2における複数個所の所定流路部分へ所定流量で供給するための冷媒分岐流路部10a,10bを有する第2のセンタープレート7B,71B(図2,図6,図7)または第2のオーバープレート8B(図5)からなる第2のプレート状分配部材とを設け、前記第1のプレート状分配部材と前記第2のプレート状分配部材とを同一面において延在させるとともに、前記第1のプレート状分配部材の延在方向と第2のプレート状分配部材の延在方向とが所定の角度を持つように前記第1のプレート状分配部材と前記第2のプレート状分配部材とを配設したので、プレート状分配部材を第1のプレート状分配部材と第2のプレート状分配部材とで構成し、これら第1のプレート状分配部材と第2のプレート状分配部材とを適切に配設することによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を更に適切に実現できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to Embodiment 1 of the present invention, in any one of the configurations of the preceding four items, the refrigerant branching portion 9 for branching the refrigerant from the refrigerant inlet 16 and the refrigerant branched by the refrigerant branching portion 9 are First center plates 7A and 71A (FIGS. 2, 6, and 7) having refrigerant branch flow path portions 10a and 10b for supplying a predetermined flow rate to predetermined flow path portions at a plurality of locations in the heat exchanger body 2 or The first plate-like distribution member composed of the first overplate 8A (FIG. 5), the refrigerant distribution part 9 for dividing the refrigerant from the refrigerant inlet 16, and the refrigerant divided by the refrigerant distribution part 9 perform the heat exchange. Second center plates 7B and 71B (FIGS. 2, 6, and 7) having refrigerant branch flow path portions 10a and 10b for supplying a predetermined flow rate to predetermined flow path portions at a plurality of locations in the vessel body 2. A second plate-like distribution member made of an overplate 8B (FIG. 5), and extending the first plate-like distribution member and the second plate-like distribution member on the same plane, The first plate-like distribution member and the second plate-like distribution member are arranged so that the extending direction of one plate-like distribution member and the extending direction of the second plate-like distribution member have a predetermined angle. Since the plate-like distribution member is constituted by the first plate-like distribution member and the second plate-like distribution member, the first plate-like distribution member and the second plate-like distribution member are appropriately arranged. By disposing, the refrigerant distribution function and the refrigerant distribution function to the predetermined flow path portion of the heat exchanger main body can be accurately performed with a simple configuration, and the refrigerant can realize cost reduction and space saving more appropriately. Min Vessel can be obtained a heat exchanger provided with the.

また、この発明による実施の形態1によれば、前5項のいずれかの構成において、熱交換器本体2に通風するためのクロスフローファン3の軸線に沿って配設される熱交換器本体2の端面2aに沿って前記センタープレート7A,7B,71A,71B(図2,図6,図7)またはオーバープレート8A,8B(図5)からなるプレート状分配部材を配設するとともに、前記プレート状分配部材の端縁部分FGを前記クロスフローファンまたはクロスフローファンを回転させるモータ3の周面3aに対向するようにしたので、プレート状分配部材をその端縁部分がクロスフローファンまたはクロスフローファンを回転させるモータ周面に対向するよう適切に配設することによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を更に適切に実現できる冷媒分配器を具備した熱交換器を得ることができる。   In addition, according to the first embodiment of the present invention, the heat exchanger main body disposed along the axis of the crossflow fan 3 for ventilating the heat exchanger main body 2 in any one of the configurations of the preceding five items A plate-like distribution member made up of the center plates 7A, 7B, 71A, 71B (FIGS. 2, 6 and 7) or overplates 8A and 8B (FIG. 5) is disposed along the end face 2a. Since the edge portion FG of the plate-like distribution member faces the circumferential surface 3a of the cross flow fan or the motor 3 that rotates the cross flow fan, the edge portion of the plate-like distribution member has a cross flow fan or cross. By properly disposing the flow fan so as to face the motor circumferential surface, the refrigerant distribution function and the predetermined heat exchanger body can be determined with a simple configuration. Distribution function of refrigerant to the road section can accurately perform, it is possible to obtain a heat exchanger provided with the refrigerant distributor that can more appropriately realize a cost reduction and space saving.

また、この発明による実施の形態1によれば、前項の構成において、前記冷媒分配器4をセンタープレート7A,7B,71A,71B(図2,図6,図7)またはオーバープレート8A,8B(図5)からなるプレート状分配部材を含む互いに重合される複数のプレート状部材で構成するとともに、前記複数のプレート状部材の少なくともいずれかにおける前記クロスフローファンまたはクロスフローファンを回転させるモータ3の周面3aとの対向部分に切り欠き14を設けたので、プレート状部材をその端縁部分がクロスフローファン周面に対向するよう適切に配設し、プレート状部材のクロスフローファンまたはクロスフローファンを回転させるモータ周面との対向部分に切り欠きを設けることによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を更に適切に実現できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to Embodiment 1 of the present invention, in the configuration of the preceding paragraph, the refrigerant distributor 4 is replaced with a center plate 7A, 7B, 71A, 71B (FIGS. 2, 6 and 7) or an overplate 8A, 8B ( Of the motor 3 for rotating the cross flow fan or the cross flow fan in at least one of the plurality of plate members. Since the notch 14 is provided in the portion facing the peripheral surface 3a, the plate-like member is appropriately arranged so that the edge portion thereof faces the cross-flow fan peripheral surface, and the cross-flow fan or cross-flow of the plate-like member is arranged. By providing a notch in the part facing the motor peripheral surface that rotates the fan, the refrigerant can be separated with a simple structure. A heat exchanger having a refrigerant distributor that can accurately perform the function and the refrigerant distribution function to the predetermined flow path portion of the heat exchanger main body, and can further appropriately realize cost reduction and space saving. .

また、この発明による実施の形態1によれば、前7項のいずれかの構成において、前記冷媒流入穴16の直径を3mm以下としたので、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、気液二相状態で流れ込む冷媒を均一に混合でき、各分岐流路へ流れる冷媒の流量バラツキを小さくできる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to the first embodiment of the present invention, in the configuration of any one of the preceding seven items, since the diameter of the refrigerant inflow hole 16 is 3 mm or less, the refrigerant distribution function and the heat exchanger body can be achieved with a simple configuration. The refrigerant distribution function to the predetermined flow path part can be accurately performed, cost reduction and space saving can be realized, and the refrigerant flowing in the gas-liquid two-phase state can be mixed uniformly, and the refrigerant flowing to each branch flow path It is possible to obtain a heat exchanger including a refrigerant distributor that can reduce the flow rate variation.

また、この発明による実施の形態1によれば、前8項のいずれかの構成において、前記冷媒分配器4をセンタープレート7A,7B,71A,71B(図2,図6,図7)またはオーバープレート8A,8B(図5)からなるプレート状分配部材を含む互いに重合される複数のプレート状部材で構成するとともに、冷媒分岐流路部10a,10bを前記プレート状分配部材と前記アンダープレート6A,6Bからなるプレート状被着部材等の隣接して重合するプレート状分配部材との重合面に設け、前記プレート状被着部材等の隣接して重合するプレート状部材の接合により前記プレート状分配部材における前記冷媒分岐流路部10a,10bの流路の深さ方向について寸法を規制し、前記冷媒分岐流路部の流路の深さを設定するようにしたので、プレート状分配部材と重合するプレート状部材の接合により冷媒分岐流路部の流路の深さ寸法を規制して、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を更に適切に実現できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to the first embodiment of the present invention, the refrigerant distributor 4 is arranged in the center plate 7A, 7B, 71A, 71B (FIG. 2, FIG. 6, FIG. 7) or over in the configuration according to any one of the preceding eight items. A plurality of plate-like members that are superposed on each other, including a plate-like distribution member comprising plates 8A and 8B (FIG. 5), and the refrigerant branch flow path portions 10a and 10b are formed of the plate-like distribution member and the under plate 6A, The plate-like distribution member is formed by joining the adjacent plate-like member such as the plate-like adherence member, which is provided on the overlapping surface of the plate-like adhering member such as the plate-like adhering member made of 6B. The dimension of the refrigerant branch flow path portions 10a and 10b in the depth direction of the refrigerant is restricted, and the depth of the refrigerant branch flow path portion is set. Therefore, by restricting the depth dimension of the flow path of the refrigerant branch flow path portion by joining the plate-shaped distribution member and the plate-shaped member to be superposed, the refrigerant distribution function and the predetermined flow path portion of the heat exchanger main body can be achieved with a simple configuration. Thus, it is possible to obtain a heat exchanger equipped with a refrigerant distributor that can accurately perform the refrigerant distribution function and can realize cost reduction and space saving more appropriately.

また、この発明による実施の形態1によれば、前9項のいずれかの構成において、それぞれ冷媒分岐流路部10a,10bを有するセンタープレート7A,7B,71A,71B(図2,図6,図7)またはオーバープレート8A,8B(図5)からなるプレート状分配部材を設けた複数の冷媒分配器ユニット4A,4Bにより構成される冷媒分配器4を備え、各冷媒分配器ユニット4A,4Bにおける冷媒分岐流路部10a,10bの数を等しくしたので、各冷媒分配器ユニットにおける冷媒分岐流路部の数を等しくして冷媒を分岐する際の流量バラツキを少なくし、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を更に適切に実現できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to Embodiment 1 of the present invention, in any one of the configurations of the preceding nine items, center plates 7A, 7B, 71A, 71B having refrigerant branch flow path portions 10a, 10b (FIGS. 2, 6, and 6), respectively. 7) or a refrigerant distributor 4 comprising a plurality of refrigerant distributor units 4A, 4B provided with plate-like distribution members comprising overplates 8A, 8B (FIG. 5), and each refrigerant distributor unit 4A, 4B. Since the number of the refrigerant branch flow path portions 10a and 10b in each of the refrigerant distributor units is made equal, the number of refrigerant branch flow path portions in each refrigerant distributor unit is made equal to reduce the flow rate variation when branching the refrigerant, and the refrigerant can be made by a simple configuration. Refrigerant distribution function that can accurately perform the distribution function of the refrigerant and the distribution function of the refrigerant to the predetermined flow path portion of the heat exchanger body, and can further appropriately realize cost reduction and space saving It is possible to obtain a heat exchanger equipped.

また、この発明による実施の形態1によれば、前10項のいずれかの構成において、前記冷媒分岐流路部10a,10bを複数設け、前記複数の冷媒分岐流路部10a,10bにおける各流路の長さ、および各流路の断面形状、ならびに各流路の曲げ角度の総和を等しくしたので、冷媒を分岐する際の流量バラツキを少なくして熱交換性能を向上でき、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を更に適切に実現できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to the first embodiment of the present invention, in the configuration of any one of the preceding ten items, a plurality of the refrigerant branch flow passage portions 10a and 10b are provided, and each flow in the plurality of refrigerant branch flow passage portions 10a and 10b is provided. Since the length of the path, the cross-sectional shape of each flow path, and the sum of the bending angles of each flow path are made equal, it is possible to improve the heat exchange performance by reducing the flow rate variation when the refrigerant is branched, and with a simple configuration A heat exchanger having a refrigerant distributor that can accurately perform a refrigerant distribution function and a refrigerant distribution function to a predetermined flow path portion of the heat exchanger main body, and can further appropriately realize cost reduction and space saving. be able to.

また、この発明による実施の形態1によれば、前11項のいずれかの構成において、前記冷媒分岐流路部10a,10bにより分配されて熱交換器本体2に供給され熱交換器本体2から流出する冷媒ガスを集合または分配するための冷媒ガス合流部21を前記冷媒分配器を構成する前記センタープレート7A,7B(図2,図6)またはオーバープレート8A,8B(図5)からなるプレート状分配部材に設けたので、冷媒ガス合流部をプレート状分配部材に設けることによって、簡潔な構成により冷媒の分配機能および熱交換器本体における所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を更に適切に実現できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to Embodiment 1 of the present invention, in any one of the constitutions of the previous 11 items, the refrigerant branch flow path portions 10a and 10b are distributed and supplied to the heat exchanger main body 2 to be supplied from the heat exchanger main body 2. A plate comprising the center plates 7A and 7B (FIGS. 2 and 6) or the overplates 8A and 8B (FIG. 5) constituting the refrigerant distributor as a refrigerant gas junction 21 for collecting or distributing the flowing refrigerant gas. By providing the refrigerant gas merging portion on the plate-like distribution member, the refrigerant distribution function and the refrigerant distribution function to the predetermined flow path portion in the heat exchanger body can be accurately performed by providing the refrigerant gas confluence portion on the plate-like distribution member. Thus, it is possible to obtain a heat exchanger including a refrigerant distributor that can realize cost reduction and space saving more appropriately.

また、この発明による実施の形態1によれば、前項を除く前12項のいずれかの構成において、前記冷媒分配器をセンタープレート71A,71B(図7)からなるプレート状分配部材を含む互いに重合される複数のプレート状部材で構成するとともに、冷媒ガスを集合するための冷媒ガス合流部を、前記プレート状分配部材とは別の第3センタープレート73A,73B(図7)からなるプレート状合流部材等のプレート状部材に設けたので、冷媒ガス合流部をプレート状分配部材とは別のプレート状分配部材に設けることによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を更に適切に実現できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to the first embodiment of the present invention, in any one of the constitutions of the preceding twelve items excluding the preceding item, the refrigerant distributor is superposed on each other including a plate-like distribution member comprising center plates 71A and 71B (FIG. 7). The plate-like confluence comprising the third center plates 73A and 73B (FIG. 7) different from the plate-like distribution member is formed by a plurality of plate-like members and the refrigerant gas confluence portion for collecting the refrigerant gas. Since it is provided on a plate-like member such as a member, the refrigerant gas merging portion is provided on a plate-like distribution member that is different from the plate-like distribution member. It is possible to obtain a heat exchanger equipped with a refrigerant distributor that can accurately perform a refrigerant distribution function to a portion, and can further appropriately realize cost reduction and space saving. Kill.

また、この発明による実施の形態によれば、前項の構成において、冷媒流入口16からの冷媒を分流する冷媒分流部9および前記冷媒分流部9により分流された冷媒を前記熱交換器本体2における複数個所の所定流路部分へ所定流量で供給するための冷媒絞り機能を持つ冷媒分岐流路部10a,10bを有する第1センタープレート71A,71B(図7)からなるプレート状分配部材と、前記プレート状分配部材と重合して配設され前記プレート状分配部材における所定流路部分を前記熱交換器本体2の所定流路部分に連通する複数の開口接続部を有するオーバープレート8A,8Bからなるプレート状連接部材と、一面を前記熱交換器本体側に配設される前記プレート状分配部材の他面に重合される第2センタープレート72A,72B(図7)からなるプレート状連通部材と、一面を前記熱交換器本体側に配設される前記プレート状連通部材の他面に重合され前記プレート状連接部材およびプレート状分配部材ならびにプレート状連通部材に設けられた冷媒連通口を介して前記熱交換器本体2の複数個所からの冷媒出口と連通する合流部21が設けられた第3センタープレート73A,73B(図7)からなるプレート状合流部材と、一面を前記熱交換器本体側に配設される前記プレート状合流部材の他面に重合されるアンダープレート6A,6Bからなるプレート状被着部材を備え、前記プレート状被着部材に前記プレート状合流部材および前記冷媒連通口を介して前記プレート状分配部材の冷媒流入口と連通する流入穴16からなる冷媒導入口を設けるとともに、前記プレート状合流部材の合流部21に連通する流出穴22からなる冷媒流出口を設けたので、プレート状分配部材およびプレート状連接部材ならびにプレート状被着部材に加え合流部を有するプレート状合流部材冷媒分配器を構成することによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を更に適切に実現できる冷媒分配器を具備した熱交換器を得ることができる。   Further, according to the embodiment of the present invention, in the configuration of the preceding paragraph, the refrigerant branching portion 9 for dividing the refrigerant from the refrigerant inlet 16 and the refrigerant diverted by the refrigerant branching portion 9 in the heat exchanger main body 2 A plate-like distribution member comprising first center plates 71A, 71B (FIG. 7) having refrigerant branch flow passage portions 10a, 10b having a refrigerant throttling function for supplying a predetermined flow rate to a plurality of predetermined flow passage portions; Overplates 8A and 8B having a plurality of opening connection portions arranged in a manner overlapping with a plate-like distribution member and communicating a predetermined flow path portion of the plate-shaped distribution member with a predetermined flow path portion of the heat exchanger body 2 Plate-shaped connecting members and second center plates 72A and 72B superposed on the other surface of the plate-shaped distribution member disposed on the heat exchanger main body side. 7) and a plate-like connecting member, a plate-like distributing member, and a plate-like communicating member that are superposed on the other surface of the plate-like communicating member disposed on the heat exchanger body side. A plate-like joining member comprising third center plates 73A and 73B (FIG. 7) provided with joining portions 21 communicating with the refrigerant outlets from a plurality of locations of the heat exchanger main body 2 through the refrigerant communication ports provided in And a plate-like adherent member comprising underplates 6A and 6B superposed on the other face of the plate-like joining member disposed on the heat exchanger main body side, and the plate-like adherent member includes the plate-like adherent member. A refrigerant inlet comprising an inflow hole 16 communicating with the refrigerant inlet of the plate-like distribution member through the plate-like junction member and the refrigerant communication port is provided, and Since the refrigerant outlet comprising the outflow hole 22 communicating with the joining portion 21 of the gate-like joining member is provided, the plate-like joining member having the joining portion in addition to the plate-like distribution member, the plate-like connecting member, and the plate-like attaching member By configuring the refrigerant distributor, it is possible to accurately perform the refrigerant distribution function and the refrigerant distribution function to the predetermined flow path portion of the heat exchanger main body with a simple configuration, and further appropriately reduce cost and space saving. A heat exchanger including a refrigerant distributor that can be realized can be obtained.

実施の形態2.
この発明による実施の形態2を図8および図9について説明する。図8は実施の形態2における冷媒分配器の構成を示す側面図である。図9は実施の形態2における冷媒分配器を具備した熱交換器を空調用室内機1に設置したときの様子を説明するための全体構成を示す斜視図である。
この実施の形態2において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1における構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a side view showing the configuration of the refrigerant distributor in the second embodiment. FIG. 9 is a perspective view illustrating an overall configuration for explaining a state when the heat exchanger provided with the refrigerant distributor in the second embodiment is installed in the indoor unit 1 for air conditioning.
In the second embodiment, the configuration other than the specific configuration described here has the same configuration contents as the configuration in the first embodiment described above, and exhibits the same operation. In the drawings, the same reference numerals indicate the same or corresponding parts.

この実施の形態2では、冷媒分配器4の中に冷媒ガス合流部21を設けず、冷媒分配器4の外に冷媒ガス合流部21を設置する。
すなわち、実施の形態1においては、センタープレート7A,7Bからなるプレート状分配部材およびオーバープレート8A,8Bからなるプレート状連接部材ならびにアンダープレート6A,6Bからなるプレート状被着部材等のプレート状部材で冷媒分配器ユニット4A,4Bからなる冷媒分配器4を構成し、センタープレート7A,7B等に冷媒ガス合流部21を設けているが、この実施の形態2では、プレート状部材で構成された冷媒分配器4の外部に冷媒ガス合流部21を設置したものである。
In the second embodiment, the refrigerant gas merging portion 21 is not provided in the refrigerant distributor 4, and the refrigerant gas merging portion 21 is installed outside the refrigerant distributor 4.
That is, in the first embodiment, plate-like members such as a plate-like distribution member consisting of the center plates 7A and 7B, a plate-like connecting member consisting of the over plates 8A and 8B, and a plate-like adherent member consisting of the under plates 6A and 6B. The refrigerant distributor 4 including the refrigerant distributor units 4A and 4B is configured, and the refrigerant gas merging portion 21 is provided in the center plates 7A and 7B and the like. In the second embodiment, the refrigerant distributor unit 4A and 4B is configured by a plate-like member. A refrigerant gas junction 21 is installed outside the refrigerant distributor 4.

この実施の形態2においては、図9に示すように、たとえば冷媒ガス合流部21は、熱交換器本体2の端面2aに平行して延在する冷媒分配器4の延在方向に沿って配設される配管21aに枝管21bを設けた構造で構成することができる。
配管21aに設けられた枝管21bは伝熱管出口17に連通され、熱交換器本体2の伝熱管18aからの冷媒は伝熱管出口17を通り枝管21bを介して配管21aにより集合される。
In the second embodiment, as shown in FIG. 9, for example, the refrigerant gas joining portion 21 is arranged along the extending direction of the refrigerant distributor 4 extending in parallel with the end surface 2 a of the heat exchanger body 2. It can be configured with a structure in which the branch pipe 21b is provided in the pipe 21a provided.
The branch pipe 21b provided in the pipe 21a communicates with the heat transfer pipe outlet 17, and the refrigerant from the heat transfer pipe 18a of the heat exchanger body 2 passes through the heat transfer pipe outlet 17 and is collected by the pipe 21a through the branch pipe 21b.

つぎに、冷媒の動作を説明する。実施の形態1と同様に、冷媒19は空気23と熱交換を行い、冷媒ガスの単相状態で伝熱管出口17を通って冷媒分配器4から流出する。その後、冷媒分配器4から流出した冷媒19は、冷媒ガス合流部21で合流する。通常、冷媒ガスの単相状態となった冷媒19の温度は、気液二相状態の冷媒19の温度にくらべて高い。
ここで、この実施の形態2では、冷媒ガス合流部21を冷媒分配器4とは別に設けたため、冷媒ガスとなった高温の冷媒19から、気液二相状態である低温の冷媒19に向かう、熱の移動量が減少する。よって、高温の冷媒19と低温の冷媒19の冷媒間の熱交換量が減少し、冷媒19と空気23の熱交換量が増加するため、熱交換器の性能が向上する。
Next, the operation of the refrigerant will be described. As in the first embodiment, the refrigerant 19 exchanges heat with the air 23 and flows out of the refrigerant distributor 4 through the heat transfer tube outlet 17 in a single-phase state of the refrigerant gas. Thereafter, the refrigerant 19 that has flowed out of the refrigerant distributor 4 joins at the refrigerant gas junction 21. Normally, the temperature of the refrigerant 19 in the refrigerant gas single-phase state is higher than the temperature of the refrigerant 19 in the gas-liquid two-phase state.
Here, in the second embodiment, the refrigerant gas merging portion 21 is provided separately from the refrigerant distributor 4, so that the high-temperature refrigerant 19 that has become the refrigerant gas is directed to the low-temperature refrigerant 19 that is in a gas-liquid two-phase state. , The amount of heat transfer decreases. Therefore, the amount of heat exchange between the high-temperature refrigerant 19 and the low-temperature refrigerant 19 is reduced, and the amount of heat exchange between the refrigerant 19 and the air 23 is increased, so that the performance of the heat exchanger is improved.

なお、図9において、冷媒ガス合流部21を、配管に枝管を設けた構造で示したが、冷媒ガスを集合または分流できる構造であれば任意である。
また、実施の形態2では、冷媒ガス合流部21を冷媒分配器4の側面に配置したが、冷媒分配器4の外周に配置しても同様の効果を有することは明らかである。
In FIG. 9, the refrigerant gas merging portion 21 is shown with a structure in which a branch pipe is provided in the pipe. However, any structure can be used as long as the refrigerant gas can be collected or branched.
In the second embodiment, the refrigerant gas merging portion 21 is arranged on the side surface of the refrigerant distributor 4. However, it is obvious that the same effect can be obtained even if arranged on the outer periphery of the refrigerant distributor 4.

この発明による実施の形態2によれば、実施の形態1における構成において、冷媒分配器ユニット4A,4Bからなる冷媒分配器4を構成する前記センタープレート7A,7Bからなるプレート状分配部材および前記オーバープレート8A,8Bからなるプレート状連接部材ならびに前記アンダープレート6A,6Bからなるプレート状被着部材等のプレート状部材とは別構成とされ、冷媒分配器4の外に配設される枝管21bを設けた配管21aからなる冷媒ガス合流部21を具備したので、冷媒分配器を構成するプレート状部材とは別に冷媒ガス合流部を具備することによって熱交換性能を向上し、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、熱交換性能を向上できる、冷媒分配器を具備した熱交換器を得ることができる。   According to the second embodiment of the present invention, in the configuration of the first embodiment, the plate-like distribution member composed of the center plates 7A, 7B constituting the refrigerant distributor 4 composed of the refrigerant distributor units 4A, 4B, and the overload. A branch pipe 21b that is configured separately from the plate-like connecting member made of the plates 8A and 8B and the plate-like member such as the plate-like adherent member made of the under plates 6A and 6B, and is arranged outside the refrigerant distributor 4. Since the refrigerant gas merging portion 21 comprising the pipe 21a provided with the refrigerant gas is provided, the heat exchange performance is improved by providing the refrigerant gas merging portion separately from the plate-like member constituting the refrigerant distributor, and the refrigerant has a simple structure. Distribution function and refrigerant distribution function to the specified flow path part of the heat exchanger body can be performed accurately, reducing costs and saving space It is possible now, heat exchange performance can be improved, it is possible to obtain a heat exchanger provided with the refrigerant distributor.

実施の形態3.
この発明による実施の形態3を図10について説明する。図10は実施の形態3における冷媒分配器4の構成を示す側面図であり、冷媒分岐流路部の流路形態を説明するための図である。
この実施の形態3において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1および実施の形態2における構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 3 FIG.
A third embodiment of the present invention will be described with reference to FIG. FIG. 10 is a side view showing the configuration of the refrigerant distributor 4 in the third embodiment, and is a diagram for explaining the flow path configuration of the refrigerant branch flow path section.
In the third embodiment, the configuration other than the specific configuration described here has the same configuration contents as the configurations in the first and second embodiments described above and exhibits the same operation. It is. In the drawings, the same reference numerals indicate the same or corresponding parts.

この実施の形態3では、熱交換器本体2に流入する空気23の風速分布がある場合に相当し、ここでは、クロスフローファン3の近くに位置する熱交換器本体2を通過する空気23aの風速が大きい場合を示す。
実施の形態3では、冷媒分岐流路部10a,10cおよび10bが設けられているが、風速の大きな空気23aと熱交換を行う伝熱管18a,18b,18c,18dの所定個所に冷媒を供給する冷媒分岐流路部10cの流路幅は、その他の冷媒分岐流路幅10aの流路幅に比べて大きい。
このため、冷媒分岐流路部10cの流動抵抗は小さくなり、冷媒分岐流路部10cを流れる冷媒流量が増加するので、風速の大きな空気23aが通過する部分に相当する伝熱管18a,18b,18c,18dの所定個所に、冷媒分岐流路部10cにより多くの冷媒を流すことができ、熱交換性能が向上する。
In the third embodiment, this corresponds to the case where there is a wind speed distribution of the air 23 flowing into the heat exchanger main body 2, and here, the air 23a passing through the heat exchanger main body 2 located near the cross flow fan 3 The case where the wind speed is high is shown.
In the third embodiment, the refrigerant branch flow path portions 10a, 10c, and 10b are provided, and the refrigerant is supplied to predetermined portions of the heat transfer tubes 18a, 18b, 18c, and 18d that exchange heat with the air 23a having a high wind speed. The flow path width of the refrigerant branch flow path portion 10c is larger than the flow path widths of the other refrigerant branch flow path widths 10a.
For this reason, the flow resistance of the refrigerant branch channel portion 10c is reduced, and the flow rate of the refrigerant flowing through the refrigerant branch channel portion 10c is increased. Therefore, the heat transfer tubes 18a, 18b, 18c corresponding to the portion through which the air 23a having a high wind speed passes. , 18d, a large amount of refrigerant can be caused to flow through the refrigerant branch channel portion 10c, and heat exchange performance is improved.

なお、ここでは、流路幅を大きくすることによって流動抵抗を小さくしたが、流路高さなど、断面形状を大きくすることで流動抵抗を小さくした場合であっても、同様の効果を有することは明らかである。   Here, the flow resistance is reduced by increasing the flow path width, but the same effect can be obtained even when the flow resistance is reduced by increasing the cross-sectional shape such as the flow path height. Is clear.

この発明による実施の形態3によれば、実施の形態1または実施の形態2における構成において、前記冷媒分岐流路部10a,10cおよび10bを複数設け、前記複数の冷媒分岐流路部10a,10b,10cにおける各流路の流路幅や流路高さなどの断面形状を、熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させ、前記複数の冷媒分岐流路部10a,10b,10cにおける各流路の流動抵抗を熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させたので、複数の冷媒分岐流路部における各流路の流動抵抗を熱交換対象空気の速度分布に応じて変化させることによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、熱交換性能を向上できる、冷媒分配器を具備した熱交換器を得ることができる。   According to Embodiment 3 of the present invention, in the configuration in Embodiment 1 or Embodiment 2, a plurality of refrigerant branch flow passage portions 10a, 10c and 10b are provided, and the plurality of refrigerant branch flow passage portions 10a, 10b are provided. , 10c, the cross-sectional shape such as the channel width and the channel height of each channel is changed according to the velocity distribution of the heat exchange target airs 23 and 23a flowing into the heat exchanger body 2, and the plurality of refrigerant branches Since the flow resistance of each flow path in the flow path portions 10a, 10b, 10c is changed according to the velocity distribution of the heat exchange target air 23, 23a flowing into the heat exchanger body 2, the flow resistance in the plurality of refrigerant branch flow path portions By changing the flow resistance of each flow path according to the velocity distribution of the heat exchange target air, the refrigerant distribution function and the refrigerant distribution function to the predetermined flow path portion of the heat exchanger body are accurately achieved with a simple configuration. Can, together with low cost can be realized and space saving, the heat exchanging performance can be improved, it is possible to obtain a heat exchanger provided with the refrigerant distributor.

実施の形態4.
この発明による実施の形態4を図11について説明する。図11は実施の形態4における冷媒分配器4の構成を示す側面図であり、冷媒分岐流路部の流路形態を説明するための図である。
この実施の形態4において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1から実施の形態3までにおける構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 4 FIG.
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 11 is a side view showing the configuration of the refrigerant distributor 4 in the fourth embodiment, and is a view for explaining the flow path configuration of the refrigerant branch flow path section.
In the fourth embodiment, the configuration other than the specific configuration described here has the same configuration contents as those in the first to third embodiments described above, and has the same operation. Is. In the drawings, the same reference numerals indicate the same or corresponding parts.

この実施の形態4は、実施の形態3と同様、熱交換器2に流入する空気23の風速分布がある場合に相当し、クロスフローファンの近くに位置する熱交換器を通過する空気23aの風速が大きい場合を示す。
実施の形態4では、冷媒分岐流路部10a,10dおよび10bが設けられているが、風速の大きな空気23aと熱交換を行う伝熱管18a,18b,18c,18dの所定個所に冷媒を供給する冷媒分岐流路部10dの曲がり角度の総和が、その他の冷媒分岐流路10aの曲がり角度の総和に比べて小さい。たとえば、図9では、冷媒分岐流路部10dの曲がり角度の総和は45+90度=135度であるが、その他の冷媒分岐流路部10の曲がり角度の総和は、315度である。
このため、冷媒分岐流路部10dの流動抵抗は小さくなり、冷媒分岐流路部10dを流れる冷媒流量が増加するので、風速の大きな空気23aが通過する部分に相当する伝熱管18a,18b,18c,18dの所定個所に、冷媒分岐流路部10dにより多くの冷媒を流すことができ、熱交換性能が向上する。
As in the third embodiment, the fourth embodiment corresponds to the case where there is a wind speed distribution of the air 23 flowing into the heat exchanger 2, and the air 23a that passes through the heat exchanger located near the cross flow fan. The case where the wind speed is high is shown.
In the fourth embodiment, the refrigerant branch flow path portions 10a, 10d, and 10b are provided, but the refrigerant is supplied to predetermined portions of the heat transfer tubes 18a, 18b, 18c, and 18d that exchange heat with the air 23a having a high wind speed. The sum total of the bending angles of the refrigerant branch flow path portion 10d is smaller than the sum of the bending angles of the other refrigerant branch flow paths 10a. For example, in FIG. 9, the sum of the bending angles of the refrigerant branch flow path portion 10d is 45 + 90 degrees = 135 degrees, but the total of the bending angles of the other refrigerant branch flow path portions 10 is 315 degrees.
For this reason, the flow resistance of the refrigerant branch passage portion 10d is reduced, and the flow rate of the refrigerant flowing through the refrigerant branch passage portion 10d is increased. Therefore, the heat transfer tubes 18a, 18b, and 18c corresponding to the portion through which the air 23a having a high wind speed passes. , 18d, a large amount of refrigerant can be caused to flow through the refrigerant branch flow path portion 10d, and heat exchange performance is improved.

ここでは、冷媒分岐流路部10dの曲がり角度の総和を、その他の冷媒分岐流路10aの曲がり角度の総和に比べて小さくして、冷媒分岐流路部10a,10b,10dの流動抵抗を調整するものについて示したが、これに実施の形態3で説明した冷媒分岐流路部10cの断面形状の変化による流動抵抗の増減を併用して、冷媒分岐流路部10a,10b,10dの流動抵抗を調整するようにしてもよい。
すなわち、冷媒分岐流路部10dの曲がり角度の総和を、その他の冷媒分岐流路部10a,10bの曲がり角度の総和に比べて小さくするとともに、冷媒分岐流路部10a,10b,10dの流路の断面形状を変化させて流動抵抗を増減し、冷媒分岐流路部10a,10b,10dの流動抵抗を調整することもできる。
Here, the sum of the bending angles of the refrigerant branch flow passage 10d is made smaller than the sum of the bending angles of the other refrigerant branch flow passages 10a to adjust the flow resistance of the refrigerant branch flow passages 10a, 10b, 10d. The flow resistance of the refrigerant branch flow path portions 10a, 10b, and 10d is described in combination with the increase and decrease of the flow resistance caused by the change in the cross-sectional shape of the refrigerant branch flow path portion 10c described in the third embodiment. May be adjusted.
In other words, the sum of the bending angles of the refrigerant branch flow path portion 10d is made smaller than the sum of the bending angles of the other refrigerant branch flow passage portions 10a and 10b, and the flow paths of the refrigerant branch flow passage portions 10a, 10b and 10d. The flow resistance can be adjusted by changing the cross-sectional shape of the refrigerant to adjust the flow resistance of the refrigerant branch flow path portions 10a, 10b, and 10d.

この発明による実施の形態4によれば、実施の形態1または実施の形態2における構成において、前記冷媒分岐流路部10a,10dおよび10bを複数設け、前記複数の冷媒分岐流路部10a,10b,10dにおける各流路の曲がり角度の総和を、熱交換器本体2に流入する速度分布に応じて変化させ、前記複数の冷媒分岐流路部10a,10b,10dにおける各流路の流動抵抗を熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させたので、複数の冷媒分岐流路部における各流路の流動抵抗を熱交換対象空気の速度分布に応じて変化させることによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、熱交換性能を向上できる、冷媒分配器を具備した熱交換器を得ることができる。   According to Embodiment 4 of the present invention, in the configuration of Embodiment 1 or Embodiment 2, a plurality of refrigerant branch flow passage portions 10a, 10d and 10b are provided, and the plurality of refrigerant branch flow passage portions 10a, 10b are provided. , 10d is changed according to the velocity distribution flowing into the heat exchanger body 2, and the flow resistance of each flow path in the plurality of refrigerant branch flow path portions 10a, 10b, 10d is changed. Since the heat exchange target air 23, 23a flowing into the heat exchanger main body 2 is changed according to the velocity distribution of the heat exchange target air 23, the flow resistance of each flow path in the plurality of refrigerant branch flow paths is determined according to the velocity distribution of the heat exchange target air. By changing the function, the distribution function of the refrigerant and the distribution function of the refrigerant to the predetermined flow path part of the heat exchanger body can be accurately performed with a simple configuration, thereby realizing cost reduction and space saving. Together, the heat exchanging performance can be improved, it is possible to obtain a heat exchanger provided with the refrigerant distributor.

実施の形態5.
この発明による実施の形態5を図12について説明する。図12は実施の形態5における冷媒分配器の構成を示す側面図であり、冷媒分岐流路部の流路形態を説明するための図である。
この実施の形態5において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1から実施の形態4までにおける構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 5. FIG.
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 12 is a side view showing the configuration of the refrigerant distributor in the fifth embodiment, and is a view for explaining the flow path configuration of the refrigerant branch flow path section.
In the fifth embodiment, the configuration other than the specific configuration described here has the same configuration contents as those in the first to fourth embodiments described above, and exhibits the same operation. Is. In the drawings, the same reference numerals indicate the same or corresponding parts.

この実施の形態5は、実施の形態3および実施の形態4と同様に、熱交換器に流入する空気23の風速分布がある場合に相当し、ここでは、クロスフローファンの近くに位置する熱交換器を通過する空気23aの風速が大きい場合を示す。
実施の形態5では、冷媒分岐流路部10a,10eおよび10bを設けているが、冷媒分岐流路部10eについて、各流路の長さ、および各流路の曲げ角度の総和は、その他の冷媒分岐流路部10よりも小さい。
このため、冷媒分岐流路部10eの流動抵抗は小さくなり、冷媒分岐流路部10eを流れる冷媒流量が増加するため、風速の大きな空気23aが通過する部分に、多くの冷媒を流すことができ、熱交換性能が向上する。
The fifth embodiment corresponds to the case where there is a wind speed distribution of the air 23 flowing into the heat exchanger, as in the third and fourth embodiments. Here, the heat located near the cross flow fan is used. The case where the wind speed of the air 23a which passes an exchanger is large is shown.
In the fifth embodiment, the refrigerant branch flow path portions 10a, 10e, and 10b are provided. However, with respect to the refrigerant branch flow path portion 10e, the length of each flow path and the total bending angle of each flow path are other than It is smaller than the refrigerant branch flow path portion 10.
For this reason, the flow resistance of the refrigerant branch flow path portion 10e is reduced, and the flow rate of the refrigerant flowing through the refrigerant branch flow path portion 10e is increased. Therefore, a large amount of refrigerant can flow through the portion through which the air 23a having a high wind speed passes. , Heat exchange performance is improved.

ここでは、冷媒分岐流路部10dについて、各流路の長さ、および各流路の曲がり角度の総和を、その他の冷媒分岐流路10a,10bよりも小さくして、冷媒分岐流路部10a,10b,10eの流動抵抗を調整するものについて示したが、これに実施の形態3で説明した冷媒分岐流路部10cの断面形状の変化による流動抵抗の増減を併用して、冷媒分岐流路部10a,10b,10eの流動抵抗を調整するようにしてもよい。
すなわち、冷媒分岐流路部10eについて、各流路の長さ、および各流路の曲がり角度の総和を、その他の冷媒分岐流路部10aよりも小さくするとともに、冷媒分岐流路部10a,10b,10eの流路の断面形状を変化させて流動抵抗を増減し、冷媒分岐流路部10a,10eの流動抵抗を調整することもできる。
Here, with respect to the refrigerant branch flow path portion 10d, the length of each flow path and the sum of the bending angles of the respective flow paths are made smaller than those of the other refrigerant branch flow paths 10a and 10b, and the refrigerant branch flow path portion 10a. , 10b, 10e for adjusting the flow resistance, the increase and decrease of the flow resistance due to the change in the cross-sectional shape of the refrigerant branch flow path portion 10c described in the third embodiment is used in combination with this. You may make it adjust the flow resistance of the part 10a, 10b, 10e.
That is, with respect to the refrigerant branch flow path portion 10e, the total length of each flow path and the bending angle of each flow path is made smaller than those of the other refrigerant branch flow path portions 10a, and the refrigerant branch flow path portions 10a and 10b. , 10e, the flow resistance can be increased or decreased by changing the cross-sectional shape of the flow path, and the flow resistance of the refrigerant branch flow path portions 10a, 10e can be adjusted.

なお、ここでは、冷媒分岐流路部10eの流路長さと曲げ角度の総和の両方を同時に小さくした例を示したが、流路長さのみを小さくした場合であっても、同様の効果を有することは明らかである。
すなわち、冷媒分岐流路部10eについての流路長さのみを、その他の冷媒分岐流路10aよりも小さくして、冷媒分岐流路部10a,10b,10eの流動抵抗を調整するようにしてもよい。
そして、冷媒分岐流路部10eについて、各流路の長さを、その他の冷媒分岐流路部10aよりも小さくするとともに、冷媒分岐流路部10a,10b,10eの流路の断面形状を変化させて流動抵抗を増減し、冷媒分岐流路部10a,10b,10eの流動抵抗を調整することもできる。
Here, an example is shown in which both the flow path length and the total bending angle of the refrigerant branch flow path portion 10e are simultaneously reduced, but the same effect can be obtained even when only the flow path length is reduced. It is clear to have.
That is, only the flow path length of the refrigerant branch flow path portion 10e is made smaller than that of the other refrigerant branch flow paths 10a to adjust the flow resistance of the refrigerant branch flow path portions 10a, 10b, and 10e. Good.
And about the refrigerant | coolant branch flow path part 10e, while making the length of each flow path smaller than the other refrigerant | coolant branch flow path part 10a, the cross-sectional shape of the flow path of the refrigerant | coolant branch flow path parts 10a, 10b, 10e is changed. Thus, the flow resistance can be increased or decreased to adjust the flow resistance of the refrigerant branch flow path portions 10a, 10b, and 10e.

この実施の形態5では、冷媒分岐流路部10a,10b,10eの各流路の長さ、および各流路の断面形状、および各流路の曲げ角度の総和の少なくともいずれかを、熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させたことにより、熱交換器本体2に流入する熱交換対象空気23,23aの速度分布にあわせて、冷媒分岐流路部10a,10b,10eの各流路の長さ、および各流路の断面形状、および各流路の曲げ角度の総和の少なくともいずれかを調整して、冷媒分岐流路部10a,10b,10eの流動抵抗を調整したので、各冷媒分岐流路部の流動抵抗を制御することができ、熱交換器の伝熱性能を向上することができる。   In the fifth embodiment, at least one of the length of each flow path of the refrigerant branch flow path portions 10a, 10b, and 10e, the cross-sectional shape of each flow path, and the total bending angle of each flow path is subjected to heat exchange. By changing according to the speed distribution of the heat exchange target airs 23 and 23a flowing into the heat exchanger body 2, the refrigerant branching flow is matched to the speed distribution of the heat exchange target airs 23 and 23a flowing into the heat exchanger main body 2 By adjusting at least one of the length of each flow path of the path portions 10a, 10b, and 10e, the cross-sectional shape of each flow path, and the total bending angle of each flow path, the refrigerant branch flow path portions 10a, 10b, Since the flow resistance of 10e is adjusted, the flow resistance of each refrigerant branch channel part can be controlled, and the heat transfer performance of the heat exchanger can be improved.

この発明による実施の形態5によれば、実施の形態1または実施の形態2における構成において、前記冷媒分岐流路部10a,10eおよび10bを複数設け、前記複数の冷媒分岐流路部10a,10b,10eにおける各流路の流路長さを、熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させ、前記複数の冷媒分岐流路部10a,10dにおける各流路の流動抵抗を熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させたので、複数の冷媒分岐流路部における各流路の流動抵抗を熱交換対象空気の速度分布に応じて変化させることによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、熱交換性能を向上できる、冷媒分配器を具備した熱交換器を得ることができる。   According to Embodiment 5 of the present invention, in the configuration in Embodiment 1 or Embodiment 2, a plurality of refrigerant branch flow passage portions 10a, 10e and 10b are provided, and the plurality of refrigerant branch flow passage portions 10a, 10b are provided. , 10e, the flow path length of each flow path is changed according to the velocity distribution of the heat exchange target air 23, 23a flowing into the heat exchanger body 2, and each of the plurality of refrigerant branch flow path portions 10a, 10d is changed. Since the flow resistance of the flow path is changed according to the velocity distribution of the heat exchange target airs 23 and 23a flowing into the heat exchanger body 2, the flow resistance of each flow path in the plurality of refrigerant branch flow path portions is subject to heat exchange. By changing according to the velocity distribution of air, the distribution function of the refrigerant and the distribution function of the refrigerant to the predetermined flow path part of the heat exchanger body can be accurately performed with a simple configuration, thereby reducing costs and saving space. Together can be realized, the heat exchanging performance can be improved, it is possible to obtain a heat exchanger provided with the refrigerant distributor.

また、この発明による実施の形態5によれば、実施の形態1または実施の形態2における構成において、前記冷媒分岐流路部10a,10eおよび10bを複数設け、前記複数の冷媒分岐流路部10a,10b,10eにおける各流路の流路長さと曲がり角度の総和とを、熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させ、前記複数の冷媒分岐流路部10a,10b,10eにおける各流路の流動抵抗を熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させたので、複数の冷媒分岐流路部における各流路の流動抵抗を熱交換対象空気の速度分布に応じて変化させることによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、熱交換性能を向上できる、冷媒分配器を具備した熱交換器を得ることができる。   Further, according to Embodiment 5 of the present invention, in the configuration in Embodiment 1 or Embodiment 2, a plurality of refrigerant branch flow passage portions 10a, 10e and 10b are provided, and the plurality of refrigerant branch flow passage portions 10a. , 10b, and 10e, the total length of the flow paths and the sum of the bending angles are changed according to the velocity distribution of the heat exchange target airs 23 and 23a flowing into the heat exchanger body 2, and the plurality of refrigerant branch flows Since the flow resistance of each flow path in the path portions 10a, 10b, 10e is changed according to the velocity distribution of the heat exchange target air 23, 23a flowing into the heat exchanger main body 2, each flow rate in each of the plurality of refrigerant branch flow path portions is changed. By changing the flow resistance of the flow path according to the velocity distribution of the heat exchange target air, the refrigerant distribution function and the refrigerant distribution function to the predetermined flow path portion of the heat exchanger body can be accurately achieved with a simple configuration. Execution can, it is possible to realize low cost and space saving, the heat exchanging performance can be improved, it is possible to obtain a heat exchanger provided with the refrigerant distributor.

さらに、この発明による実施の形態5によれば、実施の形態1または実施の形態2における構成において、前記冷媒分岐流路部10a,10eおよび10bを複数設け、前記複数の冷媒分岐流路部10a,10b,10eにおける各流路の長さ、および各流路の断面形状、ならびに各流路の曲げ角度の総和の少なくともいずれかを、熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させ、前記複数の冷媒分岐流路部10a,10eにおける各流路の流動抵抗を熱交換器本体2に流入する熱交換対象空気23,23aの速度分布に応じて変化させたので、複数の冷媒分岐流路部における各流路の流動抵抗を熱交換対象空気の速度分布に応じて変化させることによって、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、熱交換性能を向上できる、冷媒分配器を具備した熱交換器を得ることができる。   Furthermore, according to Embodiment 5 of the present invention, in the configuration in Embodiment 1 or Embodiment 2, a plurality of refrigerant branch flow passage portions 10a, 10e and 10b are provided, and the plurality of refrigerant branch flow passage portions 10a. , 10b, 10e at least one of the length of each flow path, the cross-sectional shape of each flow path, and the total bending angle of each flow path, the heat exchange target air 23, 23a flowing into the heat exchanger body 2 The flow resistance of each flow path in the plurality of refrigerant branch flow path portions 10a and 10e is changed according to the speed distribution of the heat exchange target air 23 and 23a flowing into the heat exchanger body 2. Therefore, by changing the flow resistance of each flow path in the plurality of refrigerant branch flow paths according to the velocity distribution of the heat exchange target air, the refrigerant distribution function and heat exchange can be achieved with a simple configuration. To obtain a heat exchanger equipped with a refrigerant distributor that can accurately perform a refrigerant distribution function to a predetermined flow path portion of the vessel body, achieve cost reduction and space saving, and improve heat exchange performance Can do.

実施の形態6.
この発明による実施の形態6を図13について説明する。図13は実施の形態6における冷媒分配器の構成を示す側面図である。
この実施の形態6において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1から実施の形態5までにおける構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 6 FIG.
A sixth embodiment of the present invention will be described with reference to FIG. FIG. 13 is a side view showing the configuration of the refrigerant distributor in the sixth embodiment.
In the sixth embodiment, the configuration other than the specific configuration described here has the same configuration contents as those in the first to fifth embodiments described above, and exhibits the same operation. Is. In the drawings, the same reference numerals indicate the same or corresponding parts.

この実施の形態6では、熱交換器本体2の伝熱管18a,18b,18c,18dに円管ではなく、扁平管25を用いている。扁平管25には、管内に複数の細穴が設けられている。
冷媒分配器4を熱交換器に取り付ける場合、冷媒分配器4を流れる冷媒の動作は実施の形態2と同様である。ただし、冷媒は、扁平管25を通過するときに、管内に設けられた複数の細穴に分かれて流れる。扁平管25では、管内に設けた複数の細穴により、管内の表面積が増加するため、管内の熱伝達率を向上することができる。また、管の外形を扁平にすることで、空気がフィンを通過するときの流動抵抗が減少するため、クロスフローファンの入力を低減できる。
扁平管25を用いた熱交換器を製作する場合、たとえば、熱交換器本体2のフィンと扁平管を連続熱処理炉などによりろう付けするため、フィンと扁平管25をろう付けするときに、アンダープレート6A,6Bと、センタープレート7A,7Bと、オーバープレート8A,8Bの3層のろう付けと、冷媒分配器4と扁平管25のろう付けを同時に実施することができ、製造コストを低減できる。
なお、ここでは、伝熱管として扁平管を示したが、楕円管や細管(たとえば内径3mm以下)であっても同様の効果を有する。
In the sixth embodiment, a flat tube 25 is used instead of a circular tube for the heat transfer tubes 18a, 18b, 18c, 18d of the heat exchanger body 2. The flat tube 25 is provided with a plurality of fine holes in the tube.
When the refrigerant distributor 4 is attached to the heat exchanger, the operation of the refrigerant flowing through the refrigerant distributor 4 is the same as in the second embodiment. However, when the refrigerant passes through the flat tube 25, it flows in a plurality of fine holes provided in the tube. In the flat tube 25, the surface area in the tube is increased due to the plurality of fine holes provided in the tube, so that the heat transfer coefficient in the tube can be improved. Further, by flattening the outer shape of the tube, the flow resistance when air passes through the fins is reduced, so that the input of the cross flow fan can be reduced.
When a heat exchanger using the flat tube 25 is manufactured, for example, the fin and the flat tube of the heat exchanger main body 2 are brazed by a continuous heat treatment furnace or the like. The brazing of the three layers of the plates 6A and 6B, the center plates 7A and 7B, and the over plates 8A and 8B, and the brazing of the refrigerant distributor 4 and the flat tube 25 can be performed at the same time, thereby reducing the manufacturing cost. .
In addition, although the flat tube was shown here as a heat exchanger tube, even if it is an elliptical tube or a thin tube (for example, 3 mm or less in internal diameter), it has the same effect.

この発明による実施の形態6によれば、実施の形態1から実施の形態5までのいずれかの構成において、前記冷媒分配器4から冷媒を供給される熱交換器本体2の伝熱管18a,18b,18c,18d(図3,図4など参照)として内部に細孔を有する扁平管25や楕円管(図示せず)などの非円形管を用いたので、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、製造コストを低減できる、冷媒分配器を具備した熱交換器を得ることができる。   According to Embodiment 6 of the present invention, in any configuration from Embodiment 1 to Embodiment 5, the heat transfer tubes 18a and 18b of the heat exchanger main body 2 to which the refrigerant is supplied from the refrigerant distributor 4 are provided. , 18c, 18d (see FIGS. 3 and 4, etc.), a non-circular tube such as a flat tube 25 or an elliptic tube (not shown) having pores inside is used. Obtaining a heat exchanger equipped with a refrigerant distributor that can accurately perform the refrigerant distribution function to the predetermined flow path portion of the heat exchanger main body, realize cost reduction and space saving, and reduce manufacturing costs. be able to.

また、この発明による実施の形態6によれば、実施の形態1から実施の形態5までのいずれかの構成において、前記冷媒分配器4から冷媒を供給される熱交換器本体2の伝熱管18a,18b,18c,18d(図3,図4など参照)として内径が3mm以下の細管を用いたので、簡潔な構成により冷媒の分配機能および熱交換器本体の所定流路部分への冷媒の流通機能を的確に遂行でき、低コスト化と省スペース化を実現できるとともに、製造コストを低減できる、冷媒分配器を具備した熱交換器を得ることができる。   According to Embodiment 6 of the present invention, in any configuration from Embodiment 1 to Embodiment 5, the heat transfer tube 18a of the heat exchanger body 2 to which the refrigerant is supplied from the refrigerant distributor 4 is provided. , 18b, 18c, 18d (refer to FIGS. 3, 4 and the like), a narrow tube having an inner diameter of 3 mm or less is used, so that the refrigerant distribution function and the circulation of the refrigerant to a predetermined flow path portion of the heat exchanger body can be achieved with a simple configuration. It is possible to obtain a heat exchanger equipped with a refrigerant distributor that can accurately perform its functions, realize cost reduction and space saving, and reduce manufacturing costs.

この発明による実施の形態1における冷媒分配器を具備した熱交換器を空調用室内機1に設置したときの様子を説明するための全体構成を示す斜視図。The perspective view which shows the whole structure for demonstrating a mode when the heat exchanger provided with the refrigerant distributor in Embodiment 1 by this invention is installed in the indoor unit 1 for an air conditioning. この発明による実施の形態1における冷媒分配器の構成を示す分解斜視図。1 is an exploded perspective view showing a configuration of a refrigerant distributor according to Embodiment 1 of the present invention. この発明による実施の形態1における冷媒分配器を流れる冷媒の動作を説明するための側面図。The side view for demonstrating operation | movement of the refrigerant | coolant which flows through the refrigerant distributor in Embodiment 1 by this invention. この発明による実施の形態1における冷媒分配器のIV−IV線に沿った拡大断面図。The expanded sectional view along the IV-IV line of the refrigerant distributor in Embodiment 1 by this invention. この発明による実施の形態1における変形例を説明するための冷媒分配器の構成を示す分解斜視図。The disassembled perspective view which shows the structure of the refrigerant distributor for demonstrating the modification in Embodiment 1 by this invention. この発明による実施の形態1における他の変形例を説明するための冷媒分配器の構成を示す分解斜視図。The disassembled perspective view which shows the structure of the refrigerant distributor for demonstrating the other modification in Embodiment 1 by this invention. この発明による実施の形態1における更に他の変形例を説明するための冷媒分配器の構成を示す分解斜視図。The disassembled perspective view which shows the structure of the refrigerant distributor for demonstrating the further another modification in Embodiment 1 by this invention. この発明による実施の形態2における冷媒分配器の構成を示す側面図。The side view which shows the structure of the refrigerant distributor in Embodiment 2 by this invention. この発明による実施の形態2における冷媒分配器を具備した熱交換器を空調用室内機1に設置したときの様子を説明するための全体構成を示す斜視図。The perspective view which shows the whole structure for demonstrating a mode when the heat exchanger provided with the refrigerant distributor in Embodiment 2 by this invention is installed in the indoor unit 1 for an air conditioning. この発明による実施の形態3における冷媒分配器の構成を示す側面図。The side view which shows the structure of the refrigerant distributor in Embodiment 3 by this invention. この発明による実施の形態4における冷媒分配器の構成を示す側面図。The side view which shows the structure of the refrigerant distributor in Embodiment 4 by this invention. この発明による実施の形態5における冷媒分配器の構成を示す側面図。The side view which shows the structure of the refrigerant distributor in Embodiment 5 by this invention. この発明による実施の形態6における冷媒分配器の構成を示す側面図。The side view which shows the structure of the refrigerant distributor in Embodiment 6 by this invention.

符号の説明Explanation of symbols

1 空調用室内機、2 熱交換器本体、3 クロスフローファン、4 冷媒分配器、4A,4B 冷媒分配器ユニット、6A,6B アンダープレート、7A,7B センタープレート、8A,8B オーバープレート、9 冷媒分流部、10a,10b 冷媒分岐流路部、11 熱交換器流入部、12 Uベンド部、13a,13b 伝熱管接続部、14 切り欠き、16 流入穴、17 伝熱管出口、18a,18b 伝熱管、19 冷媒、21 冷媒ガス集合部、22 流出穴、23 熱交換対象空気。
DESCRIPTION OF SYMBOLS 1 Air conditioning indoor unit, 2 Heat exchanger main body, 3 Cross flow fan, 4 Refrigerant distributor, 4A, 4B Refrigerant distributor unit, 6A, 6B under plate, 7A, 7B Center plate, 8A, 8B over plate, 9 Refrigerant Dividing part, 10a, 10b Refrigerant branch channel part, 11 Heat exchanger inflow part, 12 U bend part, 13a, 13b Heat transfer pipe connection part, 14 Notch, 16 Inlet hole, 17 Heat transfer pipe outlet, 18a, 18b Heat transfer pipe , 19 Refrigerant, 21 Refrigerant gas collecting part, 22 Outflow hole, 23 Heat exchange target air.

Claims (19)

冷媒流路を有する熱交換器本体と、前記熱交換器本体における複数個所の所定流路部分へ冷媒を分配して供給する冷媒分配器とを備えた熱交換器において、冷媒流入口からの冷媒を分流する冷媒分流部および前記冷媒分流部により分流された冷媒を前記熱交換器本体における複数個所の所定流路部分へ所定流量で供給するための冷媒絞り機能を持つ冷媒分岐流路部を有するプレート状分配部材を設け、前記プレート状分配部材を含む互いに重合される複数のプレート状部材で前記冷媒分配器を構成したことを特徴とする熱交換器。   A heat exchanger comprising: a heat exchanger body having a refrigerant flow path; and a refrigerant distributor that distributes and supplies the refrigerant to a plurality of predetermined flow path portions in the heat exchanger body. And a refrigerant branch flow passage portion having a refrigerant throttling function for supplying the refrigerant diverted by the refrigerant flow division portion to a plurality of predetermined flow passage portions in the heat exchanger main body at a predetermined flow rate. A heat exchanger characterized in that a plate-like distribution member is provided, and the refrigerant distributor is constituted by a plurality of plate-like members that are superposed on each other including the plate-like distribution member. 前記熱交換器本体における流路部分の所定個所を互いに連通するための連通流路を前記プレート状分配部材に設けたことを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein a communication flow path is provided in the plate-like distribution member for communicating predetermined portions of the flow path portion in the heat exchanger main body with each other. 前記プレート状分配部材と重合して配設され前記プレート状分配部材における所定流路部分を前記熱交換器本体の所定流路部分に連通する複数の開口接続部を有するプレート状連接部材を設けたことを特徴とする請求項1または請求項2に記載の熱交換器。   A plate-like connecting member having a plurality of opening connecting portions arranged to overlap with the plate-like distribution member and communicating a predetermined flow path portion of the plate-like distribution member to a predetermined flow path portion of the heat exchanger main body is provided. The heat exchanger according to claim 1 or 2, characterized by the above. 一面を前記熱交換器本体側に配設される前記プレート状分配部材の他面に重合されるプレート状被着部材を備え、前記プレート状被着部材に前記プレート状分配部材の冷媒流入口に対応する冷媒導入口を設けたことを特徴とする請求項1から請求項3までのいずれかに記載の熱交換器。   A plate-like adherence member superposed on the other surface of the plate-like distribution member disposed on the heat exchanger main body side, the plate-like adherence member having a refrigerant inlet of the plate-like distribution member; The heat exchanger according to any one of claims 1 to 3, wherein a corresponding refrigerant inlet is provided. 前記プレート状分配部材を含む互いに重合される複数のプレート状部材で前記冷媒分配器を構成するとともに、前記複数のプレート状部材の少なくともいずれかに、ろう材を表面に被着したシート部材を使用したことを特徴とする請求項1から請求項4までのいずれかに記載の熱交換器。   The refrigerant distributor is composed of a plurality of plate-like members that are superposed on each other including the plate-like distribution member, and at least one of the plurality of plate-like members uses a sheet member having a brazing material attached to the surface thereof The heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is characterized. 冷媒流入口からの冷媒を分流する冷媒分流部および前記冷媒分流部により分流された冷媒を前記熱交換器本体における複数個所の所定流路部分へ所定流量で供給するための冷媒分岐流路部を有する第1のプレート状分配部材と、冷媒流入口からの冷媒を分流する冷媒分流部および前記冷媒分流部により分流された冷媒を前記熱交換器本体における複数個所の所定流路部分へ所定流量で供給するための冷媒分岐流路部を有する第2のプレート状分配部材とを設け、前記第1のプレート状分配部材と前記第2のプレート状分配部材とを同一面において延在させるとともに、前記第1のプレート状分配部材の延在方向と前記第2のプレート状分配部材の延在方向とが所定の角度を持つように前記第1のプレート状分配部材と前記第2のプレート状分配部材とを配設したことを特徴とする請求項1から請求項5までのいずれかに記載の熱交換器。   A refrigerant branching portion for diverting the refrigerant from the refrigerant inlet, and a refrigerant branch passage portion for supplying the refrigerant diverted by the refrigerant branching portion to predetermined passage portions at a plurality of locations in the heat exchanger main body at a predetermined flow rate. A first plate-like distribution member having a refrigerant, a refrigerant distribution portion for dividing the refrigerant from the refrigerant inlet, and the refrigerant divided by the refrigerant distribution portion to a plurality of predetermined flow path portions in the heat exchanger main body at a predetermined flow rate. A second plate-like distribution member having a refrigerant branch channel for supplying, extending the first plate-like distribution member and the second plate-like distribution member in the same plane, and The first plate-shaped distribution member and the second plate-shaped segment are arranged such that the extending direction of the first plate-shaped distribution member and the extending direction of the second plate-shaped distribution member have a predetermined angle. A heat exchanger according to any one of claims 1 to 5, characterized in that disposed between members. 熱交換器本体に通風するためのクロスフローファンの軸線に沿って配設される熱交換器本体の端面に沿って前記プレート状分配部材を配設するとともに、前記プレート状分配部材の端縁部分を前記クロスフローファンの周面またはクロスフローファンを回転させるモータに対向するようにしたことを特徴とする請求項1から請求項6までのいずれかに記載の熱交換器。   The plate-like distribution member is arranged along the end surface of the heat exchanger main body arranged along the axis of the cross flow fan for ventilating the heat exchanger main body, and the edge portion of the plate-like distribution member The heat exchanger according to any one of claims 1 to 6, wherein the heat exchanger is opposed to a circumferential surface of the crossflow fan or a motor that rotates the crossflow fan. 前記プレート状分配部材を含む互いに重合される複数のプレート状部材で前記冷媒分配器を構成するとともに、前記複数のプレート状部材の少なくともいずれかにおける前記クロスフローファンの周面またはクロスフローファンを回転させるモータへの対向部分に切り欠きを設けたことを特徴とする請求項7に記載の熱交換器。   The refrigerant distributor is constituted by a plurality of plate-like members that are superposed on each other including the plate-like distribution member, and the circumferential surface of the cross-flow fan or the cross-flow fan in at least one of the plurality of plate-like members is rotated. The heat exchanger according to claim 7, wherein a notch is provided in a portion facing the motor to be driven. 前記冷媒流入穴の直径を3mm以下としたことを特徴とする請求項1から請求項8までのいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 8, wherein a diameter of the refrigerant inflow hole is 3 mm or less. 前記プレート状分配部材を含む互いに重合される複数のプレート状部材で前記冷媒分配器を構成するとともに、前記冷媒分岐流路部を前記プレート状分配部材の隣接して重合するプレート状部材との重合面に設け、前記隣接して重合するプレート状部材の接合により前記プレート状分配部材における前記冷媒分岐流路部の流路の深さ方向について寸法を規制し、前記冷媒分岐流路部の流路の深さを設定するようにしたことを特徴とする請求項3に記載の熱交換器。   The refrigerant distributor is constituted by a plurality of plate-like members that are superposed on each other including the plate-like distribution member, and the refrigerant branch channel portion is superposed on the plate-like member that is superposed adjacent to the plate-like distribution member. The size of the flow path of the refrigerant branch flow path portion in the plate-like distribution member is regulated by joining the adjacent plate-shaped members provided on the surface, and the flow path of the refrigerant branch flow path portion The heat exchanger according to claim 3, wherein the depth is set. それぞれ冷媒分岐流路部を有するプレート状分配部材を設けた複数の冷媒分配器ユニットにより構成される冷媒分配器を備え、各冷媒分配器ユニットにおける冷媒分岐流路部の数を等しくしたことを特徴とする請求項1から請求項10までのいずれかに記載の熱交換器。   A refrigerant distributor comprising a plurality of refrigerant distributor units each provided with a plate-like distribution member having a refrigerant branch channel portion is provided, and the number of refrigerant branch channel portions in each refrigerant distributor unit is equal. The heat exchanger according to any one of claims 1 to 10. 複数設けられた前記冷媒分岐流路部における各流路の長さ、および各流路の断面形状、ならびに各流路の曲げ角度の総和を等しくしたことを特徴とする請求項1から請求項11までのいずれかに記載の熱交換器。   12. The length of each flow path, the cross-sectional shape of each flow path, and the total sum of the bending angles of each flow path in the plurality of refrigerant branch flow path portions provided are equalized. The heat exchanger as described in any of the above. 複数設けられた前記冷媒分岐流路部における各流路の長さ、および各流路の断面形状、ならびに各流路の曲げ角度の総和の少なくともいずれかを、前記熱交換器本体に流入する熱交換対象空気の速度分布に応じて変化させることを特徴とする請求項1から請求項11までのいずれかに記載の熱交換器。   The heat flowing into the heat exchanger main body is at least one of the length of each flow path in the plurality of refrigerant branch flow path sections provided, the cross-sectional shape of each flow path, and the total bending angle of each flow path. The heat exchanger according to any one of claims 1 to 11, wherein the heat exchanger is changed according to a velocity distribution of air to be exchanged. 前記冷媒分岐流路部により分配されて熱交換器本体に供給され熱交換器本体から流出する冷媒ガスを集合するための冷媒ガス合流部を前記冷媒分配器を構成する前記プレート状分配部材に設けたことを特徴とする請求項1から請求項13までのいずれかに記載の熱交換器。   Provided in the plate-like distribution member that constitutes the refrigerant distributor is a refrigerant gas merging portion for collecting refrigerant gas that is distributed by the refrigerant branch flow path portion and supplied to the heat exchanger main body and flows out of the heat exchanger main body. The heat exchanger according to any one of claims 1 to 13, wherein the heat exchanger is provided. 互いに重合されるプレート状分配部材を含む複数のプレート状部材で前記冷媒分配器を構成するとともに、冷媒ガスを集合するための冷媒ガス合流部を、前記プレート状分配部材とは別のプレート状部材に設けたことを特徴とする請求項1から請求項13までのいずれかに記載の熱交換器。   The refrigerant distributor is constituted by a plurality of plate-like members including plate-like distribution members that are superposed on each other, and a refrigerant gas merging portion for collecting the refrigerant gas is separated from the plate-like distribution member. The heat exchanger according to claim 1, wherein the heat exchanger is provided in the heat exchanger. 冷媒流入口からの冷媒を分流する冷媒分流部および前記冷媒分流部により分流された冷媒を前記熱交換器本体における複数個所の所定流路部分へ所定流量で供給するための冷媒絞り機能を持つ冷媒分岐流路部を有するプレート状分配部材と、前記プレート状分配部材と重合して配設され前記プレート状分配部材における所定流路部分を前記熱交換器本体の所定流路部分に連通する複数の開口接続部を有するプレート状連接部材と、一面を前記熱交換器本体側に配設される前記プレート状分配部材の他面に重合されるプレート状連通部材と、一面を前記熱交換器本体側に配設される前記プレート状連通部材の他面に重合され前記プレート状連接部材およびプレート状分配部材ならびにプレート状連通部材に設けられた冷媒連通口を介して前記熱交換器本体の複数個所からの冷媒出口と連通する合流部が設けられたプレート状合流部材と、一面を前記熱交換器本体側に配設される前記プレート状合流部材の他面に重合されるプレート状被着部材を備え、前記プレート状被着部材に前記プレート状分配部材の冷媒流入口に前記プレート状合流部材および前記プレート状連通部材に設けられた冷媒連通口を介して連通する冷媒導入口を設けるとともに、前記プレート状合流部材の合流部に連通する冷媒流出口を設けたことを特徴とする請求項15に記載の熱交換器。   A refrigerant having a refrigerant throttling function for supplying a refrigerant at a predetermined flow rate to a plurality of predetermined flow path portions in the heat exchanger main body, a refrigerant distribution part for dividing the refrigerant from the refrigerant inlet, and the refrigerant divided by the refrigerant distribution part A plate-like distribution member having a branch flow channel portion; and a plurality of plate-shaped distribution members that are arranged to overlap with the plate-shaped distribution member and communicate with a predetermined flow channel portion of the plate-shaped distribution member to a predetermined flow channel portion of the heat exchanger body. A plate-like connecting member having an opening connection portion, a plate-like communicating member superposed on the other surface of the plate-like distribution member disposed on one side of the heat exchanger main body, and one surface of the heat exchanger main body side The plate-like connecting member disposed on the other side of the plate-like connecting member is superposed on the plate-like connecting member, the plate-like distributing member, and the refrigerant communication port provided in the plate-like connecting member. A plate-like joining member provided with a joining portion communicating with refrigerant outlets from a plurality of places on the exchanger body, and one surface is polymerized on the other surface of the plate-like joining member disposed on the heat exchanger body side. Refrigerant introduction comprising a plate-like adherent member, wherein the plate-like adherent member communicates with a refrigerant inlet of the plate-like distribution member via a refrigerant communication port provided in the plate-like joining member and the plate-like communicating member. The heat exchanger according to claim 15, wherein a refrigerant outlet that communicates with a junction of the plate-like junction member is provided along with an opening. 冷媒分配器を構成する前記プレート状部材とは別に、冷媒ガス合流部を具備したことを特徴とする請求項1から請求項13までのいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 13, further comprising a refrigerant gas merging portion separately from the plate-like member constituting the refrigerant distributor. 前記冷媒分配器から冷媒を供給される熱交換器本体の伝熱管として内部に細孔を有する非円形管を用いたことを特徴とする請求項1から請求項17までのいずれかに記載の熱交換器。   The heat according to any one of claims 1 to 17, wherein a non-circular tube having pores therein is used as a heat transfer tube of a heat exchanger body to which refrigerant is supplied from the refrigerant distributor. Exchanger. 前記冷媒分配器から冷媒を供給される熱交換器本体の伝熱管として内径が3mm以下の細管を用いたことを特徴とする請求項1から請求項17までのいずれかに記載の熱交換器。
The heat exchanger according to any one of claims 1 to 17, wherein a thin tube having an inner diameter of 3 mm or less is used as a heat transfer tube of a heat exchanger body to which a refrigerant is supplied from the refrigerant distributor.
JP2004310422A 2004-10-26 2004-10-26 Heat exchanger Pending JP2006125652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310422A JP2006125652A (en) 2004-10-26 2004-10-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310422A JP2006125652A (en) 2004-10-26 2004-10-26 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2006125652A true JP2006125652A (en) 2006-05-18
JP2006125652A5 JP2006125652A5 (en) 2007-04-26

Family

ID=36720566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310422A Pending JP2006125652A (en) 2004-10-26 2004-10-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2006125652A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261517A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Fin tube-type heat exchanger and air conditioner using the same
JP2009150574A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Distributor, and heat exchanger and air conditioner loading the same
JP2009210225A (en) * 2008-03-06 2009-09-17 Panasonic Corp Refrigerant divider and heat exchanger comprising the same
JP2010190533A (en) * 2009-02-20 2010-09-02 Hitachi Appliances Inc Indoor unit of air conditioner, and heat exchanger for the same
JP2013185757A (en) * 2012-03-08 2013-09-19 Mitsubishi Electric Corp Refrigerant distributor, and heat pump device
WO2014181400A1 (en) * 2013-05-08 2014-11-13 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2014185391A1 (en) * 2013-05-15 2014-11-20 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
JP2015102318A (en) * 2013-11-28 2015-06-04 三菱電機株式会社 Plate laminate
KR20170074991A (en) * 2014-11-04 2017-06-30 미쓰비시덴키 가부시키가이샤 Layered header, heat exchanger, and air-conditioning device
US9976820B2 (en) 2013-05-15 2018-05-22 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
US10288363B2 (en) 2013-09-26 2019-05-14 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261517A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Fin tube-type heat exchanger and air conditioner using the same
JP2009150574A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Distributor, and heat exchanger and air conditioner loading the same
JP2009210225A (en) * 2008-03-06 2009-09-17 Panasonic Corp Refrigerant divider and heat exchanger comprising the same
JP2010190533A (en) * 2009-02-20 2010-09-02 Hitachi Appliances Inc Indoor unit of air conditioner, and heat exchanger for the same
JP2013185757A (en) * 2012-03-08 2013-09-19 Mitsubishi Electric Corp Refrigerant distributor, and heat pump device
US9791189B2 (en) 2013-05-08 2017-10-17 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
CN105190202A (en) * 2013-05-08 2015-12-23 三菱电机株式会社 Heat exchanger and refrigeration cycle device
WO2014181400A1 (en) * 2013-05-08 2014-11-13 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2014181400A1 (en) * 2013-05-08 2017-02-23 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
AU2014266400B2 (en) * 2013-05-15 2016-05-26 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
US9976820B2 (en) 2013-05-15 2018-05-22 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
JP6012857B2 (en) * 2013-05-15 2016-10-25 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
CN105164491A (en) * 2013-05-15 2015-12-16 三菱电机株式会社 Laminated header, heat exchanger, and air conditioner
JPWO2014185391A1 (en) * 2013-05-15 2017-02-23 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
EP2998683A4 (en) * 2013-05-15 2017-03-22 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air conditioner
CN105164491B (en) * 2013-05-15 2017-05-17 三菱电机株式会社 Laminated header, heat exchanger, and air conditioner
US10077953B2 (en) 2013-05-15 2018-09-18 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
KR101770493B1 (en) * 2013-05-15 2017-08-22 미쓰비시덴키 가부시키가이샤 Laminated header, heat exchanger, and air conditioner
WO2014185391A1 (en) * 2013-05-15 2014-11-20 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
US10288363B2 (en) 2013-09-26 2019-05-14 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
JP2015102318A (en) * 2013-11-28 2015-06-04 三菱電機株式会社 Plate laminate
US10060685B2 (en) 2014-11-04 2018-08-28 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
KR20170074991A (en) * 2014-11-04 2017-06-30 미쓰비시덴키 가부시키가이샤 Layered header, heat exchanger, and air-conditioning device
AU2014410872B2 (en) * 2014-11-04 2018-09-20 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
KR102031021B1 (en) 2014-11-04 2019-10-11 미쓰비시덴키 가부시키가이샤 Layered header, heat exchanger, and air-conditioning device

Similar Documents

Publication Publication Date Title
JP4127859B2 (en) Plate heat exchanger for three heat exchange fluids
US5193611A (en) Heat exchangers
CN110073154B (en) Distributor, heat exchanger, and refrigeration cycle device
EP2420791A2 (en) Plate heat exchanger
JP4047891B2 (en) Heat exchanger
EP2929273B1 (en) Plate heat exchanger
JPH11287580A (en) Heat exchanger
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
JP2001174096A (en) Heat exchanger for temperature regulator
WO2015045073A1 (en) Laminate-type header, heat exchanger, and air-conditioning apparatus
EP2998680B1 (en) Laminated header, heat exchanger, and air conditioner
JP2006125652A (en) Heat exchanger
US6814135B2 (en) Stacked-type evaporator
JPH10300384A (en) Plate type heat-exchanger
US9068780B2 (en) Twist vane counter-parallel flow heat exchanger apparatus and method
JP2001041678A (en) Heat exchanger
JP2001133187A (en) Multiple heat exchanger
JP2004044851A (en) Heat exchanger
JPH07243788A (en) Heat exchanger
JPH09189498A (en) Header with thermal medium flow dividing promotion mechanism and its forming method
JP6120998B2 (en) Laminated header, heat exchanger, and air conditioner
JP2001255093A (en) Evaporator
JP2005055074A (en) Heat exchanger
JPH0498098A (en) Lamination type heat exchanger
JP3805665B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407