JP5030932B2 - Heat exchanger and air-conditioning refrigeration system - Google Patents

Heat exchanger and air-conditioning refrigeration system Download PDF

Info

Publication number
JP5030932B2
JP5030932B2 JP2008313836A JP2008313836A JP5030932B2 JP 5030932 B2 JP5030932 B2 JP 5030932B2 JP 2008313836 A JP2008313836 A JP 2008313836A JP 2008313836 A JP2008313836 A JP 2008313836A JP 5030932 B2 JP5030932 B2 JP 5030932B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
heat exchanger
transfer tubes
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008313836A
Other languages
Japanese (ja)
Other versions
JP2010139113A (en
Inventor
晃 石橋
厚志 望月
相武 李
拓也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008313836A priority Critical patent/JP5030932B2/en
Publication of JP2010139113A publication Critical patent/JP2010139113A/en
Application granted granted Critical
Publication of JP5030932B2 publication Critical patent/JP5030932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、冷媒と気体等の流体間での熱交換を行うための熱交換器、並びにこの熱交換器を用いた空調冷凍装置に関するものであり、特に熱交換器を流れる冷媒の分配機能を有するヘッダに関する。   The present invention relates to a heat exchanger for performing heat exchange between a refrigerant and a fluid such as a gas, and an air-conditioning refrigeration apparatus using the heat exchanger, and in particular, has a function of distributing the refrigerant flowing through the heat exchanger. It has a header.

空調冷凍装置の熱交換器に用いられる扁平管が接続される円筒ヘッダにおいて、1つの冷媒流路から複数の冷媒流路に冷媒を分配する際、入口の液冷媒を旋回させることで、重力の影響を解消し液冷媒の偏りを抑える技術が開示されている(特許文献1参照)。
また、扁平管の空気流れ方向には、熱流束分布が存在するため、風上側よりも風下側に冷媒を多く供給し、熱伝達効率を向上させる技術が開示されている(特許文献2参照)。
In a cylindrical header to which a flat tube used in a heat exchanger of an air-conditioning refrigeration system is connected, when distributing the refrigerant from one refrigerant channel to a plurality of refrigerant channels, the liquid refrigerant at the inlet is swirled to A technique for eliminating the influence and suppressing the bias of the liquid refrigerant is disclosed (see Patent Document 1).
Further, since there is a heat flux distribution in the air flow direction of the flat tube, a technique is disclosed in which more refrigerant is supplied to the leeward side than the leeward side to improve heat transfer efficiency (see Patent Document 2). .

また、空調冷凍装置の熱交換器に用いられる分配器において、1つの冷媒流路から2つの冷媒流路に液冷媒を分配する際に1つの流路の片側壁に凸部を設け、液冷媒の偏りを改善する技術が開示されている(特許文献3参照)。   Further, in the distributor used in the heat exchanger of the air-conditioning refrigeration apparatus, when distributing the liquid refrigerant from one refrigerant channel to two refrigerant channels, a convex portion is provided on one side wall of one channel, Has been disclosed (see Patent Document 3).

特開2000−105026号公報(第10頁〜第13頁,図3〜図4)JP 2000-105026 A (pages 10 to 13, FIGS. 3 to 4) 特開2001−215096号公報(第1頁〜第5頁,図3、図4)Japanese Patent Laid-Open No. 2001-215096 (page 1 to page 5, FIGS. 3 and 4) 特開平8−75316号公報(第1頁〜第3頁,図1〜図2)JP-A-8-75316 (first to third pages, FIGS. 1 to 2)

上記特許文献1に記載された従来の方法では、分配器は、旋回流を設けるにはスプリング等の付帯部品を設ける必要があり、高精度の加工が必要となり加工コストの増加を招く。また、多条らせん溝を設けない場合にはスプリング等の別部品を挿入しなければならず、直材費と加工コスト増加を招くという問題があり、更に旋回流の程度が小さいため、十分な均等分配が出来ないという問題点があった。   In the conventional method described in Patent Document 1, the distributor needs to be provided with ancillary parts such as a spring in order to provide the swirl flow, which requires high-precision processing and increases the processing cost. In addition, when a multi-threaded spiral groove is not provided, another part such as a spring must be inserted, which causes a problem of increasing the direct material cost and processing cost. There was a problem that even distribution was not possible.

また、上記特許文献2に記載された従来の分配ヘッダでは、扁平管内への液冷媒の分配において、偏りを持たせた分流を前提としているため、隣接する扁平管への液冷媒の均等分配が出来ないという問題点があった。   Further, in the conventional distribution header described in the above-mentioned Patent Document 2, the distribution of the liquid refrigerant into the flat tube is premised on a diverted flow, so that the liquid refrigerant is evenly distributed to the adjacent flat tubes. There was a problem that it was not possible.

また、上記特許文献2に記載された従来の分配器は、ある一定の冷媒流量時は分配性能は改善するが、液冷媒の慣性力と重力の比率が循環量に対して変化する場合、均等分配が困難となるという問題があった。   In addition, the conventional distributor described in Patent Document 2 improves the distribution performance at a certain flow rate of the refrigerant, but is equal when the ratio of the inertia force and gravity of the liquid refrigerant changes with respect to the circulation amount. There was a problem that distribution became difficult.

本発明は、上で述べたような問題点を解決するためになされたものであり、冷媒分岐機構をヘッダ内で行うことで製造性が高くコストが安く、コンパクトなヘッダ及びこれを用いた熱交換器並びにそれを用いた空調冷凍装置を提供することを目的としている。   The present invention has been made in order to solve the above-described problems. By performing the refrigerant branching mechanism in the header, the productivity is high and the cost is low, and a compact header and a heat using the same are obtained. It aims at providing an exchanger and an air-conditioning refrigerating device using the same.

この発明に係る熱交換器は、複数平行に配置され、その間を空気が通過する開口部を有する板状フィンと、この板状フィンに垂直に挿入され、内部を作動冷媒が通過し、空気の通過方向に対して垂直方向の段方向へ複数段設けられるとともに空気の通過方向の列方向に複数列設けられた伝熱管と、段方向に隣り合う2つの伝熱管の軸方向の端部が貫通するベース壁を有し且つ端部を覆うように設けられた少なくとも1つの角ヘッダと、を備え、角ヘッダのベース壁は、段方向に隣り合う2つの伝熱管の軸方向の端部の間にほぼ半円状の窪みである冷媒衝突部を有すると共に、冷媒衝突部と、2つの伝熱管のうち重力方向に対して下側の下側伝熱管の貫通部分との間全体が突出する断面三角形状の突起を有し、伝熱管は内部が多数の室に分割された扁平管であり、扁平管の長軸方向が列方向となるように配置されており、突起は、冷媒衝突部の重力方向側の端辺から下側伝熱管の長軸方向の両端部にかけて略台形状に突出しており、その台形の底辺が下側伝熱管の長軸の長さと一致しているものである。
The heat exchanger according to the present invention includes a plurality of plate-like fins arranged in parallel and having openings through which air passes, and inserted perpendicularly to the plate-like fins, through which the working refrigerant passes, The heat transfer tubes provided in a plurality of rows in the step direction perpendicular to the passage direction and provided in a plurality of rows in the row direction of the air passage direction, and the end portions in the axial direction of two heat transfer tubes adjacent in the step direction pass through. At least one corner header provided to cover the end portion, and the base wall of the corner header is between the axial end portions of two heat transfer tubes adjacent in the step direction. A cross section having a refrigerant collision part that is a substantially semi-circular depression and protruding between the refrigerant collision part and a penetrating portion of the lower lower heat transfer tube with respect to the direction of gravity of the two heat transfer tubes have a triangular protrusion, the heat transfer tube is divided internally into a number of chambers Are arranged so that the long axis direction of the flat tube is in the column direction, and the protrusion extends from the edge of the refrigerant collision portion on the gravity direction side to both ends of the lower heat transfer tube in the long axis direction. It protrudes in a substantially trapezoidal shape, and the bottom of the trapezoid coincides with the length of the long axis of the lower heat transfer tube .

この発明によれば、分配性能が高く、高い伝熱性能の熱交換器を得ることができる。   According to the present invention, a heat exchanger having high distribution performance and high heat transfer performance can be obtained.

実施の形態1.
図1は本発明の実施の形態1における熱交換器の縦断面図である。この実施の形態において熱交換器は前面上部に置かれた扁平管(伝熱管)を用いた主熱交換器9、10と前面下部に置かれた扁平管を用いた主熱交換器11、12、背面に置かれた扁平管を用いた主熱交換器7、8および空気流れ方向の1列目に配置される補助熱交換器4,5,6で構成される。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view of a heat exchanger according to Embodiment 1 of the present invention. In this embodiment, the heat exchanger is composed of main heat exchangers 9 and 10 using flat tubes (heat transfer tubes) placed on the upper front and main heat exchangers 11 and 12 using flat tubes placed on the lower front. The main heat exchangers 7 and 8 using flat tubes placed on the back surface and the auxiliary heat exchangers 4, 5 and 6 arranged in the first row in the air flow direction are configured.

本実施の形態1において、空気流れ方向2列目と3列目に配置される主熱交換器について説明する。前面上部に配置される主熱交換器9,10は、フィン1の積層方向のピッチFpはFp=0.0011mであり、フィン厚みFt=0.0001m、また空気の流れ方向のフィン幅はL=0.0142m、熱交換器の段方向に隣接する伝熱管の距離DpはDp=0.0102m、また、前面下部に配置される主熱交換器11,12はFp=0.0011mであり、フィン厚みFt=0.0001m、また空気のながれ方向のフィン幅はL=0.0137m、熱交換器の段方向に隣接する伝熱管の距離DpはDp=0.0095m、また、前面下部に配置される主熱交換器7,8はFp=0.0011mであり、フィン厚みFt=0.0001m、また空気のながれ方向のフィン幅はL=0.0137m、熱交換器の段方向に隣接する伝熱管の距離DpはDp=0.009mである。伝熱管は扁平形状とし、フィンカラーと伝熱管がロウ付けにより、完全接合されている。また、主熱交換器において、扁平管は千鳥状に配列され、列毎にフィンは分割されている。また、伝熱管内には耐圧を保持するため、隔壁が設けられており、管内は多数の室に分割されている。また、空気のながれ方向に平行な長軸径をdb=0.0105m、空気の流れ方向に対し前縁部の短軸径をdb=0.0022mとする。列数は2列の例である。また、スリットを1列につき2つ備えている。   In the first embodiment, the main heat exchangers arranged in the second and third rows in the air flow direction will be described. In the main heat exchangers 9 and 10 arranged on the upper front surface, the pitch Fp in the stacking direction of the fins 1 is Fp = 0.0011 m, the fin thickness Ft = 0.0001 m, and the fin width in the air flow direction is L = 0.0142. m, the distance Dp between the heat transfer tubes adjacent to each other in the step direction of the heat exchanger is Dp = 0.0102 m, and the main heat exchangers 11 and 12 arranged at the lower part of the front surface are Fp = 0.0011 m, and the fin thickness Ft = 0.0001. m, the fin width in the air flow direction is L = 0.0137m, the distance Dp of the heat transfer tubes adjacent in the stage direction of the heat exchanger is Dp = 0.0095m, and the main heat exchanger 7, 8 is Fp = 0.0011m, the fin thickness Ft = 0.0001m, the fin width in the air flow direction is L = 0.0137m, and the distance Dp between adjacent heat transfer tubes in the stage direction of the heat exchanger is Dp = 0.009m. is there. The heat transfer tube has a flat shape, and the fin collar and the heat transfer tube are completely joined by brazing. In the main heat exchanger, the flat tubes are arranged in a staggered manner, and the fins are divided for each row. Further, in order to maintain a pressure resistance in the heat transfer tube, a partition wall is provided, and the inside of the tube is divided into a number of chambers. In addition, the major axis diameter parallel to the air flow direction is db = 0.0105 m, and the minor axis diameter of the front edge with respect to the air flow direction is db = 0.002 m. The number of columns is an example of two columns. Two slits are provided per row.

円管を用いた補助熱交換器4、5、6は、フィン1の積層方向のピッチFpはFp=0.0013mであり、フィン厚みFt=0.0001m、また空気のながれ方向のフィン幅はL=0.0127m、熱交換器の段方向に隣接する伝熱管の中心の距離DpはDp=0.0204、伝熱管は円形状とし、フィン前縁部まで、フィンカラーと伝熱管が機械拡管により、圧接合されている。   In the auxiliary heat exchangers 4, 5, and 6 using circular tubes, the pitch Fp in the stacking direction of the fins 1 is Fp = 0.001m, the fin thickness Ft = 0.0001m, and the fin width in the air flow direction is L = 0.0127m, the distance Dp of the center of the heat transfer tubes adjacent in the direction of the heat exchanger is Dp = 0.0204, the heat transfer tubes are circular, and the fin collar and heat transfer tubes are pressure joined by mechanical expansion to the fin front edge. ing.

上記のように構成される扁平管を用いた熱交換器において、扁平管2および円管はアルミニウム合金製押し出し形材にて形成され、板状フィン1はアルミニウム合金製板材にて形成されている。このように熱交換器全てを同じ材質とすることで、腐食の耐力は向上する。   In the heat exchanger using the flat tube configured as described above, the flat tube 2 and the circular tube are formed of an extruded shape made of aluminum alloy, and the plate-like fins 1 are formed of a plate material made of aluminum alloy. . Thus, by making all the heat exchangers the same material, the proof stress of corrosion improves.

また、主熱交換器において扁平管を千鳥状に配列することで、扁平管前縁の熱伝達率が向上し、熱交換器性能は向上する。   Moreover, by arranging the flat tubes in a staggered manner in the main heat exchanger, the heat transfer coefficient of the leading edge of the flat tubes is improved, and the heat exchanger performance is improved.

また、主熱交換器において、2列目と3列目のフィンを分割することで、熱交換器の配置が室内機箱内において様々に対応でき、2列目のフィンにおける前縁効果(空気境界層分断効果)による熱伝達率向上も期待出来る。   In addition, by dividing the second and third row fins in the main heat exchanger, the arrangement of the heat exchanger can be variously accommodated in the indoor unit box, and the leading edge effect (air boundary in the second row fins) An improvement in heat transfer coefficient due to the effect of layer separation can also be expected.

図2は本実施の形態1の蒸発器として用いられた場合の冷媒流路を示す簡易説明図であり、図3はこの発明の実施の形態1の冷媒流路概略図である。冷房時、蒸発器として用いられる場合、冷媒は2パス部の補助熱交換器4,5,6を通り、合流後、3分岐する分配器を通過し、前面上部に配置される扁平管を用いた主熱交換器に付加される角ヘッダ内25で更に2分岐され、熱交換器を通過し、分配器により合流後、絞り弁26を通過、6分岐する分配器を通過後、前面下部と背面に配置される扁平管を用いた主熱交換器に付加される角ヘッダ内で更に2分岐され、熱交換器を通過し、円柱状のヘッダを通過する。   FIG. 2 is a simplified explanatory diagram showing a refrigerant flow path when used as an evaporator according to the first embodiment, and FIG. 3 is a schematic diagram of the refrigerant flow path according to the first embodiment of the present invention. When used as an evaporator during cooling, the refrigerant passes through auxiliary heat exchangers 4, 5, 6 in the two-pass section, passes through a distributor that divides into three after joining, and uses a flat tube arranged in the upper front part. The angle header 25 added to the main heat exchanger was further divided into two branches, passed through the heat exchanger, merged by the distributor, passed through the throttle valve 26, passed through the six branch distributor, It further branches into two in a square header added to the main heat exchanger using a flat tube arranged on the back, passes through the heat exchanger, and passes through the cylindrical header.

蒸発器として用いられる場合、絞り弁26の前に前面上部の主熱交換器を冷媒が流れることで、重力方向に対する冷媒の偏りが大きく、凝縮水が垂れやすい前面上部主熱交換器に冷媒出口が配置されない。よって、信頼性の高い熱交換器が形成出来る。また、本実施の形態1では、扁平管の両端に角ヘッダを用いており、冷媒入り口部で2分岐され、分配器における分岐数の倍の分岐数で熱交換器を冷媒が通過する。角ヘッダの冷媒入り口内部に窪みを有した冷媒衝突部29を用いており、冷媒入り口から入ってきた冷媒はここで衝突し、四方に散乱することで気液の混合が効率良く行われ、冷媒分岐のばらつきを抑えることが出来る。これにより、分配器の分岐数を低減出来、分配器のコンパクト化、低コスト化が実現出来る。   When used as an evaporator, the refrigerant flows through the main heat exchanger at the front upper part in front of the throttle valve 26, so that the refrigerant is largely biased with respect to the direction of gravity, and the refrigerant outlet is connected to the front upper main heat exchanger where condensate easily drops. Is not placed. Therefore, a highly reliable heat exchanger can be formed. Moreover, in this Embodiment 1, the square header is used for the both ends of a flat tube, and it branches into 2 at a refrigerant | coolant inlet part, and a refrigerant | coolant passes through a heat exchanger by the branch number double of the branch number in a divider | distributor. The refrigerant collision part 29 having a depression inside the refrigerant inlet of the corner header is used, and the refrigerant entering from the refrigerant inlet collides here and is scattered in all directions, so that the gas-liquid mixing is efficiently performed. Diversity in branching can be suppressed. Thereby, the number of branches of the distributor can be reduced, and the distributor can be made compact and low in cost.

図4(a)は、蒸発器の場合の冷媒の流れを示すヘッダの分解斜視図である。また、図4(b)は、冷媒入口を有するヘッダ室内の冷媒の流れを示す側面断面図であり、図4(c)はこのヘッダ室内の冷媒の流れを正面から見た部分断面図である。冷媒は、ヘッダの冷媒入口に水平に接続された冷媒入口配管を通ってヘッダ室内に入った後、ほぼ半円状の窪みである冷媒衝突部に衝突して四方に散乱することで気液が混合され、重力方向に窪みの中心からほぼ等距離にある隣り合う2本の扁平管に配分される。
この場合、冷媒入口を隣り合う2本の扁平管の中間部に配置した場合には液冷媒が重力に対して上側より下部の扁平管により多く配分されて冷媒の偏りが発生し、熱交換器の能力が発揮しにくい。
FIG. 4A is an exploded perspective view of the header showing the flow of the refrigerant in the case of the evaporator. FIG. 4B is a side cross-sectional view showing the flow of the refrigerant in the header chamber having the refrigerant inlet, and FIG. 4C is a partial cross-sectional view of the flow of the refrigerant in the header chamber as viewed from the front. . The refrigerant enters the header chamber through the refrigerant inlet pipe horizontally connected to the refrigerant inlet of the header, and then collides with the refrigerant collision portion, which is a substantially semicircular recess, and is scattered in all directions. It is mixed and distributed to two adjacent flat tubes that are approximately equidistant from the center of the depression in the direction of gravity.
In this case, when the refrigerant inlet is arranged in the middle part between two adjacent flat tubes, the liquid refrigerant is more distributed to the flat tubes below the upper than the upper side with respect to gravity, and the refrigerant is biased. The ability of is difficult to demonstrate.

図5は、冷媒入口及び窪みを重力方向に隣り合う2本の扁平管の間の中心より重力方向に対して上側に配置した場合の角ヘッダの部分断面図である。図5(a)は冷媒入口を有するヘッダ室内の冷媒の流れを示す側面断面図であり、図5(b)はこのヘッダ室内の冷媒の流れを正面から見た部分断面図である。図4では液冷媒が重力に対して上側より下側の扁平管により多く配分されて冷媒の偏りが発生するが、図5で示す例では、冷媒入口から重力方向に対して上側の扁平管までの距離が、冷媒入口から重力方向下側の扁平管までの距離よりも短くなり、より多くの冷媒が重力方向に対して上側の扁平管に配分されるため、冷媒入口及び窪みの配置位置を適当に調整することにより、液冷媒が隣り合う2本の扁平管に均等に配分される。   FIG. 5 is a partial cross-sectional view of the corner header when the refrigerant inlet and the recess are arranged above the center of gravity between two flat tubes adjacent to each other in the direction of gravity. FIG. 5A is a side sectional view showing the flow of the refrigerant in the header chamber having the refrigerant inlet, and FIG. 5B is a partial sectional view of the flow of the refrigerant in the header chamber as viewed from the front. In FIG. 4, the liquid refrigerant is more distributed to the flat tube below the upper side with respect to gravity, and the refrigerant is biased. In the example shown in FIG. 5, from the refrigerant inlet to the upper flat tube with respect to the direction of gravity. Is shorter than the distance from the refrigerant inlet to the lower flat tube in the direction of gravity, and more refrigerant is distributed to the upper flat tube in the direction of gravity. By appropriately adjusting, the liquid refrigerant is evenly distributed between two adjacent flat tubes.

なお、図11に示すように冷媒入口配管を斜め下から冷媒入口に接続させてもよい。この場合には、冷媒入口配管を通過した冷媒は斜め上方に発射されるため、冷媒衝突部で衝突した後は、より多くの液冷媒が重力方向に対して上側へ散乱された状態で気液が攪拌される。
そこで、冷媒入口の位置および冷媒入口配管の傾きを調整することにより、液冷媒が隣り合う2本の扁平管に均等に配分される。
In addition, as shown in FIG. 11, you may connect a refrigerant | coolant inlet piping to a refrigerant | coolant inlet from diagonally downward. In this case, since the refrigerant that has passed through the refrigerant inlet pipe is launched obliquely upward, after the collision at the refrigerant collision portion, more liquid refrigerant is scattered in the gravitational direction upward in the gas-liquid state. Is stirred.
Therefore, by adjusting the position of the refrigerant inlet and the inclination of the refrigerant inlet pipe, the liquid refrigerant is evenly distributed to two adjacent flat tubes.

実施の形態2.
実施の形態1では冷媒入口及び窪みを重力方向に隣り合う2本の扁平管の間の中心より重力方向に対して上側に配置することで冷媒の均一配分を行う形態について説明したが、扁平管(伝熱管)の突き出し量を変えても冷媒の均一配分が可能である。ここでは、このような形態について説明する。
図6は、この発明の実施の形態2における角ヘッダを示す部分断面図であり、重力方向に対して下側の扁平管のヘッダへの突き出し量を重力方向の上部の扁平管の突き出し量よりも大きくした場合の角ヘッダの部分断面図である。液冷媒は冷媒衝突部の壁を有するヘッダ底面のベース壁25aに沿って移動するため、冷媒衝突部で衝突し四方に散乱した冷媒の一部は重力方向下部の扁平管の外周部に当たり、当該扁平管内には入らないため液冷媒は重力方向下部の扁平管へ入りにくくなる。よって、突き出し量を適当に調整することにより、液冷媒が隣り合う2本の扁平管に均等に配分される。
Embodiment 2. FIG.
In the first embodiment, the refrigerant inlet and the depression are arranged above the center between the two flat tubes adjacent in the gravity direction so as to distribute the refrigerant uniformly. Even if the protruding amount of the (heat transfer tube) is changed, the refrigerant can be uniformly distributed. Here, such a form will be described.
FIG. 6 is a partial cross-sectional view showing a corner header according to Embodiment 2 of the present invention. It is a fragmentary sectional view of the corner header at the time of enlarging. Since the liquid refrigerant moves along the base wall 25a of the bottom surface of the header having the wall of the refrigerant collision part, a part of the refrigerant colliding with the refrigerant collision part and scattered in all directions hits the outer peripheral part of the flat tube in the lower part of the gravity direction, Since it does not enter the flat tube, the liquid refrigerant is difficult to enter the flat tube in the lower part of the gravity direction. Therefore, by appropriately adjusting the protrusion amount, the liquid refrigerant is evenly distributed between two adjacent flat tubes.

実施の形態3.
実施の形態2では扁平管(伝熱管)の突き出し量を変えることで冷媒の均一配分を行う形態について説明したが、冷媒衝突部の窪みから上側扁平管までの間に液冷媒を上部へ誘導する溝を設けても冷媒の均一配分が可能である。ここでは、このような形態について説明する。
図7は、この発明の実施の形態3における角ヘッダを示す部分断面図であり、冷媒衝突部29から重力方向に対して上側の扁平管までの間のベース壁25aに液冷媒を上部へ誘導する溝を設けた場合の角ヘッダの部分断面図である。図7(a)は角ヘッダの側面断面図であり、図7(b)は角ヘッダ内を正面から見た図である。図7(a)、(b)に示すように溝の下部は前方へ突出しており大きな抵抗となるため下方へ進めないが、溝の上部は突出していないため、抵抗が少なく液冷媒はベース壁25aに沿って上方へ移動することができる。従って、ベース壁25aに沿って流れる液冷媒は重力方向に対して上側に誘導されるため、上昇の力と重力とが相殺される。よって、溝の位置を適当に調整することにより液冷媒が隣り合う2本の扁平管に均等に配分される。
また、図7(c)に示すように扁平管の液冷媒誘導溝40に接触する部位に外周から内部へ(図では下から上方へ)行くに連れて幅が狭まるように形成された断面が三角の開口部20を設けてもよい。これにより、下方から上方へ進入する冷媒を効率良く受け取ることができ、逆方向即ち、上から下の方向へは冷媒が落ちにくいため、誘導溝の位置を適当に調整することにより冷媒は上下の扁平管に均等に配分される。
Embodiment 3 FIG.
In the second embodiment, the mode in which the refrigerant is uniformly distributed by changing the protruding amount of the flat tube (heat transfer tube) has been described. Even if the groove is provided, the refrigerant can be uniformly distributed. Here, such a form will be described.
FIG. 7 is a partial cross-sectional view showing a corner header according to Embodiment 3 of the present invention, in which liquid refrigerant is guided to the base wall 25a between the refrigerant collision portion 29 and the upper flat tube with respect to the direction of gravity. It is a fragmentary sectional view of the corner header at the time of providing the groove | channel which does. FIG. 7A is a side sectional view of the corner header, and FIG. 7B is a view of the inside of the corner header as viewed from the front. As shown in FIGS. 7A and 7B, the lower portion of the groove protrudes forward and becomes a large resistance and cannot move downward. However, since the upper portion of the groove does not protrude, the resistance of the liquid refrigerant is small and the base wall is not protruded. It can move upward along 25a. Accordingly, the liquid refrigerant flowing along the base wall 25a is guided upward with respect to the direction of gravity, so that the ascending force and gravity are offset. Therefore, by appropriately adjusting the position of the groove, the liquid refrigerant is evenly distributed to the two adjacent flat tubes.
Further, as shown in FIG. 7 (c), a cross section formed so that the width is narrowed from the outer periphery to the inside (from the bottom to the top in the figure) at the portion that contacts the liquid refrigerant guiding groove 40 of the flat tube. A triangular opening 20 may be provided. As a result, the refrigerant entering from the lower side to the upper side can be efficiently received, and the refrigerant is unlikely to fall in the reverse direction, that is, from the upper side to the lower side. Evenly distributed to flat tubes.

実施の形態4.
実施の形態3では冷媒衝突部の窪みから上側扁平管までの間に液冷媒を上部へ誘導する溝を設けることで冷媒の均一配分を行う形態について説明したが、冷媒衝突部より重力方向の下側の扁平管までの間のベース壁25aに三角形状の凸部を設けても冷媒の均一配分が可能である。ここでは、このような形態について説明する。
図8は、この発明の実施の形態4における角ヘッダを示す部分断面図であり、冷媒衝突部より重力方向の下側の扁平管までの間のベース壁25aに三角形状の凸部を設けた場合の角ヘッダの部分断面図である。図8(a)は、冷媒入口を有するヘッダ室内の冷媒の流れを示す側面断面図であり、図8(b)はこのヘッダ室内の冷媒の流れを正面から見た部分断面図である。液冷媒は冷媒衝突部29の壁を有するヘッダ底面のベース壁25aに沿って移動する。このとき、重力方向の下側へ移動した液冷媒の一部は凸部によって進行を妨げられるため、液冷媒は重力方向の下側の扁平管へ入りにくくなる。よって、凸部の取り付け位置を適当に調整することにより液冷媒が隣り合う2本の扁平管に均等に配分される。
Embodiment 4 FIG.
In the third embodiment, the mode in which the refrigerant is uniformly distributed by providing a groove for guiding the liquid refrigerant upward from the depression of the refrigerant collision portion to the upper flat tube has been described. Even if a triangular convex portion is provided on the base wall 25a up to the flat tube on the side, the refrigerant can be uniformly distributed. Here, such a form will be described.
FIG. 8 is a partial cross-sectional view showing a corner header according to Embodiment 4 of the present invention, in which a triangular convex portion is provided on the base wall 25a from the refrigerant collision portion to the flat tube on the lower side in the gravity direction. It is a fragmentary sectional view of the corner header in the case. FIG. 8A is a side sectional view showing the flow of the refrigerant in the header chamber having the refrigerant inlet, and FIG. 8B is a partial sectional view of the flow of the refrigerant in the header chamber as viewed from the front. The liquid refrigerant moves along the base wall 25 a on the bottom surface of the header having the wall of the refrigerant collision portion 29. At this time, part of the liquid refrigerant that has moved downward in the direction of gravity is prevented from advancing by the convex portion, so that the liquid refrigerant is less likely to enter the flat tube below in the direction of gravity. Therefore, the liquid refrigerant is evenly distributed to two adjacent flat tubes by appropriately adjusting the mounting position of the convex portion.

実施の形態5.
実施の形態4では冷媒衝突部より重力方向の下側の扁平管までの間のベース壁25aに三角形状の凸部を設けることで冷媒の均一配分を行う形態について説明したが、冷媒入口配管の冷媒入口付近に発泡金属を取り付けても冷媒の均一配分が可能である。ここでは、このような形態について説明する。
図9は、この発明の実施の形態5における角ヘッダを示す部分断面図であり、冷媒入口配管の冷媒入口付近に発泡金属を取り付けた場合の角ヘッダの部分断面図を示している。蒸気冷媒と液冷媒は冷媒入口部の発泡金属部で混合されるため、液冷媒は蒸気冷媒と同様に液滴となって搬送され、隣り合う2本の扁平管に均等に配分され易い。
冷媒入口部に挿入されるものは発泡金属に限る必要はなく、例えば焼結金属もしくは、網目状のメッシュであっても良く、この場合も発泡金属の場合と同様の効果を奏するのはいうまでもない。
Embodiment 5 FIG.
In the fourth embodiment, a description has been given of a mode in which the refrigerant is uniformly distributed by providing a triangular convex portion on the base wall 25a from the refrigerant collision portion to the lower flat tube in the gravitational direction. Even if a metal foam is attached near the refrigerant inlet, the refrigerant can be uniformly distributed. Here, such a form will be described.
FIG. 9 is a partial cross-sectional view showing a corner header according to Embodiment 5 of the present invention, and shows a partial cross-sectional view of the corner header when a foam metal is attached near the refrigerant inlet of the refrigerant inlet pipe. Since the vapor refrigerant and the liquid refrigerant are mixed at the foam metal part at the refrigerant inlet, the liquid refrigerant is transported as droplets like the vapor refrigerant, and is easily distributed evenly between two adjacent flat tubes.
What is inserted into the refrigerant inlet portion need not be limited to the foam metal, and may be, for example, a sintered metal or a mesh-like mesh, and in this case, the same effect as in the case of the foam metal can be obtained. Nor.

図10は空調冷凍装置の冷媒回路図である。図10に示すように冷媒回路は、圧縮機33、凝縮熱交換器34、絞り装置35、蒸発熱交換器36、送風機37より構成されている。上述の各実施の形態における熱交換器を凝縮熱交換器34または蒸発熱交換器36、もしくは両方に用いることにより、エネルギ効率の高い空調冷凍装置を実現することが出来る。
ここで、エネルギ効率は、次式で構成されるものである。
暖房エネルギ効率=室内熱交換器(凝縮器)能力/全入力
冷房エネルギ効率=室内熱交換器(蒸発器)能力/全入力
FIG. 10 is a refrigerant circuit diagram of the air conditioning refrigeration apparatus. As shown in FIG. 10, the refrigerant circuit includes a compressor 33, a condensing heat exchanger 34, an expansion device 35, an evaporating heat exchanger 36, and a blower 37. By using the heat exchanger in each of the above-described embodiments for the condensation heat exchanger 34, the evaporating heat exchanger 36, or both, an air-conditioning refrigeration apparatus with high energy efficiency can be realized.
Here, energy efficiency is constituted by the following equation.
Heating energy efficiency = indoor heat exchanger (condenser) capacity / all inputs Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / all inputs

なお、上述の実施の形態1で述べた分配機能を有するヘッダおよびこれを用いた熱交換器については、HCFC(R22)やHFC(R116、R125、R134a、R14、R143a、R152a、R227ea、R23、R236ea、R236fa、R245ca、R245fa、R32、R41,RC318などや、これら冷媒の数種の混合冷媒R407A、R407B、R407C、R407D、R407E、R410A、R410B、R404A、R507A、R508A、R508Bなど)、HC(ブタン、イソブタン、エタン、プロパン、プロピレンなどや、これら冷媒の数種混合冷媒)、自然冷媒(空気、炭酸ガス、アンモニアなどや、これら冷媒の数種の混合冷媒)、またこれら冷媒の数種の混合冷媒など、どんな種類の冷媒を用いても、その効果を達成することが出来る。   In addition, about the header which has the distribution function described in the above-mentioned Embodiment 1, and the heat exchanger using the same, HCFC (R22) and HFC (R116, R125, R134a, R14, R143a, R152a, R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, etc., and mixed refrigerants R407A, R407B, R407C, R407D, R407E, R410A, R410B, R404A, R507A, R508A, HCB, etc. Butane, isobutane, ethane, propane, propylene, etc., and some mixed refrigerants of these refrigerants), natural refrigerants (air, carbon dioxide, ammonia, etc., some mixed refrigerants of these refrigerants), and some of these refrigerants Any refrigerant Be used refrigerant of the kind, it is possible to achieve that effect.

また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を用いても、同様の効果を奏する。   Moreover, although the example of air and a refrigerant | coolant was shown as a working fluid, even if it uses other gas, liquid, and gas-liquid mixed fluid, there exists the same effect.

また、伝熱管とフィンは異なった材料を用いていることが多いが、伝熱管とフィンに銅、伝熱管とフィンにアルミなど、同じ材料を用いることで、フィンと伝熱管のロウ付けが可能となり、フィン部と伝熱管の接触熱伝達率が飛躍的に向上し、熱交換能力が大幅に向上する。また、リサイクル性も向上させることができる。   In addition, heat transfer tubes and fins often use different materials, but using the same material, such as copper for heat transfer tubes and fins, and aluminum for heat transfer tubes and fins, it is possible to braze the fins and heat transfer tubes. Thus, the contact heat transfer coefficient between the fin portion and the heat transfer tube is dramatically improved, and the heat exchange capability is greatly improved. Moreover, recyclability can also be improved.

本発明の実施の形態1における熱交換器の縦断面図である。1 is a longitudinal sectional view of a heat exchanger according to Embodiment 1 of the present invention. 本実施の形態1の蒸発器として用いられた場合の冷媒流路を示す簡易説明図である。It is simple explanatory drawing which shows the refrigerant | coolant flow path at the time of being used as an evaporator of this Embodiment 1. FIG. この発明の実施の形態1の冷媒流路概略図である。It is a refrigerant flow path schematic diagram of Embodiment 1 of this invention. この発明の実施の形態1の角ヘッダを示す外観図である。FIG. 3 is an external view showing a corner header according to the first embodiment of the present invention. 本発明の実施の形態1における冷媒入口及び窪みを重力方向に隣り合う2本の扁平管の間の中心より重力方向に対して上側に配置した場合の角ヘッダの部分断面図である。FIG. 4 is a partial cross-sectional view of a corner header when the refrigerant inlet and the depression in Embodiment 1 of the present invention are arranged above the center of gravity between two flat tubes adjacent in the direction of gravity. この発明の実施の形態2における角ヘッダを示す部分断面図である。It is a fragmentary sectional view which shows the corner header in Embodiment 2 of this invention. この発明の実施の形態3における角ヘッダを示す部分断面図である。It is a fragmentary sectional view which shows the corner header in Embodiment 3 of this invention. この発明の実施の形態4における角ヘッダを示す部分断面図である。It is a fragmentary sectional view which shows the corner header in Embodiment 4 of this invention. この発明の実施の形態5における角ヘッダを示す部分断面図である。It is a fragmentary sectional view which shows the corner header in Embodiment 5 of this invention. この発明の実施の形態1〜5の角ヘッダが用いられる冷凍サイクルの回路説明図である。It is circuit explanatory drawing of the refrigerating cycle in which the square header of Embodiment 1-5 of this invention is used. 本発明の実施の形態1における冷媒入口配管を斜め下から冷媒入口に接続させた場合の角ヘッダの部分断面図である。FIG. 3 is a partial cross-sectional view of a corner header when the refrigerant inlet pipe in Embodiment 1 of the present invention is connected to the refrigerant inlet from obliquely below.

符号の説明Explanation of symbols

1 板状フィン、2 扁平管、3 円管、4 円管を用いた補助熱交換器、5 円管を用いた補助熱交換器、6 円管を用いた補助熱交換器、7 扁平管を用いた主熱交換器、8 扁平管を用いた主熱交換器、9 扁平管を用いた主熱交換器、10 扁平管を用いた主熱交換器、11 扁平管を用いた主熱交換器、12 扁平管を用いた主熱交換器、13 送風機、14 ケーシング、15 前面パネル、16 お掃除ボックス、17 フィルター、18 天面パネル、19 主熱交換器間の隙間、20 開口部、24 3分岐分配器、25 角ヘッダ、25a ベース壁、26 絞り弁、27 6分岐分配器、28 円柱状ガスヘッダ、29 冷媒衝突部、30 接続配管、33 圧縮機、34 凝縮熱交換器、35 絞り装置、36 蒸発熱交換器、37 送風機、38 送風機用モータ、39 冷媒入口、40 液冷媒誘導溝、41 凸部、42 焼結金属。   1 Plate-shaped fin, 2 flat tube, 3 circular tube, 4 auxiliary heat exchanger using circular tube, 5 auxiliary heat exchanger using circular tube, 6 auxiliary heat exchanger using circular tube, 7 flat tube Main heat exchanger used, 8 Main heat exchanger using flat tube, 9 Main heat exchanger using flat tube, 10 Main heat exchanger using flat tube, 11 Main heat exchanger using flat tube , 12 Main heat exchanger using flat tubes, 13 Blower, 14 Casing, 15 Front panel, 16 Cleaning box, 17 Filter, 18 Top panel, 19 Clearance between main heat exchangers, 20 Opening, 24 3 Branch distributor, 25 angle header, 25a base wall, 26 throttle valve, 27 6 branch distributor, 28 columnar gas header, 29 refrigerant collision part, 30 connection piping, 33 compressor, 34 condensing heat exchanger, 35 expansion device, 36 evaporative heat exchanger, 37 blower, Motor 8 air blower, 39 a refrigerant inlet, 40 liquid refrigerant guide groove, 41 protrusion, 42 sintered metal.

Claims (4)

複数平行に配置され、その間を空気が通過する開口部を有する板状フィンと、
この板状フィンに垂直に挿入され、内部を作動冷媒が通過し、前記空気の通過方向に対して垂直方向の段方向へ複数段設けられるとともに前記空気の通過方向の列方向に複数列設けられた伝熱管と、
段方向に隣り合う2つの前記伝熱管の軸方向の端部が貫通するベース壁を有し且つ前記端部を覆うように設けられた少なくとも1つの角ヘッダと、を備え、
前記角ヘッダの前記ベース壁は、
前記段方向に隣り合う2つの伝熱管の軸方向の端部の間にほぼ半円状の窪みである冷媒衝突部を有すると共に、
前記冷媒衝突部と、前記2つの伝熱管のうち重力方向に対して下側の下側伝熱管の貫通部分との間全体が突出する断面三角形状の突起を有し、
前記伝熱管は内部が多数の室に分割された扁平管であり、扁平管の長軸方向が列方向となるように配置されており、
前記突起は、前記冷媒衝突部の重力方向側の端辺から前記下側伝熱管の長軸方向の両端部にかけて略台形状に突出しており、その台形の底辺が前記下側伝熱管の長軸の長さと一致していることを特徴とする熱交換器。
A plurality of plate-like fins arranged in parallel and having openings through which air passes;
Inserted perpendicularly to the plate fins, the working refrigerant passes through the fins, and is provided in a plurality of stages in a step direction perpendicular to the air passage direction and in a plurality of rows in the row direction of the air passage direction. Heat transfer tubes,
An end portion in the axial direction of two heat transfer tubes adjacent to each other in the step direction has at least one corner header provided so as to cover the end portion, and
The base wall of the corner header is
While having a refrigerant collision part which is a substantially semicircular recess between the axial ends of two heat transfer tubes adjacent in the step direction,
Possess said coolant collision portion, a protrusion whole cross-section a triangular projecting between the through portion of the lower heat transfer tubes of the lower side with respect to the gravity direction of the two heat transfer tubes,
The heat transfer tube is a flat tube whose interior is divided into a number of chambers, and is arranged such that the long axis direction of the flat tube is the row direction,
The protrusion protrudes in a substantially trapezoidal shape from the end in the gravity direction side of the refrigerant collision portion to both ends in the long axis direction of the lower heat transfer tube, and the bottom of the trapezoid is the long axis of the lower heat transfer tube The heat exchanger is characterized by the length of the heat exchanger.
前記突起は、前記下側伝熱管の前記ベース壁からの突き出し量よりも突き出ていることを特徴とする請求項記載の熱交換器。 The protrusion, the heat exchanger according to claim 1, wherein the protruding than the amount of protrusion from said base wall of said lower heat transfer tubes. 前記角ヘッダは、前記伝熱管の端部と対向する側の壁面に前記隣り合う2つの伝熱管の間の中心より重力方向に対して上側に形成された冷媒流入口を備え、この冷媒流入口に冷媒を流す冷媒入口配管を水平に接続することを特徴とする請求項1又は請求項2記載の熱交換器。 The corner header includes a refrigerant inlet formed on the wall surface on the side facing the end of the heat transfer tube, above the center between the two adjacent heat transfer tubes with respect to the direction of gravity. The heat exchanger according to claim 1 or 2 , wherein a refrigerant inlet pipe through which a refrigerant flows is horizontally connected. 請求項1〜のいずれかに記載の熱交換器を備えたことを特徴とする空調冷凍装置。 An air-conditioning refrigeration apparatus comprising the heat exchanger according to any one of claims 1 to 3 .
JP2008313836A 2008-12-10 2008-12-10 Heat exchanger and air-conditioning refrigeration system Active JP5030932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313836A JP5030932B2 (en) 2008-12-10 2008-12-10 Heat exchanger and air-conditioning refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313836A JP5030932B2 (en) 2008-12-10 2008-12-10 Heat exchanger and air-conditioning refrigeration system

Publications (2)

Publication Number Publication Date
JP2010139113A JP2010139113A (en) 2010-06-24
JP5030932B2 true JP5030932B2 (en) 2012-09-19

Family

ID=42349395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313836A Active JP5030932B2 (en) 2008-12-10 2008-12-10 Heat exchanger and air-conditioning refrigeration system

Country Status (1)

Country Link
JP (1) JP5030932B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716496B2 (en) * 2011-03-31 2015-05-13 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2012184920A (en) * 2012-06-29 2012-09-27 Mitsubishi Electric Corp Air conditioner
JP5896876B2 (en) * 2012-10-17 2016-03-30 日立アプライアンス株式会社 Refrigerant distributor and refrigeration cycle apparatus equipped with the same
JP2016014504A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Heat exchanger, and refrigeration cycle device with the same
JP6667070B2 (en) * 2016-07-19 2020-03-18 パナソニックIpマネジメント株式会社 Refrigerant flow divider and refrigeration system using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121667A (en) * 1987-11-06 1989-05-15 Matsushita Refrig Co Ltd Refrigerant flow diverter
JP3208224B2 (en) * 1992-05-28 2001-09-10 サンデン株式会社 Refrigerant flow divider for refrigeration equipment
JPH0682125A (en) * 1992-09-07 1994-03-22 Matsushita Refrig Co Ltd Refrigrant distributor
JPH07180929A (en) * 1993-12-24 1995-07-18 Toshiba Corp Heat exchanger
JP3390565B2 (en) * 1995-03-15 2003-03-24 郷商事株式会社 Refrigerant flow divider
JP3893634B2 (en) * 1995-04-28 2007-03-14 株式会社日立製作所 Plate-type refrigerant flow path and air conditioner using the same
JP4178472B2 (en) * 2004-03-18 2008-11-12 三菱電機株式会社 Heat exchanger and air conditioner
JP2007155308A (en) * 2005-11-09 2007-06-21 Fujitsu General Ltd Flow divider and refrigeration cycle device using the same
JP4887213B2 (en) * 2007-05-18 2012-02-29 日立アプライアンス株式会社 Refrigerant distributor and air conditioner

Also Published As

Publication number Publication date
JP2010139113A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP4749373B2 (en) Air conditioner
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP4506609B2 (en) Air conditioner and method of manufacturing air conditioner
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP6202451B2 (en) Heat exchanger and air conditioner
JP2010249343A (en) Fin tube type heat exchanger and air conditioner using the same
JP2008528938A (en) Parallel flow heat exchanger incorporating a porous insert
JP2009222366A (en) Refrigerant distributor
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
JP5030932B2 (en) Heat exchanger and air-conditioning refrigeration system
WO2018116929A1 (en) Heat exchanger and air conditioner
EP3051244B1 (en) Heat exchanger and air conditioner using same
KR101837046B1 (en) Heat exchanger
KR20170031556A (en) Heat exchanger
JP2015017738A (en) Heat exchanger
CN110869690B (en) Condenser
JP5171983B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2010249374A (en) Fin tube type heat exchanger and air conditioning/refrigerating device
JP6639690B2 (en) Heat exchanger and refrigeration cycle device
JP6826133B2 (en) Heat exchanger and refrigeration cycle equipment
KR20130084179A (en) Heat exchanger
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
JP5646257B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Ref document number: 5030932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250