JP4733817B2 - 実体顕微鏡 - Google Patents

実体顕微鏡 Download PDF

Info

Publication number
JP4733817B2
JP4733817B2 JP2000235258A JP2000235258A JP4733817B2 JP 4733817 B2 JP4733817 B2 JP 4733817B2 JP 2000235258 A JP2000235258 A JP 2000235258A JP 2000235258 A JP2000235258 A JP 2000235258A JP 4733817 B2 JP4733817 B2 JP 4733817B2
Authority
JP
Japan
Prior art keywords
image
optical system
polarization
light beam
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000235258A
Other languages
English (en)
Other versions
JP2001108905A (ja
Inventor
朝規 石川
和雄 森田
俊一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2000235258A priority Critical patent/JP4733817B2/ja
Publication of JP2001108905A publication Critical patent/JP2001108905A/ja
Application granted granted Critical
Publication of JP4733817B2 publication Critical patent/JP4733817B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、観察物体の観察像と画像表示手段に表示した画像とを同時に観察する場合に好適な手術用顕微鏡等の実体顕微鏡に関する。
【0002】
【従来の技術】
従来より手術用顕微鏡などの実体顕微鏡は、脳神経外科、耳鼻咽喉科、眼科等の外科手術に用いられ術部の拡大観察を観察者に提供し、手術の効率向上等の重要な役割を果している。近年では実体顕微鏡による術部の拡大観察像だけでなく、術部及びその周辺のCT・MR・超音波による断層画像や内視鏡観察画像、また、外科手術支援装置であるナビゲーションシステム等の画像など、手術に有効な医用画像を術中に得ることができるようになった。そこで、術中に実体顕微鏡を覗いたままで、観察物体の観察像とCT・MR・超音波断層画像、内視鏡観察画像、ナビゲーションシステム画像等の様々な画像とを同時に観察できることが望まれている。
従来このような実体顕微鏡を覗いたままで他の画像を同時に観察できる手段としては、次の2通りの手段が知られている。
【0003】
特開平10−333047号公報に記載の技術は、顕微鏡観察像の−部を遮光し、その部分に画像表示手段に表示した画像を投影光学系を用いて投影することで観察者は顕微鏡観察像の一部に画像を同時観察することができるようにしたものである。
また、特開平5−215971号公報に記載の技術は、光路合成手段を用いて顕微鏡光学系光路と画像表示手段に表示した画像から射出した光束とを重ね合わせ、共通の結像光学系でともに結像し、顕微鏡観察像に画像表示手段に表示した画像を重像して重なった像として同時観察することができるようにしたものである。
前者の手段は精密な画像や他の像と重なった像として観察すると像が互いにスポイルしあってしまうような内視鏡画像と顕微鏡観察像とを組み合わせて同時に観察する際に適しており、後者の手段は単純な画像やナビゲーション画像等を顕微鏡観察像と同時に観察する際に適している。
【0004】
【発明が解決しようとする課題】
しかし、上記2つの技術を組み合わせて様々な画像を、その画像の性質に合わせて観察装置と同時観察できるようにする場合、実体顕微鏡ハウジング内に上記2つの技術で述べている手段の光学要素を内蔵しなければならず、非常に大型化してしまう。実体顕微鏡、特に手術用顕微鏡においては、作業性向上のため顕微鏡部の小型化は必須であるが、前記特開平10−333047公報の技術と前記特開平5−215971公報の技術との組み合わせでは小型化は不可能であった。
【0005】
そこで、本発明は上記問題点に鑑みてなされたものであり、簡単な切り替えにより、顕微鏡像と画像表示手段に表示した画像との重像、顕微鏡像の一部に画像、顕微鏡像と画像との切り替えをできるようにし、画像の性質に合わせて最適な顕微鏡像と画像との同時観察を可能とし、かつ作業性の良い小型の実体顕微鏡を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の実体顕微鏡は、観察物体の観察像と画像表示手段に表示した画像とを同時に観察できるようにした実体顕微鏡において、透過と反射とで直線偏光方向が直交している偏光光路合成手段を用いて前記観察物体からの光束と前記画像表示手段からの光束とを重ね合わせ、かつ、重ね合わせた後の両光束の偏光方向を互いに直交させ、部分的に偏光特性が異なり前記重ね合わされた光束を透過させる際に前記観察物体からの光束と前記画像表示手段からの光束とに部分的に分離できる偏光手段を、前記重ね合わされた光束の光路上に該光束の光軸を中心として90度ずつ回転可能に配置して、前記観察物体の観察像と前記画像表示手段に表示した画像とを同時に観察し、かつ、該観察像と該画像の表示範囲を切り替えることができるようにしたことを特徴としている。
【0007】
また、本発明の実体顕微鏡は、前記偏光光路合成手段が、前記観察物体からの光路上に配置された前記観察物体からの光束に偏光特性を持たせる第1偏光手段と、前記画像表示手段からの光路上に配置されていて前記画像表示手段からの光束に前記第1偏光手段を透過した観察物体からの光束が持つ偏光方向と直交する方向の偏光特性を持たせる第2偏光手段と、前記第1、第2偏光手段からの光路上に配置されていて前記第1、第2偏光手段を透過したそれぞれの光束を重ね合わせる光路合成手段と、からなることを特徴としている。
【0008】
また、本発明の実体顕微鏡は、前記偏光手段が、重ね合わされた前記観察物体からの光束と前記画像表示手段からの光束とが結像する中間結像面上又はその近傍に配置されていることを特徴としている。
また、本発明の実体顕微鏡は、前記偏光手段が、前記重ね合わされた光束に対して垂直にスライドできることを特徴としている
た、本発明の実体顕微鏡は、前記偏光手段が、偏光板と、該偏光板の物体側から見て直前に前記重ね合わされた光束に対して垂直に移動可能に配置されたλ/2板と、により構成されていることを特徴としている。
また、本発明の実体顕微鏡は、前記偏光手段が、偏光板と、該偏光板の物体側から見て直前に配置された液晶板と、により構成されていることを特徴としている。
また、本発明の実体顕微鏡は、前記画像表示手段、前記第1偏光手段、前記第2偏光手段、前記偏光手段を、又は、前記画像表示手段、前記偏光光路合成手段及び前記偏光手段を1つのハウジング内に内蔵し、ユニットとして、実体顕微鏡本体部と実体顕微鏡双眼鏡筒部の間に着脱可能であることを特徴としている。
また、本発明の実体顕微鏡は、前記偏光手段を実体顕微鏡双眼鏡筒部内の中間結像面上又はその近傍に配置した双眼鏡筒が、イエンチ式の眼幅調整機構を有していることを特徴としている。
【0009】
【発明の実施の形態】
以下図面を用いて実体顕微鏡の実施例を説明する。
なお、第1、第3、第6、第9、第10、第12、第13、第15〜第22実施例は、本発明の参考例である。
また、第2、第4、第5、第7、第8、第11及び第14実施例は、本発明の実施例である。
第1実施例
図1は第1実施例を示す手術用顕微鏡の光学系配置構成図である。観察者の右眼側光学系は省略し、図示していない。
図中1は観察物体、2は対物光学系、3は第1偏光板、4は観察物体からの光束が第1偏光板を透過した後に持つ偏光方向、5は画像表示手段としての小型モニター、6は画像投影光学系、7は第2偏光板、8は小型モニター5から射出した光束が第2偏光板7を透過した後に持つ偏光方向、9はビームスプリッター、10は結像光学系、11はビームスプリッター9により重ね合わされた後の観察物体1からの光束が持つ偏光方向、12はビームスプリッター9により重ね合わされた後の小型モニター5からの光束が持つ偏光方向、13は回転可能に配置された第3偏光板、14は第3偏光板13を透過した後の光束の偏光方向であって、この図の場合、透過した光束は観察物体1からの光束となり、第3偏光板13を90°回転した場合は小型モニター5からの光束となる。また、第3偏光板13を45°回転した場合は観察物体1からの光束と、小型モニター5からの光束とが混ざり合った光束となる。また、15は接眼光学系、16は観察者をそれぞれ示している。
【0010】
即ち、本実施例の手術用顕微鏡では、第1偏光板3が、観察物体1からの光束に偏光特性を持たせる第1偏光手段として、観察物体1からの光路上に配置されている。また第2偏光板7が、画像表示手段である小型モニター5からの光束に、第1偏光手段3を透過した観察物体1からの光束が持つ偏光方向4と直交する方向に、偏光方向8を持たせる第2偏光手段として、小型モニター5からの光路上に配置されている。またビームスプリッター9が、光路合成手段として、第1偏光板3、第2偏光板7を透過したそれぞれの光束を重ね合わせるように構成されている。さらに第3偏光板13が、両光束が重ね合わされた光路上に第3偏光手段として配置されている。
そして、観察物体1から射出した光束、小型モニター5から射出した光束がそれぞれ第1偏光板3、第2偏光板6を透過し、互いに直交する偏光方向を与えられ、ビームスプリッター9を介して互いに偏光方向が異なるまま重ね合わされ、結像光学系10を透過した後、第3偏光板13により選別され観察者16により接眼光学系15を介して拡大観察されるように構成されている。
また、第3偏光板13の持つ偏光特性より、第3偏光板13を透過する光束を、観察物体1からの光束と小型モニター5からの光束とから選択することで、観察物体1の観察像と小型モニター5上に表示した画像のいずれかの像を選択して観察できるようになっている。
【0011】
本実施例の顕微鏡は、このように構成したので、いったん互いの光束は重なり合い、結像光学系10等を共用しながらも観察者16が観察できる像は観察物体1の観察像と小型モニター5上に表示した画像との重像だけではなく、観察物体1の観察像か、小型モニター5上に表示した画像のいずれかを観察できる。
また、第3偏光板13は観察者16により任意に回転できるような構成となっており、回転により第3偏光板13の偏光方向を変えられるため、観察者16が観察する像を、観察物体1の観察像と小型モニター5上に表示した画像と、両像の重像とから任意に切り替え、選択することができる。
なお、本実施例中では、重なり合った両光束はともに直線偏光で向きが互いに直交しているが、ともに円偏光で右回りと左回りとしても良い。
【0012】
第2実施例
図2は第2実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。観察者の右眼側光学系は省略し、図示していない。
図中17は結像光学系、18は重ね合わさった2つの光束の偏光状態、19は第3偏光板であり、20で示す部分と21で示す部分とでは偏光特性(方向)が90°異なっている。また、22は第3偏光板19上の20で示す部分を透過した光束が結像してつくる観察像であり、23は同じく第3偏光板19上の21で示す部分を透過した光束が結像してつくる観察像である。
また、15は接眼光学系、16は観察者をそれぞれ示している。
即ち、本実施例では、第3偏光板19は部分的に偏光特性が異なり、いったん重なり合った光束を第3偏光手段19を透過させる際に観察物体からの光束と画像表示手段からの光束とに部分的に分離できるようになっている。
【0013】
本実施例はこのように構成したので、第3偏光板19が部分的に偏光方向が異なるため、透過する光束も部分的に異なり、観察物体の観察像の一部を画像にしたり、逆に画像の一部を観察物体の観察像にしたりと、異なる像を部分的に切り替えて両像を同時観察することができる。
【0014】
第3実施例
図3は第3実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。観察者の右眼側光学系は省略し、図示しない。
図中26は結像光学系、27は重ね合わさった2つの光束の偏光状態、28は第3偏光手段として、反射と透過とで偏光方向が直交している偏光ビームスプリッター、29は結像光学系26の第2群レンズ、30は偏光ビームスプリッター28を透過した光束が結像して作る観察像、31は偏光ビームスプリッター28を反射した光束を偏向させるプリズム、32は偏光ビームスプリッター28、プリズム31を反射した光束が結像して作る観察像、33は2つの観察像30,32を拡大観察する接眼光学系、16は観察者をそれぞれ示している。
【0015】
本実施例はこのように構成したので、いったん重なり合った観察物体からの光束と小型モニター5からの光束とを、1つの偏光ビームスプリッター28による反射と透過とで分別するのでそれぞれの像を互いに独立した場所に投影することができ、両像の同時観察を行うことができる。
【0016】
第4実施例
図4は第4実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。観察者の右眼側光学系は省略し、図示しない。
図中35は結像光学系、36は重ね合わさった2つの光束の偏光状態、37は結像光学系35の結像位置、38は結像位置37上にもしくはその近傍に配置した第3偏光板、39は第3偏光板38における一部のみ偏光方向が90°異なる部分、40は接眼光学系、16は観察者、42は観察者16が観察している観察像、43は観察者16が観察している観察像42の中で、第3偏光板38における一部のみ偏光方向が90°異なる部分39を透過した光束が作る観察像、44は第3偏光板における一部のみ偏光方向が90°異なる部分39以外の部分を透過した光束が作る観察像をそれぞれ示している。
【0017】
本実施例はこのように構成したので、光束の分別が結像面上で行われ、異なる像を部分的に切り替えて両像を同時観察する場合に互いの像の間の境界をはっきりさせることができる。
【0018】
第5実施例
図5は第5実施例を示し、図4で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。観察者の右眼側光学系は省略し、図示しない。
図中45は結像光学系、46は重ね合わさった2つの光束の偏光状態、47は結像光学系45の結像位置、48は接眼光学系、49は接眼光学系48で観察できる範囲、50は接眼光学系48で観察できる範囲49より直径で1.5倍から2倍程度大きく、結像位置47上に配置され、さらに結像面上でスライド可能に構成されている第3偏光板、51は第3偏光板50における一部のみ偏光方向が90°異なる部分、16は観察者、53は観察者16が観察している観察像、54は観察者16が観察している観察像53の中で、第3偏光板50における一部のみ偏光方向が90°異なる部分51を透過した光束が作る観察像、55は第3偏光板における一部のみ偏光方向が90°異なる部分51以外の部分を透過した光束が作る観察像をそれぞれ示している。
【0019】
本実施例はこのように構成したので、前記第4実施例で得られる効果に加え、第3偏光板がスライドすることで、異なる像を部分的に切り替えて両像を同時観察しながら、かつ両像の大きさの比を変更することができる
【0020】
第6実施例
図6は第6実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。観察者の右眼側光学系は省略し、図示しない。
図中56は結像光学系、57は重ね合わさった2つの光束の偏光状態、58は2つの光束が重ね合わさった光路外に移動した第3偏光板、59は重ね合わさった2つの光束が結像して作る、互いの像が重なり合って重像となっている観察像、60は接眼光学系、16は観察者をそれぞれ示している。
【0021】
本実施例はこのように構成したので、第3偏光板58を2つの光束が重ね合わさった光路外に移動した場合、いったん重なり合った実体顕微鏡光束と画像光束を偏光板を通して再度分別しないため、両像が重なった明るい重像として同時観察することができる。
【0022】
第7実施例
図7は第7実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。観察者の右眼側光学系は省略し、図示しない。
図中62は結像光学系、63は重ね合わさった2つの光束の偏光状態、64は第3偏光板、65はλ/2板である。λ/2板65は第3偏光板64の物体側から見て直前に配置されている。66は第3偏光板64とλ/2板65の重なり合った部分、67は第3偏光板64のみを透過した光束が結像してつくる観察像であり、68は第3偏光板64とλ/2板65の重なり合った部分66を透過した光束が結像してつくる観察像である。また、69は接眼光学系、16は観察者をそれぞれ示している。
【0023】
本実施例はこのように構成したので、観察物体からの光束と小型モニターからの光束とがいったん重なり合った光束がλ/2板65を透過することで、偏光方向がともに90°変わるため、第3偏光板64を回転しなくとも観察物体の観察像と画像との切り替えができる。また、λ/2板65を移動可能に配置し、移動させることでλ/2板65を透過した光束だけが偏光方向が変わり、観察物体の観察像の一部を画像にしたり、逆に画像の一部を観察物体の観察像にしたりと、異なる像を部分的に切り替えて両像を同時観察することができる。
【0024】
第8実施例
図8は第8実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。観察者の右眼側光学系は省略し、図示しない。
図中71はビームスプリッター、72は結像光学系、73は重ね合わさった2つの光束の偏光状態、74は第3偏光板、75は電圧のON/OFFで透過する光束の偏光方向を変えることができる、例えば透過型液晶モニターに採用されているような液晶板である。液晶板75は第3偏光板74の物体側から見て直前に配置されている。76は液晶板75における偏光を変えている範囲と第3偏光板74とが重なっている範囲、77は液晶板75をコントロールするコントローラー、78は液晶板75における偏光方向を変えていない範囲と第3偏光板74とが重なっている範囲を透過した光束が結像して作る観察像、79は液晶板75における偏光方向を変えている範囲と第3偏光板とが重なっている範囲を透過した光束が結像して作る観察像、80は接眼光学系、16は観察者、82は小型モニターで、コントローラー77に接続され、液晶板75の電圧をONにしてある部分に相当する部分83に必要な画像を表示する。84は画像投影光学系、85は第2偏光板をそれぞれ示している。
【0025】
本実施例はこのように構成したので、観察物体からの光束と画像表示手段(小型モニター82)からの光束とがいったん重なり合った光束のうち液晶板75の偏光特性を変えた部分を透過した光束のみ偏光方向が変わるため、観察物体の観察像の一部を画像にしたり、逆に画像の一部を観察物体の観察像にしたりと、異なる像を部分的に切り替えて同時観察することができる。また、同時に液晶板75をコントロールしているコントローラー77は小型モニター82も同時にコントロールし、液晶板75の偏光方向を変えている部分に相当する小型モニター82の画像表示部分83に画像を表示するため、見たい画像がケラれて表示されることなどを防ぐことができる。
【0026】
第9実施例
図9は第9実施例を示す観察装置の光学系配置構成図である。観察者の右眼側光学系は省略し、図示しない。
図中86は観察物体、87は対物光学系、88は透過と反射とで偏光方向が異なる偏光ビームスプリッター、89は結像光学系、89.5は重ね合わさった2つの光束の偏光状態、90は第3偏光板、90.5は第3偏光板を透過したあとの光束が持つ偏光方向、91は接眼光学系、16は観察者、93は小型モニター、94は画像投影光学系をそれぞれ示している。
【0027】
即ち、本実施例の観察装置では、透過と反射とで直線偏光方向が直交している偏光光路合成手段として偏光ビームスプリッター88を用いて観察物体86からの光束と画像表示手段としての小型モニター93からの光束とを重ね合わせ、かつ、重ね合わせた後の両光束の偏光方向を互いに直交させ、この重ね合わされた光路上に第3偏光手段90が配置されている。また、この第3偏光手段90の持つ偏光特性より、第3偏光手段90を透過する光束を、観察物体86からの光束と小型モニター93からの光束とから選択することで、観察物体の観察像と画像表示手段に表示した画像のいずれかの像を選択して観察できるようになっている。
【0028】
本実施例の観察装置はこのように構成したので、第1実施例で述べた図1に示す第1偏光板3、第2偏光板7、ビームスプリッター9を本実施例では図9に示すように1つの偏光ビームスプリッター88で兼ねることができ、第1実施例と同様の効果を有しながら偏光板2枚の部品点数を削減することができる。また、第1実施例では図1に示す観察物体1からの光束、小型モニター5からの光束はともに偏光板3,7、ビームスプリッター9を介して2回光量ダウンしていたが、本実施例では図9に示すようにこの部分の光量ダウンが偏光ビームスプリッター88を介して1回で済み明るい観察像を提供することができる。
さらに、本実施例中の小型モニター93をあらかじめ射出光に偏光特性を有している液晶モニターに交換し、その射出光が偏光ビームスプリッター88を反射したときに与えられる偏光方向と同じ向きにあらかじめ配置しておくと、偏光ビームスプリッター88での光量ロスも防ぐことができる。
【0029】
第10実施例
図10、図11は第10実施例を示している。
図10は本実施例の双眼鏡筒部の光学系配置構成図である。
図10(a)は本実施例の双眼鏡筒部の光学系配置の正面図であり、(b)は横から見た図である。図中500は結像光学系、501は偏向ミラー、95はイメージローテーター、96は内部で3回反射する偏向プリズム、97は第1偏光手段である第1偏光板、98は電子画像表示手段である小型モニター、99は偏向プリズム、100は小型モニター98上に表示した画像を双眼鏡筒部結像光学系500の結像位置に投影する画像投影光学系、101は偏向ミラー、102は第2偏光手段である第2偏光板、103はビームスプリッター、104は結像光学系500の結像位置、105は前記結像位置104上に配置された第3偏光手段である第3偏光板、106は接眼光学系、16は観察者、108は手術用顕微鏡本体部をそれぞれ示している。
【0030】
手術用顕微鏡本体部108から射出する光束は、結像光学系500、偏向ミラー501、イメージローテーター95、偏向プリズム96などを経て接眼光学系106の直前の結像位置104に結像するが、この途中で第1偏光板97を透過することである偏光方向が与えられている。
また、小型モニター98から射出する光束は、偏向プリズム99、画像投影光学系100、偏向ミラー101などを経て、同じく結像位置104に結像するが、途中で第2偏光板102を透過することで手術用顕微鏡本体部108から射出した光束が有する偏光方向と直交する偏光方向が与えられている。
そして、これら2つの光束はビームスプリッター103により重ね合わされ、さらに、第3偏光板105により、全体的に、あるいは部分的に選別され、最終的に観察者16に観察される。
【0031】
図11は図10の双眼鏡筒部が手術用顕微鏡本体部に対し着脱可能な構成となっていることを示す図である。
図11中の109は観察物体、110は手術用顕微鏡本体部、111は図10で示した光学系を内蔵している双眼鏡筒ユニット、112は通常の双眼鏡筒ユニット、113は観察者の眼をそれぞれ示している。図10に示す双眼鏡筒ユニット111,通常の双眼鏡筒ユニット112は手術用顕微鏡本体部110に着脱可能になっている。
【0032】
本実施例はこのように構成したので、手術用顕微鏡本体部の構成に変更を加えることなく双眼鏡筒部のみの光学系変更で上記実施例1〜9で述べた効果が得られる。さらに、図10に示す双眼鏡筒ユニット111と通常の双眼鏡筒ユニット112とをシステム的に交換することが可能となり、手術用顕微鏡観察像と画像との同時観察を必要としない観察者には手術用顕微鏡本体部は同じままで通常の双眼鏡筒ユニットでの観察を提供することができる。特に手術用顕微鏡は一つの医療施設において脳神経外科、眼科、整形外科等で共同使用されることが多く、各科によって使用形態が異なるため、ユニット交換とすることで各科の要望に応じた手術用顕微鏡を提供することができる。
【0033】
なお、図10に示す本実施例中のビームスプリッター103を偏光ビームスプリッターで構成すれば、第1、第2偏光板を設ける必要性を無くすことができ、その分部品点数を削減することができる。また、偏光板とビームスプリッターとを経由することによる2重の光量ロスが、偏光ビームスプリッターによる光量ロスの1回だけにすることができ、観察者に明るい観察像を提供することができる。
【0034】
第11実施例
図12、図13は第11実施例を示している。
図12は本実施例の中間鏡筒部の光学系配置構成図である。
図中114は図示しない手術用顕微鏡本体部から射出する光束、115は偏向ミラー、116はアフォーカルリレー光学系の前群、117は偏向プリズム、118は第1、第2偏光手段の代わりに設けた偏光光路合成手段である偏光ビームスプリッター、119はアフォーカルリレー光学系の中間結像点、120はアフォーカルリレー光学系の中間結像点上に配置された第3偏光手段である第3偏光板、121はアフォーカルリレー光学系の後群、123は図示しない双眼鏡筒光学系へと入射する光束、124は電子画像表示手段である小型モニター、125は小型モニター124上に表示した画像をアフォーカルリレー光学系の中間結像点119に投影する画像投影光学系をそれぞれ示している。
【0035】
手術用顕微鏡本体部から射出する光束114は偏向ミラー115やアフォーカルリレー光学系の前群116などを経てアフォーカルリレー光学系の結像位置119に結像するが、この途中で偏光ビームスプリッター118を透過することである偏光方向が与えられている。また、小型モニター124から射出した光束は画像投影光学系125を経て同じく中間結像位置119に結像するが、途中で偏光ビームスプリッター118を透過することで前記手術用顕微鏡本体部から射出した光束が有する偏光方向と直交する偏光方向が与えられ、互いに重ね合わされている。そして、重ね合わされた光束は、第3偏光板120により、全体的に、あるいは部分的に選別され、最終的に双眼鏡筒光学系へと入射され、観察者により観察される。
【0036】
図13は図12の中間鏡筒部が手術用顕微鏡本体部と双眼鏡筒部の間で着脱可能な構成となっていることを示す図である。
図13中の126は観察物体、127は手術用顕微鏡本体部、128は図12で示した光学系を内蔵している中間鏡筒ユニット、129は通常の双眼鏡筒ユニット、16は観察者をそれぞれ示している。
【0037】
本実施例はこのように構成したので、手術用顕微鏡本体部及び双眼鏡筒部の構成に変更を加えることなく、中間鏡筒部のみの光学系変更で前記実施例1〜9で述べた効果が得られ、さらに、図13に示す中間鏡筒ユニット128は手術用顕微鏡本体部127と双眼鏡筒ユニット129の間で着脱可能となり、手術用顕微鏡観察像と画像との同時観察を必要としない観察者には手術用顕微鏡本体部は同じままで通常の双眼鏡筒ユニットでの観察を提供することができる。特に手術用顕微鏡は一つの医療施設において脳神経外科、眼科、整形外科等で共同使用されることが多く、各科によって使用形態が異なるため、ユニット交換とすることで各科の要望に応じた手術用顕微鏡を提供することができる。
【0038】
第12実施例
図14は第12実施例を示す手術用顕微鏡の光学系配置構成図である。
図中131は観察物体、132は対物光学系、133は変倍光学系、134は透過と反射とで偏光方向が異なる偏光ビームスプリッター、135はアフォーカルリレー光学系、136はアフォーカルリレー光学系135の前群、137はアフォーカルリレー光学系135の後群、138は双眼鏡筒光学系であり、内部の中間結像点上には第3偏光板を内蔵している。139は観察者の眼、140は小型モニター、141は画像投影光学系、142はCCD、143は結像光学系をそれぞれ示している。
【0039】
本実施例中の偏光ビームスプリッター134は観察物体131からの光束の一部をCCD142に導く働きと、観察物体131からの他の部分の光束と小型モニター140からの光束とに対し互いに直交する偏光方向を与え、重ね合わせてアフォーカルリレー光学系135の前群136に導く働きとを同時に行っている。
よって、本実施例によれば、前記第1〜9実施例で述べた効果を有しながら第1、第2偏光板が省略でき、かつ前述の2つの働きを持ちながら1回の光量ロスで済むため、非常に明るい顕微鏡観察像と、画像の同時観察を観察者に提供することができる。
【0040】
第13実施例
図15は第13実施例を示す手術用顕微鏡の光学系配置構成図である。
図中503は観察物体、144は対物光学系、145は変倍光学系、146は透過と反射とで偏光方向が異なる偏光ビームスプリッター、147はアフォーカルリレー光学系、148はアフォーカルリレー光学系147の中間結像点、149は中間結像点上148又はその近傍に配置された第3偏光板、150はビームスブリッター、151は双眼鏡筒光学系、16は観察者、153は画像表示手段である小型モニター、154は小型モニター153に表示した画像をアフォーカルリレー光学系147の中間結像点148に投影する画像投影光学系をそれぞれ示している。対物光学系144は観察物体503からの光束を受けてアフォーカル光束として射出するようになっている。アフォーカルリレー光学系147は対物光学系144からのアフォーカル光束を少なくとも1回結像してアフォーカル光束を射出するように構成されている。双眼鏡筒光学系151は、アフォーカルリレー光学系147から双眼鏡筒部に入射されたアフォーカル光束を再結像する双眼鏡筒部結像光学系151aと再結像された像を拡大観察する双眼鏡筒部結像光学系151bとで構成されている。
【0041】
観察物体503からの光束は対物光学系144、変倍光学系145、アフォーカルリレー光学系147の前群147aを経て、アフォーカルリレー光学系147の結像位置148に結像するが、この途中で偏光ビームスプリッター146を透過することである偏光方向が与えられている。また、小型モニター153から射出した光束は画像投影光学系154を経て同じく中間結像位置148に結像するが、途中で偏光ビームスプリッター146を透過することで観察物体503から射出した光束が有する偏光方向と直交する偏光方向が与えられ、互いに重ね合わされている。そして、重ね合わされた光束は、第3偏光板149により、全体的に、あるいは部分的に選別され、最終的に2つの双眼鏡筒光学系151へと入射され、2人の観察者により観察される。
なお、本実施例では双眼鏡筒を2つ接続したが、それ以上接続することができるように構成してもよい。
【0042】
本実施例の手術用顕微鏡はこのように構成したので、1つの双眼鏡筒に対して1対ずつの小型モニター、画像投影光学系、偏光ビームスプリッター、第3偏光板を設ける必要がなく、1つの小型モニター、偏光ビームスプリッター、画像投影光学系、第3偏光板のみで複数の双眼鏡筒を介して複数の観察者に手術用微鏡観察像と画像との同時観察を提供することができ、非常に小型化した手術用顕微鏡を提供することができる。
【0043】
なお本実施例では手術用顕微鏡光学系のうち変倍光学系、アフォーカルリレー光学系をそれぞれ1つ設けて構成したが、図16に示すように左右2つの光学系にしても1セットの偏光ビームスプリッター、画像投影光学系、小型モニターが増えるだけで図15の構成と同じ効果が得られる。
図16中505は観察物体、506は対物光学系、507は変倍光学系、508は偏光ビームスプリッター、509はアフォーカルリレー光学系、510は第3偏光板、511はビームスプリッター、515は双眼鏡筒光学系、16は観察者、513は小型モニター、514は画像投影光学系をそれぞれ示している。
【0044】
第14実施例
図17は第14実施例を示す手術用顕微鏡の双眼鏡筒部、特に眼幅調整機構部の光学系配置構成図である。
図中155は結像光学系、156は偏向ミラー、157はイメージローテーター、158は偏向プリズム、160は結像光学系155による結像位置、161は第3偏光板、162は接眼光学系をそれぞれ示している。図17に示す双眼鏡筒部の眼幅調整機構はイエンチ式と呼ばれ、特徴としては偏向ミラー159が左右互いに外側にシフトし、それに追従して結像位置160や接眼光学系162がシフトしながらも、光路長が短くなるのを補うために、斜め上方向にシフトして、左右の接眼光学系間の距離を増やす機構となっている。また、他の眼幅調整機構であるジーテントップ式と異なり眼幅調整しても接眼光学系の周辺が回転しないという特徴がある。
【0045】
本実施例はこのように構成したので、第3偏光板161を結像光学系155の結像位置160上に置く場合、第3偏光板161自身が眼幅調整に伴い回転してしまうことが無いため、顕微鏡観察像と画像とを部分的に分割して同時観察した時に左右の像を融像できなくなるという事が無い。
【0046】
図18は本実施例との比較のためにジーテントップ式の眼幅調整機構を持つ双眼鏡筒光学系の結像位置に第3偏光板を置いた場合の図である。
また、図19はジーテントップ式の眼幅調整機構を持つ双眼鏡筒光学系の結像位置に第3偏光板を置いた場合の左右の観察像を示す図である。
図18中163は結像光学系、164は眼幅調整用平行四辺形プリズム、165は平行四辺形プリズム164に入射する光軸、166は結像光学系163による結像位置、167は第3偏光板、168は接眼光学系をそれぞれ示している。
また、図19中169は観察者が左眼で観察できる観察像、170は観察者が右眼で観察できる観察像、171は左眼観察像中の顕微鏡観察像部分、172は右眼観察像中の顕微鏡観察像部分、173は左眼観察像中の画像部分、174は右眼観察像中の画像部分をそれぞれ示している。
【0047】
ジーテントップ式の眼幅調整機構とは図中符号163に示すように、左右の平行四辺形プリズム164を平行四辺形プリズム164に入射する光軸165を中心に互いに反対方向に回転させることで左右の接眼光学系間の距離を調節する機構となっており、平行四辺形プリズム164から接眼光学系168までの光学要素を回転させるという特徴がある。このジーテントップ式の眼幅調整機構を持つ双眼鏡筒の結像位置166に第3偏光板167を置き、顕微鏡観察像と画像とを部分的に分割して同時観察するために眼幅調整する場合、接眼光学系168や平行四辺形プリズム164と共に第3偏光板167が回転してしまうため、ある眼幅調整状態では図18で示すように左右の像が互いに反対向きに回転して融像できなくなる状態が発生してしまう。
これを防ぐには第3偏光板167の回転補正機構を内蔵しなければならず、それでは双眼鏡筒が非常に大型化してしまう。
【0048】
第15実施例
図20は第15実施例を示す手術用顕微鏡の光学系配置構成図である。観察者の右眼側光学系は省略し、図示しない。
図中178は観察物体、179は対物光学系、180は透過と反射とで偏光方向が異なる偏光ビームスプリッター、181は射出する光束が既に偏光方向を有している画像表示手段である液晶モニター、182は液晶モニター181から射出する光束の偏光方向、183は画像投影光学系、184は結像光学系、185は偏光ビームスブリッター透過後の顕微鏡光束の持つ偏光方向、186は偏光ビームスプリッター反射後の液晶モニター181から射出した光束の持つ偏光方向、187は接眼光学系、16は観察者、189は観察者16が観察する顕微鏡観察像と画像とが重なった像をそれぞれ示している。偏光ビームスプリッター180は観察光学系の光路中に配置されていて液晶モニター181からの光束を観察光学系の光路に挿入するようになっている。
【0049】
本実施例はこのように構成したので、偏光ビームスプリッター180は反射面に対してS偏光方向のみ反射し、P偏光方向のみを透過するので偏光ビームスプリッター180で反射させたい光束にもともとS偏光方向を持たせれば偏光ビームスプリッター180で光量をロスすること無く光路を挿入できる。また、液晶モニター181を射出する光束は既にある偏光方向を持っているのでこの偏光方向を偏光ビームスプリッター181の反射面のS偏光方向に合わせることで液晶モニター181の明るさをロスすること無く顕微鏡観察像に重ねることができ、特に顕微鏡観察像と画像とを重ねて表示する場合などに、顕微鏡観察像の明るさに埋もれてしまい画像が見えなくなってしまうようなことを防ぐことができる。
【0050】
第16実施例
図21は第16実施例を示す手術用顕微鏡の光学系配置構成図である。
図中190は観察物体、191は対物光学系、192は偏向プリズム、193は透過と反射とで偏光方向が異なる1個目の偏光ビームスプリッター、194は変倍光学系、195は左眼用顕微鏡光束、196は右眼用顕微鏡光束、197は1個目の偏光ビームスプリッター193を透過した左眼用顕微鏡光束195が持つ偏光方向、198は1個目の偏光ビームスプリッター193で反射した右眼用顕微鏡光束196が持つ偏光方向、199は2個目の偏光ビームスプリッター、200は偏向プリズム、201は射出する光束に偏光方向を持たない画像表示手段であるモニター、202は画像投影光学系、203は前記2個目の偏光ビームスプリッター199を透過した左眼用顕微鏡光束195が持つ偏光方向、204は2個目の偏光ビームスブリッター199で反射した右眼用顕微鏡光束196が持つ偏光方向、205は2個目の偏光ビームスプリッター199を反射した、モニター201からの光束が持つ偏光方向、206は2個目の偏光ビームスプリッター199を透過した、モニター201からの光束が持つ偏光方向、207は結像光学系、208は左眼用第3偏光板、209は右眼用第3偏光板、210は接眼光学系、16は観察者、212は観察者16が観察する観察像、213は顕微鏡観察像部分、214は画像部分、215は光源ランプ、216は照明光学系をそれぞれ示している。
【0051】
本実施例では1個目の偏光ビームスプリッター193により左眼用顕微鏡光束195と右眼用顕微鏡光束196とを互いに偏光方向を直交させながら混ぜ合わせて1本の変倍光学系194を通し変倍させ、2個目の偏光ビームスプリッター199により再度左右光束に分離する。かつ2個目の偏光ビームスプリッター199はモニター201からの光束も左右光束に分離しながら顕微鏡光束と混ぜ合わせている。最終的に左眼用第3偏光板208と右眼用第3偏光板209により、顕微鏡観察像と画像とを部分的に分離して観察者に顕微鏡観察像と画像との同時観察を提供している。また、1個目の偏光ビームスプリッター193は光源ランプ215からの照明光を受け、左右顕微鏡光束195,196と同軸で観察物体190を照明する役割も持っている。
【0052】
本実施例はこのように構成したので、顕微鏡観察像と画像との同時観察を観察者に提供しながらも、変倍光学系1つ分や照明光学系の偏光プリズムなどの多くの部品が省略でき、非常に小型な作業性の良い手術用顕微鏡を観察者に提供することができる。
【0053】
第17実施例
図22は第17実施例を示す手術用顕微鏡の光学系配置構成図である。
図23は本実施例の手術用顕微鏡の変形例を示す光学系配置構成図である。
図22中、600は観察物体、601は対物光学系、602は変倍光学系、604は第1偏光手段である第1偏光板、605はビームスプリッター、606は画像表示手段である小型モニター、607は画像投影光学系、608は第2偏光手段である第2偏光板、609は双眼鏡筒部の結像光学系、610は第3偏光手段である第3偏光板、611は接眼光学系、16は観察者をそれぞれ示している。図中、符号613で囲まれた範囲内の光学素子はすべて手術用顕微鏡本体部ハウジング内に内蔵されており、符号614で囲まれた範囲内の光学素子はすべて手術用顕微鏡双眼鏡筒部ハウジング内に内蔵されている。
図23中、615は観察物体、616は対物光学系、617は変倍光学系、618は第1偏光手段である第1偏光板、619はビームスプリッター、620は画像表示手段である小型モニター、621は画像投影光学系、622は第2偏光手段である第2偏光板、623は双眼鏡筒部結像光学系、624は偏向プリズム、625は第3偏光手段である第3偏光板、626は接眼光学系、16は観察者、628は手術用顕微鏡本体部、629は手術用顕微鏡双眼鏡筒部、630は照明光学系をそれぞれ示している。
【0054】
本実施例の手術用顕微鏡はこのように構成したので、上記実施例1で示した効果と同じ効果を観察者の右眼で得ることができ、しかも小型モニター606の電源ケーブル等も手術用顕微鏡本体部ハウジング内に内蔵することにより、顕微鏡周辺に発生しがちなケーブル等のはいまわしを防ぐことができ、煩雑でない手術用顕微鏡を提供することができる。
なお、本実施例において、ビームスプリッター605を、透過と反射とで偏光方向が異なる偏光ビームスプリッターにすれば第1、第2偏光板604、608を省略することができる。また、本実施例では、第1、2、3偏光板604,608,610及び、ビームスプリッター605、画像投影光学系607、小型モニター606を観察者の右眼側の光学系にしか配置していないが、両眼の光学系に配置しても良い。また、図22では、ビームスプリッター605を変倍光学系602の後に配置したが、変倍光学系602の前に配置しても良い。
また、図22では、小型モニター606からビームスプリッター605に入射する光束は観察者に対して右側から入射しているが、図23に示すように小型モニターからビームスプリッターに入射する光束が観察者に対して手術用顕微鏡本体部の背面側から入射するように小型モニター620、画像投影光学系621、第2偏光板622、ビームスプリッター619を配置すれば、手術用顕微鏡の左右側の作業空間を大きくとることができるため、手術に適した手術用顕微鏡を提供することができる。
【0055】
第18実施例
図24は第18実施例を示す手術用顕微鏡の光学系配置構成図である。
図中700は観察物体、701は対物光学系、702は変倍光学系、703は第1偏光ビームスプリッター、704は画像表示手段である第1小型モニター、705は画像投影光学系、706は第2偏光ビームスプリッター、707は結像光学系、708は第1接眼光学系、709は偏向プリズム、710は第2接眼光学系である。ここで、符号711で囲まれた範囲の上記光学素子は、図示していないが、観察者に対して第1接眼光学系708の右側にも配置されており、その配置された光学系の接眼光学系を第3接眼光学系とする。712は第2小型モニター、713は第4接眼光学系、16は観察者、715は第2小型モニター712に表示された画像の観察像、716は観察物体700の顕微鏡観察像、717は第1小型モニター704に表示された画像の観察像、718は観察物体700の顕微鏡観察像と第1小型モニター704に表示された画像の観察像が重なって見える重像をそれぞれ示している。
【0056】
第2偏光ビームスプリッター706は配置されたその位置で回転でき、また、光束外に移動できるようになっている。
本実施例の手術用顕微鏡はこのように構成したので、第2偏光ビームスプリッター706を図24に示した通りの配置にすると、顕微鏡光束は第2偏光ビームスプリッター706を透過し、第1接眼光学系708へ向けて導かれ、第1小型モニター704からの光束は第2偏光ビームスプリッター706を反射し、第2接眼光学系710へ向けて導かれる、また、第2小型モニターからの光束は常に第4接眼光学系713に導かれ、第1、2、4接眼光学系708,710,713の射出瞳はすべて観察者16の瞳孔位置で重なっているため、図中Aで示すように中心部に顕微鏡観察像716、上下に画像715,717の3つの像を同時に観察できる。
この表示レイアウトはあくまで顕微鏡像をもとに手術を行う際に最適であり、上下の画像には内視鏡画像や超音波断層画像等を表示でき、これらの画像から手術に有効な情報を得ながら中央の顕微鏡像観察下で手術が行える。
【0057】
また、第2偏光ビームスプリッター706が90度回転し、第2偏光ビームスプリッター706の反射光の向きを紙面に対して垂直手前方向に向くよう配置すると、顕微鏡光束は第2偏光ビームスプリッター706で反射し、図示しない第3接眼光学系へ向けて導かれ、第1小型モニター704からの光束は第2偏光ビームスプリッター706を透過し、第1接眼光学系708へ向けて導かれる。また、第2小型モニター712からの光束は常に第4接眼光学系713に導かれ、第1、2、4接眼光学系708,710,713の射出瞳はすべて観察者16の瞳孔位置で重なっているため、図中Bで示すように中心部に第1小型モニター704に表示された画像717、その右に顕微鏡像716、中心部像717の上に第2小型モニター712に表示した画像715の3つの像を同時に観察できる。この表示レイアウトは内視鏡画像をもとに手術を行う際に最適であり、中心部に内視鏡画像を表示し、上側にナビゲーション画像を表示すると、右側の顕微鏡像や、上側のナビゲーション画像をもとに中心部内視鏡画像のオリエンテーションを付けながら内視鏡観察下で手術が行える。
【0058】
また、第2偏光ビームスプリッター706を光束外に移動させると、第1偏光ビームスプリッター703により重ね合わされた顕微鏡光束と第1小型モニター704からの光束は重ね合わされたまま、結像光学系707aを透過し、重ね合わさった像として第1接眼光学系708で観察される。第2小型モニター712からの光束は常に第4接眼光学系713に導かれ、第1、4接眼光学系708,713の射出瞳は観察者16の瞳孔位置で重なっているため、図中Cに示すように中心部に顕微鏡像と第1小型モニター704に表示した画像との重なり合った重像718、その上に第2小型モニター712に表示した画像715を同時に観察できる。この表示レイアウトはナビゲーションによる観察者の誘導を行う際に最適であり、中心部で顕微鏡像にナビゲーションによる指標や輪郭の強調表示を重ねて表示し、ナビゲーションの指示や注意をダイレクトに観察者が受けることができる。上側にはナビゲーション画像によるオリエンテーションを補助する画像を表示すればより一層観察者をサポートすることができる。
【0059】
このように、本実施例によれば、第2偏光ビームスプリッター706の配置の仕方の変化だけで様々な表示レイアウトが実現でき、観察者16に様々な画像を画像の質に合わせた表示方法で顕微鏡観察像と同時に提供でき、手術の様々なサポートが行える手術用顕微鏡を提供することができる。
【0060】
第19実施例
図25は第19実施例を示す手術用顕微鏡の双眼鏡筒部の光学系配置の側面図であり、図26はその上面図である。
図25中の800は手術用顕微鏡本体部、801は結像光学系、802は偏向プリズム、803は偏光ビームスプリッター、804は第3偏光手段である第3偏光板、805は第1接眼光学系、806は画像表示手段である小型モニター、807はリレー光学系、808は偏向プリズム、809は第2接眼光学系、16は観察者、810.1は顕微鏡観察像、810.2は顕微鏡観察像中に表示された画像観察像、810.3は顕微鏡観察像と画像観察像とが重なった重像、810.4は顕微鏡観察像、810.5は画像観察像をそれぞれ示している。
図26中の800は手術用顕微鏡本体部、801は結像光学系、813は偏向ミラー、814はイメージローテーター、802、816は偏向プリズム、803は偏光ビームスプリッター、804は第3偏光手段である第3偏光板、805は第1接眼光学系、820は画像表示手段である小型モニター、807はリレー光学系、809は第2接眼光学系、16は観察者をそれぞれ示している。
【0061】
図25に示す偏光ビームスプリッター803は顕微鏡光束と小型モニター806からの光束を両光束に直交する偏光方向を与えつつ重ね合わせている。なお、第2接眼光学系809側への射出面は遮光されている。さらに、偏光ビームスプリッター803は光束外へと移動可能な構成となっている。
また、第3偏光板804は部分的に偏光特性の異なる偏光板として構成されており、これも光束外へと移動可能な構成となっている。
【0062】
本実施例の手術用顕微鏡はこのように構成したので、偏光ビームスプリッター803から射出される重ね合わさった両光束は第3偏光板804により再度部分的に分別され第1接眼光学系805を介して図25のAに示すような状態に両像を同時に観察することができる。
なおこの表示レイアウトは小型モニター806に内視鏡画像を表示する際に最適である。
【0063】
また、第3偏光板804を光路外に移動させると、重ね合わさった両光束を分別しないため、第1接眼光学系805にて図25のBに示すように両像が重なった重像として両像を同時に観察することができる。
この表示レイアウトは小型モニターにナビゲーション画像(指標や輪郭強調など)を表示し、観察者に直接注意を促したり、観察者の誘導を行う場合に最適である。
【0064】
また、第3偏光板804、偏光ビームスプリッター803をともに光路外に移動させると、両光束は重ね合わされず、顕微鏡光束は第1接眼光学系805へ、小型モニター806からの光束は第2接眼光学系809へと導かれる、また、第1接眼光学系805と第2接眼光学系809の射出瞳はともに観察者の瞳孔位置で重なっているため、それぞれ第1、第2接眼光学系805,809を介して図25のCに示すように両像を大きく同時に観察することができる。
この表示レイアウトは非常に高精細な画像を小型モニターに表示させる場合に最適である。
【0065】
このように、本実施例によれば、第3偏光板804、偏光ビームスプリッター803の移動の組み合わせのみで多彩な両像の同時観察を観察者に提供することができる。
なお、本実施例ではビームスプリッターとして偏光ビームスプリッター803を用いたが、第3偏光板804を用いない場合は通常のビームスプリッターを用いても良い。
なお、本実施例の第2接眼光学系809は少なくとも一面が対称面を持たない曲面を有するプリズム状プラスチック成形レンズから成っている。
また、第2接眼光学系809のアイレリーフは少なくとも第1接眼光学系805のアイレリーフの1.2倍有することが望ましい。第2接眼光学系809のアイレリーフがこの条件を満たさないとどんどん観察者の顔方向に突出し、非常に使いづらい顕微鏡となってしまう。
さらに、第2接眼光学系809の射出瞳径は少なくとも第1接眼光学系の射出瞳径より大きいことが望ましい。こうすると、観察者が第2接眼光学系から得られる像を注視しようとして眼を振った場合に第2接眼光学系から得られる像がケラれることを防止することができる。
【0066】
第20実施例
図27は第20実施例を示す手術用顕微鏡の光学系配置構成図である。観察者の右眼側光学系は省略し、図示しない。
図中900は観察物体、901は対物光学系、902は変倍光学系、903は第偏光手段である第1偏光板、904はビームスプリッター、905は画像表示装置である小型モニター、906は画像投影光学系、907は偏向プリズム、908は第2偏光手段である第2偏光板、909は結像光学系、910は偏光ビームスプリッター、911は偏光プリズム、912は結像位置、913は接眼光学系、16は観察者をそれぞれ示している。
【0067】
第1、第2偏光板903,908はそれぞれ配置されたその位置で回転できようになっており、そのため、第1、第2偏光板903,908の回転によりそれぞれの偏光板を透過する観察物体からの光束と小型モニター905からの光束に任意な偏光方向を与えることができ、それぞれの光束の偏光ビームスプリッター910での透過及び反射量のコントロールができる。よって、第1偏光板903を回転させることで顕微鏡観察像を図中Aに示す位置に結像させたり、Bに示す位置に結像させたりすることができる。もちろん第2偏光板908を回転させることで小型モニター905に表示した画像も同様である。
本実施例の手術用顕微鏡はこのように構成したので、第1、2偏光板の回転だけで顕微鏡観察像と小型モニターに表示した観察画像の表示位置を任意に交換でき、観察者の望む状態で顕微鏡観察像と観察画像とを同時に提供できる。
【0068】
第21実施例
図28は第21実施例を示す手術用顕微鏡の光学系配置構成図である。本実施例は、図15に示した第13実施例と一部共通の構成を含んでいるので、実質上図15で用いたのと同一の部材には同一符号を用い、その部材についての説明は省略する。図中、1101は第1の反射型LCD、1102は第2の反射型LCD、1103はLED、1104は拡散板、1105は反射型LCD用照明光学系、1106は偏光ビームスプッリター、1107は第1の反射型LCD1101から出射した紙面内上下方向の直線偏光状態を持つ光束、1108は第2の反射型LCD1102から出射した紙面に対して垂直方向の直線偏光状態を持つ光束、1109は結像光学系、1110は第1の偏光板、1111は第2の偏光板、1112は結像光学系1109による結像位置、1113は第1の偏光板1110を透過した観察物体からの光束、1114は第2の偏光板1111を透過した観察物体からの光束、1115は第1の偏光板1110を透過した第1の反射型LCD1101からの光束、1116は第2の偏光板1111を透過した第1の反射型LCD1101からの光束、1117は接眼光学系である。
【0069】
この実施例に拠れば、第1及び第2の反射型LCD1101及び1102を出射した光束は、偏光ビームスプリッター1106により互いに直交する偏光状態を与えられて混じり合わされ、更にビムスプリッター146により観察物体503からの光束と混じり合わされる。このようにして混じり合わされた光束は、結像光学系1109により結象され、接眼光学系1117により観察者16により観察されるが、観察される前に第1及び第2の偏光板1110及び1111により透過する光束を制限される。第1の偏光板1110は紙面内水平方向の直線偏光を持つ光束のみを透過し、第2の偏光板1111は紙面に対して垂直方向の直線偏光を持つ光束のみを透過する。したがって、観察者16の左目で観察される像は、観察物体503の像と第1の反射型LCD1101に表示された画像のみであり、右目で観察される像は、観察物体503の像と第2の反射型LCD1102に表示された画像のみである。
【0070】
また、第1及び第2の偏光板1110及び1111は、観察者16の選択で夫々別々に90°回転させたり、光束外に退避させたりすることが出来る。これにより、観察者16の左右の目に導かれる画像を、第1の反射型LCD1101からのもと第2の反射型LCD1102からのものとを逆にしたり、両方とも第1の反射型LCD1101からの画像にしたり、また両方とも第2の反射型LCD1102からの画像にしたり、更に観察物体503の像のみとして両方のLCDからの画像を遮蔽することも出来る。
【0071】
ところで、回転可能な新たな偏光板1118を図中破線で示した位置に挿脱可能に配置すれば、この偏光板1118が無いときは、観察者の左目により観察される像は、観察物体503の像と第1の反射型LCD1101に表示された画像であり、右目により観察される像は観察物体の像と第2の反射型LCD1102に表示された画像であるものが、偏光板1118を光路に入れた場合は、観察者16の観察する像を観察物体503の像と第1の反射型LCD1101のみとすることができ、またこの偏光板1118を90°回転させることにより、観察者16の観察する像を観察物体503の像と第2の反射型LCD1102の画像のみとする事ができる。
【0072】
手術中、術者は術部の像を観察すと同時に、神経モニターの観察や又は手術の録画状態を確認したい場合がある。そのような場合に、第1の反射型LCD1101にに神経モニターを映し出し、第2の反射型LCD1102に手術の録画状態を(RECサイン等)を映し出して置くことによって、術者は手術中に顕微鏡の接眼レンズから目を離すことなく、術部以外の情報を選択可能に得ることが出来る。これは、術者の集中力を保ちまた手術時間を短縮する上で非常に有効である。更には、第1の反射型LCD1101と第2の反射型LCD1102の各々に、例えば、立体内視鏡等によって得られた互いに視差を有する画像を表示すれば、観察者は物体の観察像と重ねて内視鏡画像等の立体観察をすることも出来る。
【0073】
一般に、複数の画像を時分割等の手段を用いて1つの画像表示手段で表示する事も知られているが、これを実現するにはミキサーなどの手段が別途必要である。これに対して、本発明によれば、複数の画像表示手段を用いることなく、簡単に複数の画像を色々な組み合わせで観察者に提供することが可能である。
【0074】
第22実施例
図29は第22実施例を示す手術用顕微鏡の光学系配置構成図である。本実施例は、図21に示した第16実施例と図28に示した第21実施例の各一部共通の構成を含んでいるので、実質上図21と図28で用いたのと同一の部材には同一符号を用い、それらの部材についての説明は省略する。図中、1201は紙面内水平方向の直線偏光状態を持つ左眼用の観察物体190からの光束、1202は紙面垂直方向の直線偏光状態を持つ右眼用の観察物体190からの光束、1203は紙面内上下方向の直線偏光状態を持つ第1の反射型LCD1101からの光束、1204は紙面に対して垂直方向の直線偏光状態を持つ第2の反射型LCD1102からの光束、1205は右眼用の観察物体190からの光束,左眼用の観察物体からの光束,第1の反射型LCD1101からの光束及び第2の反射型LCD1102からの光束が全て混じり合った光束、1206は紙面に対して垂直方向の直線偏光状態を持つ右眼用の観察物体190からの光束、1207は紙面水平方向の直線偏光状態を持つ左眼用の観察物体190からの光束、1208は紙面に対して垂直方向の直線偏光状態を持つ第2の反射型LCD1102からの光束、1209は紙面内水平方向の直線偏光状態を持つ第1の反射型LCD1101からの光束、1210は第3の偏光ビームスプリッターである。
【0075】
本実施例によれば、左眼用の観察物体190からの光束195と右眼用の観察物体190からの光束196は、第1の偏光ビームスプリッター193により互いに直交する偏光状態を与えられ混じリ合わされる。また、第1及び第2の反射型LCD1101及び1102を出射した光束は、第2の偏光ビームスプリッター1106により互いに直交する偏光状態を与えられ混じり合わされる。更に、ビームスプリッター199により前記4光束は互いに混ざり合わされる。このようにして混じり合わされた光束1205は、結像光学系207により結像され、接眼光学系1117を介して観察者16により観察されるが、観察される前に、第3の偏光ビームスプリッター1210により反射する光束と、透過する光束とに分けられる。詳しくは、右眼用の観察物体190からの光束1206と第2の反射型LCD1102からの光束1208は反射されて観察者16の右眼へ、また、左眼用の観察物体190からの光束1207と第1の反射型LCD1101からの光束1209は透過して観察者16の左眼へと導かれる。ここで、2つの画像表示手段即ち第1と第2の反射型LCD1101と1102に互いに視差を有する画像を表示させれば、術者は術部の立体像を観察すると同時に立体画像を観察することが出来る。
【0076】
観察者の右眼と左眼に、夫々異なる画像表示手段からの画像を重ね合わせる方法としては、図31に示す構成のものが知られているが、これは、実体顕微鏡に内蔵された一対の光学系の夫々に光路合成手段を配設すると共に、それら2つの光路合成手段に別々の画像表示手段からの光束を入射させるための専用の光学系が夫々必要となるため、大型化を避けられない。
【0077】
また、第1及び第2の反射型LCD1101および1102の各々に、例えば超音波プローブによって得た互いに視差を有する画像を表示させれば、観察者は物体の観察像と超音波像を各々の像の深さ関係を含めて得ることが出来るが、これを以下に簡単に説明する。
【0078】
図30(a)において、1211は実体顕微鏡、1212は超音波プローブ、1213は超音波プローブの先端が実体顕微鏡のピント位置1214に対してどういう位置関係にあるかを検出するセンサーであり、両者の位置関係を平面座標X,Y及び深さ座標Zで検出する。これらの座標によって2つの画像表示手段上に表示する超音波画像の位置を決定する。具体的には以下の通りである。まず、2つの画像表示手段1215,1216(図30(b)及び(c)参照)上のモニター面中心を実体顕微鏡の観察中心1217に合わせる。次に、その位置から平面座標X,Yをもとに換算したモニター上での変位量X´,Y´(図30(b)及び(c)参照)だけ変位させた位置P,P´を基準に深さ座標Zを視差に換算したZ´分だけ変位させた位置Q,Q´を中心位置として超音波画像を表示させる。こうすることによって、常にセンサーを機能させ続ければ、実体顕微鏡による観察位置に対する超音波像を、深度方向の情報を合わせて表示することがリアルタイムで可能である。
【0095】
【発明の効果】
以上、本発明の実体顕微鏡によれば、簡単な切り替えにより、顕微鏡像と画像表示手段に表示した画像との重像、顕微鏡像の一部に画像、顕微鏡像と画像との切り替えができ、画像の性質に合わせた最適な顕微鏡像と画像との同時観察が可能となり、かつ作業性の良い小型な実体顕微鏡を提供することができる。
【図面の簡単な説明】
【図1】 1実施例を示す手術用顕微鏡の光学系配置構成図である。
【図2】 2実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。
【図3】 3実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。
【図4】 4実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。
【図5】 5実施例を示し、図4で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。
【図6】 6実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。
【図7】 7実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。
【図8】 8実施例を示し、図1で示した光学系配置の第3偏光板に加えた改良を表すため、主に第3偏光板周辺の構成を表した図である。
【図9】 9実施例を示し、観察装置の光学系配置構成図である。
【図10】 10実施例の双眼鏡筒部の光学系配置を表す図であり、図10(A)は本実施例の双眼鏡筒部の光学系配置の正面図であり、(B)は横から見た図である。
【図11】 10実施例を示し、図10の双眼鏡筒部が手術用顕微鏡本体部に対し着脱可能な構成となっていることを示す図である。
【図12】 11実施例を示す中間鏡筒部の光学系配置構成図である。
【図13】 11実施例を示し、図12の中間鏡筒部が手術用顕微鏡本体部と双眼鏡筒部の間で着脱可能な構成となっていることを示す図である。
【図14】 12実施例を示す手術用顕微鏡の光学系配置構成図である。
【図15】 13実施例を示す手術用顕微鏡の光学系配置構成図である。
【図16】 図15に示す実施例の変形例を示す手術用顕微鏡の光学系配置構成図である。
【図17】 14実施例を示す手術用顕微鏡の双眼鏡筒部、特に眼幅調整機構部の光学系配置構成図である。
【図18】 第14実施例との比較のためにジーテントップ式の眼幅調整機構を持つ双眼鏡筒光学系の結像位置に第3偏光板を置いた場合の図である。
【図19】 ジーテントップ式の眼幅調整機構を持つ双眼鏡筒光学系の結像位置に第3偏光板を置いた場合の左右の観察像を示す図である。
【図20】 15実施例を示す手術用顕微鏡の光学系配置構成図である。
【図21】 16実施例を示す手術用顕微鏡の光学系配置構成図である。
【図22】 17実施例を示す手術用顕微鏡の光学系配置構成図である。
【図23】 17実施例を示す手術用顕微鏡の図21とは別の光学系配置構成図である。
【図24】 18実施例を示す手術用顕微鏡の光学系配置構成図である。
【図25】 19実施例を示す手術用顕微鏡の双眼鏡筒部の光学系配置の側面図である。
【図26】 図25に示す手術用顕微鏡の双眼鏡筒部の光学系配置の上面図である。
【図27】 20実施例を示す手術用顕微鏡の光学系配置構成図である。
【図28】 21実施例を示す手術用顕微鏡の光学系配置構成図である。
【図29】 22実施例を示す手術用顕微鏡の光学系配置構成図である。
【図30】 画像表示手段に超音波プローブによって得た画像を表示させるようにした実体顕微鏡装置の概略構成と超音波画像の表示方法を説明した図である。
【図31】 観察者の右眼と左眼に互いに異なる画像表示手段からの画像を重ね合わせるように構成した実体顕微鏡の公知例の概略図である。
【符号の説明】
1,86,109,126,131,178,190,503,505,600,615,700,900・・・観察物体
2,87,132,144,179,191,506,601,616,701,901・・・対物光学系
3,97,604,618,903,1110・・・第1偏光板
4・・・観察物体からの光来が第1偏光板を透過した後に持つ偏光方向
5,82,93,98,124,140,153,513,606,620,806,820,905・・・小型モニター
6,84,94,100,125,141,154,183,202,514,607,621,705,906・・・画像投影光学系
7,85,102,608,622,908,1111・・・第2偏光板
8・・・小型モニターからの光束が第2偏光板を透過した後に持つ偏光方向
9,71,103,150,511,605,619,904・・・ビームスプリッター(BS)
10,17,26,35,45,56,62,72,89,143,155,163,184,207,500,609,623,707,801,812,909,1109・・・結像光学系
11・・・BSにより重ね合わされた後の観察物体からの光束が持つ偏光方向
12・・・BSにより重ね合わされた後の小型モニターからの光束が持つ偏光方向
13,19,38,50,64,74,90,105,120,149,161,167,510,610,625,804,818・・・第3偏光板
14・・・第3偏光板を透過した後の光束の偏光方向
15,24,33,40,48,60,69,80,91,106,162,168,187,210,611,626,913,1117・・・接眼光学系
16・・・観察者
18,27,26・・・重ね合わさった2つの光束の偏光状態
20,21・・・第3偏光板の一部
22,23,42・・・観察像
28,30,88,118,134,146,180,508,803,817,910,1106,1210・・・偏光ビームスプリッター(PBS)
29・・・結像光学系の第2群レンズ
31・・・PBSを反射した光束を偏向させるプリズム
32・・・PBSを反射した光束が結像して作る観察像
37,47,104,166,912,1112・・・結像位置
39・・・第3偏光板のうち一部偏光方向が90°異なる部分
43・・・観察像の中で第3偏光板のうち一部偏光方向が90°異なる部分を透過した光束が作る観察像
44・・・観察像の中で第3偏光板のうち一部偏光方向が90°異なる部分以外を透過した光束が作る観察像
46・・・重ね合わさった2つの光束の偏光状態
49・・・接眼光学系で観察できる範囲
51・・・第3偏光板のうち一部のみ偏光方向が90°異なる部分
53・・・観察者が観察している観察像
54・・・観察者が観察している観察像の中で第3偏光板のうち一部偏光方向が90°異なる部分を透過した光束が作る観察像
55・・・観察者が観察している観察像の中で第3偏光板のうち一部偏光方向が90°異なる部分以外を透過した光束が作る観察像
57,63,73・・・重ね合わさった2つの光束の偏光状態
58・・・重ね合わさった2つの光束外に移動した第3偏光板
59・・・互いの像が重なり合って重像となっている観察像
65・・・λ/2板
66・・・第3偏光板とλ/2板の重なり合った部分
67・・・第3偏光板のみを透過した光束が結像して作る観察像
68・・・第3偏光板とλ/2板の重なり合った部分を透過した光束が結像して作る観察像
75・・・液晶板
76・・・液晶板のうち偏光方向を変えている範囲と第3偏光板とが重なっている範囲
77・・・コントローラー
78・・・液晶板のうち偏光方向を変えていない範囲と第3偏光板とが重なっている範囲を透過した光束が結像して作る観察像
79・・・液晶板のうち偏光方向を変えている範囲と第3偏光板とが重なっている範囲を透過した光束が結像して作る観察像
83・・・液晶板の電圧をONにしてある部分に相当する部分
95,157,814・・・イメージローテーター
96,99,117,158,192,200,624,709,802,808,815,816,907、911・・・偏向プリズム
101,115,156,159,501,813・・・偏向ミラー
108,110,127,800,811・・・手術用顕微鏡本体部
111・・・双眼鏡筒ユニット
112・・・通常の双眼鏡筒ユニット
113,139・・・観察者の眼
114・・・手術用顕微鏡本体部から射出する光束
116,136・・・アフォーカルリレー光学系の前群
119,137・・・アフォーカルリレー光学系の中間結像点
121・・・アフォーカルリレー光学系の後群
123・・・双眼鏡筒光学系へと入射する光束
128・・・中間鏡筒ユニット
129・・・通常の双眼鏡筒ユニット
133,145,194,507,602,617,702,902・・・変倍光学系
135,147,509・・・アフォーカルリレー光学系
138,151,515・・・双眼鏡筒光学系
142・・・CCD
148・・・中間結像点
160・・・結像光学系による結像位置
164・・・平行四辺形プリズム
165・・・平行四辺形プリズムに入射する光軸
169・・・観察者が左眼で観察できる観察像
170・・・観察者が右眼で観察できる観察像
171・・・左眼観察像中の顕微鏡観察像部分
172・・・右眼観察像中の顕微鏡観察像部分
173・・・左眼観察像中の画像部分
174・・・右眼観察像中の画像部分
181・・・液晶モニター
182・・・液晶モニターから射出する光束が持つ偏光方向
185・・・PBS透過後の顕微鏡光束が持つ偏光方向
186・・・PBS反射後の液晶モニター光束が持つ偏光方向
189・・・顕微鏡観察像と画像とが重なった像
193・・・1個目のPBS
195・・・左眼用顕微鏡光束
196・・・右眼用顕微鏡光束
197・・・1個目のPBSを透過した左眼用顕微鏡光束が持つ偏光方向
198・・・1個目のPBSを反射した右眼用顕微鏡光束が持つ偏光方向
199・・・2個目のPBS
201・・・モニター
203・・・2個目のPBSを透過した左眼用顕微鏡光束が持つ偏光方向
204・・・2個目のPBSを反射した右眼用顕微鏡光束が持つ偏光方向
205・・・2個日のPBSを反射した、モニターからの光束が持つ偏光方向
206・・・2個日のPBSを透過した、モニターからの光束が持つ偏光方向
208・・・左眼用第3偏光板
209・・・右眼用第3偏光板
212・・・観察者が観察する観察像
213・・・顕微鏡観察像部分
214・・・画像部分
215・・・光源ランプ
216,630・・・照明光学系
613・・・手術用顕微鏡本体部ハウジングに内蔵する範囲
614・・・手術用顕微鏡双眼鏡筒部ハウジングに内蔵する範囲
628・・・手術用顕微鏡本体部ハウジング
629・・・手術用顕微鏡双眼鏡筒部ハウジング
703・・・第1偏光ビームスプリッター
704・・・第1小型モニター
706・・・第2偏光ビームスプリッター
708,805,819・・・第1接眼光学系
710,809,822・・・第2接眼光学系
712・・・第2小型モニター
713・・・第4接眼光学系
715・・・第2小型モニターの像
716,810.1,810.4・・・顕微鏡観察像
717・・・第1小型モニターの像
718・・・距微鏡観察像と第1小型モニターの像の重像
807,821・・・リレー光学系
810.2,810.5・・・画像観察像
810.3・・・顕微鏡観察像と画像観察像とが重なり合った重像
1101・・・第1の反射型LCD
1102・・・第2の反射型LCD
1103・・・LED
1104・・・拡散板
1105・・・反射型LCD用照明光学系
1107,1108,1113,1114,1115,1201,1202,1203,1204,1205,12061207,1208,1209・・・光束
1211・・・実体顕微鏡
1212・・・超音波プローブ
1213・・・センサー
1214・・・実体顕微鏡のピント位置
1215,1216・・・画像表示手段
1217・・・観察中心

Claims (8)

  1. 観察物体の観察像と画像表示手段に表示した画像とを同時に観察できるようにした実体顕微鏡において、
    透過と反射とで直線偏光方向が直交している偏光光路合成手段を用いて前記観察物体からの光束と前記画像表示手段からの光束とを重ね合わせ、かつ、重ね合わせた後の両光束の偏光方向を互いに直交させ、
    部分的に偏光特性が異なり前記重ね合わされた光束を透過させる際に前記観察物体からの光束と前記画像表示手段からの光束とに部分的に分離できる偏光手段を、前記重ね合わされた光束の光路上に該光束の光軸を中心として90度ずつ回転可能に配置して、
    前記観察物体の観察像と前記画像表示手段に表示した画像とを同時に観察し、かつ、該観察像と該画像の表示範囲を切り替えることができるようにしたことを特徴とする実体顕微鏡。
  2. 前記偏光光路合成手段が、前記観察物体からの光路上に配置された前記観察物体からの光束に偏光特性を持たせる第1偏光手段と、前記画像表示手段からの光路上に配置されていて前記画像表示手段からの光束に前記第1偏光手段を透過した観察物体からの光束が持つ偏光方向と直交する方向の偏光特性を持たせる第2偏光手段と、前記第1、第2偏光手段からの光路上に配置されていて前記第1、第2偏光手段を透過したそれぞれの光束を重ね合わせる光路合成手段と、からなることを特徴とする請求項1に記載の実体顕微鏡。
  3. 記偏光手段が、重ね合わされた前記観察物体からの光束と前記画像表示手段からの光束とが結像する中間結像面上又はその近傍に配置されていることを特徴とする請求項1又は2に記載の実体顕微鏡。
  4. 記偏光手段が、前記重ね合わされた光束に対して垂直にスライドできることを特徴とする請求項1又は2に記載の実体顕微鏡。
  5. 記偏光手段が、偏光板と、該偏光板の物体側から見て直前に前記重ね合わされた光束に対して垂直に移動可能に配置されたλ/2板と、により構成されていることを特徴とする請求項1又は2に記載の実体顕微鏡。
  6. 記偏光手段が、偏光板と、該偏光板の物体側から見て直前に配置された液晶板と、により構成されていることを特徴とする請求項1又は2に記載の実体顕微鏡。
  7. 前記画像表示手段、前記第1偏光手段、前記第2偏光手段、前記偏光手段を、又は、前記画像表示手段、前記偏光光路合成手段及び前記偏光手段を1つのハウジング内に内蔵し、ユニットとして、実体顕微鏡本体部と実体顕微鏡双眼鏡筒部の間に着脱可能であることを特徴とする請求項1又は2に記載の実体顕微鏡。
  8. 前記偏光手段を実体顕微鏡双眼鏡筒部内の中間結像面上又はその近傍に配置した双眼鏡筒が、イエンチ式の眼幅調整機構を有していることを特徴とする請求項3に記載の実体顕微鏡。
JP2000235258A 1999-07-30 2000-07-31 実体顕微鏡 Expired - Fee Related JP4733817B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235258A JP4733817B2 (ja) 1999-07-30 2000-07-31 実体顕微鏡

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11-217514 1999-07-30
JP1999217514 1999-07-30
JP21751499 1999-07-30
JP2000235258A JP4733817B2 (ja) 1999-07-30 2000-07-31 実体顕微鏡

Publications (2)

Publication Number Publication Date
JP2001108905A JP2001108905A (ja) 2001-04-20
JP4733817B2 true JP4733817B2 (ja) 2011-07-27

Family

ID=26522059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235258A Expired - Fee Related JP4733817B2 (ja) 1999-07-30 2000-07-31 実体顕微鏡

Country Status (1)

Country Link
JP (1) JP4733817B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336270A (ja) * 2001-05-21 2002-11-26 Olympus Optical Co Ltd 手術用顕微鏡
DE102005063360A1 (de) 2005-07-19 2007-04-05 Lanxess Deutschland Gmbh Organische Pigmente für Farbfilter
JP4921797B2 (ja) * 2006-01-12 2012-04-25 株式会社 ニコンビジョン 観察装置
JP5184752B2 (ja) * 2006-03-27 2013-04-17 オリンパス株式会社 実体顕微鏡
JP6533358B2 (ja) * 2013-08-06 2019-06-19 三菱電機エンジニアリング株式会社 撮像装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089123A (ja) * 1998-09-09 2000-03-31 Olympus Optical Co Ltd 手術用顕微鏡

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261713A (ja) * 1985-05-16 1986-11-19 Olympus Optical Co Ltd 電子式内視鏡装置
JP3292493B2 (ja) * 1992-02-05 2002-06-17 オリンパス光学工業株式会社 手術用顕微鏡
JPH10211162A (ja) * 1997-01-31 1998-08-11 Union Optical Co Ltd 視野方向選択式内視鏡

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089123A (ja) * 1998-09-09 2000-03-31 Olympus Optical Co Ltd 手術用顕微鏡

Also Published As

Publication number Publication date
JP2001108905A (ja) 2001-04-20

Similar Documents

Publication Publication Date Title
US6088154A (en) Operating microscope
US8786946B2 (en) Surgical microscope system
US5321447A (en) Ophthalmoscopic attachment for a surgical microscope
JP4721981B2 (ja) 立体顕微鏡
JP2001208979A (ja) 立体顕微鏡
US10481376B2 (en) Surgical microscope having optical interfaces
CN211934007U (zh) 具有至少一个光束路径切换装置的手术显微镜
JP2003050356A (ja) 手術用顕微鏡
JP2005095594A (ja) 顕微鏡検査システム及び方法
JP4553613B2 (ja) 顕微鏡、とりわけ立体顕微鏡
JP3534733B2 (ja) 固定高倍率切換型顕微鏡
JP2006508392A5 (ja)
JP4733817B2 (ja) 実体顕微鏡
US6333813B1 (en) Stereomicroscope
JP3292493B2 (ja) 手術用顕微鏡
JP2938940B2 (ja) 手術用顕微鏡
JP3619858B2 (ja) 立体視顕微鏡
JPS63167318A (ja) 実体顕微鏡
JP4510952B2 (ja) 実体顕微鏡
JP2003066336A (ja) 手術用顕微鏡
JP2004219734A (ja) 実体顕微鏡
JP2009163200A (ja) 立体顕微鏡
JP2000214388A (ja) 実体顕微鏡
JP2000352671A (ja) 実体顕微鏡
JP4398200B2 (ja) 立体観察装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees